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Chapter 1

Introduction

1.1 Motivation

String theory was discovered in the late 60s as a model for hadron resonances. While
hadron resonances turned out to be more efficiently described by QCD, Scherk and
Schwarz [sc74] showed that strings provide a promissing theory for quantum gravity.
The introduction of ferminons by Ramond [ra71] and by Neveu and Schwarz [ns71] cured
the inconsistencies of the bosonic string theory. It led to a reduction of the critical di-
mension from D = 26 to D = 10 and removed the tachyonic degree of freedom. Since
then many developments in supersymmetry and in superstrings have been made includ-
ing torus and lattice constructions, Calabi-Yau manifolds, WZW and Landau-Ginzburg
models, topological field theories, duality and mirror symmetries.

D-Branes [po96] play a crucial role in advances towards an understanding of nonper-
turbative properties of string theories and supersymmetric quantum field theories. They
provide a simple description of various nonperturbative objects required by string dual-
ity, since D-branes have the correct properties to fill out duality multiplets. Furthermore
they give new insight into the quantum mechanics of black holes and into the nature of
spacetime at the shortest distances. The Dirichlet-superstring of Neveu-Schwarz-Ramond
can be formulated as D = 2 supergravity [ho79] coupled to bosonic and fermionic string
coordinates with an additional U(1)-symmetry on the world sheet. The main purpose of
this paper is to provide an appropriate basis for the cohomological analysis of Dirichlet
superstrings.

Gauge invariance is a basic principle in models of fundamental interactions. The BRST
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formalism first established by Becchi, Rouet and Stora [brs74] provides a useful tool for
dealing with gauge symmetries, since it encodes the gauge symmetry and its properties
in a single antiderivative, which is strictly nilpotent on all the fields. This antiderivative
is called BRST operator. The nilpotency of the BRST operator establishes the BRST
cohomology in the space of local functionals of the fields. This cohomology is physically
meaningful, since it determines gauge invariant actions, dynamical conservation laws and
possible anomalies. Furthermore it is a useful tool in the renormalization of quantum field
theories. A suitable general framework in which the cohomology of the BRST operator
can be computed has been suggested by F. Brandt [br96]. The main part of this paper is
heavily based on this framework, which relates the BRST cohomology to an underlying
gauge covariant algebra. It includes a definition of tensor fields on which this algebra is
realized and of generalized connections. It reduces the computation of the cohomology to
a problem involving only these quantities. This involves the use of contracting homotopies
in jet space, which allows to eliminate certain local jet coordinates from the cohomological
analysis. These local jet coordinates are called trivial pairs.

Beltrami differentials parametrize conformal classes of two dimensional metrics [be58].
Thus it is natural to use these quantities as basic variables whenever a two dimensional
field theory is coupled to gravity in a conformally invariant way [dg90,gd96,gr90,ta95,ta96,
sc93]. A detailed understanding of this parametrization is essential for the computations
in this work. Therefore the Beltrami and super-Beltrami parametrization is investigated
in quite a detail. Thereby the properties of the Beltrami differential and its fermionic
superpartner, the Beltramino are discussed and the factorization of the BRST algebra is
established. This is comletely done in the component field formalism.

1.2 OQOutline of the paper

The paper is organized as follows. The algebraic approach to the BRST cohomology [Br97,
br96] is sketched in chapter (2). It introduces some terminology and notation. In chapter
(3) well known properties of clifford algebras and spinors are revisited and definitions and
conventions of spinor space are given. Chapter (4) analyses the general structure of gauge
covariant algebras. It is based on the formalism developed by F. Brandt [br96,br93,br91].
Eventually the BRST formalism is set up [Br93]. In chapter (5) the Bianchi identities
for D=2 supergravity coupled to U(1) super-Yang-Mills theory are studied. Thereby the
consistency of the imposed constraints is checked and the general parametrization of the
allowed torsions and field strenghts is determined and the correponding auxiliary fields
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are introduced. The field content of the theory and the BRST transformations of the
elementary fields are given. Chapter (7) introduces the Beltrami parametrization in the
Riemannian manifold approach as the parametrization of conformal classes of metrics
and in the Riemannian surface approach dealing with complex structures. Before turning
to supersymmetric extensions of the Beltrami parametrization the theory of the bosonic
D-sting is reviewed. The main part of the analysis is carried out in chapter (8). The
BRST transformations of the the fields are supplemented by super-Weyl transformations
and the corresponding ghost fields are introduced and their BRST transformations given.
Then the super-Beltrami parametrization is introduced and the factorization of the BRST
algebra is established. In order to constuct a suitable set of local jet coordinates the
cohomological problem is mapped from the space of local functionals to the space of local
total forms. Eventually the infinite set of generalized connections and tensor fields is
constructed. The operators corresponding to the infinite set of generalized connections
form two copies of the super-Virasoro algebra. The representation of the operators on the
tensor fields is given and explicite expressions of the first few tensor fields are listed. In
two appendices frequently used formulae for the manipulation of «-matrices and for the
super-Beltrami parametrization are collected.



Chapter 2

BRST Cohomology

2.1 BRST Cohomology on local total forms

The local BRST cohomology of a particular theory is defined by the BRST operator s
and the space in which its cohomology is to be computed. The BRST operator is required
to be nilpotent and to commute with the spacetime partial derivative 0,,

$2 = $0, — OppS = OOy — 0Oy = 0. (2.1)

A basic concept used in this context is the jet bundle approach [sa89]. In the jet bundle
language the fields and their partial derivatives

(@] :={®", 0, 8", 0,0, ®", ...} (2.2)

are considered as local coordinates of an infinite jet space. They are regarded to be
independent apart from the obvious identification

Oy -+ O -+ Oy - - O D = By O, -

J

O, -

1

O, @ (2.3)

By convention the coordinates ™ and the differentials dx™ are also counted among the
local jet coordinates. This turns out to be convenient since the coordinates and the
diferentials are always BRST invariant

sz™ =0, sdx™=0. (2.4)

The derivatives 0, are defined as total derivative operators in the jet space

5 , 0
—_— ®Z :
On = G + 2 O, Vg

= m
ox >0

(2.5)
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They become usual partial derivatives on the local sections of the jet bundle. Due to the
invariance of the differentials, which are treated as anticommuting objects the spacetime
exterior derivative

d=dx"0p, (2.6)

anticommutes with the BRST operator
sd+ds=0, d*=0, (2.7)

which is equivalent to the second and third relation in (2.1).

2.1.1 Descent equations

A local functional is an integrated local volume form

W= / wp, (2.8)

where D denotes the the spacetime dimension. In general local p-forms are

1 mi m 7
wp = de e dx P W, (1, (D). (2.9)
They are local in the sense that they are polynomial in the derivatives [0, ®‘] but may have
an arbitrary dependence on the coordinates 2™ and the undifferentiated fields ®*. They
are not required to be globally well defined. A local functional is called BRST invariant
if the BRST transformation of its integrand is d-exact in the space of local forms

SWp :de—l- (210)

A local functional is called BRST-exact or trivial if wp = snp 4+ dnp_1. Two solutions
are called equivalent if they differ by a trivial solution. Thus the local BRST cohomology
is the cohomology of s modulo d on local volume forms and is denoted by H(s|d). The
cohomology is well defined due to the nilpotency of s and d and the fact that they
anticommute. H (s|d) is represented by solutions

swp +dwp_1 =0, wpF# snp +dnp_1. (2.11)

From this the descent equations are derived via the algebraic Poincaré lemma. It states
that locally any d-closed local p-form is d-exact for 0 < p < D and constant for p = 0,
while local volume forms are locally d-exact if and only if they have vanishing Euler-
Lagrange derivative with respect to all the fields. Thus acting with s on (2.11) one arrives
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at d(swp_1) = 0. The algebraic Poincaré lemma now implies the existence of a (possibly
vanishing) local (D — 2)-form wp o satisfying

swp_i +dwp_y = 0. (2.12)
Iterating the arguments one derives the so-called descent equations

ow,—dwy_1 =0, D>p>pg; swy =0 (2.13)

2.1.2 The 5 cohomology

The descent equations are compactly written introducing the new nilpotent operator
§=s+d, §=0. (2.14)
The cohomology of 5§ on local total forms is defined by the condition
Sw=0, @+ 5§07+ constant (2.15)

where a local total form is the formal sum of local forms with different form degrees,

D
0= wp (2.16)
p=0

It is natural to introduce the total degree as the sum of the ghost number and the form
degree
totdeg = gh + formdeg. (2.17)

Since s has total degree 1 it maps a local total form with total degree G into a local total
form with total degree G + 1. The BRST cohomology on local functionals with ghost
number ¢ is locally isomorphic to the s-cohomology on local total forms with total degree
G = g+ D [br96]
B B D
H(s|d,Q*P) 2 H(5,Q°), Q= (2.18)

p=0

where 9P denotes the space of local D-forms with ghost number g.

'In fact for p = 0 the algebraic Poincaré lemma implies only sw,, = constant. For possible extensions
see for instance [bh96].
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2.2 Contracting homotopies

The computation of the s cohomology is considerably simplyfied by switching to a new
set of jet coordinates better adapted for the cohomological analysis. Following [br96] the
new set of jet coordinates is denoted by B = {U', V', Wi} and is required to have the
following properties

U=V, IW =RI(W), (2.19)
where the R are functions of the WW’s only. The change of jet coordinates is required to
be compatible with the locality requirement imposed on the cohomological problem, i.e.
the U"s, V! and the W¥’s have to be local total forms. In this case Q* factorizes into two

independent s-invariant subspaces
O = x Q5. (2.20)
As a consequence the cohomology of § also factorizes due to Kiinneth’s formula

H(3,Q% =@ H((.9Q5,) x H(E Q5 9), (2.21)
Gl
where H (3, Qg’v) is contractible, since the U’s and V’s form 5-doublets satisfying s = V.
Therefore one is left with the cohomology of § on local total forms constructed solely of the
W’s. The U’s and V’s are called trivial pairs, while the WW’s are interpreted as generalized
connections and tensor fields.



Chapter 3
Spinors

In this chapter some well known properties of clifford algebras and spinors [ta98], [to83],
[kr96] are revisited. The conventions used in the following work are given.

3.1 Clifford algebras

Considering a metric of the form
Nay = N™ = diag(+, ..., +, —, ..., —) (3.1)

with p positive and ¢ = D — p negative entries the generators of the Clifford algebra are
objects v*, which satisfy the relation

{777} = 9" + 9% = 21 (3.2)
The products +1'¢1>%
| A — "}/‘11 . "}/ai with ar < ag < ...<a; (33)

form a finite group with 2”*! elements. The Clifford algebra Cx(p, q) is the algebra formed
by the linear combinations of the products I'**% with coefficients in some field K. Its
generators anticommute and p of them square to 1 while the remaining ¢ square to —1.
The smallest matrices satisfying the anticommutation relation are 2171 x 2051 where [z]
is the largest integer not larger than z. For D = 2 an explicit representation can be

constructed using any two of the Pauli matrices

01 0 —i 10
01:(1 0)7 UZZ(Z S); 03:(0 _]_), 0'12:1, 0-10-20-3:Z.1 (34)
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to represent C(2,0) and imaginary multiples to obtain the other signatures. Representa-
tions of higher dimensions are constructed by tensor products of representations, which
corresponds to ‘matrices of matrices’ [kr96], [ta98].

The antisymmetrized bilinears
1
Yab = Z[%"%] (3.5)

provide a representation of the Lorentz algebra on the representation space of the Clifford
algebra, since the commutator of ¥,, with a gamma matrix ~. gives

[Eaba ’Yc] = NacYo — MbcVa> (36)
which is of the same form as the Lorentz transformation
lab‘/;: = 77cha - nac%a [laba lcd] = nbclad - nbdlac - naclbd + nadlbc (37)

of the vector .. Hence, the ¥,,’s provide a representation of the Lorentz algebra

[Eab; Z:cd] = nbczad - nbdzac - naczbd + nadzbc (38)

I choose as a representation of C(1,1) the two dimensional matrices

w%#(? ‘U) (vl)fz((z 0) (3:9)

which satisfy the definition (3.1) with
1 0
ab
— oy = 3.10
n Tab ( 0 -1 ) ( )

The generator of Lorentz transformations then reads

1 1 0.1

S = 5 (Yo% — WYa) = FEabYes Ve =Y (3.11)

where % denotes the totally antisymmetric tensor

0 —1
Eab = ( ) 0 ) , (3.12)

(7)) = ( LY ) : (3.13)

and v, takes the explicit form
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The spinor indices are often suppressed assuming the summation convention ‘ten to four’.
The totally antisymmetric tensor &, satisfies the relations

ab be c
Eab = —€Y,  Ewc =0,

eape™ = —0,68, + 6,5, (3.14)

The Lorentz transformations in two dimensions explicitely read

lay = capl, v, = &by, (3.15)
1 1
Wa =500 = 5(0)ar WO = —32(n)# = ~Lw)®  (3.16)
where I used
1
labwa = §€ab(7*)aBAﬁa,¢"ya Aaﬁw’y = 6'yﬂ77/}0u Aaﬂ,lv/},y = _6{1’)/,[7/}5. (317)

In two dimensions the v matrices satisfy the relation
Vi =01+ e, (3.18)
and the Fierz identity
070+ (v) (a)y + (1)a’ (1)) = 26,°8,°. (3.19)

Other formulas in the calculations frequently used are collected in the appendix (A.1).
The totally antisymmetric tensor with spinor indices is denoted by

0 -1
ap = —*F = 3.20
Eap = —€ (1 0) (3.20)

It has the properties

Eap”™’ =6,

o

Eage”’ = —0,764 + 0476, (3.21)

The charge conjugation matrix and its invers are fixed to be

0 —i 0 —i
Caﬂ:igag:( , Z), Caﬁ:—isaﬂ:( , Z), (3.22)
10 10

satisfying the relations
cot =1, —47T=0"14C. (3.23)

In general spinors of SO(p,q) have 93] independent complex components, which may

be reduced by imposing Weyl and/or Majorana conditions. General spinors without any
conditions imposed are called Dirac spinors.



CHAPTER 3. SPINORS 11

In even dimensions there are two inequivalent irreducible representations of the Lie algebra
so(p, q), which are of dimension 2D/2-1 and whose elements are called Weyl spinors. The
chiral projectors P, which decompose the representation read in our case

1

P, 5

(1£n,). (3.24)

Therefore the first (second) component of a Dirac spinor corresponds to a right (left)
chiral Weyl spinor

Y1 = Py, w+:(ﬁ1), w_=(£2). (3.25)

Majorana spinors satisfy a certain reality condition. The Majorana condition requires
that a spinor is equal to its charge conjugate

v = 1. (3.26)

Charge conjugation should change the sign of the coupling of the elektromagnetic gauge
field to the fermion in the Dirac equation

(V" O —ey" A —m)p =0 —  (iY"0p +ey™ A, —m)yY° = 0. (3.27)

This equation is obtained by transposition of the Dirac equation

((—’)/m)T(Zam + eAm) — m) ET = Cil(Z’)/mam + efymAm — m)C@T = 0, 'ch = CET,
(3.28)
where 1) denotes the Dirac adjoint spinor
P =yrA (3.29)

which transforms contragradient to ¢ under Lorentz transformations. In our case we
have A = +°. The charge conjugate spinor is related to its Dirac conjugate by the charge

conjugation matrix

WS = Cagl . (3.30)



Chapter 4

Gauge covariant algebras

Gauge theories may be characterized by the symmetry (or gauge) algebra of the infinites-
imal symmetry transformations. Although the approach of exploiting the structure of
gauge algebras can be extended to open and reducible symmetry algebras [br96] I re-
strict the investigation to irreducible and closed algebras.

In the first part of this chapter I analyse the general structure of closed irreducible
gauge covariant algebras and give some definitions and conventions. In the second part
of the chapter I set up the BRST formalism. The BRST transformations of tensor fields,
connections and ghost fields are given.

4.1 Algebra on tensor fields

First I discuss the structure of closed irreducibel gauge algebras realized on tensor fields
T, which are functions of some elemtary fields ¢. A precise definition of tensor fields is
given later. The infinitesimal symmetry transformations are implemented by operators
Ay, which have an algebra on the tensor fields of the form

[An, An} = _}—MNK(T)AK: (4.1)
where [.,.} denotes the graded commutator
Ay, AxY = Ay, Ay — () MY Ay, Ay (4.2)

The structure functions are in general field dependent. According to (4.1) they are graded

antisymmetric
j:MNK = _(_)MN:FNMK (4-3)
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depending on the grading of the corresponding operators. The grading of the structure
functions is given by

| Fun™1=IM [+ N[+ | K| mod?2. (4.4)
They satisfy the Bianchi identities which arise from the Jacobi identity for graded com-
mutators
> ()M (AM}—NP ® o+ Fun"Frp K) =0 (4.5)
MNP

and guarantee the consistency of the algebra. The cyclic sum in (4.5) is defined by
> (=) Xune = (=) Xunpe + (=) Xnpu + (=) Xpun. (4.6)
MNP

The sign convention in (4.6) is consistent with the fact that the graded commutator [A, .}
acts on the commutator product [B,C'} as a graded derivative and therefore according to

[A4,[B,C}} = [[4, B}, C} + (-)*7[B,[A, C}}, (4.7)

which is equivalent to the Jacobi identity for graded commutators. The operators Ay,
are covariant in the sense that they map tensor fields to tensor fields. They are in general
not defined on all fields so that (4.1) holds. In particular they are not defined on the
gauge fields A, and the ghost fields CN which are introduced requiring that the exterior
derivative d and the BRST-operator s act on tensor fields 7 according to

T = AMALT! (4.8)
sTV = CMALT. (4.9)

Inserting for the exterior derivative d = da™d,, and the connection 1-forms AM = dz™A N
in the first equation (4.8) the partial derivative reads

OmT' = ANAYT". (4.10)

which holds identically in the fields and their derivatives. In general this requires the
existence of a locally invertible subset of {4 M}. This defines the A’s corresponding to
the invertible subset in terms of the partial derivative and the remaining A’s

{A2 ) ={en, ARY {Au) = {Da Ay} (4.11)
Dy = B, (O — ASA,) . (4.12)

This can be regarded as a definition of covariant derivatives. The invertible subset of
{A M} is identified with the vielbein and is denoted by e,? and its invers by E,™

e lE" =0 E el =562 (4.13)

n
m a m a
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The commutator of partial derivatives is computed using equation (4.10) and the fact
that Ay 7" is a tensor field

(O, 0] T" = Oy (A NANTY) = (m > n)
= (O AMANT + ANAMAGANT = (m & n)
(O A P 0, A + AMANFo)ART. (4.14)

Since the partial derivatives commute and the A, are assumed to be independent we find
amAnP - aﬂArf + AmMAan:NMP = 0’ (415)
which can be solved for the field strengths F,,” using the invers vielbein

Fo = ES B (0,A,) —0n A —ef AFF, T — Abe T, T —AFAYF,, "), (4.16)

a

As a consequence of the commutativity of the partial derivative the F,,” do not count
among the elementary fields but are given by the antisymmetrized first derivatives of

the gauge fields A, and the remaining F,, 5y’

Equation (4.16) must not imply any
differential equations for the fields but holds algebraically in the elementary fields and

their derivatives.

In order to make this formalism more explicit I split the operators A,; into the co-
variant derivative D,, the supersymmetry transformations D,' and internal symmetries
07 including Lorentz transformations l,;, Yang-Mills group actions 9;, dilatations dy, and
R transformations dg (acting on D, only):

{Au} ={Da.0r},  {Da} ={Da;Do}, {01} = {lav, b, ow, IR} (4.17)
The algebra then reads
[DA,Dp} = ~T,5°De — F 5 0; (4.18)
(6. D4} = —g;4" D5 (4.19)
[6r,0) = f1, " (4.20)

This way the structure functions achieve different interpretations. The T,,¢ are the
torsions, the ;5! are the field strenghts. The field strenghts corresponding to Lorentz
transformations are called curvatures. The g;,® are the representation matrices of the

IThe underlined index denotes Dirac spinors. In D=2 dimensions this convention is dropped.
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internal symmetries and the f;; © denote the structure constants of the Lie algebra. The
structure functions and the corresponding symbols are collected in the following table :

fABC:TABC ]:IBCZQIBC -7:1JC:0

(4.21)

fABI:FABI ]:IBJZO fIJK:_fUK

Inserting this in the Bianchi identities (4.5) one obtains the first Bianchi identity as
the coefficient of the space-time symmetry transformations D4 and the second Bianchi
identity as the coefficient of the internal symmertry transformations d;

BI1: » (=) (DaTpe® + Tag"Tue” + Fag'9:6”) =0 (4.22)
ABC

BI 2: » (=)' (DaFpe’ + Tap"Fre') (4.23)
ABC

where the cyclic sum is given as in (4.6). The remaining identities are

0rFap” = —gra"Frp’ — (=) 915" Foa? + ()P F " frer? (4.24)
0iTap” = =914 Trp" - (_)ABgIBETEAC - (_)IA+IB+IETABE91EC' (4.25)
This means that the torsion tensor T,z and the field strenght F, 5’ transform under &;
according to their indices. Furthermore we find that the structure constant f;; ¥ is an

invariant tensor

§rfr” = 0. (4.26)

This holds since I assume that the structure constants fulfill the Jacobi identity

E fIJ HfHKL' (427)

I1JK

Analogous the representation matrices g, , © are invariant tensors due to the representation
property of g;,”.

4.2 BRST operator

Introducing a ghost field CM for every infinitesimal transformation A,; the BRST oper-
ator s is defined to act on tensor fields according to

sT = CMAyT? (4.28)
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as already stated in the second equation of (4.8). The grading of the ghost fields is given
by
|ICM| = |Ay| +1 mod 2. (4.29)

The BRST operator is an odd graded, nilpotent operator

s| = 1 (4.30)
s = 0. (4.31)

Furthermore I assume that s commutes with the partial derivative and that it acts trivially
on the coordinates ™ and the differentials dz™

[$,0m] = 0 (4.32)
sz™ = 0 (4.33)
sdz™ = 0. (4.34)

The nilpotency of the BRST operator fixes the BRST transformations of the ghost fields
CF uniquely to
A | RPN

which may be checked for any closed and irreducible gauge algebra. The first equation in
(4.32) allows to compute the BRST transformations of the connections A,M

The consistency of these transformations with s?> = 0 is easily proved. Both s2C* = 0
and s?A,I" = 0 are fulfilled due to the Bianchi identities.

4.3 Generalized connections

Due to the commutativity of the BRST operator s and the partial derivative 0,, and the
fact that s acts trivially on the differentials dz™ the BRST operater anticommutes with

the exterior derivative

{s,d} = 0. (4.37)

This may be used to define the new nilpotent operator §

§i=s+d. (4.38)
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Introducing the new ghost variables
CM = CM 4 AM (4.39)

allows us to write

ST =C™AyT’ (4.40)

for s acting on tensor fields. The formal identity of the algebras of s and § implies
- 1~ -
5C7 = —(—)M§CMCNfNMP. (4.41)

Splitting (4.41) into parts with ghost number 0,1 and 2 yields

A 1 ~q, 2
sCt = —(—)MicMCNJ-'NMP (4.42)
AT +dCT = —CMANFyb (4.43)
1
dAT = —(—)M§AMANJ-'NMP (4.44)

which reproduces the BRST transformations of the ghosts C* and the connections A,F.
The last equation is equivalent to (4.15).

I now make contact to the introduction where I introduced a new set of jet coordi-
nates B = {U', VI, W'}. As already mentioned the W’s are interpreted as generalized
connections and tensor fields, while the U’s and V’s are called trivial pairs. Tensor fields
are identified with those W"'s with vanishing total degree. Therefore tensor fields have
necessarily vanishing ghost number and form degree. The W’s with nonvanishing total
degree are called generalized connections. Those with total degree 1 correspond to the
C’s defined above.



Chapter 5

Bianchi identities

The next step following the discussion of the structure of gauge covariant algebras is to
impose constraints. Supersymmetric gauge theories necessarily have constraints imposed.
This is so, since the connections introduced so far yield highly reducible theories. There
are two types of constraints to be distinguished namely conventional constraints and non-
conventional constraints. Conventional constraints are innocent in the sense that they
can be reached by covariant redefinitions of the connections (and ghost fields). They
are used to bring the gauge algebra in a standard form. Different types of theories
are obtained by a particular choice of non-conventional constraints. In four dimensions
there are three known supergravity theories, called old minimal, new minimal and non-
minimal supergravity. Consistency of the constraints requires that the Bianchi identities
are fulfilled. They usually imply additional constraints and the general parametrization
of the allowed field strenghts and torsions requires the introduction of auxiliary fields.

The choice of constraints and the evaluation of their consequences is a crucial point
in the construction of supersymmetric theories, since the constraints must not imply
equations of motion for the fields. On the other hand underconstrained theories do not
allow equations of motion for the matter fields of the type we expect, have higher spins
than desired, etc.

I discuss the procedure of imposing constraints and evaluating the Bianchi identities
for the case of two dimensional super-Yang-Mills theory and for pure two dimensional
supergravity seperately before coupling the U(1) symmetry to supergravity. The tedious
consistency check of the constraints is somewhat shortened using the fact that not all of
the Bianchi identities are algebraically independent [s081]. One of these ‘identities for
identities’ arises in supergravity and is known as a theorem of N. Dragon [dr79]. A sketch
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of the proof of this theorem is given.

5.1 Bianchi identities in D=2 Super-Yang-Mills the-

ory

Starting with the covariant derivative and the well known covariantization of the spinor
derivative

D, =0, + Aidy, Dy=D,+ Andy (5.1)

we investigate the algebra of D,, D, and J,. The covariant derivatives do not commute
but give rise to field strenghts

(D4, D} = —TupDe — Fand,, (5.2)

where as in the previous chapter [.,.} denotes the graded commutator, while the commu-
tation relations

64, Da] = [6,, D] =0 (5.3)
correspond to the fact that space time symmetries are inert to gauge transformations.
The only non vanishing torsion in flat space is given by

T = =2i(1°C)as. (5.4)

[0}

We now study the Bianchi identities to fix the algebra. The first Bianchi identity
X(=)" (DATBCD + Ty T + FABIQIC’D) =0 (5.5)

is trivial in flat space with only internal symmetries. Before we study the second Bianchi
identity, we observe that we can absorb parts of the field strength Fi,z by a redefinition
of the Yang-Mills field A,. Computing the field strength in terms of the connections we
find

Fop = _DozAﬂ - DﬂAa + Qi('yao)aﬁAa (5'6)

so that
Faﬁ = 2i(7*0)0ﬁ¢ (5'7)

can be imposed as conventional constraint. Since A, can therefore be written in terms
of covariant derivatives of A,, the A,’s are called prepotentials. We will find that no
additional constraint is needed.
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The Bianchi identities for the field strenghts are
X(-)"¢ (DAFBCi + TABDFDCi) = 0. (5.8)
These are called the second BI's. Explicitly the BI's read
dim[3/2] - 5 (DaFsy + To5°Foy) = 0
dim|2] : DyFup + DaFpa + DsFoa + T,y ‘B, = 0
(5.9)
dzm[5/2] : Dana + DbFaa + DaFab =0
dim[3] : >D,F. = 0

To solve the BI with dimension [3/2] we decompose the field strength F,, into a spinor A
and a spin-vector x

F,., = (%)aﬁ)‘ﬁ + Xaa (5.10)
where x carries the spin 3/2 component and satisfies the Rarita- Schwinger condition
(7"’ Xas = 0 (5.11)

Further we use our expression (5.7) for F,s to find that Fj, contains no spin 3/2 compo-

nent:
Faa = (’Ya)aﬁ)\ﬁ (512)

where g is given as Dyd = (7:\)a.' As a next step we solve the identity with dimension
[2]. First we observe by contracting with (y¢)®® that D,A* = 0. Therefore D,\s may be
decomposed in the basis of (7y)-matrices into

Das = (1:C)asth + (1C) st (5.13)

Using this decomposition we find ¢ = i/25abFab and v, = isabDb¢. Putting the pieces
together we finally obtain

Da)\ﬁ = i/Q(’Y*C)aﬂgabFab — i(f}/*f}/aC)aﬁ'Da¢. (5.14)
To complete our results we find from the identity with dimension [5/2]
DoFop = — (Do) o + (VaDpA)a- (5.15)

The identity with dimension [3] contains no further information since it is fulfilled iden-
tically. This completes the results of the investigation of the Bianchi identities.

IHere we introduced the shorthand ¢ := ¢%1,.
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5.2 Bianchi identities in D=2 supergravity

We start our investigation of the Bianchi identities with the covariant derivative in curved

space-time
Do = By (Om - %wnf”lab — Xm Da) (5.16)
where E//" denotes the inverse vielbein
E™el =06} eE"=6" (5.17)

which allows us to change freely between ‘world-’ and ‘Lorentz-indices’. Lorentz transfor-
mations contribute to the covariant derivative through the Lorentz generators l,,. The
‘Lorentz-’ or ‘spin-connection’ is denoted by w, 2. x,% denotes the Rarita-Schwinger field
and describes the gravitino. The covariant derivative not containing the spinor derivatives

. 1

Dy = E™(0,, — 5%5“’1,1,,). (5.18)
may be used alternatively? but whether we use this form of the covariant derivative or the
one given in (5.16) is a question of convenience [dr87]. The covariant derivative given in
(5.16) is usually called supercovariant derivative. We start the investigation of the algebra
of Dy, Dy, lap by imposing a set, of constraints.

5.2.1 Constraints

The usual set of standard constraints reads

« a

All of them are conventional constraints, since they can be achieved by redefinitions of
the connections. Especially the constraint 7, = 0 is well known from general relativity
and allows us to compute the spin-connection entirely in terms of the vielbein and the
Rarita-Schwinger field.

Before we are going to solve the Bianchi identities with the constraints given in (5.19)
we turn to a peculiarity in supergravity. Due to a theorem stated by N. Dragon [dr79] it is
sufficient in supergravity to consider only the identities which arise as the coefficient of the
covariant derivative, i.e. the first Bianchi identities. The second Bianchi identities then
hold on account of the first ones and on account of the Ricci identity (5.20). Furthermore

the curvature is completely expressible in terms of torsions and its covariant derivatives.

2Later I will use this form of the covariant derivative denoted with the symbol V,, = e,,‘{f)a to express
supertransformations of certain quantities.
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5.2.2 Dragons theorem

The general commutator relation or Ricci identity
[Da, D] = —T43°Dec — Fup'd; (5.20)

implies the Bianchi identities via the Jacobi identity for graded commutators. The first
Bianchi identity arises as the coefficient of the covariant derivative, while the second
Bianchi identity arises as the coefficient of the structure group transformation. To give
an idea of the proof we first introduce convenient shorthands for the identities

1) D

B(-)" (DATBCD + Typ" Tpe” + RABCD) = 1'% (5.21)
9 E

Y (—)*C (PaRpen” + Tup" Reen”) = Iihon (5.22)

where the field strenghts corresponding to Lorentz transformations, i.e. the curvatures,
are denoted by R,z Cdg(ab)c P = R,pc". From the second Bianchi identity we take the

part that is antisymmetric in all lower indices
2) E 2) E 2) E 2) E
1511)30D - ](Bé’DA + [é£AB - I(D1)4BC = 0. (5.23)

This equation holds on account of the first Bianchi identity and the Ricci identity (5.20)
applied to the torsion

(DA, Dp)Tep” = =Tap " DeTep” + Rape" Tep” + Ragp Tep” — Rape Tep” . (5.24)

This is a nontrivial statement although equation (5.24) is a special form of the general
commutator relation (5.20) which implies all Bianchi identities. Nevertheless equation
(5.24) does in general not imply the second Bianchi identity, for example not in Rieman-
nian geometry. To proove Dragons theorem one groups together cyclic sums of curvatures
in equation (5.23) and replaces them by making use of the first Bianchi identity. In this
way second derivatives of the torsion appear in terms of commutators, which one replaces
by using the Ricci identity (5.24). Then one ends up with the equation

N E 0 E 0 E N & N E
TABFII(?()JD - BCFIZ(*“%A +TCDFII(7)1B - DAFII(?1)3(J +TACFII(?1))B +
1) E 1) F ) F 1) F 1) F
TDBFIJ(LV‘EXC + I,(L\J)Bc Ty — 11(3%@ Ty " + ](01)3,4 Typg" — ](DAB Tpe” =0 (5.25)
which holds on account of the first Bianchi identity.

Now one has to use the restrictions on the curvature to show that equation (5.23)
already implies the second Bianchi identity

19,7 =o0. (5.26)
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First we observe that the curvature is a generator-valued two form [wz77]. In N-extended
supergravity the gauge group is restricted to be SL(2,C) x G, where G C U(N). Since
spinor and vector components are not mixed by gauge transformations all components of
the curvature R ,p-” where C and D belong to different representations of SL(2,C) have
to vanish. This restriction makes it possible to express all components of the curvature in
terms of torsions without the use of torsion constraints. Furthermore it is straightforward
to check that the second Bianchi identity follows from equation (5.23) since the last index
pair in IE?%CDE has the properties of a generator. For example if D, E are given to be
vectorial chosing A, B, C to be spinorial gives immediately

2 b 2 b 2 b 2 b 2 b
[tgéﬂ)va _I,l(%y)aa +['(ya)aﬁ - (Ea)ﬁ'y :]ég)'ya =0 (5.27)

Similar calculations for all other index combinations complete the proof. The arguments
given here hold for N-extended supergravity in arbitrary dimensions.

This theorem shortens the consistency checks in supergravity and furthermore shows
that constraints can be formulated as conditions for the torsions since the curvatures are
completely expressible in terms of torsions.

5.2.3 Solution of the Bianchi Identities

The first BI'’s read
X ()" (DATBCD + Ty " Tpe” + FABIgIC'D) = 0. (5.28)

This equation determines the curvature completely in terms of the torsion and its covariant
derivatives. In our case the generators g, take the following simple form

1

(gab)cd = gabgcda (gab)aﬂ = _igab(’)/*)aﬁ- (529)
Writing R g for R, 5 g, P the curvatures read
1
R = _RAB§5ab5ab<€cd = Rape,’ (5.30)

1 .1 1
RABaﬂ = RAB§5ab§€ab(%)aﬁ = —iRAB(%)aﬂ (5-31)
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ab

where R, 5 = R, 5" = —Rap3c® was used. Then the Bianchi identities take the following

form, where we already used our set of constraints given in (5.19) :

dim[1/2]: ,5.¢ = »>T,.T," = 0
dim[1]: aﬁ’yé = 2 Tys 6T675 + Raﬂ75 =0
aﬁcd = Raﬂcd + Tca'yT’yﬂ d + Tcﬂ’yT’ya d - 0
dlm[3/2] aab ‘£ = Raab ¢ + Rbaa ¢ + TabETsac =0
cza,B’y = DO&Taﬁ’y + ZjﬂTouJ;y - Raaﬁ’y - Raﬁa’y - T’BaeT’ea’y =0
dlm[2] abe a = Rabcd + Rbcad + Rcabd =0
aba o = DaTbaﬂ - DbTaaﬁ + Taa’yTb'yﬁ - Tba’yTa'yﬂ + DaTabﬁ + Rabaﬁ =0
dim[5/2]: 4. ° = » D.T,.°+71,"T,, = 0

(5.32)
From the BI for dim=[1/2] we learn that T,,° = 0. In order to solve the Bianchi identities
with dim=[1] we decompose R,s and T,,” in our basis of vy-matrices :

Rog = Ro(v"Clap + R (7:C)ap (5.33)
T = tad +1, (0 + e (7)d (5.34)

Here we used R,3 = Rg, in the first equation, hence R,z contains no term proportional
to €45. After some algebra one ends up with the equation

R* = —2it,° (5.35)

and all other terms vanishing. Parametrizing the solution by a scalar field R* = iS we
find

Rag == iS(’y*C)aﬂ (536)
1
Taaﬂ = ZS(%)aﬁ- (537)

From the equations for dim[3/2] one obtains

Raa = 2iT° (7,C) pa (5.38)
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by inserting the constraints into the Bianchi identity with the index picture ,,°. This

aab *
yields
8bthm + 8owaoz = QigabTE(fYCC)Ea- (539)
where we used the antisymmetry of the torsion 7,,* = £4,,7* and the generator valuedness
of the curvature. By contraction with £2° and use of R,, = —R,, we obtain the result
Raa = 2iT% (7,C) ga (5.40)

Inserting this equation into the Bianchi identity with the index picture ,5,” we obtain

1
T, = Z(%‘)oﬁpﬁs (5.41)

This is easily checked using R,,;” = —1/2(74)5 Raa and the second equation in (5.36).
At dimension 2 the identity with the index picture ,, ¢ reads

5cdRab + 5adec + 5bdRca = 0. (542)

Again using Ry, = ¢4 R we find that this identity is satisfied on account of the identity

in two dimensions

€ab€cd t Ebc€ad T Ecabd = 0. (543)
Further we obtain from the bianchi identity with index picture abaﬂ
Lo 2
R = Z(S + D*S9), (5.44)

where D? denotes D°D,,.

Therefore as the result of the investigation of the Bianchi identities our non-vanishing

torsions and curvatures are given as

Taﬁa = 22'(7“0)043
T, = is(va)f
Rog = iS(1:C)as
T,* = Jea(12)DsS

1
Raa = - 5 (fYafY*)aBIDﬁS

Ry = isab(52+DQS) (5.45)
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5.3 Supergravity with U(1) symmetry

Considering supergravity with additional U(1) internal symmetry changes our previous
results obtained for pure supergravity and the Yang-Mills case seperatly in an obvious
way. So the additional torsions 7, and T,,® appear in the Bianchi identities for the field
strengths (5.8). We find

dim|[3/2] : B (DaFsy + ToyFoy) = 0

dim[2]:  DyFap + DaFpa+ DgFaa + Tog"Foa + Tod Fys + Tog Fra = 0

(5.46)
dim[5/2] 1 DuFya + DyFag + DaFup + Ty Foo + Ty Fro — T, Fyy = 0
diml3) : 5 DuFye + T, Fre = 0
This gives additional contributions to equations (5.14) and (5.15)
Dadsg = (V" %C)apDad + /2(71:C)ape™ Fap + i(7.C)apSe (5.47)
) 1
DaFab = _('YbDa)‘)a + (’Yan)‘)a - QZJ—ZJLbﬁ('Y*C)BOzQ5 + §5abS(’7*)‘)a (548)

The Bianchi identity with dimension [3] remains trivial. The results of the supergravity
part remain unchanged, since the commutators of ¢, with D, and D, and therefore the

corresponding ¢; &’s all vanish.



Chapter 6

Field content and BRST

transformations

6.1 Field content

As already mentioned in section (4.1) the invertibility of the vielbein allows it to solve

the equation
[am: an] =0= [AmMAMa AnNAN]a (6'1)

for the field strengths F,,V. As a consequence the field strengths with lower Lorentz

a

indices do not count among the elementary fields. From equation (6.1) we obtain
Om A = 00 AT + AN ANF =0, (6.2)
Using the inverse vielbein we find

:F'

a

N = EBE (00AY = 0 AN — e f AN = ALeSFN — ALAYF,N) . (6.3)
where we again used the notation introduced in section (4.1)
{A} = {e, ALY {An}={Dn, Ay} (6.4)

for our set of connections and A-operations. This allows us together with the constraint
T,,¢ =0 to compute the spin connection in terms of the vielbein and the gravitino

w ab — EanEbk (w[mn}k - w[nk}m + w[km}n)

Winnlk = €kdOmCpm] — iIXnVkXm- (6.5)



CHAPTER 6. FIELD CONTENT AND BRST TRANSFORMATIONS 28

For the other field strenghts we find

T, = E"E™ (annle — ViXa + (eannB - Xmﬁenc)TCﬁa)

1 1
= BB (Vo = Vit + 15 (am)” = 15 (mn)") (6.6)
Rabcd — EanEbm(anwn;:d . amwncd . wncewmed + wmcewned
- (Xn(zlene - enfxna)ReaCd - Xn(zlxnﬁR,BaCd> (67)

n n

= EE, (0nAn — OnAn — (Xm ¥ A) + (XnTmA) — 2i(xm7:Cxn)9) (6.8)

Fop = E"E,™ (anAm — O An — (Xn?e - eanna)Fca - XmBX aFaﬁ)

with

1
VaXon = OnXm = 590" labXom (6.9)

Together with the results of the previous chapter equation (6.6) allows us to solve equation
(5.45) for the supersymmetry transformation of the auxiliary field S. Using

1
T = Jar(14)'DsS (6.10)
one obtains
DS = —4(1C)ap™ " VX, +i(7"C)apXiS: (6.11)

6.2 BRST-Transfomations

The BRST-operator s was introduced in section (4.1) requiring that s acts on tensor fields
according to
sT = CMANT?, (6.12)

where C™ denotes the ghosts introduced for every infinitesimal symmetry transformation
A . Further we require the nilpotency of the BRST-operator and that it commutes with
the partial derivative

s* = [5,0,,] = 0. (6.13)

From s? = ( we obtain the BRST-transformations of the ghosts and [s, d,,] = 0 gives the
BRS-transformations of the connections A7, since the partial derivative on tensor fields
reads

OnT = AN AT (6.14)
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Thus we obtain
$CF = —%(—)NC*NC*M?MNP (6.15)
sAY = 0,07 = CYMANFr (6.16)
A more familiar form of the transformations is obtained by a redefinition of the ghosts
Ch=Cr+CmAl, C™=C'E,™ (6.17)

The BRST-transformations then read

sO" = O™, — %(—)MCMCN}'NM” (6.19)
1
sCH = C™Mma, O — 5(_)MC’MC’N (Fyu" = Faalt AL (6.20)

Since the ghost C'™ corresponds to the vector field entering the Lie derivative we rename
the diffeomorphism ghost and the supersymmetry ghost

cr=£n, or=¢Et (6.21)

Applying these results to the case of D=2 supergravity including a U(1)-transformation
we find for the BRST-transformations of the connections

st = E"Onen 4+ (0n€")e," — E°X, 0 Tos " + Cyle,)
X' = € 00Xy + (OmE™" )X + O™ — Pe,0T, 5"
+i€ﬂwn§lb€ab(%)g°‘ - ioabxn?%b(%)ga
st = £ 0w, + (OnE™)w, ™ 4+ 0 C® = E7x 0 Ry
% R ab 4 Cacwmcb B Cbcwmca

—EX,P Fpo — £%€," F (6.22)

The transformations of the ghosts then read

1
an — Smamgn_i_igagﬁTBan
1 1
S0 = €€ = O Ty X = 107 e (1)

1 1 .
SO = OO + SEM Ry, — SEN T,

1 1
SO = E"0nC + SE€ Fya = JE°E Ty Ary (6.23)



CHAPTER 6. FIELD CONTENT AND BRST TRANSFORMATIONS 30

The BRST transformation of the gravitational auxiliary field S is obtained from (6.12)
by using (6.11)

$8 =¢£"0,5 — 4 (1:C) 50" ApXy + 187 (V" C)raXm S- (6.24)

Eventually the BRST transformations of the gaugino A, the Yang-Mills auxiliary field
¢ and the field strength F,, are obtained from (6.12). The supersymmetry transforma-
tions contained in the BRST transformations are taken from the solutions of the Bianchi
identities

s¢ = E"0nd+E% (1) A
i . u .
shg = E"OnNg+ & (5(7*0)(155“”}7@ — i(77°C)apDatd + Z(’Y*C)a55¢>
1
102w,

. 1
SFab - gnanFab + fa <(7an)\)a - (’YbDa)\)a - QZTabﬂ(fY*C)ﬂaqs + §5ab5(’7*)‘)a>

1
~C,F,, (6.25)

1
—ZC °F, —
9 a e g



Chapter 7

Beltrami Parametrization

Beltrami differentials parametrize conformal classes of two-dimensional metrics. There-
fore conformal properties of two-dimensional field theories coupled to gravity are most
conveniently discussed in terms of these quantities.

In the Beltrami parametrization the BRST algebra factorizes into two independent
substructures. It is the aim of this chapter to line out the crucial steps in the construction
of the Beltrami differentials and the Beltrami ghost variables found by Becchi [be88]. In
the supersymmetric case the Beltrami variables acquire suitable supersymmetric partners
such that the factorization of the BRST algebra remains manifestly realized [dg90].

7.1 Two approaches

Beltrami coefficients may be introduced in two different though equivalent ways. In
the so called Riemannian surface formalism they parametrize complex structures. In
the ‘metric approach’ the Beltrami differentials parametrize conformal classes of metrics.
First a short introduction to both approaches is given following closely the lines of [dg90],
where a few remarks on light-cone coordinates are included. Then before turning to the
supersymmetric generalization in the following chapter the bosonic case is investigated in
some detail using the metric approach.
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7.1.1 Parametrization of complex structures

In this approach one works on a Riemann surface M, i.e. a connected, topological 2-
manifold which is equipped with a complex structure or equivalently with a conformal
class of metrics. A complex structure is a collection of complex local coordinates. Those
local coordinates have the property that two sets of such local coordinates are related by
a holomorphic coordinate transformation. We consider the line element ds? in terms of
isothermal coordinates dZ

dZ = Mgz, 2Z)[dz +dzZp(z,2)) (7.1)
dZ = Mz, 2)[dz +dz i(z,2)) (7.2)
ds® o |dZ|?, (7.3)

where (z, Z) denotes a reference system of holomorphic coordinates. The functions A(z, 2)
and f(z, Z) are smooth complex valued. The condition d(dZ) = 0 implies that \(z, 2)
satisfies the differential equation

(0 — po)\ = (Ouw)\, 0:=09,, 0:=20, (7.4)

and may therefore be viewed as an integrating factor for the relation d(dZ) = 0. The
function p is called Beltrami differential.

Considering infinitesimal changes of coordinates generated by a vector field (£, &) the
induced variaton of Z(z, z) is described by the Lie derivative

0eZ = LeZ = ig(dZ) = N[€ + €p). (7.5)

The transformation laws for A and p are obtained by evaluating the variation of dZ in
two different ways
6¢(dZ) = d(0¢7) (7.6)

and comparing the coefficients of dz and dz. This yields [dg90]

i = (0 — pd+ (0p)(€ + Ep) (7.7)
SA = O((€+EmN).

The algebra of the BRST operator is obtained by replacing the vector field (£, €) by the
diffeomorphism ghosts (c, ¢) and replacing d¢ by s. The nilpotency of s requires

§°Z = 0= (sC — COC)\ (7.9)
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and thereby
sC =CoC (7.10)

where Becchi’s [be88] reparametrization of the ghost fields is used
C=c+cp (7.11)

which ensures the holomorphic factorization of the BRST variations of p and A.

7.1.2 The ‘metric approach’

The metric approach works on a Riemannian 2-manifold (M,g). The line element can
always be written as
ds® = |p|*|dz + dzu|?, (7.12)

where the complex notation
dz = dx +idy,  dz = dz —idy, (7.13)

has been introduced. The smooth and complex valued functions p(z, z) and pu(z, z) are
called the conformal factor and the Beltrami coefficient. Equation (7.12) is referred to
as the Beltrami parametrization of the metric. Since the Beltrami coefficient is inert
under structure group transformations consisting of Weyl and Lorentz transformations it
parametrizes conformal classes of metrics. Weyl transformations of the metric are simply
rescalings of the conformal factor p.

Considering infinitesimal reparametrizations of the manifold one determines the trans-

formation laws of p and u to be [dg90]

Sepp = (9 — pd + (Op)) (€ + pé) (7.14)
dep = (60+ED)p+ p(IE + 1 OF) (7.15)

In this case the holomorphic factorization is realized for the Beltrami coefficient x4 but not
for the conformal factor p. Comparing these results with the parametrization of complex
structures one finds combining the differential equation for A (7.4) and the transformation
law given in the second equation (7.7)

Sed = (€0 + ED)N + N(O€ + p 0€), (7.16)

which is of the same form as the transformation law for the conformal factor. Since the
conformal factor p does not satisfy any differential equation it is not possible to achieve
the holomorphic factorization.
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7.1.3 Light-cone coordinates

Considering a metric with Lorentzian signature one has two linearly independent natural
vector fields defined by the two independent null vectors at each point. In a corresponding
coordinate system (X1, X7) the metric is off diagonal. The line element is therefore given

as

ds® oc dXtdY. (7.17)

Given a reference coordinate system (o, 07) the light-cone coordinates are given by the
relation

dvt = Xdo" + hdo™), (7.18)

d¥" = Mdo~ +hdot). (7.19)

In this case h parametrizes the contribution of do~ to do™ in the direction of ¥ and
therefore has a simple geometrical interpretation. Now I compare the line elements rep-
resented in the different coordinate systems (0%,07) and (X7, X7) where the metric of
the reference coordinate system is denoted by

Grmn = ( it G- ) . (7.20)

94— G-
This yields

(dE*,ds) ( (1) (1) ) ( zg )  (do™, do™) ( gi zi ) ( zf ) . (1.21)

and thereby
1 _
AT [ O N A E o [ T 9 (7.22)
Lo 9+- 9

where I introduced the notation

A:(AO), H:(lh). (7.23)
0 A h 1

If one restricts the procedure to conformal classes of metrics it is possible to promote the
‘oc’ sign to a ‘=" by dividing the right hand side of (7.22) by ¢ = detg,, and suppressing
the scaling factor A\ on the left hand side. Then h and h are expressible in terms of

components of the metric

ho= —9—= (7.24)

gi—+/9'

7 9++
h = —/—mM—. 7.25
9+-+ 9 (7.25)
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I consider a conformally invariant two dimensional model where the BRST operator acts
on the metric corresponding to the transformation under two dimensional diffeomorphisms

and local dilatations

SGmn = glalgmn + gln(amfl) + gml(angl) + COdmn, (726)

where the indices take the values {+, —}. £™ denotes the diffeomorphism ghosts and ¢ is
the ghost for local dilatations. The BRST transformations of the ghosts then read

s€" = o (7.27)
sc = Eoe. (7.28)

It is then easily verified that h as given in 7.24 transforms according to
sh=(0—ho+ (0h))C, 0:=0,, 0:=0_, (7.29)

where C' = £* + h&~ denotes a combination of the diffeomorphism ghosts. The transfor-
mation law of the new ghost variables is given by

sC' = CaC. (7.30)

Thus the BRST algebra in the new set of variables {h, h, C,C} factorizes into two inde-
pendent substructures. Therefore {h, h} may be viewed as Beltrami variables.

7.2 Bosonic theory

Before T turn to the supersymmetric case I want to introduce the main concepts used
later in the discussion of the supersymmetric theory based on a discussion of the purely
bosonic case.

Since local frames are a useful tool in describing gravity theories I introduce a para-
metrization of the vielbein rather than a parametrization of the metric. Working with
the vielbein one requires Lorentz invariance in addition and thus the symmetry trans-
formations include diffeomorphisms, local Lorentz and local Weyl transformations. The
symmetries entail the corresponding ghosts, i.e. the diffeomorphism ghosts, Lorentz ghosts
and Weyl ghosts.

The conformal properties of two dimensions are conveniently described in terms of
coordinates (o, 07) [gr90]
ot =0"+0' (7.31)
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and derivatives

1
I introduce a parametrization of the moving frame
ef=el+ ¢! (7.33)
in the form of
et = (dot+dop et (7.34)
e” = (do” +dotp)e . (7.35)
The coefficients
b - (7.36)
M— - 6++7 /'L+ - 67_, )

are called the Beltrami differentials. The conformal factors are e,* and e ~. The Bel-
trami differentials are inert under structure group transformations. The structure group
transformations are entirely carried by the conformal factors. Following section (6.2) the
BRST transformation of the vielbein reads in the bosonic case

sem = E" et + (OmE™ e, + Cyle, + ceyl, (7.37)

where £ denotes the diffeomorphism ghosts, C' is the Lorentz ghost and ¢ denotes the
Weyl ghost respectively. The BRST transformations of the ghosts read

s¢" = MOmE"
sCab — gmamcab
sc = EMOpc. (7.38)

The BRST transformations of the Beltrami differentials are then easily checked to be

sp = (0 = p oy + (OppN))(E" +puE),
sy = (0p —py 0+ (0-p ))& +py€F) (7.39)

Here again Becchi’s reparametrization of the ghost fields turns up. The new ghost fields
n=E" +ptE), a=(E +pg) (7.40)
transform according to

sn = non, O=04
o_. (7.41)

s = 10n, 0
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The conformal factors e, and e ~ form trivial pairs with appropriate redefinitions of the
Weyl and Lorentz ghost. Thus they drop completely out of the cohomological analysis,
since they count among the ’s and V’s.

Introducing an additional U(1) symmetry the BRST transformations of the gauge field
A, an the abelian ghost C* read

SAm = SnanAm"'(amgn)An‘i'amCa
sC" = 9,0 (7.42)

Redefining the abelian ghost
c" — C"+¢"A, (7.43)

the BRST transformations read in the new variables

sA = 0C" — (n— pn)F*

sA = 00"+ (n—pn)F*
sC* = nnF". (7.44)

where

NS T S
21— pji nm’
denotes the U(1) field strength. The abelian gauge fields form trivial pairs with derivatives
of the abelian ghost, while the undifferentiated abelian ghost, the field strength and
its covariant derivatives enter the cohomological analysis as generalized connections and

Fy?m = 8nfélm - 8mAn (745)

tensor fields. For a detailed analysis of the bosonic D-string see [br97].



Chapter 8
Dirichlet-Superstrings

In this chapter I work out the supersymmetric extension to the concepts introduced in
the previous chapter for the purely bosonic case. The Dirichlet-Superstring can be for-
mulated as a D = 2 supergravity coupled to string coordinates with an additional U(1)
symmetry on the world sheet. Thus the starting point will be two dimensional (1,1)
supergravity superconformally coupled to string coordinates. The model is characterized
by the field content and its symmetry transformations. In this case the set of fields con-
sists of the gravitational multiplet, i.e. the vielbein e,?, the gravitino or Rarita-Schwinger
field x, and the auxiliary field S to close the algebra off-shell and the matter multi-
plet ¢V = {XM M FM1  The gauge invariances of the theory are invariance under
local diffeomorphisms, local Lorentz and super-Weyl invariance and local supersymme-
try. As we will see, the off-shell nilpotency of the BRST-operator requires an additional
bosonic symmetry transformation acting on the auxiliary field S, which we will refer to
as ‘auxiliary Weyl transformation’, since it ensures the off-shell nilpotency of the BRST
transformations in the super-Weyl ghost sector. The ghost fields associated with the gauge
symmetries are denoted by &™ for the diffeomorphism ghosts, C® for the Lorentz ghost,
CW for the Weyl ghost, 7% for the super-Weyl ghosts and £* for the supersymmetry
ghosts. The ghost for the ‘auxiliary Weyl transformation’ is denoted by W. This fixes
the field content to

A = {e 0, X0, 8, XM, g FM em e 0, Vot W (8.1)

The starting point will be the BRST transformations of D=2 supergravity without super-
Weyl invariance, which we computed in section (6.2). Then I add the corresponding Weyl
transformations of the fields and require the off-shell nilpotency of the BRST transforma-
tions. This will lead to the introduction of a fermionic and an additional bosonic symmetry
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transformation, which together with the Weyl transformation imply the super-Weyl in-
variance of the theory. As the next step I introduce the super-Beltrami parametrization
for two dimensional super-Weyl invariant supergravity, which establishes the factoriza-
tion of the BRST algebra. Then I map the cohomological problem from the space of local
functionals to the space of local total forms. This will be the first step in the construction
of contracting homotopies. The new local jet coordinates for the supergravity part are
constructed and a list of the first few tensor fields is given. Then essentially the same
procedure is carried out for the U(1) sector. In the last section a compilation of the main

results is given.

8.1 Super-Weyl invariance

As already computed in section (6.2) the BRST transformations of two dimensional su-
pergravity are

se,t = £"0het + (0m&")e,t — fo‘xn?Taﬁ 4 Cb“en?
X = E"0uXps + (OmE" )X + O™ — e, 3T, 5"
1 1
+ 8w e (1) 5" = O X e (1)
sS = £"0,5 — 47 (1:C)ya"" Vi Xm + 187 (V" C)ryaXm S
1
SE" = MOnE" + €T,
1 1
s€* = £M0nE" — §§”§BTM "X — ZC"”fﬁeab(%)f
a m a 1 « a ]' « m a
sC® = 9,0 + 55 &R," — 55 &g, "w . (8.2)

The torsions and field strenghts arising in these equations are listed in equation (5.45). In
order to describe matter fields I introduce the multiplet { X" M FT} which transforms

under local supersymmetry according to

XY =
Daths’ = DaDpX" = %{Da,Dg}XM + %[Da,pﬁ]XM
= i(7°C)apDaX™ + CogF™
DuFY = (%) Dat)! 83
The BRST-operator acts on these fields by

sXM = &m0, XM )
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1 1
sYst = EMOmY — 5557’@ (O XM - Xn?wM) +&Cpa FM + anbgab(%)a%g
sEM = gm0 FM 4 ¢ (y™) Homu) — —w Pean(v:)5 )
1
+5X Ty " (O XMy Gy My X,QCWFM} (8.4)

Now I introduce the Weyl transformation as a new symmetry transformation. The in-
finitesimal local Weyl transformation of the vielbein is given by

Swe,n =oer (8.5)

m m

where o denotes the transformation parameter. The transformation of the invers vielbein

is immediatly obtained from
5W 5ab = 6W (Eamenlz) =0 = 5WEam = _OEam (86)

The Weyl weights of the other fields are listed in the following table

o | x| S | XM | g | FM

a
m

(8.7)

Weyl weight | 1 -1 0 | — -1

N | =

1
2

The introduction of the Weyl rescaling gives rise to additional terms in the BRST trans-
formation of the fields according to their Weyl wheigt, with the transformation parameter
o replaced by the Weyl ghost C".

I then require the off-shell nilpotency of the BRST-operator. As might be already ex-
pected from counting the bosonic and fermionic degrees of freedom the off-shell nilpotency
requires an additional fermionic symmetry. This manifests in the fact that the BRST-
operator is not nilpotent on the gravitino. The additional transformation introduced in

this way is a local fermionic transformation acting on the gravitino [wi

Ssw X = in” (Ym) & (8.8)

where 7 is an arbitrary Majorana spinor. Together with this fermionic symmetry comes
another local bosonic symmetry [fu95], which balances the bosonic and fermionic degrees
of freedom and ensures the off-shell nilpotency of the BRST-operator on the auxiliary
field of the gravitational multiplet. I refer to this bosonic transformation as ‘auxiliary
Weyl transformation’. It is associated with a shift of the auxiliary field S by an arbitrary
function A

S—S+A. (8.9)
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Altogether these transformations are called super-Weyl transformations. The complete
list of BRST transformations including super-Weyl transformations reads

sy = E"Ope,y + (0m€")e, — faXmBTaﬂ “+Cyl%,) + CVe,d
Xt = £ 00Xy + (OmE )X + O — e ST % + %CWX,; + i (Ym) 5
7870, Beu(n)f = 10N S (1)
55 = €9,8 — A8 (1.0) 0™ VxS 4 i€ (7" C) x2S — CVS + W
S = €O £ T
ST = £0E — LOETy, xS — 10 (1) + 5OV
SOU = EM0nC 4 LEE Ry — ST, M — P E (1 C)ape®
SOV = 9,0V 4 2P
sn® = "0~ — %C“”nﬁeab(%)ﬁa +it7 (Y5 (%&zCW - n”xm) - %Cwna + W

N m [0 1 0] Z n [0
sW = €"0,W — 4it?(y"C) 4 <an — ZX’"W - ixn'](y ), (8nCW)>

_4€ﬁXn?('7m7nC)aﬂ77’an'y - CWW (810)

In these equations the ghosts corresponding to the additional symmetries are denoted
by n® for the fermionic symmetry and W for the ‘auxiliary Weyl transformation’. Since
the spin connection depends on the vielbein and the gravitino it also transforms under
super-Weyl transformations

Sww,” = —¢™(0,0)™
Sw, b = (—2naxf1(7*0)5a+25n’f770‘xm) e (8.11)

The BRST transformation of the spin connection then reads
sw, = £0,w," 4+ (OmE")w,™ + 0,C" — fﬁxnf‘Raﬂ“b — &% R,
+Cacwmcb . Cbcwmca o 57721(8“0W)8ab
+ (—20°X5, (1%C) s + 26,70° Xna ) £ (8.12)

The BRST transformations of the matter multiplet including the Weyl transformations
are given by

sXM = &m0, XM oyl
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1
SO = €Ol — JET (O XN — M) + 0 C M
1 1
+Zoab5ab(%)aﬂ¢é\4 - 50%34
sFM = 5mamFM+5a(7m)a{ mwﬂ - —w Be v (. )A’wM

5% Ly "(On XM = x,00) )—anCwFM} —CVFM (8.13)

8.2 Factorization of the BRST algebra

As already shown in the non-supersymmetric case the BRST algebra factorizes in the
Beltrami parametrization in two independent substructures. These are described by the
Beltrami differentials p and suitable combinations of the diffeomorphism ghosts ™ and
their conjugates.

As it is not hard to guess in the supersymmetric generalization the Beltrami differential
i acquires a fermionic partner «, the Beltramino. The super-Beltrami parametrization
is therefore characterized by the doublets (i, @) and (ji,@). As in the bosonic case the
parametrization of the vielbein is given by

et = (dot+dop et (8.14)
e = (do~ +dotp)e . (8.15)

The coefficients p * and p,~ are the Beltrami differentials

et
poi= oplt = —, (8.16)
€+
_ _ er
jom = (517

where I introduced a different notation for the sake of brevity. The fermionic superpartners
are suitable combinations of the gravitino fields

a = i\/g (Xf - ,uxf) (8.18)
a = z\/ez (e = ). (8.19)

The numerical factor in the definition of the Beltraminos ensures that the BRST algebra
takes the same form as in [dg90]. Again the super-Beltrami parametrization has the
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important feature that the Beltrami differential and its superpartner are inert under
structure group transformations, i.e. under Lorentz and Weyl transformations

dpp=06rit =10 dwit = Owp =10
6LO£ = 6L64 =0 6Wa = (Swa =0 (820)

and super-Weyl transformations

8 Qa
oswa = \/EW (6_ (7a)
8
Sswa = (== (e(), = e (7)) = 0. (8.21)

where T used the expressions for v, and 7, as given in appendix (B). There I collected

a)y — uef(%)f) =0

some useful formulas on super-Beltrami variables. The new ghost variables, which replace
the diffeomorphism ghosts and the supersymmetry ghosts are

n o= (& +pg) (8.22)

7 o= (& +pgh) (8.23)

e = (82+¢a), .= %52 (8.24)
+

g = ('4+¢ta), &= ei_gl (8.25)

Using the new variables it is readily verified that the BRST algebra factorizes in two
independent substructures, if one keeps in mind that the torsion 7,5 is given by

The BRST transformations of the Beltrami differential, the Beltramino and the new ghosts

reads
_ 1

sp = ( —u3+(3u))n—§a6
- 1

s = (6—ﬂ6+(8ﬂ))ﬁ—§dé

sa = <5—u8+%(6u))5+n8a+%aan
_ 1 - 1_~

sa = <8—ﬁ8+§(8u)>5+ﬁ8d+§d8ﬁ
1
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-1
s = 77877—155
1
se = 7785—55877
_ 1 =
SE = 7785—55877 (8.27)

Expressing the BRST transformations of the diffeomorphism ghosts £ and the super-
symmetry ghosts £€* in terms of the Beltrami differential and the Beltramino one obtains
i 1 ro 2 .
s€t = (EM0, + & 0.)E + - ———— (828 + ug'eh), 8.28
(€00 + € D)E + ) (5.28)
. U I - i 1
s = (§M0n) & — 5E2 (0T + pdET) = -
EomE =3 ( ) 4(1 = pp)

These are the structure relations of the field dependent Lie algebra as found in [dg90] by

(£'¢" — n€¢?) o (8.29)

projection from superspace and using a Wess-Zumino supergauge.

After the factorization of the BRST algebra is established the next step in the com-
putation of the covariant variables is to remove the trivial pairs from the chomology.

8.3 Generalized connections and tensor fields

The construction of contracting homotopies which reduce the cohomological problem con-
siderably is a crucial step in the computation of the cohomology. The first step is to map
the cohomological problem from the space of local functionals to the cohomology of s

§=s+d (8.30)

in the space of local total forms. A total form is simply a sum of local forms with different
form degrees and ghost numbers [br96]. The switch from s to § is straihtforward since
the s transformations turn into the s transformations by the replacement

=& ="+ do" (8.31)

The switch from s to § simplifies some arguments such as the proof that the solutions
of the cohomology do not depend explicitly on the coordinates. As a consequence of the
substitution rule (8.31) the new ghost variables read

n — f=n+do" + udo”

n — n=f+do +pdo*

e — £=c¢+do

E — é=c+dota. (8.32)
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The § transformations of the fields then read

su = (5— pd + (8u)) i — laé

2
1
S5a = <6 o + = (8u)> £+ nda + 504877
1
5ij = i — 38
% = foE— %é@ﬁ (8.33)

with analogous transformations for {fi, @&,7,Z}. The U"’s are
Uy = {o™,0m0" u, 9", " 1, 0™ v, 0™ "eF m,mn=0,1,...} (8.34)

The corresponding Vs replace one by one the do™, the Lorentz and Weyl ghosts, the
on, 07 and the 02, 0¢ and all their derivatives due to

se™ = do™
Sp o= 0+
sn = 0n

5a = 0+
Sa = 02+

(8.35)

The infinite set of generalized connections is then given by {7,7,£,&} and the remaining
derivatives. I introduce the following notation for the generalized connections

(CVy = {ip. i, 273,877 s p= —1,0,1,...}, (8.36)
with
1
9 J— ap+1~
7 (p+1)!
- 1 -
o= o1z
n (p+1) n
1 1 1
Pty ap+1~
T T 2T T
’1p+% ]- ]- Ap+1=
£ =3 TES] oP . (8.37)

The infinite set of the correponding A’s is denoted by

{An} =A{Lp Ly, Gy, Gy ip=—1,0,1,.. .}, (8.38)
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Hence, the § transformation on tensor fields may be expressed as

~i ~ ~D 7 ~ 1 ~ <|»l ~ i
ST — Z <anp+anp+5p+2Gp+% —|—8p QGIH‘%) T (839)
p>—1
The 5 transformation of the generalized connections contains the the structure functions
of the algebra of the corresponding A’s. The s transformations implied by the transfor-
mations (8.33) read

. 1_,. 1_,.
577p = _§nan rqp B 58(18() abp
1 1. .
= —577‘1#(7“ —q)0p g — §€a€b25§+b (8.40)
~xa 1. ~c a 1 ~cz a
S€ - _5771;8 cp 55 77p pc
— (g - c> 5y (8.41)

Hence the the structure functions are all constants and the algebra of the A’s forms two
copies of the super-Virasoro algebra [ta96]

p
Lo Lol = (0= Dlpsa {GaGo} = 2Lass, [5Gl = (5 —a) Gpuar (8.42)

with the analogous formulas for the L’s and G’s and furthermore
[Lpa Eq] = 07 {Gaa Gb} - 0; (843)

Ly, G =0, [L,,Ga]=0. (8.44)

This algebra is realized on the set of tensor fields given by
(T} ={T},,:mmn=0,12..} (8.45)

where the Tf;m are
T = (Loy)™(Loy)™ 0" (8.46)

A list of the explicit expressions for the first few tensor fields Tﬁ;m is given later. The

algebraic representation of the A’s on the tensor fields is derived by the use of the algebra

and the fact that
L, Tio=LyT5,=0, p> (8.47)

GoTyo=GoToo=0, a> (8.48)
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This follows from the characterization of tensor fields by 573, = CVANTS,. Further I
define the matter multiplet W% = { XM M M FM1 according to

G_%XM = M, G_%XM =M, G_%G_%XM = iFM (8.49)
One can show by explicit calculation that the so defined matter multiplet corresponds to
the one introduced in equation (8.3) by a mere redefinition with conformal factors e ", e_~

in order to make them invariant under structure group transformations. In general a field

U carrying the chiral weights (r,1) is redefined by
U= (eN) (e)W (8.50)
According to this the matter multiplet of equation (8.3) is redefined by
XM - XM

M (e
oM = (e )Ty
FM & (ef)i(e) FM (8.51)
On these fields the algebra of the A’s is represented by
f k
m— +p—1 M m!
LxM = P ( ) )Xm “pn = Gy DN mepan 0T P <1 (g 5o
L 0 for p > m.
L,XM = (Q+1)!Zk:i}< . )Xn]\:[n 0= e Xma—q for g <m, (8.53)
L 0 for ¢ > n.
The action of G, and G, is given by
Gp+lXM — (m— p 1) l,lv/’vm —-p—1,n for p < m, (854)
0 for p > m.
Gq_l_an]\;[’n — (n— q 1) |wmn q—1 for q<mn, (855)
2 0 for ¢ > n.

The action on the other fields is then easily obtained using the relations
1
[LP’G*%]:i(p—i_l)GP*%’ {Ger%,Gf%}:QLp (8.56)

and the analogous formalas for L and G which are special cases of the general commutation
relations (8.42). One then obtaines

LM = {<m i (m=p+ 30+ 1)) e, forp<m. (8.57)
o 0 for p > m.
m! M
Gyt = { G tmepn fOXP <, (8.58)
2 0 for p > m.
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with the obvious formulas for L and G acting on @%n Furthermore one obtaines by using
the algebra

. n! M
G\ = gt man—p-1 for g <m, (8.59)
’ 0 for ¢ > n.

again with the obvious result for Gp+% acting on &%n And finally

m,n 0 for p Z m.
m! 1M
G FM = | Gmnety Ymopn TP <m, (8.61)
2 M 0 for p > m.

This completes the representation of the super-Virasoro algebra on the matter fields ¥ =
{XM M M FMY . Due to these formulas the 5 transformations of the matter multiplets
and moreover of the WW’s constructed out of them are local expressions, since only finitely
many summands contribute to the transformations.

8.4 Covariant derivatives

As may already been observed the operators L_; and L_; alredy serve as covariant deriva-
tives on the matter fields. It is easy to make contact to the results in literature by pulling
out the 1-forms contained in the generalized connections. From the equations (8.32) and
(8.3) one reads off

o= P+ A 7= P+ A
1 1 1 ~ptl 1 - 1 (862)
§P+§ — 8P+§ +AP+§, &fp+2 — §P+§+AP+§,
and thus gets explicitely
5P _ MP
Ap - ! Ap - )
MP 67
. 0 o APts
Arts = Arts = , (8.63)
AP+3 0
_ 1 1 v 1 1-
MP = G h MP = Gmd R
L1 1 Ap+: 1 1 1=
APty = §(p+1)!ap+a APt = §(p+1)|8p+a
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Using the representation of the partial derivative on the tensor fields 9,, = A, Aj; one

oy (1 pn L 0 M L,
(3) - G ()50 1) (E):
;(AI?% AT ) (gp+) (8.64)

Inverting the first factor on the right hand side one obtains the explicit form of the

obtains

supercovariant derivative

D=L, D=L_, (8.65)
1 _ - L 1
— 1 — 14 _ AP _ P+3 _ 7 APt+3
b= 1 —pp (6 AO I;)(M Ly = ML) p;l(A 2Gp+% pA 2Gp+%))
» ]' 2 o T 1 — 1 —
— - Py _ PT ) _ P+ _ o, A+t
b= 1 —pp (6 HO I;)(M Ly = pM"Ly) p;l(A 2Gp+% pA 2Gp+%))
(8.66)

The explicit expressions for the supercovariant derivatives of the matter fields are then
easily obtained using the representation of the algebra on W?. The final results read

M _ 1 ( -5 M_l—_M l— M)
DXY = T (0 —po)X Qaw + Q/wap
SvMo 1 (—_ M_l M = M)
DXY = - (0 — po)X Qaw +2ua1p
Do = (0 - B0+ J0m)) ¥ + SpaD XV — Zar)
1 —pp 2 2
_ 1 1 1 i
DM = (((3—;@—5(3@) wM—§aDXM+2/LaFM>
DYM = 1—1uﬂ (((6—M8—%(8u)>¢M—%a7§XM+ZuaFM>
DyYM = L (((a—umlu(aﬂ) wM+1uaDXM——aFM>
1—pup 2 2
1 . 1 i _
DFM = 1_W<<6—u6—5(3u)+5u(3u)> FM aD¢M—§uaDwM)
e = (0w ) oo
DF" = - 0 — o 2(6u)+2u(8u) F* + —aDy 2uaDw

and coincide with the results given in the literature [dg90]. According to the algebra (8.42)
the operators L, and L, commute and hence the supercovariant derivatives commute

[D,D]=0 (8.68)
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and one obtains for DDXM

DDXM = ((a — 10 — (au)) DXM — %aDwM + paDyM — %(m)W) . (8.69)

1 —pp
This completes the list of the first few tensor fields T}, .

8.5 U(l) sector

Let me recall the results obtained in section (6.2) for the BRST transformations of the
U(1) gauge field and the abelian ghost

_gaxn?Fﬂa - éﬂen;lFaa
1 1
sC = £m9,C + igagﬂFﬂa — 5gagﬂTﬁamAm. (8.70)
The BRST transformation of the gauge field already suggests that the gauge field and its
symmetrized derivatives form trivial pairs with derivatives of the abelian ghost. Indeed
the U’s are typically components of gauge fields and their derivatives while the V’s contain
the corresponding derivatives of the ghosts. To find the complementary ¥W’s the BRST
transformations of the gauge field and the abelian ghost have to be supplemented with

the BRST transformations of the gaugino Ag, the auxiliary field ¢ and the field strenght
Fab

s¢ = E"0n0+E" (1) As
i . u .
shg = &"Opg+ & (5(7*C)aggabFab — i(77°C)apDatd + 2(7*0)a55q§>
1
+Zoab€ab(f}/*)g’y)\7

sky = §"0nFup +&° <(%Db)\)a — (WDaNa — 20T, (1.C) patd + %6111)5(%)\)04)
1
2
As in the supergravity part I add the Weyl transformations according to the Weyl weight
of the fields:

1
_§Ca6 b — =Cy Fle (8.71)

(8.72)
Weyl weight | —1 | —

oo
|
[\
o
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To ensure the off-shell nilpotency of the BRST operator the super-Weyl transforma-
tion of the gaugino has to be introduced. The gaugino transforms under the fermionic

symmetry transformation according to

SswAs = 20w (74C)apd- (8.73)

This implies that the field strenghts, which are expected to count among the W’s,

Faﬁ = 2i(7*o)aﬁ¢
Foo = (’Ya)aﬁ)‘ﬂ
Fow = E"E, (0,Am — OmnAn — (XmYa) + (XnYmA) — 2i(XmYCxn)d) (8.74)

are not invariant under super-Weyl transformations. Thus they have to be replaced by
suitable redefinitions.

As in the supergravity part the cohomological problem is mapped from the space of
local functionals to the cohomology of § in the space local total forms. To switch from s
to s I replace the ghosts according to

é-m N g-m — 5m + dz™
C = C=C+EmA,. (8.75)

After this replacement the § transformations of the gauge field and the abelian ghost read

gAm = gn(anAm - am14n) + amé - gaXmﬁFaﬂ - SaergFaa
~ ~ o~ 1 ~ ~
5C = —EME"(OnAm — OmAn) + 55‘)‘6/3 +EMEX S Foap + EME Fra (8.76)

Since I expect the abelian ghost C' to count among the generalized connections it should
have a § transformation involving only generalized connections and tensor fields. Indeed
the § transformation of the redefined abelian ghost C' may be rewritten in terms of the
generalized connections {7, 7,£,&} introduced in the previous section and super-weyl in-
variant redefinitions of the field strenghts. After a somewhat tedious computation one
obtains

5C = nnF® + %ﬁé)\a + %iy&a + igéw, (8.77)
where the super-Weyl invariant field strenghts are given by

+ —
ey e
$* =

64

¢
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e
A = + ()\2 + X+d))
A = —\/ )\1 +xL ¢>
1 1 - 1
F* = < (O An — OnAm) + =pA* — =N — —ozaqﬁa) . (8.78)
1 —pp 2 2 4
These field strenghts count among the tensor fields. Thus their § transformations are of
the form
ST = <”L +1'L, +5”+2G 1+5p QC{,,,Jr )T’ (8.79)
p>—1

As a first step in the computation of the § transformations of the field strengths one

observes
A = Gfégb“,
X = Gy
F* = G_1G_1¢" (8.80)

The algebra of the operators {L],,,L,I,Ger 1, G +%} is represented on the tensor fields
{¢% X%, X%, F} by

m!
L, = { (m—p)! (m —p+3 (p + 1)) mopm forp<m,
| 0 for p > m.
Lo, = { T (n —q+3(g+ 1)) by forg<mn,
| 0 for ¢ > n.
!
A forp<m
G a = (m—p—1)!"'m—p—1n ,
P+%¢m,n { 0 o , Z .
P = (nfzil)!%,nqul for ¢ < n,
q+57"m,n 0 for ] Z N
(m+1)!ya
LyNpn = { (m—l’)!)\m—p,n for p < m,
| 0 for p>m.
Eq)\;‘%n = { (ni!q)! (TL —q + %(q + ].)) )\;,ln n—q for q S n,
| 0 for qg>n.
(n+1)! Ya
qu\;‘%n = { (n—q)!)\m,n—q for q S n,
| 0 for ¢ > n.
LA, = { A (m—p+ Lo+ 1) N, forp <m,
| 0 for p>m.
(m+1)!
Gihy,, = { (m—p)! m—p.m for p < m,
e 0 forp >m
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g Fy, for g < n
G _)\a = (n— q )" mn—qg—1 3
qué m,n {0 for . Z N
_ _ (n+1
q-l—l)‘?nn = {(n q)! mn q fOran,
T 0 for ¢ > n.
G +15\$;1n e m p 1 m p—1,n forq<’n,,
v 0 for ¢ > n.
(i1} o forp<m
L,F; ., = {(m p)! " m—pn p=m,
’ 0 for p > m.
(n+1
Lqu:Ln = {(TL q' mn q forqgn,
’ 0 for ¢ > n.
Am o for p < m,
GP-I—%F#%,n = { P, ¢
orp>m.
3 ntl) for g <n
Gq+;Fﬁ1n = ( q! mn q Sn, (8_81)
t 0 for ¢ > n.

Thus the s transformations explicitely read
56" = 0D" + D" + 6Xl+ €A“ ( e’ + 5 (ﬁ)aﬁ“

1 1
5\ = FDA 4+ D) + §5D¢“ + §5F” + (0 A +

A = ADA 4 DA + %%Z_?qﬁa _ %EF“ + %(677))\”‘ +(DR)A" + 2(0F)p"
§F* = §DF" +ijDF® — lgma + lgma + (07)F* + (07) F* — %(35)&1 + %(éé)xz
(8.82)
where I used the fact that L_, and L_; serve as supercovariant derivative
L,=D, L_,=0D. (8.83)

With these transformations one can easyly check the nilpotency of the s-operator. Espe-
cially one verifies

§C = 0. (8.84)

8.6 Results

In this section I want to gather the main results of the previous sections. The new set of
local jet coordinates for the Dirichlet-Superstring is given by

Uy = {o™ 00", 0", 00" 1, 0" " a, " e
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oA A, myn=0,1,...}
vy = {su'y
(Wi} = [CNY = [, i, 25 ¢ ip=—1,0,1,...)
Wot = {Ton} = (DD XY, DD DD M, DD FY,
DD, DDA, DD RS DD FY m,n =0, 1,...)
(8.85)

where the W} are the generalized connections and the W} are the tensor fields according
to the definition

Tniz,n = LM% T =D"D"T"
(T} = (XM QM M FM 6% X% A F} (8.86)

In order to split the variables of the U(1) sector in trivial pairs, generalized connections
and tensor fields I changed from the set

(O, Ay, O C, By Ay, 0p0C, .. .} (8.87)

to
{C, A, 0 C, 6(nAm),6[nAm}8n8mC, ) (8.88)

where the brackets denote symmetrization and antisymmetrization of the indices.
The V'’s especially replace the Lorentz and the Weyl, super-Weyl and ‘auxiliary Weyl’

ghost fields. Furthermore they replace certain derivatives of the diffeomorphism and
supersymmetry ghosts. The W{’s can be viewed as superconformal tensor fields.
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Summary and Outlook

I constructed suitable local jet coordinates for the cohomological analysis of Dirichlet-
superstrings. In the case of IIB D-Branes it has been recently suggested that, for ma-
nifestly SL(2,7) invariant formulation, the action should contain a world volume field
for every background gauge potential [ce97]. In the case of the D-string one then should
introduce two U(1) gauge fields on the world-sheet. Thus I studied D = 2 supergravity
coupled to bosonic and fermionic string coordinates including an abelian gauge trans-
formation. The model is characterized by its field content, its gauge symmetries and a
locality requirement. The class of models T considered include D-superstrings but are
not restricted to them. T used a formalism suugested by F. Brandt [br96], which relates
the BRST cohomology to an underlying gauge covariant algebra. The construction of
an suitable set of local jet coordinates uses among others the technique of contracting
homotopies. In spite of the conceptual simplicity the construction is not straightforward,
since it requires the splitting of the local jet coordinates into two subsets. One subset
contains trivial pairs whereas the other is required to generate an invariant subalgebra.
The elements of this complementary subset are interpreted as generalized connections and
tensor fields. This characterization of tensor fields and generalized connections is purely
algebraic and physically maeningful, since they provide the building blocks of gauge in-
variant actions, Noether currents, anomalies and the equations of motion. I stess that
the existence of a pair of jet coordinates stisfying the condition for trivial pairs does in
general not guarantee the existence of complementary jet coordinates. The difficulty in
the construction of the new set of jet coordinates {U*, V!, W!} is not the finding of the
trivial pairs {¢4?,V'} but the construction of the complementary W"'s.

The construction of the new set of jet coordinates for the Dirichlet-superstring is
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based on the super-Beltrami parametrization of two dimensional supergravity. This
parametrization is introduced completely in the component field formalism. The results
are shown to coincide with the results obtained by projection from superspace [dg90].
The beltrami differential and the Beltramino form trivial pairs with certain derivatives
of the diffeomorphism and supersymmetry ghosts. The undifferentiated diffeomorphism
and supersymmetry ghosts and their remaining derivatives count among the generalized
connections. The operators corresponding to this infinite set of generalized connections
build two copies of the super-Virasoro algebra. Super-Weyl invariant redefinitions of the
string coordinates and their covariant derivatives are interpreted as tensor fields. In the
U(1) sector the abelian gauge field and its symmetrized derivatives form trivial pairs
with derivatives of the abelian ghosts. The undifferentiated abelian ghost counts among
the generalized connections. Its § transformation contains the super-Weyl invariant U(1)
field strenghts which are interpreted as tensor fields. Thus a complete set of new local jet
coordinates is constucted.

Having found suitable jet coordinates one might intend to tackle the BRST cohomol-
ogy itself. As already illustrated in the investigation of the BRST cohomology of the
superstring [ta96] one obtains a basis for the BRST cohomology group H(3) with an in-
finite number of terms. This is an essential difference to the purely bosonic case. For the
case of D = 2 gravity it has been shown [br95] that the basis of the BRST cohomology
contains only a finite number of terms, which is also true for the bosonic D-string. In
the supersymmetric case this is not true essentially due to the presence of the bosonic
ghosts £ and £. To the best of my knowlege to this day no attempt has been made to a
systematic investigation of the BRST cohomology of Dirichlet-superstring.



Appendix A

Spinor space

A.1 ~-matrices in 2-D

A.1.1 Definitions

The flat metric and basic anticommutation relation of the y-matrices are given by

o = ( o ) (A1)

{v*.7"} =29 (A.2)

I choose the following set of -matrices
0 — 0 1 1 0
()= NS =1 C =000 = (A.3)
0 0 0 —1

A.1.2 DManipulation of -matrices

and

Throughout the following formulas the summation convention ‘ten to four’ is assumed

Py = = = (A.4)
=1 "y =yl =1 (A.5)
7" = 0, 7 =-m (A.6)

o7
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YaVo = nabl + EabVs (A?)
(7*7.) = =™y (7+Ya) = €at?’ (A8)

The following identities for y-matrices in two dimensions are frequently used
777 =0 (A.9)
Tr(y*y") = 2n™ (A.10)

The expressions for the torsions, field strengths and curvatures contain the contractions

('YOC)aB = ( _(1] _(1] ) ) ('710)aﬁ = ( (1) _(1] ) ) (V*C)aﬁ = ( _(; _é ) (A'll)

The vy-matrices satisfy the Fierz identity

5(16675 + (fya)aﬁ(fya)'y& + (7*)&5(7*)75 = 26(1567/6' (A12)

The following two identities are equivalent formulations of the above identity
207)d (1) = 085"+ (1) (1)s’ — (Yada’ ()5 (A.13)
(Vo) (1) = 885" = (1)a’ (1) (A.14)

A.1.3 Light-cone coordinates

The metric in light-cone coordinates reads

Nttt = ( (1) (1) ) (A-15)

The y-matrices in light-cone coordinates are

_ +_0—2z’
7+—7071—00

00
= A.16
Y Yo =M (22. 0) (A.16)
and
Y=, Y = (A.17)

The totally antisymmetric tensor €4 4 reads

01 4 1 0
= = A.18
e+t ( 1 0 ) ; €4 ( 0 —1 ) ( )



Appendix B

Super-Beltrami variables

In this appendix I collect the frequently used formulae of the Beltrami parametrization.
The Beltrami differentials and the Beltramino are

_|_ —

_ & - Gt
K== H=—=
i e_

) (B.1)

Qi
Il
SN

+

|
=I
|><>

a=i(Xx"—pnx{)

. /8 ) 8
an = —F an, er{ =, — er}' (B.2)
ey e

The Beltrami ghost fields are

with

n o= & +u,
n o= & +npg,
e = 48,
e = ' +¢ta, (B.3)
where
. 8
1 _ [ % a
&= ¢
. 8
& = =& (B.4)
€+
I frequently used the following conversions of the diffeomorphism ghosts
n— KN __nN—An
= & = (B.5)

Cl—pp - pp

29
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and of the supersymmetry ghosts

51 _ §—§+d _ 5_77—/!17@
=
£ = e—ta=c-1"11, (B.6)
L —pp
and _
_ nmn
e = . (B.7)
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