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Zusammenfassung
Die Su
he na
h einer vereinheitli
hten Theorie aller Naturkr�afte ist einesder Hauptziele der modernen Physik. Die Stringtheorie ist zur Zeit dervielverspre
hendste Kandidat f�ur eine sol
he Theorie. Sie vereint ni
ht nurdie Gravitation mit den Kr�aften des Elektromagnetismus und der starkenund s
hwa
hen We
hselwirkung, sondern sie vereint au
h die fundamentalenBausteine der Natur in ein einziges Objekt, n�amli
h eine s
hwingende Saite,den String.Mitte der neunziger Jahre hat die \zweite String-Revolution" gezeigt,dass si
h die f�unf bis dahin bekannten und als unters
hiedli
h betra
htetenStringtheorien als vers
hiedene Limiten einer einzigen fundamentalen Theo-rie verstehen lassen. Die vers
hiedenen Versionen dieser fundamentalen The-orie sind dur
h ein Netz von Abbildungen, genannt Dualit�aten, miteinan-der verbunden. In diesem Zusammenhang spielen ni
ht st�orungstheoretis-
he, ausgedehnte Objekte, sogenannte D-branes, eine herausragende Rolle.Von besonderem Interesse ist die sogenannte Selbst-Dualit�at der Typ II-B Stringtheorie. Die zugeh�orige Dualit�atstransformation (SL(2;Z)) bildeteine Theorie ges
hlossener (fundamentaler) Strings auf eine Theorie vonD(iri
hlet)-Strings ab.In dieser Arbeit werden allgemeine Modelle von fundamentalen Stringsund Diri
hlet-Strings in der NSR Formulierung mit den Methoden der BRSTKohomologie untersu
ht. Diese Methode hat si
h im Zusammenhang mitder Bes
hreibung von Ei
htheorien als �au�erst n�utzli
h erwiesen. Sie fa�twesentli
he Eigens
haften der Ei
hsymmetrie in eine einzige nilpotente An-tiderivation zusammen. Diese Antiderivation wird BRST Di�erential genannt.In den Kohomologiegruppen des BRST Di�erentials sind wi
htige physikalis-
he Informationen �uber einer Ei
htheorie enthalten, sowohl die Ebene derklassis
hen Physik als au
h die der Quantenphysik betre�end.Die Klasse der untersu
hten Theorien wird dur
h ihren Feldinhalt unddie auferlegten Ei
hsymmetrien de�niert. Im besonderen wird Invarianzunter lokaler N = 1 Supersymmetrie verlangt. Dur
h die Einf�urung einergeeigneten Basis der Felder l�a�t si
h die Bere
hnung der Kohomologiegrup-pen auf die Betra
htung superkonformer Tensorfelder und geeignet de�nierterGeistfelder eins
hr�anken. In einem ersten S
hritt der Kohomologie wird dieallgemeinste Wirkung f�ur diese Klasse von Modellen bere
hnet. Im Falle der



D-String Modelle wird die bekannte Superstring Wirkung um einen U(1)Anteil erweitert. Die so erg�anzte Wirkung l�a�t si
h in einem erweitertenTarget-Raum interpretieren.Die allgemeinste Wirkung bestimmt die Transformationen der f�ur dieweitere Analyse wi
htigen Antifelder unter der Einwirkung des BRST Dif-ferentials. Mit den vollst�andigen BRST Transformationen der Felder undAntifelder werden die globalen Symmetrien der betra
hteten Modelle klas-si�ziert und an einem vereinfa
hten Beispiel verans
hauli
ht. Es zeigt si
h,dass im Falle der D-String Modelle die globalen Symmetrien dur
h jene derfundamentalen Superstring-Modelle ni
ht ausges
h�opft werden. Es tretenni
httriviale Symmetrien der zus�atzli
hen Target-Raum Dimensionen aufund die Isometrien des \standard Target-Raumes" werden um Dilatationenerweitert.Im folgenden wird gezeigt, da� alle physikalis
h relevanten Kohomolo-giegruppen der betra
hteten supersymmetris
hen Modelle zu jenen der reinbosonis
hen Modelle (Modelle ohne Supersymmetrie) isomorph sind. DiesesErgebnis ist �uberras
hend, zeigt es do
h, da� die lokale N = 1 Super-symmetrie keinen Ein
u� auf die Kohomologie des BRST Di�erentials hatund somit au
h auf wesentli
he physikalis
he Eigens
haften der betra
htetenModelle ni
ht einwirkt. Dies steht im Gegensatz zu Theorien mit \mehr"Supersymmetrie. So ist bekannt, dass lokal N = 2 supersymmetris
heStringtheorien die Struktur der zugrundeliegenden Raum-Zeit Mannigfaltig-keiten auf sogenannte K�ahler-Mannigfaltigkeiten eins
hr�anken.
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Chapter 1
Introdu
tion
Why Strings?String theory [1{3℄ is a promising 
andidate for a 
onsistent theory of allfor
es of nature. It 
ombines a number of ideas that have been put for-ward in sear
h for a uni�ed theory, like 
ompa
ti�
ation of extra dimensions(Kaluza-Klein me
hanism), grand uni�
ation and supersymmetry. More-over, string theory ne
essarily 
ontains a massless spin-2 state, i.e., it 
on-tains gravity. All of these features of the theory arise from the simple ideato repla
e the standard point parti
le by one dimensional obje
ts, namelystrings. This might raise the question, why not two dimensional obje
ts,
alled membranes, or even higher dimensional obje
ts (\p-branes")? Theanswer to this question is, as in most 
ases in string theory, given by math-emati
al 
onsisten
y. Only for one-dimensional obje
ts the mathemati
alstru
ture seems to 
ontrol the diÆ
ulties arising from divergen
es, bothspa
e-time and internal. Nevertheless, the idea of higher dimensional obje
tsreappears in several ways and plays an outstanding role in the des
riptionof string theory at strong 
oupling.Until the mid nineties the existen
e of �ve di�erent 
onsistent string the-ories puzzled the s
ienti�
 
ommunity and disappointed those, who 
laimedthe absolute uniqueness of string theory. This was related to the limited un-derstanding of string theory in terms of perturbation theory, the intera
tionof few strings at weak 
oupling. The in
reasing insight into the dynami
s ofstrings at strong 
oupling resolved this unsatisfa
tory situation in an elegantway. It turned out that the seemingly di�erent 
onsistent string theories atweak 
oupling are merely di�erent limits in the spa
e of va
ua of a singleunderlying theory, thereby relating di�erent weakly 
oupled string theoriesby dualities. By now a web of dualities 
onne
ts the di�erent string theoriesand the eleven dimensional \M-theory".
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Chapter 1. Introdu
tion 2
Why D-branes?An essential ingredient in the understanding of nonperturbative e�e
ts instring theory is the appearan
e of new extended obje
ts, D-branes [5, 6℄.These dynami
al obje
ts have the simple interpretation as obje
ts on whi
hstrings 
an end. The massless states, whi
h 
orrespond to D-brane modesarising from an open string atta
hed to it, give rise to a ve
tor �eld living onthe world volume of the D-brane and a number of s
alars des
ribing the em-bedding of the brane into spa
e-time. Thus D-branes are 
losely related togauge theories and a fruitful interplay between gauge theory, the geometryof D-branes and string theory has been the origin of many insights in re
entyears. D-branes provide a remarkably simple des
ription of nonperturbativephenomena, sin
e they have the 
orre
t properties to �ll out duality multi-plets and a highlight of \D-brane physi
s" is the appli
ation to the quantumme
hani
s of bla
k holes.An espe
ially interesting 
ase of strong-weak duality in string theory isthe 
onje
tured self duality of type IIB theory. The dual obje
ts to thefundamental string are 
onje
tured to be D-strings. They have the samemassless ex
itations (re
all that a gauge �eld in two dimensions has no dy-nami
s), but they are di�erent obje
ts. Espe
ially their tensions are di�erentwith their quotient given by the string 
oupling. At weak 
oupling the fun-damental string is mu
h lighter than the D-string, while at strong 
ouplingthe situation is reversed. Thus one is naturally led to the 
on
lusion that thetheory at weak 
oupling is the same as at strong 
oupling, with the rôle ofthe fundamental string and the D-string reversed. The 
orresponding dual-ity transformation is 
onje
tured to be the integer subgroup of the SL(2; R )symmetry of the low energy IIB supergravity. It a
ts on (p; q) strings, i.e,the bound states of p fundamental strings with q D-strings, and is believedto be an exa
t symmetry of the theory.It is well known that the tension of a super-p-brane may be generateddynami
ally as the 
ux of a world volume p-form gauge �eld [7, 8℄. This sug-gests to 
ombine the gauge �eld of the D-string and the tension-generatinggauge �eld into an SL(2; R ) doublet [9, 10℄. The result is a twelve dimen-sional theory. The idea to 
onstru
t manifestly duality invariant a
tionsfor strings and branes has been taken up by several authors in a variety of
ontexts [11{18℄.Why BRST 
ohomology?Gauge invarian
e is a basi
 prin
iple in models of fundamental intera
tions.The BRST formalism, �rst established by Be

hi, Rouet and Stora [19{21℄,provides an extremely useful tool for dealing with gauge symmetries. Iten
odes the gauge symmetry and its properties in a single antiderivative,usually denoted by s, whi
h is stri
tly nilpotent on all the �elds and in



Chapter 1. Introdu
tion 3
its extension to the so-
alled �eld-anti�eld formalism also on the anti�elds.This antiderivative is 
alled BRST di�erential. The nilpoten
y of the BRSTdi�erential de�nes the BRST 
ohomology in the spa
e of lo
al fun
tions ofthe �elds and anti�elds, whi
h is the spa
e of all BRST 
losed fun
tions !,s! = 0, modulo BRST exa
t fun
tions. A fun
tion ! is 
alled BRST exa
t,if it lies in the image of s, i.e., ! = s�. Due to the nilpoten
y of s BRSTexa
t fun
tions are automati
ally 
losed.The 
ohomology of the BRST di�erential 
aptures important physi
alinformation on the quantum level as well as on the 
lassi
al. In fa
t this wasrealized at �rst at the quantum level, where it turns out to be a useful toolin the perturbative renormalization of quantum �eld theories. Quantizing agauge theory usually starts with �xing a gauge. The BRST symmetry thenbe
omes a substitute for gauge invarian
e. The appli
ations of BRST meth-ods at the quantum level in
lude the 
lassi�
ation of 
andidate anomalies,the determination of gauge invariant 
ounter terms, and the renormaliza-tion of 
omposite, gauge-invariant operators in the 
ontext of the operatorprodu
t expansion.The relevan
e of the BRST 
ohomology at the 
lassi
al level has beenrealized more re
ently. At negative ghost number the BRST 
ohomologyis isomorphi
 to the \
hara
teristi
 
ohomology". This 
ohomology gener-alizes the notion of 
onserved 
urrents and involves ne
essarily anti�elds,sin
e these are the only elements with negative ghost number. Another im-portant appli
ation of BRST methods at the 
lassi
al level is the relationto deformation theory. This is of interest for the 
onstru
tion of 
onsistentintera
tions and the proof of their uniqueness up to �eld rede�nitions.For all of the physi
al questions above, a 
omplete treatment of theproblem in the language of the BRST formalism requires the 
onsiderationof anti�elds. In the following �fteen years after the initiation of the inves-tigation of the BRST 
ohomology with the seminal papers [19{21℄ manyresults on the anti�eld independent 
ohomology were established. However,the anti�eld dependent problem remained largely untou
hed. Originally theanti�elds were 
onsidered as sour
es for the BRST variations of the �elds.This point of view was apt for the purposes of renormalization of gaugetheories but obs
ured their 
entral rôle for 
ohomologi
al 
al
ulations. Thenovel interpretation of the anti�elds as being asso
iated to the equations ofmotion and thereby implementing them into the 
ohomologi
al problem inan algebrai
ally well de�ned way opened the road to new progress. Thisinterpretation originates from the Hamiltonian formulation of the BRSTsymmetry [22{24℄. There the anti�elds are regarded as the momenta 
on-jugate to the ghosts. The implementation of the equations of motion viathe so-
alled Koszul-Tate di�erential is essential for the generalization of theBRST 
onstru
tion to the 
ase where the gauge algebra 
loses only on-shell.In its present form the anti�eld formalism was established in [25{27℄.For an introdu
tion to the BRST formalism see the book of Henneaux
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and Teitelboim [28℄ and the reviews on the anti�eld formalism [29℄ and onthe appli
ations of BRST 
ohomology in the 
ontext of gauge theories ofYang-Mills type [30℄, where also an extensive list of the relevant literature
an be found.Outline of the thesisMotivated by the 
onsiderations dis
ussed above we present in this thesis aBRST 
ohomologi
al analysis of superstring models in the NSR formulation[31{33℄ with lo
al (1,1) supersymmetry [34, 35℄ in
luding an arbitrary num-ber of abelian gauge �elds. The 
lass of models under study is quite generalsin
e it is 
hara
terized only by requirements on the �eld 
ontent and thegauge symmetries. In parti
ular it 
ontains both, models of fundamentalsuperstrings and of their SL(2;Z) dual D-strings, but it is not restri
ted tothem.As a �rst step of the 
ohomologi
al analysis all lo
al world-sheet a
-tions 
ompatible with these requirements are determined. This analysis isa

omplished by a 
ohomologi
al 
omputation in the spa
e of lo
al fun
-tions whi
h do not depend on anti�elds (this is possible be
ause we use aformulation in whi
h the 
ommutator algebra of the gauge transformations
loses o�-shell). Its result has been reported and dis
ussed already in [36℄:when abelian gauge �elds are absent, the 
ohomologi
al analysis reprodu
esthe general superstring a
tion found already in [37℄; in presen
e of abeliangauge �elds, it yields lo
ally supersymmetri
 extensions of the purely bosoni
a
tions derived in [38, 39℄ and may be interpreted in terms of an enlargedtarget spa
e with one `frozen' extra dimension for ea
h gauge �eld. In parti
-ular there are lo
ally supersymmetri
 a
tions of the Born-Infeld type amongthese a
tions [36℄.The se
ond step of the 
ohomologi
al analysis investigates the lo
alBRST 
ohomology, denoted by H(s) throughout the thesis, for the mod-els whose world-sheet a
tions were determined by the �rst step. The a
tionis needed to �x the BRST transformations of the anti�elds. Our analysisis general ex
ept for a very mild assumption (invertibility) on the \targetspa
e metri
".We expli
itly 
ompute the 
ohomology groups with ghost numbers 0 and1, whi
h 
ontain the information on the rigid symmetries and dynami
al 
on-servation laws and dis
uss the results for a simpli�ed model. In view of apossible interpretation of the a
tions in terms of a twelve dimensional theory(in the 
ase of two abelian world sheet gauge �elds), it is interesting thatthe symmetries of the super-D-string a
tion are not exhausted by the isome-tries of the ten-dimensional standard superstring target spa
e. Additionalsymmetries are possible, a
ting nontrivially also on the extra dimensions.Interestingly the solutions to the superstring BRST 
ohomology at ghostnumbers 0 and 1 are already 
hara
terized by their purely bosoni
 
oun-



Chapter 1. Introdu
tion 5
terparts. This suggests the 
onje
ture that the 
ohomology groups of thesupersymmetri
 models are in one to one 
orresponden
e with those of thepurely bosoni
 models.1That this is indeed the 
ase, at least for the physi
ally interesting 
oho-mology groups, is the subje
t of the last part of this thesis. We shall provethat the 
ohomology groups of H(s) at ghost numbers g < 4 are isomor-phi
 to their 
ounterparts in the 
orresponding bosoni
 string models2 [thebosoni
 model 
orresponding to a parti
ular superstring model is obtainedfrom the latter simply by setting all fermions to zero in the world-sheeta
tion℄. Furthermore, the 
orresponden
e is very expli
it: the representa-tives of the s-
ohomology of a superstring model are simply extensions oftheir \bosoni
" 
ounterparts, i.e., they 
ontain the representatives of thes-
ohomology of the 
orresponding bosoni
 string model and 
omplete themto s-
o
y
les of the superstring model [analogously to the superstring a
tionitself, whi
h 
ontains the bosoni
 string a
tion and 
ompletes it to a lo
allysupersymmetri
 one℄.This result provides a 
omplete 
hara
terization of the 
ohomology groupsHg(s), g < 4 be
ause the 
ohomology H(s) for the bosoni
 string modelshas been 
ompletely determined in [40℄ (ordinary bosoni
 strings) and [39℄(bosoni
 strings with world-sheet gauge �elds). In parti
ular, this impliesthat the nontrivial Noether 
urrents, global symmetries, 
onsistent deforma-tions, ba
kground 
harges and 
andidate gauge anomalies of an NSR super-string model with (1,1) supersymmetry are in one-to-one to 
orresponden
ewith those of the bosoni
 string model. The results for the bosoni
 modelswere derived and dis
ussed in detail in [38{42℄. We shall not repeat or sum-marize these results here, but we shall brie
y 
omment on the relevan
e ofour results to the deformation problem at the end of se
tion 4.1.The result is quite remarkable and surprising sin
e it means that thelo
al (1,1) supersymmetry of the models under study has no e�e
t on thestru
ture of the 
ohomology at all! We note that our analysis and resultapplies analogously to models with less supersymmetry, notably heteroti
strings with lo
al (1,0) supersymmetry (by swit
hing o� one of the super-symmetries). However, we do not expe
t that it extends to superstrings withtwo or more lo
al supersymmetries of the same 
hirality, su
h as heteroti
strings with lo
al (2,0) supersymmetry. These supersymmetries restri
t al-ready the world-sheet a
tion to spe
ial ba
kgrounds [43{45℄. A

ordingly,we expe
t that the lo
al BRST 
ohomology of su
h superstring models is\smaller" than the one for 
orresponding bosoni
 strings.The thesis is organized as follows. In se
tion 2 we give a lightning review1Indeed already the di�erent supersymmetri
 world sheet a
tions are parametrized bythe same \target spa
e fun
tions" as the bosoni
 a
tions.2We believe that the isomorphism extends to all higher ghost number se
tors as wellsin
e most parts of our proof (in fa
t, everything ex
ept for the 
ase-by-
ase study inappendix A.2) hold for all ghost numbers.
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of string theory with spe
ial emphasis on the relevan
e in view of \D-brane"physi
s. In parti
ular we explain that the existen
e of D-branes is requiredby 
onsisten
y of string theory with T-duality. Furthermore, we summa-rize some well known results on strings in ba
kground �elds and �nally wedis
uss the emergen
e of non
ommutative geometry from open strings inba
kground �elds. For the 
ase of general ba
kgrounds we give a Kont-sevi
h type produ
t and dis
uss its properties in the 
ontext of 
onformalinvarian
e. In the following se
tions we turn to the BRST 
ohomologi
alanalysis of superstrings and D-strings.In se
tion 3.2 we spe
ify the �eld 
ontent and the gauge symmetries ofthe models under 
onsideration. The BRST transformations of the �elds
orresponding to the gauge symmetries are given. In se
tion 3.3 we 
on-stru
t �eld variables (jet spa
e 
oordinates) that are well suited for the
ohomologi
al analysis. This involves the super-Beltrami parametrizationfor the gravitational multiplet and a 
onstru
tion of super
onformal tensor�elds for the matter and gauge multiplets. In se
tion 4 the �rst part ofthe 
ohomologi
al analysis is 
arried out. We determine the most generala
tion for the �eld 
ontent and gauge transformations introdu
ed before by
omputing H2(s) in the spa
e of anti�eld independent lo
al fun
tions.In se
tion 5 we introdu
e the anti�elds, give their BRST transformationsand extend the super
onformal tensor 
al
ulus by 
onstru
ting super
on-formal anti�eld variables. The expli
it analysis of the anti�eld dependent
ohomology at ghost numbers 0 and 1 is 
arried out in 
hapter 6. A detailed
al
ulation is given and the results are dis
ussed for a simpli�ed model.Then we turn to the general proof of the one to one 
orresponden
e ofthe BRST 
ohomology H(s) to the purely bosoni
 one at ghost numbersg < 4. In se
tion 7.1 we de�ne and analyze an on-shell BRST 
ohomologyH(�); in se
tion 7.2 we show that Hg(�) is isomorphi
 to Hg(s) and tothe 
ohomology of the 
orresponding bosoni
 string model when g < 4.Some details of the analysis of se
tions 7.1 and 7.2 are 
olle
ted in theappendi
es A.1 and A.2. The remaining appendi
es give a short summaryof the derivation of the gauge transformations from the supergravity Bian
hiidentities and 
ontain a 
olle
tion of the s-transformations of the 
ovariant(= super
onformal) �eld and anti�eld variables.



Chapter 2
String theory in a nutshell
This 
hapter is devoted to a lightning review of string theory. Due to itsri
h stru
ture it is hopeless to 
over the subje
t in a self 
ontained waywithout restri
ting to 
ertain subareas of the theory. Thus, we will fo
usmainly on the basi
 
on
epts relevant for the topi
s dis
ussed in the restof the thesis. Most of the material presented here 
an be found in anyintrodu
tory le
tures on string theory and D-branes [1{4℄.
2.1 Open and 
losed stringsA bosoni
 string propagating in a D dimensional 
at spa
e-time is des
ribedby the embedding fun
tions X�(�; �), with � = 0; 1; : : : ;D � 1, of the twodimensional \world-sheet" parameterized by � and � into \spa
e-time". Inanalogy to the point parti
le 
ase one 
an write down an a
tion proportionalto the area of the world-sheet measured by the indu
ed metri
 on the worldsheet. This a
tion is 
alled the Nambu-Goto a
tion. It has the awkwardproperty of 
ontaining derivatives under the square root and is thus notwell suited for quantization. There is a fairly easy way to 
ir
umvent thisproblem, by introdu
ing an additional auxiliary metri
 gmn on the world-sheet, whi
h is the analog to the einbein introdu
ed for the point parti
le.The resulting world sheet a
tion, whi
h is usually 
alled Polyakov1 a
tion isgiven by SP = � 14��0 Z d�d�p�g gmn�mX��nX���� ; (2.1.1)where g denotes the determinant of the world-sheet metri
. The fa
tor infront of the integral is proportional to the tension of the string written interms of the Regge2 slope �0, whi
h has the dimension of (spa
e-time) length1The a
tion was in fa
t found by Brink, Di-Ve

hia and Howe and Deser and Zumino.Polyakov pointed out its relevan
e in the path integral quantization.2String theory was originally proposed to be a theory of strong intera
tions. Mesonresonan
es obey a linear spin-mass relation, with �0 � (1GeV )�2 being the slope of the7
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squared. ��� is the spa
e-time metri
 and gmn is the inverse of the world-sheet metri
. This a
tion is 
lassi
ally equivalent to the Nambu-Goto a
tion,i.e., it gives rise to the same equations of motion.The Polyakov a
tion possesses a large number of symmetries, namelyD-dimensional Poin
ar�e invarian
eX 0� = ���X� +A�g0mn = gmn; (2.1.2)where ��� is a Lorentz transformation and A� is a translation, two dimen-sional di�eomorphism invarian
eÆX� = �m�mX�Ægmn = �l�lgmn + (�m�l)gln + (�n�l)glm; (2.1.3)for two parameters �l(�; �) and Weyl invarian
eX 0� = X�g0mn = e2!(�;�)gmn: (2.1.4)Poin
ar�e invarian
e is a 
onsequen
e of taking spa
e-time to be 
at and isa global symmetry in the world-sheet sense. Equation (2.1.2) states thatthe embedding fun
tions X�(�; �) simply transform as a ve
tor, while theworld sheet metri
 is invariant. The invarian
e under two dimensional worldsheet di�eomorphisms and the invarian
e under lo
al res
alings of the world-sheet metri
 are nontrivial gauge symmetries. From equations (2.1.3) itfollows that X�(�; �) transforms as a s
alar under lo
al reparametrizationsof the world-sheet, while the metri
 transforms of 
ourse as a 
ovariant ranktwo tensor. These symmetries are essential features of the theory and inse
tion 3.2 we will use them, extended by additional gauge symmetries andsupplemented with a pres
ribed �eld 
ontent, to 
hara
terize the whole 
lassof models 
onsidered in the BRST 
ohomologi
al problem. Moreover, theyare features of the 
lassi
al theory and give interesting results when one triesto retain them in a quantum theory. We will 
ome ba
k to this point later,when we dis
uss strings propagating in ba
kground �elds.The equations of motion following from the variation of the Polyakova
tion are Tmn = 0 (2.1.5)�m (pggmn�nX�) = 0; (2.1.6)traje
tories. In string theory the parameter is of the order of the natural s
ale determinedby the fundamental 
onstants of gravity and quantum me
hani
s, i.e., the inverse Plan
kmass squared M�2P .
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where Tmn is the world sheet energy momentum tensor. It is 
onservedrnTnm = 0 as a 
onsequen
e of reparametrization invarian
e and more-over, Weyl invarian
e requires the energy momentum tensor to be tra
eless,Tmm = 0. The se
ond equation has to be supplemented with appropriateboundary 
onditions. Taking the world-sheet to be parameterized su
h that0 � � � �0 one hasopen string : X 0�(�; 0) = X 0�(�; �) = 0;
losed string : X 0�(�; 0) = X 0�(�; �)X�(�; 0) = X�(�; �)gmn(�; 0) = gmn(�; �); (2.1.7)where a prime denotes the derivative with respe
t to �. Note that we haveintrodu
ed 
losed strings by imposing periodi
ity. The boundary 
onditionsfor the open string are the standard Neumann boundary 
onditions statedmore 
ovariantly nm�mX� = 0, where nm is a ve
tor normal to the bound-ary. The boundary 
onditions (2.1.7) are the only ones that are 
ompatiblewith spa
e-time Poin
ar�e invarian
e and the equations of motion. If the 
on-dition of Poin
ar�e invarian
e is relaxed there are 
ertain other possibilities,whi
h will be
ome important in the 
ontext of D-branes, see se
tion 2.2.Their relevan
e and 
onsisten
y was dis
overed in the 
ontext of T-duality.The Polyakov a
tion (2.1.1) de�nes a two dimensional �eld theory on thestring world-sheet. It des
ribes D massless s
alar �elds X� 
oupled to themetri
 gmn. From the world-sheet point of view Poin
ar�e invarian
e is aninternal symmetry a
ting on �elds at �xed � and �. Amplitudes for spa
e-time pro
esses are given in terms of matrix elements of this two dimensionalquantum �eld theory. In se
tion 2.3 we will 
onsider generalizations of thePolyakov a
tion, namely nonlinear sigma models.
2.2 D-branesD-branes are extended obje
ts de�ned by the fa
t that open strings mayend on them. The existen
e of su
h extended obje
ts in string theory hasbeen un
overed in the 
ontext of T-duality [46, 47℄. Let us review some ofthe arguments.Using two dimensional di�eomorphism invarian
e and Weyl symmetry,whi
h are three lo
al or gauge symmetries, to �x the three independentdegrees of freedom of the world-sheet metri
, we 
an at least lo
ally 
hooseit to be of the form gmn = Æmn. Furthermore, 
hoosing 
omplex 
oordinateson the world sheet and mapping it to the 
omplex plane one 
an write thePolyakov a
tion as S = 12��0 Z� d2z �X� ��X�: (2.2.8)
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The equations of motion then take the form� ��X� = 0; (2.2.9)whi
h implies that �X� is holomorphi
 and ��X� is antiholomorphi
. Interms of the 
orresponding Laurent expansions the general solution is givenby

X� = x� � i�02 p�lnjzj2 + ir�02 Xn6=0 1n(��nz�n + ~��n�z�n)� X�L +X�R (2.2.10)for 
losed strings and for open strings
X� = x� � i�02 p�lnjzj2 + ir�02 Xn6=0 1n��n(z�n + �z�n): (2.2.11)

The overall motion of the string is des
ribed by its 
enter of mass position x�and its momentum p�, whi
h is identi�ed with the zero mode of the Laurentexpansion of �X� and ��X�. The mode expansions des
ribe the os
illatorydegrees of freedom of the string.T-duality for 
losed stringsNow 
onsider 
losed strings in a target spa
e with one 
ompa
t dimension,say X25. Let us work out the impli
ations of the periodi
ity X25 = X25 +2�R for the solution to the equations of motion. We fo
us on the zero mode
ontributions written in terms of the original variables
X� = x� + ~x� � ir�02 (��0 + ~��0 )� +r�02 (��0 � ~��0 )� + (os
illators):(2.2.12)In the 
ase of a non-
ompa
t dimension the term proportional to � hasto vanish so that ��0 = ~��0 . The 
ompa
t dimension allows an additionalsolution. Running on
e around the 
losed string we get

X�(z; �z)! X�(z; �z) + 2�r�02 (��0 � ~��0 ): (2.2.13)But now X� need not be single valued under the 
hange � ! � + 2�. It
an 
hange by an integer multiple of 2�R. Furthermore the momentumidenti�ed with p� = q 12�0 (��0 + ~��0 ) has to be an integer multiple of theinverse radius of the 
ompa
t dimension to ensure the single valuedness of
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exp(i p �X). Solving the two resulting equations for the 
ompa
t dimensionX25 one �nds

�25o = r�02 � nR + wR�0 � �r�02 pL~�25o = r�02 � nR � wR�0 � �r�02 pR; (2.2.14)where n and w are integers. We 
on
lude that in the 
ase of a 
ompa
tdimension a whole tower of new states appears 
orresponding to a 
losedstring wound w times around the 
ompa
t dimension. For a large radius Rof the 
ompa
t dimension the momentum states are light and the windingstates are heavy, i.e., it 
osts mu
h energy to ex
ite them in the spe
trum.In the 
ase of a small radius the situation is reversed. The momentum statesare heavy while the winding states are light.One 
an push this further and ask what happens in the de
ompa
ti�-
ation limit R ! 1 and in the limit of R ! 0. In the de
ompa
ti�
ationlimit the winding modes be
ome in�nitely massive and de
ouple from thespe
trum. The momentum states go over to a 
ontinuum of states. Indeedthis perfe
tly �ts with what one should intuitively expe
t, namely to re
overthe un
ompa
ti�ed situation. But what happens in the R ! 0 limit? Themomentum states be
ome in�nitely heavy and de
ouple from the spe
trum.In the 
ase of point parti
les this would be all we observe. The 
ompa
ti-�ed dimension vanishes and we are left with one dimension less. But 
losedstrings behave quite di�erently. The winding states now form a 
ontinuumand the un
ompa
ti�ed dimension reappears! In fa
t a theory of 
losedstrings 
ompa
ti�ed on a 
ir
le of radius R is dual to a theory 
ompa
ti�edon a radius 1=R, i.e., the spe
trum is invariant under the ex
hange of n$ wand R $ �0=R. The fully intera
ting theory 
an be des
ribed in terms ofthe T-dualized 
oordinate X 0(z; �z) = X(z)�X(�z), whi
h is a parity trans-formation a
ting on the right moving part only. It has the same operatorprodu
ts and energy momentum tensor, sin
e the minus sign enters in allthese 
ases in pairs. The dual 
oordinate a

ounts only for the 
hange inthe sign of the right moving zero mode in the 
onformal �eld theory, whi
h
hanges the spe
trum from the theory with radius R to that of the theorywith radius 1=R. The theories are identi
al, one being written in terms ofX and one in terms of X 0.This duality is 
alled T-duality and it is an exa
t symmetry of pertur-bative 
losed string theory. This gives eviden
e to the idea of a minimallength in string theory, namely the self dual radius R = p�0. The same
onsiderations hold for toroidal 
ompa
ti�
ation of several dimensions andeven for more general 
ompa
ti�
ations.



Chapter 2. String theory in a nutshell 12
T-duality and open stringsSomething di�erent has to happen in the 
ase of open strings. This is 
lear,sin
e there is no 
onserved winding number for open strings. So in theR! 0 limit there is no tower of winding states, whi
h e�e
tively generatesa dimension. Rather the situation is similar to the �eld theory 
ase: thestates with nonzero momentum be
ome in�nitely heavy and de
ouple fromthe spe
trum and we are left with one dimension less. Now the puzzlingpoint in this story is that a theory of open strings ne
essarily 
ontains 
losedstrings. After taking the R ! 0 the open strings live in one dimension lessthan the 
losed strings! The solution to this puzzle is that the endpoints ofthe open strings are 
on�ned to a D�1 dimensional hyperplane. Indeed theinterior of an open string 
annot be distinguished from a 
losed string andthus should still vibrate in all D dimensions just like a \real" 
losed string.Let us work this out in more detail starting from the open string modeexpansion X�(z; �z) = X�(z) +X�(�z)

X�(z) = 12x� + 12x0� � i�0p� ln z + ira02 Xn6=0 1n��nz�nX�(�z) = 12x� � 12x0� � i�0p� ln �z + ira02 Xn6=0 1n��n�z�n (2.2.15)
and 
onsider the 
oordinate X25 
ompa
ti�ed on a 
ir
le of radius R. TheT-dual 
oordinate is X 025(z; �z) = X25(z)�X25(�z). Thus we get3

X 025(z; �z) = x025 � i�0p25 ln(z�z ) + ir�02 Xn6=0 1n�25n (z�n � �z�n)
= x025 + 2i�0p25� +p2�0Xn6=0 1n�25n e�in� sinn�= x025 + 2i�0 nR� +p2�0Xn6=0 1n�25n e�in� sinn�: (2.2.16)

The essential point is the absen
e of a � dependen
e in the zero mode se
tor,i.e. there is no momentum in the X 025 dire
tion. The Neumann boundary
onditions ��X = 0 are repla
ed by Diri
hlet boundary 
onditions �tX = 0!The os
illator terms vanish at the endpoints � = 0; � and the ends are
on�ned to X 025(�)�X 025(0) = 2��0 nR = 2��0nR0: (2.2.17)3After Wi
k rotating to Eu
lidean time � ! �it and mapping the 
ylinder to the
omplex plane one has z = exp(t+ i�) = exp(i�+).
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The di�eren
e is an integer multiple of the radius of the dual dimension.Thus we 
on
lude that under T-duality the normal and the tangential deriva-tive are ex
hanged�nX25(z; �z) = �zX25(z) + ��zX25(�z) = �tX 025(z; �z)�tX25(z; �z) = �zX25(z)� ��zX25(�z) = �nX 025(z; �z) (2.2.18)This gives a 
onsistent pi
ture of what happens in the T-dualized dire
tion.In all other dire
tions the situation is not 
hanged and the string endpointsare still free to move. The 24 dimensional hyperplane to whi
h the stringends are 
on�ned are 
alled a Diri
hlet 24-brane or D24-brane for short. Thesame pi
ture goes through for any number of 
oordinates giving D-branesof higher 
odimension.It is natural to expe
t that these obje
ts are really dynami
al obje
ts,be
ause in a theory 
ontaining gravity perfe
tly rigid obje
ts do not exist.Rather one expe
ts the D-branes to 
u
tuate in shape and position. One 
anwork this out by looking at the massless spe
trum of the theory. Masslessstates arise from non-winding states be
ause the string tension 
ontributesan energy to a stret
hed string. Sti
king to the example of the D-24 branewe �nd ���1jk >; V = �tX�eikX�25�1jk >; V = �tX25eikX = �nX 025eikX0 : (2.2.19)These are of 
ourse the same massless states as those of the original theorybut viewed from the dual theory. The �rst line in (2.2.19) is a gauge �eldliving on the D-brane with 25 
omponents tangent to the brane dependingon the world volume 
oordinates of the brane. The se
ond line, representingthe gauge �eld in the 
ompa
t dire
tion in the original theory, be
omes theposition of the brane in the dual pi
ture. From the D-brane world volumepoint of view it is simply a s
alar living there. Again this pi
ture goesthrough for several T-dualized dire
tions. Now let us 
onsider the meaningof these modes. Let the value of the s
alar vary while we move along thebrane. This 
orresponds to an embedding of the brane into the transversedimensions and thus determines the shape of the brane. The s
alar thusplays the same role as the 
oordinate fun
tion X�, whi
h des
ribes a string.Re
all that from the world-sheet point of view the X�'s are s
alar �elds!The values of the gauge �eld ba
kground des
ribe the shape of the D-brane as a (possibly solitoni
) ba
kground for the gauge degrees of freedomand their quanta des
ribe 
u
tuations about that ba
kground.World-volume a
tions for D-branesWe started from open strings 
ompa
ti�ed on a 
ir
le and were naturallyled to the existen
e of extended obje
ts on whi
h open strings are allowed
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to end. Moreover, due to the presen
e of gravity we 
on
lude that theseare in fa
t dynami
al obje
ts. Thus one might ask how the low energye�e
tive world-volume a
tion looks like. This is easily answered taking intoa

ount the dis
ussion of the previous paragraph. The massless �elds onthe brane world-volume are given by a gauge �eld Am and a number oftransverse s
alars 
orresponding to the position of the brane. Introdu
ingthe 
orresponding world-volume �elds �a one is led by dire
t analogy to thestring 
ase to the following a
tion for a single D-braneSp = �Tp Z� d�p+1e��pdet(Gab +Bab + 2��0Fab); (2.2.20)where Gab and Bab denote the pullba
k of the spa
e-time metri
 and theantisymmetri
 tensor �eld of the 
losed string ba
kground to the (p + 1)dimensional D-brane world-volume. This is nothing but the analog of theNambu-Goto string a
tion and is known as the Born-Infeld a
tion for non-linear ele
trodynami
s. The dependen
y on B+2��0F 4 
an be understoodby the fa
t that in the open string a
tion the B-�eld and the boundarygauge �eld A are related by a spa
e-time gauge invarian
eB�� ! B�� + ���� � ���� A� ! A� � 12��0��; (2.2.21)whi
h is preserved by the 
ombination 2��0F�� = B�� + 2��0F�� . This isinvariant under both spa
e-time gauge symmetries, the one mentioned aboveand the U(1) gauge symmetry of A.An interesting modi�
ation arises when one 
onsiders a number of 
o-in
ident D-branes. Intuitively it is 
lear that additional massless degreeof freedom arise from strings ending on di�erent branes. The U(1) gaugesymmetry is enhan
ed and be
omes a non-abelian U(N) gauge symmetry,where N is the number of 
oin
ident branes, and the gauge �eld be
omesan N �N matrix. The same happens to the 
olle
tive 
oordinates for theembedding of the D-branes. This is the �rst appearan
e of \non
ommuta-tive geometry" in terms of matrix 
oordinates. Again some insight into theform of the low energy e�e
tive a
tion 
an be gained by T-duality startingfrom the Born-Infeld a
tion.As a 
on
luding remark to this se
tion we 
omment on the dilaton fa
-tor e�� in the Born-Infeld a
tion and the brane tension Tp. The dilatondependen
y 
an be understood from the the fa
t that this is an open stringtree level e�e
tive a
tion 
omputed on the disk. The Dp-brane tension isdetermined by T-duality (by a re
ursion relation) up to an overall normal-ization. The a
tual value of the D-brane tension 
an be 
omputed from theex
hange of a 
losed string between two D-branes and is of the order of theinverse string 
oupling.4For 
onvenien
e we will set 2��0 = 1 in the following and reintrodu
e the expli
itdependen
y on �0 where it is ne
essary.
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2.3 Strings in ba
kground �eldsWe have written down the Polyakov a
tion (2.1.1) assuming that the stringsare propagating in an un
ompa
ti�ed 
at target spa
e with a Minkowskianmetri
 ��� . A �rst step towards a generalization is to 
onsider the nonlinearsigma modelS = � 14��0 Z d�d�p�g gmn�mX��nX�G��(X); (2.3.22)with a nontrivial spa
e-time metri
 G��(X). From the two-dimensionalworld-sheet point of view this 
orresponds to a theory of D s
alar �eldswith �eld dependent 
ouplings. That this is indeed a sensible 
hoi
e 
anbe seen by 
onsidering an expansion around the 
at ba
kground G��(X) =��� + h��(X), where h��(X) is a small deviation from 
at spa
e. Insertingthis into the (Eu
lidean) path integral one �nds a term14��0 Z d2z h��(X)�X� ��X� : (2.3.23)Setting h��(X) / ��� exp(ik �X) with a symmetri
 polarization matrix ���one is simply inserting a graviton vertex operator into the path integral.The insertion of the full metri
 G��(X) 
orresponds to a 
oherent state ofgravitons. Generalizing this pro
edure to in
lude other ba
kgrounds of themassless sting states one obtains for the 
losed string se
torS = � 14��0 Z d�d�p�g �gmn�mX��nX�G��(X)+"mn�mX��nX�B��(X) + �0R(2)�(X)�; (2.3.24)where R(2) denotes the two-dimensional Ri

i s
alar asso
iated with theworld-sheet metri
 gmn. We have added terms 
orresponding to the antisym-metri
 tensor �eld B��(X) and the dilaton �(X). In the limit of small B and� the vertex operators for these ba
kgrounds are B��(X) / a�� exp(ik �X)and �(X) / � exp(ik � X) with an antisymmetri
 polarization matrix a�� .Here some remarks are in order 
on
erning the 
oupling of the dilaton.Firstly one observes that this a
tion is 
lassi
ally invariant under globals
ale transformations but not under lo
al Weyl transformations. The dila-ton term breaks this invarian
e unless the dilaton is 
onstant. Let us 
on-sider a 
onstant dilaton for the moment. Then the �rst and the third termtogether look like the a
tion for D massless s
alars minimally 
oupled togravity in two dimensions. But there is no dynami
s asso
iated with theworld-sheet Ri

i s
alar appearing in the dilaton term. This is easily seenfrom the Einstein equations in two dimensions, be
ause Rmn� 12 gmnR van-ishes identi
ally. However, the Hilbert a
tion has a topologi
al meaning. In
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the path integral a term � �4��0 Z d�d�p�g R(2); (2.3.25)where � for now is an arbitrary parameter, will give rise to a fa
tor exp(���).� denotes the Euler number of the string world sheet � = 2�2h�b�
, whereh; b; 
 are the numbers of handles, boundaries and 
ross
aps, respe
tively.For open strings (2.3.25) is in fa
t modi�ed. One then has to in
lude theextrinsi
 
urvature on the boundary. For instan
e an open string tree leveldiagram has the topology of the disk and will thus be weighted with a fa
torexp(��). The emission and reabsorption of an open string will be relatedto a 
hange in the Euler number of Æ� = �1. Relative to the tree level openstring diagram the amplitude for emitting an open string will be weightedby a fa
tor exp(�=2), whi
h we thus regard as the open string 
oupling. Inthe same way one gets for the amplitude for emitting a 
losed string a fa
torexp(�), whi
h is regarded as the 
losed string 
oupling. Hen
e the 
oupling
onstants in string theory are 
ontrolled by the Euler term in the a
tion.Now let us return to the situation for the 
onstant dilaton ba
kground. Fromthe dis
ussion above one might suspe
t that the string 
oupling is a free pa-rameter, but this is not the 
ase. Di�erent values for the string 
oupling donot 
orrespond to di�erent theories but to di�erent ba
kgrounds in a singletheory and the only free parameter in the theory remains the string tension.Now before we turn to impli
ations resulting from Weyl invarian
e letus inspe
t some possible extensions for open string ba
kgrounds. The mostgeneral a
tion for open strings 
oupling to massless ba
kground �elds5 isS = � 14��0 Z�d�d�p�g �gmn�mX��nX�G��(X)+"mn�mX��nX�B��(X) + �0R(2)�(X)�� 12��0 Z��ds�2��0A��tX� + �0K(2)�(X)� (2.3.26)We have in
luded the extrinsi
 
urvature of the boundary K(2) and the openstring gauge �eld A� with the vertex operator R�� ds���tX� exp(ik � X),where �t denotes the tangential derivative to the world-sheet boundary ��.The Gauss-Bonnet term, whi
h gives the Euler number, is now14� Z�R(2) + 12� Z��K(2) = �; (2.3.27)whi
h explains the ne
essity to in
lude the boundary 
urvature be
ause thedilaton determining the 
oupling 
onstant must multiply the entire Eulerdensity.5It is also possible to in
lude other ba
kgrounds, for instan
e for the ta
hyon �eld orhigher order tensor �elds 
orresponding to massive spin > 2 modes. For 
losed strings theterm 
orresponding to the ta
hyon is S = � 14��0 R d�d�p�g T (X).
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To de�ne a 
onsistent string theory the a
tion (2.3.26) has to be Weylinvariant, both 
lassi
ally and as a quantum theory. This is related to thetra
elessness property of the two dimensional energy momentum tensor. Forthe 
losed string se
tor one �nds [1{3℄T mm = � 12�0�G��gmn�mX��nX� � 12�0�B��"mn�mX��nX� � 12��R(2);(2.3.28)where the 
oeÆ
ient fun
tions are the renormalization group beta fun
tion-als asso
iated with the 
oupling fun
tions indi
ated as supers
ripts.S
ale invarian
e in a quantum �eld theory is related to the vanishing ofthe renormalization group � fun
tions, whi
h arise from ultraviolet diver-gen
es in Feynman diagrams. Sin
e Weyl invarian
e implies s
ale invarian
e,whi
h in turn is related to the vanishing of the beta fun
tion, the ultraviolet�niteness of the two dimensional quantum �eld theory and Weyl invarian
eare intimately related6. The breakdown of s
ale invarian
e in the quan-tum theory 
an be understood by the fa
t that there is no regularizations
heme preserving 
onformal invarian
e. The subtra
tion of 
ontributionsof a massive regulator �eld as in the Pauli-Villars regularization breaks s
aleinvarian
e whereas dimensional regularization violates s
ale invarian
e be-
ause the sigma model is only s
ale invariant in two dimensions.There have been a large number of 
ontributions to this subje
t, most ofthem in the 80's [48{53℄. The remarkable result is that the vanishing of thebeta fun
tions gives rise to spa
e-time �eld equations. Expli
itly the betafun
tions for the 
losed string se
tor are given by�G�� = �0 �R�� + 2r�r��� 14 H���H ��� �+O(�02)�B�� = �0 ��12 r�H��� +r��H����+O(�02) (2.3.29)�� = D�266 � �0 �r2��r��r��+ 124 H���H����+O(�02)For the gauge �eld ba
kground the beta fun
tion is given by [51, 52℄�A� = � GG� (B + F )��� r�(B + F )��

+12 � (B + F )G� (B + F )���H���(B + F )�� + 12r��(B + F )�� ; (2.3.30)whi
h is valid to all orders in �0 and to lowest order in derivatives of B+F .7 Re
all that only the 
ombination F whi
h is invariant under both spa
e-time gauge transformations, the U(1) gauge transformation of A and the6Considerations 
on
erning full ultraviolet �niteness also have to take into a

ountwave fun
tion renormalization not just the renormalization of the 
ouplings.7Displaying the �0 dependen
y of the beta fun
tions in the 
ase of a pure gauge �eldba
kground gives �A� = 2��0 �1� (2��0F )2��1 ��r�F��.
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ombined transformation (2.2.21) of B and A, enters in these expressions.H��� is the 
orresponding �eld strength and is given byH��� = ��B�� + ��B�� + ��B��: (2.3.31)Indeed it is possible to derive these spa
e-time equations of motion from aspa
e-time a
tion. For the 
losed string ba
kground this isS
losedeff = 12�2 Z dDXp�Ge�2�hR+ 4r��r��� 112H���H���

�2(D � 26)3�0 +O(�0)i: (2.3.32)By a �eld rede�nition one 
an remove the dilaton fa
tor in front of the spa
e-time Ri

i s
alar and thus obtain the standard Einstein-Hilbert a
tion. Thisis usually referred to as going to the \Einstein frame". In this terminologythe a
tion (2.3.32) is written in the \string frame". To lowest order in �0the e�e
tive a
tion 
orresponding to the open string se
tor is given by theYang-Mills a
tionSYMeff = �C4 Z dDXe��F��F�� +O(�0): (2.3.33)Note that the appearan
e of the fa
tor exp� in the a
tions above is 
on-sistent with the fa
tors one would expe
t for the appearan
e of the string
oupling.In (2.3.30) we gave the spa
e-time equation of motion for the gauge �eldA to all orders in �0 but the Yang-Mills a
tion 
omprises only leading orderterms in �0. One might ask if one 
an do better and indeed the spa
e-timee�e
tive a
tion in
luding all orders in �0 and lowest order in derivatives ofB + F is given by the Born-Infeld a
tionSopeneff = Z dDXe��pdet(G+B + F ): (2.3.34)One might propose that the proper way to des
ribe intera
ting open and
losed strings is to simply add the spa
e-time e�e
tive a
tions for the 
losedand open string se
tor. The equations of motion arising from the 
ombineda
tion reprodu
e 
orre
tly the beta fun
tions for the gauge �eld but the
losed string beta fun
tions are extended by additional terms 
orrespondingto gauge �eld sour
e terms. This is quite reasonable sin
e the gauge �eldsshould a
t as a sour
e for gravity. But the presen
e of a boundary does not
hange the beta fun
tions of the 
losed string massless �elds. Neverthelessone 
an argue that the 
orresponding equations of motion are interpretableas string loop 
orre
ted beta fun
tions [52℄.We will not be 
on
erned with higher order loop 
orre
tions to the betafun
tions, but the Born-Infeld a
tion will on
e again show up in the 
ontextof non
ommutative geometry arising from D-branes in nontrivial ba
kground�elds.
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2.4 Non
ommutative GeometryThis se
tion is devoted to an old idea in a new guise and also 
ontains some
omments on re
ent work done in 
ollaboration with Manfred Herbst [54℄.The idea8 that the stru
ture of spa
e-time 
hanges at short distan
es andthereby provides an e�e
tive ultraviolet 
ut-o�, whi
h regularizes the no-torious in�nities present in quantum �eld theory, was already proposed byHeisenberg in the 1930's. He suggested a latti
e stru
ture, whi
h of 
oursebreaks Lorentz invarian
e. Nevertheless, for pra
ti
al and numeri
al reasonsthis latti
e version of spa
e-time is quite satisfa
tory, when random latti
esare used. In this Latti
e approximation Lorentz symmetry is a 
lassi
al sym-metry and is broken at the mi
ros
opi
 level. Some time later Snyder [57℄proposed the idea to use a non
ommutative stru
ture at small length s
ales.It was von Neumann who introdu
ed the term \non
ommutative geometry"for a general geometry in whi
h the algebra of fun
tions is repla
ed by anon
ommutative algebra.The argument that a non
ommutative stru
ture provides an e�e
tive
ut-o� 
an be seen from analogy with the quantization of the 
lassi
al phase-spa
e, where 
oordinates are repla
ed by generators of the algebra. Sin
ethese do not 
ommute they 
annot be diagonalized simultaneously and thusit is no longer justi�ed to speak of the phase-spa
e in terms of points. Ratherthe points of phase-spa
e have to be repla
ed with Bohr 
ells. In the sameway one repla
es the points of spa
e-time with Plan
k 
ells with the di-mension of the Plan
k area.9 In a 
oherent des
ription this \pointlessness"eliminates the ultraviolet divergen
es of quantum �eld theory by 
oarse-graining spa
e-time just like an ultraviolet 
ut-o� � prevents a theory toprobe length s
ales smaller the ��1. The question is how does this 
oher-ent des
ription of spa
e-time look like? The simplest but by far not theonly possibility is to introdu
e non
ommuting spa
e-time 
oordinates, i.e.to repla
e the 
oordinates by generators satisfying 
ommutation relations[q�; q� ℄ = ik��� : (2.4.35)The parameter k is a fundamental area s
ale.A simple and probably the most prominent example of a non
ommuta-tive \spa
e" 
ovariant under the a
tion of a 
ontinuous symmetry group isprovided by the \fuzzy sphere" [56℄. Let us review how non
ommutativegeometry makes its appearan
e in string theory.8For a histori
al review of non
ommutative geometry see for instan
e [55℄. The stan-dard referen
e for a rigorous mathemati
al presentation of non
ommutative geometry isthe book of A. Connes [58℄, but see also for instan
e the introdu
tory le
tures of GiovanniLandi [59℄.9This assumption is in fa
t not mandatory, sin
e experimental bounds would allowmu
h larger s
ales.
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Open strings in a 
onstant B-�eldThe most prominent example for the appearan
e of non
ommutative geom-etry in string theory, whi
h is also most extensively 
overed in the literature,arises from open strings in the ba
kground of a 
onstant antisymmetri
 ten-sor �eld B�� [60{63℄. The simplest 
ase is to 
onsider bosoni
 open stringsmoving in a 
at Eu
lidean ba
kgroundS = 14��0 Z�[g���mX��mX� + i"mnB���mX��nX� ℄: (2.4.36)The term involving the B-�eld ba
kground 
an be rewritten as a boundaryterm SB = i4��0 Z��B��X��tX� ; (2.4.37)where �t denotes the derivative tangential to the world-sheet boundary. Theonly e�e
t of this boundary a
tion is that it modi�es the boundary 
onditionsto G���nX� + iB���tX������ = 0; (2.4.38)with �n denoting the normal derivative. For B = 0 these are simply Neu-mann boundary 
onditions, whereas for large B (or g ! 0) the boundary
onditions be
ome Diri
hlet. Thus (2.4.38) interpolates between these two
ases. By 
onformally mapping the string world sheet to the upper halfplane (we will only be 
on
erned with the tree level approximation) and
hoosing 
omplex 
oordinates the propagator 
onsistent with the boundary
onditions (2.4.38) is [51, 52℄< X�(z; �z)X�(w; �w) >=��0hg�� ln jz � wj � g�� ln jz � �wj+G�� ln jz � �wj2 +��� ln� �w � z�z � w�i;(2.4.39)where the following quantities are introdu
edG�� =h 1g �B2 i����� =h Bg �B2 i�� : (2.4.40)These quantities are to be understood as series in g and B. Note that G��is symmetri
 and ��� is antisymmetri
. In fa
t these quantities have al-ready appeared in a di�erent 
ontext. The beta fun
tions for the gauge�eld ba
kground (2.3.30) 
ontain exa
tly these quantities generalized to anon
onstant B �eld and a possibly 
urved metri
. Moreover the e�e
t of the
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gauge �eld is taken into a

ount by repla
ing the B �eld by the gauge in-variant quantity B+F . We will keep this in mind, when we try to generalizethe setting used in (2.4.36) to arbitrary ba
kgrounds.Restri
ting the propagator (2.4.39) to boundary values of z and w, i.e.,z = �z = � and w = �w = � 0, one gets the propagator relevant for open stringvertex operators< X�(�)X�(� 0) >= ��0G�� ln(� � � 0)2 + i��0����(� � � 0); (2.4.41)with �(�) denoting the sign fun
tion being 1 or -1 for positive or negative� . This suggests a simple intuitive interpretation of the obje
ts de�ned in(2.4.40), namely that G�� is the metri
 e�e
tively seen by the open strings.This is justi�ed by the way G�� appears in the boundary propagator.The interpretation of ��� be
omes 
lear, when one 
omputes the 
om-mutator interpreting � as time[X�(�);X�(�)℄ = T (X�(�);X�(��)�X�(�);X�(�+))= i��� ; (2.4.42)whi
h is exa
tly the relation (2.4.35) for non
ommutative 
oordinates! Thissuggests that we should be able to des
ribe the theory in terms of a non-
ommutative deformed produ
t de�ned on fun
tions. Indeed this 
an bea

omplished by taking the zero slope limit �0 ! 0 to de
ouple the stringbehavior, while keeping the open string parameters G and � �xed. In thislimit one is left with a topologi
al a
tion for the bulk and the boundary de-grees of freedom are governed by the boundary a
tion (2.4.37). The produ
tof fun
tions is identi�ed as the Moyal-Weyl produ
tf(x) � g(x) = e i2��� ��y� ��z� f(y)g(z)��y=z=x: (2.4.43)An interesting thing happens when an abelian gauge �eld is added by 
ou-pling it to the boundary in the usual way. Due to the presen
e of divergen
esin the quantum �eld theory, the theory has to be regularized. Choosing apoint splitting regularization on �nds that the usual gauge transformationhas to be modi�ed to the gauge invarian
e of non
ommutative Yang-Millstheory. On the other hand, if one would have 
hosen a Pauli-Villars regular-ization the ordinary gauge transformation would have been preserved. Butambiguities arising from di�erent 
hoi
es of regularization s
hemes shouldbe related to �eld rede�nitions in the e�e
tive a
tion. This has led Seibergand Witten [63℄ to propose a map from \ordinary" gauge theory to non
om-mutative gauge theory, whi
h by now is well-known as the Seiberg-Wittenmap. The natural question arises if the e�e
ts of a more general (non
on-stant) B-�eld 
an still be des
ribed in the elegant way of repla
ing ordinaryprodu
ts by a star produ
t.
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Open stings in general ba
kgroundsPhysi
ally the situation des
ribed in the previous subse
tion 
orrespondsto the embedding of a 
at brane into 
at ba
kground. The �rst step to-wards a generalization of this situation is to allow for a varying B-�eld and�eld strength F of the boundary gauge �eld, but to demand that the �eldstrength H = dB should vanish. The physi
al pi
ture in this situation is theembedding of a 
urved brane into a 
at ba
kground. This situation is 
loselyrelated to the problem of deformation quantization of Poisson manifolds. Atypi
al example of a Poisson manifold is provided by a symple
ti
 mani-fold, i.e., a di�erentiable manifold endowed with a nondegenerate 
losed twoform. This two form is provided by the B �eld due to the vanishing of the�eld strength. It was shown by Kontsevi
h [64℄ that every �nite dimensionalPoisson manifold 
an be quantized in the sense of deformation quantization.Stated without mathemati
al rigour this means that there exists an isomor-phism from equivalen
e 
lasses of asso
iative algebras (we think of them asthe algebras of fun
tions) to the equivalen
e 
lasses of Poisson manifolds.This boils down to the problem of identifying an appropriate star produ
ton the spa
e of formal power series in a deformation parameter, suggestivelydenoted by ~, with 
oeÆ
ients in the spa
e of smooth fun
tions C1(M) on adi�erentiable manifold M . We denote this algebra with A[[~℄℄. Appropriatemeans in this 
ontext that the star produ
t is asso
iative and redu
es tof � g = fg + i~2 ff; gg+O(~2); (2.4.44)where ff; gg denotes the Poisson bra
ket on the manifold M . More gener-ally a star produ
t is de�ned in terms of bidi�erential operators Bi, wherethe subs
ript i indi
ates the order in the deformation parameter ~. Thereis a natural gauge group a
ting on star produ
ts, whi
h 
onsists of auto-morphisms of the algebra A[[~℄℄ of the form f ! f +Pn>0 ~nDn(f), wherethe Dn are di�erential operators. It is natural to 
onsider star produ
tsup to this gauge equivalen
e. Kontsevi
h showed that every Poisson bra
ket
omes from a 
anoni
ally de�ned star produ
t modulo equivalen
e. In doingso he took advantage of ideas from string theory. This was 
lari�ed by awork of Cattaneo and Felder [65℄, who showed that the formula given byKontsevi
h 
an be interpreted in terms of the perturbative expansion of thepath integral of a topologi
al model of open strings.From the sigma model point of view the symple
ti
 
ase is similar to the
onstant 
ase in the sense that lo
ally one 
an 
hoose Darboux 
oordinates.The algebra of fun
tions on the D-brane world-volume is deformed to a non-
ommutative (but still asso
iative) algebra in terms of the Kontsevi
h starprodu
t. In the �eld theory limit �0 ! 0 
orrelators 
an still be 
omputedusing the star produ
t. So the stru
ture obtained for the 
onstant 
ase per-sists for the more general symple
ti
 
ase. But is this true for the more
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venturous 
ase of a B �eld with nonvanishing �eld strength? This 
learly
orresponds to the embedding of a 
urved brane into a 
urved spa
e-time.The open string sigma model with general ba
kground �elds de�nes a highlynonlinear �eld theory. Thus one 
an hardly expe
t to get exa
t results. One
an think of two 
on
eptually rather di�erent approa
hes to this problem.One is to look for 
ertain 
ontrollable settings, for instan
e strings on groupmanifolds [66{69℄, most prominently on the group manifold of SU(2) [70℄.In this setting there exists an exa
t 
onformal �eld theory des
ription for
ertain maximally symmetri
 branes on S3, namely those wrapped on 
on-juga
y 
lasses of SU(2), whi
h are generi
ally 2-spheres. The algebra offun
tions on the brane 
orrespond to the well known \fuzzy-spheres". Theexa
t form of the algebra depends on the size of the 3-spheres, i.e. the levelof the 
orresponding WZW model, in whi
h they are embedded. D-braneson the group manifold of SU(2) have been studied intensively. In [71℄ andsubsequent work [72, 73℄ it has been argued that the spheri
al branes arestabilized due to the interplay between the nontrivial B �eld and the quan-tized U(1) world volume 
ux. An interesting feature present in the SU(2)WZW model are the nonasso
iative deformations of the algebras of fun
-tions on the worldvolume at �nite level k. In the limit where the level k issent to in�nity, i.e., when the ba
kground be
omes 
at (remember the levelk is asso
iated to the radius of the S3), these algebras be
ome asso
iative.We will also �nd nonasso
iative algebras by taking a di�erent route.A rather di�erent approa
h, though 
on
eptually more straightforward,is to generalize the methods used in [60℄ to the situation of 
urved ba
k-grounds by using a perturbative expansion [54, 78℄. The starting point forthese 
al
ulations is the open string sigma model with generi
 ba
kground forthe spa
e-time metri
 g��(X) and the gauge potentials B��(X) and A�(X).Then one employs the standard ba
kground �eld method [48, 74{77℄ to ex-pand around the zero modes X� = x� + ��. This allows to expand thea
tion into a free part and additional intera
tion terms. The propagator forthe free �eld theory is then given by (2.4.39), whi
h in turn 
an be used toperturbatively 
al
ulate 
orrelation fun
tions of the intera
ting theory. Car-rying out these 
al
ulations one 
an read o� a non
ommutative and evennonasso
iative produ
t from the 
orrelators [54℄f(x) Æ g(x) = f g � i2��� D�f D�g � 18������ D�D�f D�D�g� 112���D���� �D�D�f D�g +D�f D�D�g�+ O(�3); (2.4.45)where � is essentially of the same form as in (2.4.40) with B repla
ed bythe fully gauge invariant 
ombination F = B + 2��0F . The importantdi�eren
e is, however, that in this 
ase � is not 
onstant but depends onthe zero modes x�. The produ
t de�ned in (2.4.45) has the same stru
ture
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as the formula given by Kontsevi
h, but the partial derivatives are repla
edby 
ovariant derivatives 
ompatible with the metri
 g�� and most notably� does in general not de�ne a Poisson stru
ture.The key properties of this produ
t are that it is non
ommutative andnonasso
iative, but inserted into an integral it be
omes asso
iative and en-joys a 
y
li
 symmetryZ dDxpg �Ff1Æ: : :Æfn�1Æfn�Z dDxpg �FfnÆf1Æ: : :Æfn�1; (2.4.46)whi
h is usually referred to as tra
e property. Here some dis
ussion is inorder. Both properties, asso
iativity as well as the tra
e property (2.4.46)hold only in a 
ertain sense, namely if the spa
e-time ba
kground �elds ful�lltheir equations of motion. In the approximation above (i.e., to se
ond orderin �) this means that we have to use the beta fun
tion for the ba
kgroundgauge �eld (2.3.30). By virtue of this equation and due to the 
ontributionof the measure, the additional terms give a total divergen
e and thus the
laimed properties indeed hold. At �rst sight this may seem to be an ad ho
assumption, but let us give some arguments that this is indeed a sensibleresult.Both properties are 
losely related to 
onformal invarian
e. This is easilyexplained for the tra
e property. Take the world-sheet of the open string tobe the disk. Open string vertex operators are inserted on the boundary andthus 
orrelation fun
tions have to be invariant under 
y
li
 permutations ofthe operator insertions. In fa
t the 
orrelators have to be invariant under the
onformal Killing group of the disk, whi
h is SL(2; R ). Nevertheless we 
an-not expe
t 
onformal invarian
e to hold, if we do not impose the restri
tionson the spa
e-time ba
kground �elds arising from the beta fun
tions. Thereare, however, some subtleties to be taken 
are of. First of all, if one insiststo des
ribe 
orrelation fun
tions in terms of the generalized star produ
t(2.4.45) one has either to deal with the logarithmi
 divergen
es, whi
h 
omefrom the G�� term of the boundary propagator (2.4.41), by an appropriaterenormalization pro
edure or one has to 
onsider a 
ertain de
oupling limit,similar to that of Seiberg and Witten. The se
ond solution is de�nitely theless involved way, but it is not quite 
lear in whi
h sense the beta fun
tionsshould be interpreted in a �eld theory limit of �0 ! 0. On the other hand,studying the problem of renormalization in this 
ontext is an interestingquestion by itself. Thus we plan to investigate this topi
 in future work.
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Chara
terization of themodels
3.1 The 
ohomologi
al problemAfter exploring the playground provided by string theory we turn to thehard fa
ts of the BRST 
ohomologi
al analysis of superstring models. Thisanalysis will be 
arried out in the framework of the NSR formulation [31{33℄ with lo
al (1,1) supersymmetry [34, 35℄ in
luding an arbitrary number ofabelian gauge �elds. The 
lass of models under 
onsideration is quite generalsin
e it is 
hara
terized only by requirements on the �eld 
ontent and thegauge symmetries. The �eld 
ontent is given by the 
omponent �elds of threetypes of supersymmetry multiplets: the 2d supergravity multiplet, `mattermultiplets' 
ontaining the `target spa
e 
oordinates', and abelian gauge �eldmultiplets. The number of matter multiplets and gauge �eld multiplets isnot �xed. Thus our results apply to any target spa
e dimension (1,2, : : :) and an arbitrary number (0,1, : : : ) of abelian world-sheet gauge �elds.The supersymmetry transformations are obtained from an analysis of theBian
hi identities of 2d supergravity in presen
e of abelian gauge �elds.Before starting with the te
hni
al part let us summarize some basi
 fa
tsabout the BRST 
ohomology we are going to analyze. Here and through-out this thesis H(s) denotes the 
ohomology of the BRST di�erential in thespa
e of lo
al fun
tions, whi
h neither depend expli
itly on the world-sheet
oordinates nor on the world-sheet di�erentials, but only on the �elds, anti-�elds and their derivatives. This 
ohomology is the most important one forthe models under study be
ause the other lo
al BRST 
ohomology groups
an be easily derived from it. This is due to the invarian
e of the modelsunder world-sheet di�eomorphisms, owing to a general property of di�eo-morphism invariant theories dis
ussed in detail in se
tions 5 and 6 of [79℄(see also [80{82℄).In parti
ular, H(s) yields dire
tly the 
ohomology in form-degree 2 of s

25
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modulo the \world-sheet exterior derivative" d. 1 This 
ohomology is themost relevant one for physi
al appli
ations and denoted by Hg;2(sjd), whereg spe
i�es the ghost number se
tor. Co
y
les of Hg;2(sjd) are denoted by!g;2 and the 
o
y
le 
ondition iss!g;2 + d!g+1;1 = 0; (3.1.1)where !g+1;1 is some lo
al 1-form with ghost number g+1. !g;2 is a 
obound-ary inHg;2(sjd) if !g;2 = s!g�1;2+d!g;1 for some lo
al forms !g�1;2 and !g;1.Hg;2(sjd) is related to H(s) through the des
ent equations as explained in[79{82℄. The physi
ally interesting 
ohomology groups Hg;2(sjd) are thosewith ghost numbers g < 2: H�1;2(sjd) yields the nontrivial Noether 
urrentsand global symmetries [83℄, H0;2(sjd) andH1;2(sjd) determine the 
onsistentdeformations [85℄, ba
kground 
harges [41℄ and 
andidate gauge anomalies(see, e.g., [86℄). The 
orresponding 
ohomology groups of s are Hg(s) withg < 4. These will be the obje
ts of interest in the remainder of this thesis.
3.2 Field 
ontent and gauge symmetriesThe �eld 
ontent of the models we are going to study is given by the su-pergravity multiplet 
onsisting of the vielbein e am , the gravitino ��m and anauxiliary s
alar �eld S.2 Furthermore we 
onsider a set of s
alar multipetsfXM ;  M� ; FMg 
orresponding to the string \target spa
e 
oordinates" andtheir superpartners and a set of abelian gauge multiplets fAim; �i�; �ig. OnMinkowskian world-sheets all �elds are real and the fermions are Majorana-Weyl spinors. The number of s
alar multiplets and gauge multiplets isnot spe
i�ed, i.e. our approa
h 
overs any number of su
h �elds. Asgauge symmetries we impose world-sheet di�eomorphisms, lo
al 2d Lorentztransformations, Weyl and super-Weyl transformations and of 
ourse lo
al(1,1) world-sheet supersymmetry. Furthermore we require invarian
e underabelian gauge transformations of the Aim and under arbitrary lo
al shifts ofthe auxiliary �eld S. The gauge symmetries entail the 
orresponding ghost�elds, whi
h �xes the �eld 
ontent to�A = fe am ; � �m ; S;XM ;  M� ; FM ; Aim; �i�; �i; �m; ��; Cab; CW ; ��;W; 
ig;where �m denote the world sheet di�eomorphism ghosts, �� are the super-symmetry ghosts and Cab is the Lorentz ghost. CW and �� are the Weyl andsuper-Weyl ghosts, respe
tively. 
i are the ghosts asso
iated with the U(1)transformations of the gauge �elds and W denotes the ghost 
orrespondingto the lo
al shifts of the auxiliary �eld S. The gauge transformation of the1A
tually d is de�ned on the jet spa
e of the �elds and anti�elds [30℄.2m; a; � denote 2d world-sheet, Lorentz and spinor indi
es, respe
tively.
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supergravity multiplet written as BRST transformations arese am = �n�ne am + (�m�n)e an � 2i��� �m (
aC)�� +C ab e bm + CW e ams� �m = �n�n� �m + (�m�n)� �n +rm�� � 14 ��e amS(
a)�� + 12 CW� �m+i��(
m) �� � 14 Cab� �m "ab(
�) ��sS = �n�nS � CWS +W�4�
(
�C)
�"nmrn� �m + i �
(
mC)
�� �m S; (3.2.2)where C�� is the 
harge 
onjugation matrix satisfying �(
a)T = C�1(
a)C.
� is de�ned through 
a
b = �ab1l + "ab
� and "01 = "10 = 1. rm denotesthe Lorentz 
ovariant derivativerm = �m � 12 ! abm labin terms of the Lorentz generator lab and the spin 
onne
tion! abm = EanEbk(![mn℄k � ![nk℄m + ![km℄n)![mn℄k = ekd�[ne dm℄ � i�n
k�m; E ma e bm = Æ ba : (3.2.3)The BRST transformations of the s
alar multiplets readsXM = �m�mXM + �� M�s M� = �m�m M� � i��(
mC)��(�mXM � � 
m M
 ) + ��C��FM+14 Cab"ab(
�) ��  M� � 12 CW M�sFM = �m�mFM + ��(
m) �� frm M� + i� 
m (
nC)
�(�nXM � � Æn  MÆ )�� 
mC
�FMg �CWFM : (3.2.4)The BRST transformations of the U(1) multiplets ares�i = �n�n�i + ��(
�) �� �i� �CW�is�i� = �n�n�i� + ���i(
�C)��"mn(�mAin + �m
n�i � i�n
�C�m�i)�i(
�
mC)��(�m�i � �m
��i) + i(
�C)��S�i�+14 Cab"ab(
�) 
� �i
 + 2��(
�C)���i � 32 CW�i�sAim = �n�nAim + (�m�n)Ain + �m
i�2i ��� �m (
�C)���i � ��(
m) �� �i�: (3.2.5)These transformations were obtained by analyzing the 2d supergravity alge-bra in presen
e of the s
alar matter and gauge multiplets [91℄ analogouslyto the superspa
e analysis of [92℄. A short summary of the analysis is givenin appendix B. In the supergravity se
tor we used the 
onstraintsT��a = 2i(
aC)��; Tab
 = T��
 = 0 (3.2.6)
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and in the U(1) se
tor F i�� = 2i(
�C)���i: (3.2.7)All 
onstraints are 
onventional, i.e., 
an be a
hieved by rede�nitions of the
onne
tions. The transformations of the ghosts are su
h that the BRSTdi�erential s squares to zero,s�n = �m�m�n + i����(
nC)��s�� = �n�n�� � i�
��(
mC)�
� �m � 14 Cab��"ab(
�) �� + 12 CW ��sCab = �m�mCab � i4 ����S(
�C)��"ab � i����(
mC)��! abm�2����(
�C)��"absCW = �n�nCW + 2����s�� = �n�n�� � 14 Cab��"ab(
�) �� + i��(
n) �� �12 �nCW � �
(�nC)
��12 CW �� + ��WsW = �n�nW � 4i��(
mC)�� �rm�� � 14 � �mW � i2 � 
m (
n) �
 (�nCW )��4��� �m (
m
nC)���
(�nC)
 � CWWs
i = �m�m
i + i����(
�C)���i � i����(
mC)��Aim: (3.2.8)We remark that the use of Weyl, super-Weyl and Lorentz transformations, aswell as the shift symmetry asso
iated with the auxiliary �eld S are artefa
tsof the formulation and disappear in an equivalent formulation based ona Beltrami parametrization of the world-sheet zweibein (see se
tions 3.3and 4). Of 
ourse we 
ould have used the Beltrami approa
h from thevery beginning, but we de
ided to start from the more familiar formulationpresented above.
3.3 Super
onformal tensor 
al
ulusThe �rst part of our 
ohomologi
al analysis 
onsists in the 
onstru
tionof a suitable \basis" for the �elds and their derivatives (more pre
isely:suitable 
oordinates of the jet spa
e asso
iated with the �elds). The goal isto �nd a basis fu`; v`; wIg with as many s-doublets (u`; v`) as possible and
omplementary (lo
al) variables wI su
h that swI 
an be expressed solelyin terms of the w's, i.e., su` = v`; swI = rI(w): (3.3.9)On general grounds, su
h a basis is related to a tensor 
al
ulus [82, 93, 94℄.In the present 
ase the tensor 
al
ulus is a super
onformal one, generalizingthe 
onformal tensor 
al
ulus in bosoni
 string models found in [40℄ (seealso [39℄). The w's with ghost number 1 are spe
i�
 ghost variables 
orre-sponding to the super
onformal algebra, the w's with ghost number 0 are\super
onformal tensor �elds" on whi
h this algebra is represented.
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3.3.1 Super-Beltrami parametrizationThe super
onformal stru
ture of the models under 
onsideration is relatedto the supersymmetri
 generalization of the so-
alled Beltrami parametriza-tion [95, 96℄. Beltrami di�erentials parametrize 
onformal 
lasses of 2d met-ri
s, and this makes them natural quantities to be used as basi
 variables inthe present 
ontext. Sin
e Beltrami di�erentials 
hange only under world-sheet reparametrizations but not under Weyl or Lorentz transformations,their use leads to a simpler formulation of the models under study (
f. re-marks at the end of se
tion 3.2, and in se
tion 4). In the following we 
hoosea Eu
lidean notation and parametrize the worldsheet with independent vari-ables z and �z rather than with light 
one 
oordinates, be
ause this simpli�esthe notation and avoids some fa
tors of i.3As it is not hard to guess the supersymmetri
 generalization of the Bel-trami parametrization involves in addition to the bosoni
 Beltrami di�er-ential � a fermioni
 partner �, the Beltramino. The starting point is theparametrization of the vielbeinez = (dz + d�z� z�z )e zze�z = (d�z + dz� �zz )e �z�z : (3.3.10)The 
oeÆ
ients � z�z and � �zz are the Beltrami di�erentials� := � z�z = e z�ze zz ;�� := � �zz = e �zze �z�z ; (3.3.11)whereas the fa
tors e zz and e �z�z are referred to as 
onformal fa
tors. Oneshould note that the Beltrami di�erentials transform under di�eomorphismsbut do not 
hange under Weyl or Lorentz transformations. The latter \stru
-ture group transformations" are 
arried solely by the 
onformal fa
tors whi
hform s-doublets (u`; v`) with ghost variables substituting (in the new basis)for the Lorentz ghost and the Weyl ghost.The fermioni
 superpartners of the Beltrami di�erentials are suitable
ombinations of the gravitino �elds� := q 8e zz �� 2�z � �� 2z ��� := q 8e �z�z �� 1z � ��� 1�z � : (3.3.12)The Beltraminos are also invariant under stru
ture group transformations.Espe
ially they do not 
hange under super-Weyl transformations. Again one3Note that reality 
onditions of spinors are subtle after Wi
k rotation to Eu
lideanspa
e: In our left-right symmetri
 
ase of (1,1) supersymmetry we 
ould de�ne ( )� =� and work with manifestly real a
tions, but obviously this would not be possible forheteroti
 theories. This is, however, irrelevant in our algebrai
 
ontext.
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an �nd 
omplementary 
ombinations of the gravitinos forming s-doubletswith ghost variables that substitute for the super-Weyl ghosts. The fa
tthat Weyl, Lorentz and super-Weyl ghosts (and not just their derivatives)o

ur in s-doublets as we just des
ribed re
e
ts that Weyl, Lorentz andsuper-Weyl invarian
e are artefa
ts of the formulation.The Beltrami parametrization involves also a rede�nition of the di�eo-morphism ghosts, sometimes 
alled the Beltrami ghost �elds. This againhas to be supplemented with a rede�nition of the supersymmetry ghosts.The new ghost variables, whi
h repla
e the di�eomorphism ghosts �z and��z and the supersymmetry ghosts �1 and �2 are� := (�z + ���z)�� := (��z + ���z)" := 12 (�̂2 + ��z�); �̂2 :=q 8e zz �2�" := 12 (�̂1 + �z ��); �̂1 :=q 8e �z�z �1 (3.3.13)In terms of the new ghost variables the BRST transformations of \right-moving" and \left-moving" quantities de
ouple from ea
h other [95℄,s� = ��� � �� + (��)� � + �"s� = �2�� � 2�� + (��)� "+ ���+ 12 ���s� = ��� � ""s" = ��"� 12 "��; (3.3.14)with analogous transformations for the right movers.3.3.2 Super
onformal ghost variables and algebraWe have now paved the road for the 
onstru
tion of �eld variables fu`; v`; wIgful�lling (3.3.9). In fa
t we have already identi�ed some s-doublets (u`; v`),namely the u's given by the 
onformal fa
tors and their fermioni
 
ounter-parts and the 
orresponding v's given by ghost �elds substituting in the newbasis for the Weyl, Lorentz and super-Weyl ghosts. Furthermore, the �eldS obviously forms an s-doublet with a ghost �eld substituting for W . Thederivatives of these u's and v's form s-doublets as well. The Beltrami dif-ferentials �; �� and their derivatives are u's too. From (3.3.14) one observesthat s� and s�� 
ontain derivatives ��� and ��� and of the reparametrizationghosts, respe
tively. Taking derivatives of these transformations, one seesthat the m-th derivatives of the Beltrami di�erentials pair o� with ghostvariables that substitute in the new basis for all (m + 1)-th derivatives ofthe reparametrization ghosts ex
ept for �m+1� and ��m+1��. Analogously,the s-transformations of the Beltraminos 
ontain derivatives ��" and ��" ofthe supersymmetry ghosts. Thus the m-th derivatives of � and �� pair o�
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with ghost variables substituting for all (m + 1)-th derivatives of � and ��ex
ept for �m+1" and ��m+1�". We introdu
e the following notation for thoseghost variables whi
h do not sit in s-doublets:fCNg = f�p; ��p; "p+12 ; �"p+12 : p = �1; 0; 1; : : : g; (3.3.15)with �p = 1(p+ 1)! �p+1���p = 1(p+ 1)! ��p+1��"p+12 = 1(p+ 1)! �p+1"�"p+12 = 1(p+ 1)! ��p+1�": (3.3.16)These ghost variables ful�ll the requirement imposed in (3.3.9) on w's. In-deed, using (3.3.14), one easily 
omputes their s-transformations:s�p = �12�q�rf prq + 12"a"bf pab= 12�q�r(r � q)Æpr+q � 12"a"b2Æpa+b (3.3.17)s"a = �12�p"
f a
p + 12"
�pf ap
= �"
�p �p2 � 
� Æap+
: (3.3.18)The f 's whi
h o

ur in these transformations are the stru
ture 
onstants ofa graded 
ommutator algebra of operators �N to be represented on tensor�elds 
onstru
ted of the 
omponent �elds of the matter and U(1) multiplets,f�Ng = fLp; �Lp; Gp+12 ; �Gp+12 : p = �1; 0; 1; : : : g: (3.3.19)This graded 
ommutator algebra is nothing but the NS super
onformal al-gebra[Lp; Lq℄ = (p� q)Lp+q; fGa; Gbg = 2La+b; [Lp; Ga℄ = �p2 � a�Gp+a;(3.3.20)with the analogous formulas for the �L's and �G's and the usual property thatthe holomorphi
 and antiholomorphi
 generators (anti-)
ommute,[Lp; �Lq℄ = 0; fGa; �Gbg = 0;[Lp; �Ga℄ = 0; [�Lp; Ga℄ = 0:The representation of this algebra on super
onformal tensor �elds, and theexpli
it 
onstru
tion of these tensor �elds, will be given in the followingsubse
tion.



Chapter 3. Chara
terization of the models 32
3.3.3 Super
onformal tensor �eldsWe shall now summarize the representation of the algebra (3.3.20) on super-
onformal tensor �elds 
onstru
ted of the �elds and their derivatives (therepresentation on anti�elds is dis
ussed in se
tion 5) su
h that the BRSTtransformation of these tensor �elds reads4sT = Xp��1��pLp + ��p �Lp + "p+12 Gp+12 + �"p+12 �Gp+12 � T : (3.3.21)
The super
onformal tensor �elds 
orresponding to the �elds XM ,  M� , FMand their derivatives are denoted by XMm;n,  Mm;n, � Mm;n, FMm;n , where thesubs
ripts take the values (m;n 2 f0; 1; 2; : : : g) and denote the number ofoperations L�1 and �L�1 a
ting on XM0;0,  M0;0, � M0;0, FM0;0, respe
tively. L�1and �L�1 will be identi�ed with 
ovariant derivatives (see below),XM0;0 � XM ;  M0;0 � (e zz =2)12  M2 ; � M0;0 � (e �z�z =2)12  M1 ;FM0;0 � 12 (e zz )12 (e �z�z )12 FM ;XMm;n = (L�1)m(�L�1)nXM0;0 (m;n 2 f0; 1; 2; : : : g) et
.The representation on these tensor �elds 
an be indu
tively dedu
ed fromthe algebra (3.3.20) using that all operations Lm, �Lm, Ga, �Ga vanish onXM0;0 ex
ept for L�1, �L�1, G�1=2 and �G�1=2, with G�1=2XM0;0 =  M0;0 and�G�1=2XM0;0 = � M0;0 (as 
an be read o� from sXM ). This gives on XMm;n:

LpXMm;n = ( m!(m�p�1)!XMm�p;n for p < m0 for p � m�LqXMm;n = ( n!(n�q�1)!XMm;n�q for q < n0 for q � nGp+12 XMm;n = ( m!(m�p�1)! Mm�p�1;n for p < m0 for p � m�Gq+12 XMm;n = ( n!(n�q�1)! � Mm;n�q�1 for q < n0 for q � nThe a
tion on the other �elds is then easily obtained using[Lp; G�12 ℄ = 12 (p+ 1)Gp�12 ; fGp+12 ; G�12 g = 2Lp4T stands for any of these super
onformal tensor �elds; �'s and "'s are the ghostvariables (3.3.16).
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and the analogous formulas for �L and �G in (3.3.20). One obtains

Lp Mm;n = ( m!(m�p)! �m� p+ 12 (p+ 1)� Mm�p;n for p � m0 for p > mGp+12  Mm;n = ( m!(m�p�1)!XMm�p;n for p < m0 for p � m�Gq+12  Mm;n = (� n!(n�q�1)!FMm;n�q�1 for q < n0 for q � n�Lq Mm;n = ( n!(n�q�1)! Mm;n�q for q < n0 for q � nLpFMm;n = ( m!(m�p)! �m� p+ 12 (p+ 1)�FMm�p;n for p � m0 for p > mGp+12 FMm;n = ( m!(m�p�1)! � Mm�p;n for p < m0 for p � mand analogous formulas for L's, G's, �L's and �G's a
ting on � Mm;n, and �L'sand �G's a
ting on FMm;n.The relation to the �elds and their derivatives is established by identi-fying the operations L�1 and �L�1 with 
ovariant derivatives D and �D alongthe lines of [82℄,L�1 � D = 11� ���h� � ���� �Xp�0( �Mp �Lp � ��MpLp)
�Xa ( �Aa �Ga � ��AaGa)i�L�1 � �D = 11� ���h�� � �� �Xp�0(MpLp � � �Mp �Lp)
�Xa (AaGa � � �Aa �Ga)i (3.3.22)

where Mp = 1(p+1)! �p+1�; �Mp = 1(p+1)! ��p+1��;Ap+12 = 1(p+1)!2 �p+1�; �Ap+12 = 1(p+1)!2 ��p+1��:One readily 
he
ks that these formulas result in lo
al expressions for thesuper
onformal tensor �elds and their s-transformations. Introdu
ing thefollowing notation for the lowest weight super
onformal matter �eldsXM � XM0;0 ;  M �  M0;0 ; � M � � M0;0 ; F̂M � FM0;0 ; (3.3.23)
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one gets in parti
ular the following super
ovariant derivativesDXM = 11� ���h(� � ����)XM � 12 �� � M + 12 ��� MiD M = 11� ���h(� � ����) M + 12 ��(��) M + 12 ��F̂M + 12 ���DXMi�D M = 11� ���h(�� � ��) M � 12 (��) M � 12 �DXM � 12 ���F̂Mi(3.3.24)and analogous expressions for �DXM , �D � M and D � M . We do not spell outhigher order 
ovariant derivatives expli
itly be
ause it turns out that they donot 
ontribute nontrivially to the 
ohomology. The BRST transformationsof the super
onformal tensor �elds are summarized in appendix C.1.The 
onstru
tion of the super
onformal tensor �elds arising from thegauge multiplets is similar, on
e one has identi�ed the suitable ghost vari-ables and the lowest order tensor �elds. The gauge �elds Aim and theirsymmetrized derivatives �(m1 : : : �mkAimk+1) (k = 1; 2; : : : ) form s-doubletswith ghost variables that substitute for all the derivatives of the ghosts 
i.Therefore one expe
ts that only the undi�erentiated ghosts 
i give rise tow-variables. Promising 
andidates for these w-variables are ghost variablesCi of the same form as in the purely bosoni
 
ase [39℄,Ci = 
i + �mAim : (3.3.25)The s-transformations of the gauge �elds, written in terms of Ci, and of theCi themselves readsAim = �n(�nAim � �mAin) + �mCi � ��� �mF i�� � ��e amF ia�sCi = �m�n(�mAin � �nAim) + 12 ����F i��+�m��� �mF i�� + �m��F im� (3.3.26)where we used notation of appendix B. Sin
e we expe
t Ci to 
ount amongthe w's, its s-transformation should involve only w's again, see (3.3.9). Thissuggests a strategy to determine the super
onformal tensor �elds 
orre-sponding to the undi�erentiated �elds �i, �i� and to the �eld strengthsof Aim: one tries to rewrite sCi in (3.3.26) in terms of the ghost variables(3.3.16) and to read o� from the result the sought super
onformal tensor�elds. This strategy turns out to be su

essful; one obtainssCi = ���F i0;0 + ��"�i0;0 + ��"��i0;0 + "�"�i0;0
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where �i0;0 = pe zz e �z�z �i�i0;0 = q e �z�z2 ��e zz �i2 + �2z�i���i0;0 = q e zz2 �e �z�z �i1 + �1�z�i�F i0;0 = 11� ����12 "mn(�mAin � �nAim)+12 ����i � 12 �����i � 14 ����i�: (3.3.27)An expli
it 
omputation shows that the s-transformations of these quantitiesare indeed of the desired form (3.3.21), with�i0;0 = G�12 �i0;0; ��i = �G�12 �i0;0; F i0;0 = �G�12 G�12 �i0;0: (3.3.28)It is now straightforward to 
onstru
t, along the previous lines, variables�im;n, �im;n, ��im;n, F im;n on whi
h the algebra (3.3.20) is represented and(3.3.21) and (3.3.22) hold. We do not spell out these tensor �elds (with m orn di�erent from 0) expli
itly be
ause it turns out that they do not 
ontributenontrivially to the 
ohomology. The resulting BRST transformations aresummarized in appendix C.1 too.We introdu
e the following notation for the lowest order (i.e. lowestweight, see below) super
onformal tensor �elds arising from the gauge mul-tiplet: �̂i � �i0;0 ; �i � �i0;0 ; ��i � ��i0;0 ; F i � F i0;0 : (3.3.29)Again tensor �elds of higher order will be denoted by D�̂i, �D�̂i, D �D�̂i et
.but as already stated above their expli
it form will not be needed.
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A
tion
We shall now determine the most general a
tion for the �eld 
ontent andgauge transformations spe
i�ed in se
tion 3.2. The a
tion has vanishingghost number and is independent of anti�elds. Furthermore the requirementthat the a
tion be gauge invariant translates into BRST invarian
e up tosurfa
e terms. The integrands of the world-sheet a
tions we are looking forare thus the anti�eld independent solutions !0;2 of equation (3.1.1). Theyare related through the des
ent equations to the solutions ofs! = 0; ! 6= s!̂;gh (!) = 2; agh (!) = agh (!̂) = 0 (4.0.1)where gh is the ghost number and agh is the anti�eld number (=\antighostnumber", see se
tion 5 for the de�nition). In the previous se
tion we have
onstru
ted a basis for the �elds and their derivatives satisfying the require-ments of (3.3.9). By standard arguments this implies that ! and !̂ 
anbe assumed to depend only on the wI , i.e., on super
onformal tensor andghost �elds introdu
ed in se
tion 3.3.1 Furthermore we 
an restri
t the in-vestigation to fun
tions ! and !̂ with vanishing \
onformal weights" by anargument used already in [39, 40℄: we extend the de�nition of L0 and �L0 toall w's (in
luding the ghost variables) byns ; ��(��) owI = L0wI ; ns ; ��(����) owI = �L0wI : (4.0.2)
Hen
e, in the spa
e of lo
al fun
tions of the w's the derivatives with respe
tto �� and ���� are 
ontra
ting homotopies for L0 and �L0, respe
tively, andthe 
ohomology 
an be nontrivial only in the interse
tion of the kernels ofL0 and �L0.1The u's and v's 
ontribute only \topologi
ally" via the de Rham 
ohomology of thezweibein manifold to the s-
ohomology, 
f. theorem 5.1 of [79℄. In parti
ular they do not
ontribute nontrivially to the solutions of (4.0.1).

36
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All w's are eigenfun
tions of L0 and �L0 with the eigenvalues being their\
onformal weights". The only wI with negative 
onformal weights are theundi�erentiated di�eomorphism ghosts �; �� and the undi�erentiated super-symmetry ghosts "; �"; their 
onformal weights are (�1; 0), (0;�1), (�1=2; 0)and (0;�1=2), respe
tively [here (a; b) are the eigenvalues of (L0; �L0)℄. Theonly super
onformal tensor �elds with vanishing 
onformal weights are theundi�erentiated XM . These properties simplify the analysis enormously.Our strategy for �nding the solutions to (4.0.1) will be based on anexpansion in supersymmetry ghosts

! = �kXk=0!k ; (N" +N�")!k = k!ks = s2 + s1 + s0 ; [N" +N�"; sk℄ = ksk; (4.0.3)where we have introdu
ed the 
ounting operator N" for the susy ghost " andall its derivatives N" =Xn�0(�n") ��(�n") (4.0.4)
and analogously N�" 
ounts �" and derivatives thereof.2 One observes that s2is the simplest pie
e in the above de
omposition of s. It a
ts nontriviallyonly on the reparametrization ghosts �, ��, derivatives thereof and on Ci,s2� = �"" ; s2�� = ��"�" ; s2Ci = "�"�̂i :We shall base the investigation on the 
ohomology of s2. The 
o
y
le 
on-dition s! = 0 de
omposes intos2!�k = 0; s1!�k + s2!�k�1 = 0; : : : (4.0.5)Due to the requirement of ghost number 2 and anti�eld number 0 in (4.0.1),one is left with 0 � �k � 2. The three possible values for �k are now analysed
ase by 
ase.�k=0: The general form of !�0 a

ording to the 
ondition of vanishing 
onfor-mal weight is!�0 = ���A(1;1) + ���A(1;0) + �� ����A(0;1) + � ����B(1;0) + ����B(0;1)+��2�A(0;0) + �� ��2�� �A(0;0) + �� ����B(0;0) + CiCjDij(0;0)+�CiDi(1;0) + ��CiDi(0;1) + ��CiDi(0;0) + ����Ci �Di(0;0);2We note that the expansion (4.0.3) holds be
ause we are studying the anti�eld in-dependent 
ohomology here. The analogous expansion in presen
e of anti�elds is moreinvolved; in fa
t, it 
an even involve in�nitely many terms. Therefore the strategy appliedhere to determine the a
tion is not pra
ti
able in the same way for analysing the full(anti�eld dependent) 
ohomology later.
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where the A's, B's and D's do not depend on the ghosts and the subs
ripts(m;n) indi
ate their 
onformal weights. It is easy to verify expli
itly thats2!�0 = 0 , !�0 = 0: (4.0.6)�k=1. The general form of !�1 is!�1 = �"A(3=2;0) + ���"A(0;3=2) + ��"A(1;1=2) + ��"A(1=2;1)+��"A(1=2;0) + �� ���"A(0;1=2) + "��B(1=2;0) + �"����B(0;1=2)+"����C(1=2;0) + �"��C(0;1=2) + "CiDi(1=2;0) + �"CiDi(0;1=2);where again the A's, B's and D's do not depend on the ghosts and their
onformal weights are indi
ated in bra
kets. A straightforward 
omputationshows that s2!�1 = 0 imposesA(3=2;0) = A(0;3=2) = C(1=2;0) = C(0;1=2) = 0A(1;1=2) = �̂iDi(1=2;0) ; A(1=2;1) = �̂iDi(0;1=2)A(1=2;0) = �2B(1=2;0) ; A(0;1=2) = �2B(0;1=2)The 
onformal weights (1=2; 0) and (0; 1=2) implyDi(1=2;0) =  MDMi(X); Di(0;1=2) = � M �DMi(X)B(1=2;0) =  MBM (X); B(0;1=2) = � M �BM (X)where we indi
ated that the remaining B's and D's are arbitrary fun
tionsof the X's. Hen
e, we get!�1 = (��"�̂i + "Ci) MDMi(X) + (��"�̂i + �"Ci) � M �DMi(X)+("�� � 2��") MBM (X) + (�"���� � 2�� ���") � M �BM (X):The se
ond equation (4.0.5) requires that s1!�1 be s2-exa
t. This imposesBM = �BM = 0; DMi = �DMi ; �N �DiM = �MDiN, BM = �BM = 0; DMi = �DMi = �MDi(X)where we have introdu
ed the notation�M = ��XM :Furthermore, the se
ond equation (4.0.5) uniquely determines the fun
tion!0, whi
h 
orresponds to !�1 [the uniqueness follows from (4.0.6)℄. It turnsout that the other equations (4.0.5) do not impose further 
onditions in this
ase, but are automati
ally ful�lled. Altogether we �nd!�1 = [(��"�̂i + "Ci) M + (��"�̂i + �"Ci) � M ℄�MDi(X) (4.0.7)!0 = ����[ M ��i � � M�i + F̂M �̂i +  M � N �̂i�N ℄�MDi(X)+Ci(�DXM + �� �DXM )�MDi(X) (4.0.8)
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Using the freedom to add a 
oboundary we obtain by adding s[CiDi(X)℄ to!�1 + !0 the equivalent solution���F iDi(X)� ���( M ��i � � M�i + F̂M �̂i +  M � N �̂i�N )�MDi(X)+��"(�i + �̂i M�M)Di(X) + ��"(��i + �̂i � M�M )Di(X)+"�"�̂iDi(X): (4.0.9)�k=2. The general form of !�2 is given by!�2 = ""A(1;0) + �"�"A(0;1) + "�"A(1=2;1=2) + "�"B(X) + �"���" �B(X);where due to the indi
ated 
onformal weights one hasA(1;0) = DXMAM (X) +  M NAMN (X)A(0;1) = �DXM �AM (X) + � M � N �AMN (X)A(1=2;1=2) = F̂MHM (X) + �̂iHi(X) +  M � NHMN (X)We 
an simplify !�2 using the freedom to subtra
t s-exa
t pie
es from ans-
o
y
le. In parti
ular, we 
an therefore negle
t pie
es in !�2 whi
h are ofthe form s1!̂1 + s2!̂0 (i.e. we 
onsider !0 = ! � s(!̂1 + !̂0) where ! is ans-
o
y
le arising from !�2). Choosing!̂1 = 12 (�" � M � " M)HM (X)we get s1!̂1 = "�"F̂MHM (X) + 12 (�"�" �DXM � ""DXM )HM (X)�12 (�" � M � " M)(�" � N + " N )�NHM (X):This shows that by subtra
ting s1!̂1 from !�2, we 
an remove the pie
eF̂MHM (X) from A(1=2;1=2), thereby rede�ning A(1;0), A(0;1) and HMN (X).Furthermore, we have""A(1;0) + �"�"A(0;1) + "�"�̂iHi(X) + "�"B(X) + �"���" �B(X) = s2!̂0;!̂0 = ��A(1;0) � ��A(0;1) + CiHi(X)� 12 ��B(X)� 12 ���� �B(X):Hen
e, we 
an also remove the pie
es 
ontaining A(1;0), A(0;1), Hi(X), B(X)and �B(X) from !�2. Without loss of generality, we 
an thus restri
t theinvestigation of the 
ase �k = 2 to!�2 = "�" M � NHMN (X): (4.0.10)Obviously !�2 satis�es the �rst eqation (4.0.5), sin
e it does not involve �,�� or Ci. One now has to analyze the remaining equations (4.0.5). It is
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straightforward to 
ompute s1!�2 and to verify that the se
ond equation(4.0.5) is solved by!1 = ��"[DXM � N �  M F̂N +  M � N K�K ℄HMN (X)���"[ M �DXN + F̂M � N �  M � N � K�K ℄HMN (X): (4.0.11)The third eq. (4.0.5) requires that s0!�2 + s1!1 be s2-exa
t. This turns outto be the 
ase (for arbitrary HMN ) and determines !0. One �nds!0 = ���
;
 = (DXM �DXN + F̂M F̂N +D � M � N �  M �D N)HMN (X)�(DXM � N � K + �DXN M K)�KHMN (X)+(F̂M K � N � F̂K M � N + F̂N M � K)�KHMN (X)+ M K � N � L�K�LHMN (X): (4.0.12)The remaining two equations (4.0.5) are also satis�ed and the fun
tionsHMN (X) are 
ompletely arbitrary. The symmetrized part H(MN)(X) andthe antisymmetrized part H[MN ℄(X) give rise to the \target spa
e metri
"GMN and the \Kalb-Ramond �eld" BMN , respe
tively. Despite of our stringinspired terminology we stress that there are no 
onditions imposed on GMNand BMN apart from their symmetry properties. In parti
ular the \metri
"GMN need not be invertible (in se
tion 7.1 we shall impose that a submatrixof GMN be invertible). BMN is determined only up toH[MN ℄(X)! H[MN ℄(X) + �[MBN ℄(X)where BM (X) are arbitrary fun
tions. This originates from the fa
t thatthe s-
o
y
le ! = !�2 + !1 + !0 remains form invariant under! ! ! + s[(" M + �" � M + �DXM + �� �DXM )BM (X) + : : : ℄where the dots stand for terms at least bilinear in the fermions. Changing !by su
h s-exa
t pie
es results in the above 
hange of H[MN ℄(X) and modi�esthe Lagrangian by a total derivative.
4.1 ResultWe 
on
lude that up to rede�nitions by 
oboundary terms, the general solu-tion of (4.0.1) is given by the sum of the fun
tions (4.0.9){(4.0.12). The so-lution involves arbitrary fun
tions Di(X) and HMN (X), whi
h parametrizethe various possible a
tions. The antisymmetri
 part of HMN (X) is de-termined only up to rede�nitions of the form HMN (X) ! HMN (X) +�[MBN ℄(X), whi
h modify the Lagrangian only by total derivatives. The
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fun
tions Di(X) are determined up to arbitrary 
onstants, sin
e only deriva-tives thereof enter in the equivalent solution (4.0.7) and (4.0.8).3 Owing togeneral properties of des
ent equations in di�eomorphism invariant theories[79{82℄, the integrand of the a
tion is obtained from the solution of (4.0.1)simply by substituting world-sheet di�erentials for di�eomorphism ghosts�m. The resulting Lagrangian, written in terms of the Beltrami �elds, is ageneralized version of the one found in [95℄:L = LMatter + LU1LMatter = 11���� �(� � ����)XM (�� � ��)XN (GMN +BMN )� �(� � ����)XM� N + (�� � ��)XM �� � N�GMN�12 ��� M � NGMN�� (1� ���)F̂M F̂NGMN� � � N (� � ����) � M +  N(�� � ��) M�GMN� � M � N(� � ����)XK(�KNM � 12 HKNM )� M N(�� � ��)XK(�KNM + 12 HKNM )+16 (�� � M � N � K � � M N K)HKMN+(1� ���)F̂M K � N (2�KNM �HKNM )+12 (1� ���) M K � N � LRKMLNLU1 = F iDi � (1� ���)[ M(��i � 12 11���� ����̂i)� � M(�i � 12 11���� ����̂i)+F̂M �̂i +  M � N�N ℄�MDi (4.1.13)where we have introdu
ed the following notationsGMN := H(MN)(X) BMN := H[MN ℄(X)Di := Di(X) F i := "mn(�mAin � �nAim)
KNM := �KHMN (X)� �MHKN (X) + �NHKM (X)= 2�KNM �HKNMRKLMN := �M�[KHL℄N (X)� �N�[KHL℄M (X)The \target spa
e 
urvature" RKLMN we have introdu
ed is of 
ourse notthe Riemannian one. The Riemannian 
urvature appears after eliminatingthe auxiliary �elds from the a
tion.Of 
ourse, the a
tion 
an be also written in terms of the original �eldsintrodu
ed in se
tion 3.2. One obtains from the matter part the well known3A 
onstant in Di yields a topologi
al term in the a
tion proportional to the Chern
lass of the gauge bundle.
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superstring a
tion in
luding the B-�eld ba
kground [37℄L=e = 12�mXM�nXN (�hmnGMN + "mnBMN ) + i2 M
m�m NGMN+12FMFNGMN + �k
n
k( N�nXM � 14C�n M N)GMN+(12FM K N � i N
m M�mXK)�NKM+14(FM K
� N � i N
m
� M�mXK)HNKM� i12�m
n
m M N
n
� KHMNK+ 116 M (1l + 
�) N K(1l + 
�) LRKMLN+"mnDi�mAin + i4 M N�i�N�MDi+12(i N
��i � iFN�i + �m
m N�i)�NDi: (4.1.14)Thus the 
ohomologi
al analysis shows that in the absen
e of gauge multi-plets the Lagrangian derived in [37℄ is in fa
t unique up to total derivativesand 
hoi
es of the ba
kground �elds. It should be kept in mind, however,that this uniqueness is tied to the gauge transformations spe
i�ed in se
-tion 3.2. It gets lost when one allows that the gauge transformations getdeformed. This deformation problem 
an be analysed by BRST 
ohomo-logi
al means too, but then the relevant 
ohomologi
al problem in
ludesthe anti�elds [85℄. The results whi
h we shall derive in the se
ond part ofthis work imply that the nontrivial deformations 
orrespond one-to-one tothe deformations of the bosoni
 string models. All deformations of bosoni
string models without world-sheet gauge �elds were derived in [41℄. We 
anthus 
on
lude that the nontrivial deformations of the standard superstringworld-sheet a
tion [37℄ and its gauge transformations are supersymmetri
generalizations of the a
tions and gauge transformations given in [41℄. Afull analysis (to all orders in the deformation parameters) of the deforma-tion problem for bosoni
 models with world-sheet gauge �elds is missing sofar, but a 
omplete 
lassi�
ation of the �rst order deformations was givenin [39℄. The latter results extend thus to the superstring models too.
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Anti�elds
To pro
eed with our analysis we have to bring the anti�elds into the game.A

ording to the prin
iples of the �eld-anti�eld formalism [25, 26, 28, 29℄to ea
h �eld a 
orresponding anti�eld ��A is introdu
ed with ghost numberand statisti
sgh (��A) = �gh (�A)� 1; �(��A) = �(�A) + 1 (mod 2);su
h that the statisti
s of the anti�elds is opposite to that of the 
orrespond-ing �elds. It is useful to introdu
e still another grading into the algebra of�elds and anti�elds, namely the already mentioned anti�eld (or antighost)number. On all the �elds (in
luding the ghosts) the anti�eld number is de-�ned to be zero, i.e., agh (�A) = 0. On the anti�elds the anti�eld numberequals minus the ghost number, agh (��A) = �gh (��A).The antibra
ket for two arbitrary fun
tions of the �elds �A and anti�elds��A is de�ned as (F;G) = Z �ÆRFÆ�A ÆLGÆ��A � ÆRFÆ��A ÆLGÆ�A� :Thus the antibra
ket has odd statisti
s and 
arries ghost number one. TheBRST transformations of the anti�elds are generated via the antibra
ket bythe proper solution S to the 
lassi
al master equation (S;S) = 0 a

ordingto s��A = (S;��A) = ÆRSÆ�A :Owing to the o�-shell 
losure of the gauge algebra S simply readsS = S0 � Z (s�A)��A;where S0 is the 
lassi
al a
tion and s�A are the BRST transformationsgiven in se
tion 3.2. It is useful to de
ompose the BRST di�erential a

ord-ing to the grading with respe
t to the anti�eld number s =Pk��1 sk with43
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agh (sk) = k (this de
omposition should not be 
onfused with the one in(4.0.3) even though we use the same notation). The de
omposition startswith the �eld theoreti
al Koszul-Tate di�erential Æ � s�1 and the di�er-ential 
 � s0. Contrary to the bosoni
 
ase the de
omposition does notterminate at this level. An additional part s1 raising the anti�eld numberby one unit shows up re
e
ting �eld dependent gauge transformations in the
ommutator of supersymmetry transformations. The Koszul-Tate di�eren-tial a
ts nontrivially only on the anti�elds and implements the equations ofmotion. Hen
e, the knowlegde of the 
lassi
al a
tion is ne
essary to deter-mine the Æ-transformations of the anti�elds. However, the a
tion of the partof the BRST di�erential leaving the anti�eld number un
hanged is deter-mined solely by the imposed gauge transformations. The 
-transformationsof the anti�elds 
orresponding to the matter �elds and the U(1) multipletread
X�M = �m(�mX�M)� i�m(��(
mC)�� ��M )�12 �m(��(
n
mC)����nF �M)
 ��M = �m(�m ��M ) + ��X�M � i�
(
mC)
���m ��M � i2 �m(��(
m) �� F �M )� i8 ��(
m
�) �� ! abm "abF �M � 12 ��� Æm(
m
nC)�Æ� �n F �M�14 Cab"ab(
�) ��  ��M + 12 CW ��M
F �M = �m(�mF �M )� ��C�� ��M � i2 ��(
mC)����mF �M + CWF �M
A�mi = �n(�nA�mi )� (�n�m)A�ni+i�n(��(
�C)��"nm���i )
��i = �m(�m��i )� ��(
�C)��"mn�n(
�C)�m���i�i�m(��(
�
mC)�����i � i2 ��(
�C)��S���i+2i����m(
�C)��A�mi � 2�
(
�C)
����i +CW��i
���i = �m(�m���i )� ��(
m) �� A�mi + ��(
�) �� ��i�i��(
�
mC)�
(�
�)���
i � i�Æ(
�C)Æ�"kl ��
k(
l) �
 ����i�14 Cab"ab(
�) �� ���i + 32 CW���i : (5.0.1)s1 a
ts nontrivially on A�mi , ��i and on the anti�elds for the gravitationalmultiplet ��m� , e�ma and S�. In parti
ular one �ndss1A�mi = i����(
mC)��
�i ; s1��i = �i����(
�C)��
�i ;where 
�i denote the anti�elds 
orresponding to U(1) ghosts.The expli
it form of the BRST transformations of the anti�elds for thegravitational multiplet and the ghosts will not be needed in the following.In se
tion 7.2 it is shown that they do not 
ontribute nontrivially to the
ohomology, at least at ghost number g < 4.
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5.1 Super
onformal anti�eldsWe shall now identify \super
onformal anti�elds" whose 
-transformationstake the same form as the s-transformations of super
onformal tensor �eldsin (3.3.21). The identi�
ation of super
onformal anti�elds is somewhat moreinvolved than the pro
edure for the �elds. From experien
e with the bosoni

ase one expe
ts reasonable 
andidates to arise from rede�nitions of the form��A ! 11���� ��A, a

ounting for the fa
t that anti�elds transform under dif-feomorphisms as tensor densities rather than tensors. In addition we have totake 
are of their \stru
ture group transformations", i.e., of their 
onformalweights, their Lorentz transformations and super-Weyl transformations1.Yet this does not suÆ
e to obtain 
-transformations of the desired form.It turns out that the anti�elds have to be mixed among themselves. These
onsiderations lead us to the following de�nitions of the lowest order matteranti�eldsF̂ �M � F �M(0;0) = 11� ���(e zz e �z�z )�12 F �M ̂�M �  �M(0;0) = ip2 11� ���(e zz )�12  �M 2 + ���1� ���F̂ �M�̂ �M � � �M(0;0) = ip2 11� ���(e �z�z )�12  �M 1 � ���1� ���F̂ �MX̂�M � X�M(0;0) = 11� ���X�M + ���1� ��� ̂�M + ���1� ��� �̂ �M + ���1� ���F̂ �M :Their 
-transformations are indeed of the desired form (3.3.21) and readexpli
itly
F̂ �M = (�D + �� �D)F̂ �M � " �̂ �M + �" ̂�M + 12 ((��) + (����))F̂ �M
 ̂�M = (�D + �� �D) ̂�M + "X̂�M + �" �DF̂ �M + (12 (��) + (����)) ̂�M + (���")F̂ �M
 �̂ �M = (�D + �� �D) �̂ �M + �"X̂�M � "DF̂ �M + ((��) + 12 (����)) �̂ �M � (�")F̂ �M
X̂�M = (�D + �� �D)X̂�M + "D ̂�M + �" �D �̂ �M + ((��) + (����))X̂�M+(�") ̂�M + (���") �̂ �M : (5.1.2)The expressions above are in fa
t already 
omplete, sin
e s1 does not a
tnontrivially on the matter anti�elds. Analogously to the situation of thesuper
onformal tensor �elds the algebra (3.3.20) is represented on these�elds and their derivatives, whi
h we denote byF �M(m;n) = (L�1)m(�L�1)nF̂ �M � (D)m( �D)nF̂ �M ;1Anti�elds transform \
ontragradiently" under stru
ture group transformations as
ompared to the 
orresponding �elds.
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et
, where the operators L�1 and �L�1 are identi�ed with super
ovariantderivatives as in (3.3.22). In parti
ular one �nds on the anti�elds withlowest 
onformal weights the following expressionsDF̂ �M = 11� ����(� � ���� � 12(����)+12 ��(��))F̂ �M � 12 ��� �̂ �M � 12 �� ̂�M��DF̂ �M = 11� ����(�� � �� � 12(��)+12�(����))F̂ �M + 12� �̂ �M + 12��� ̂�M�D ̂�M = 11� ����(� � ���� � (����) + 12 ��(��)) ̂�M�12 ���X̂�M � 12 �� �DF̂ �M � 12(�� ��)F̂ �M��D ̂�M = 11� ����(�� � �� � 12(��) + �(����)) ̂�M+12�X̂�M + 12 ���DF̂ �M + 12 ��(��)F̂ �M�and analogous formulas for D �̂ �M and �D �̂ �M . Again higher order anti�eldswill not be needed.The 
onstru
tion of the 
ovariant anti�elds for the gauge multiplet fol-lows the arguments given above, with the additional task to get rid of thesuper-Weyl transformations. We introdu
e the rede�nitions�̂�i � ��i(0;0) = � 11� ���(e �z�z )�12 (e zz )�1��2�̂��i � ���i(0;0) = 11� ���(e zz )�12 (e �z�z )�1��1�̂�i � ��i(0;0) = 1p2 11� ���(e zz )�12 (e �z�z )�12 ��i�12 11� ��� ��̂ 2z � ���̂ 2�z � �̂�i � 12 11� ��� ��̂ 1�z � ��̂ 1z � �̂��iÂ�i � A�i(0;0) = 1p2 11� ��� � �A�i + ��A�i �� 11� ��� ����̂�i + ����̂��i��̂A�i � �A�i(0;0) = 1p2 11� ��� �A�i + � �A�i �� 11� ��� ���̂��i + ����̂�i� ;where we have used the shorthand notation for the 
orre
tions involvinggravitions �̂ 1z =q 8e �z�z � 1z and �̂ 2z =q 8e zz � 2z with obvious expressions for
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the �z 
omponents. The 
-transformations then read
�̂�i = (�D + �� �D)�̂�i + 12 ������i + "�̂�i � �" �̂A�i
 �̂��i = (�D + �� �D)�̂��i + 12 �� �̂��i + �"�̂�i � "Â�i
�̂�i = (�D + �� �D)�̂�i + 12 (�� + ����)�̂�i + "D�̂�i + �" �D�̂��i
Â�i = (�D + �� �D)Â�i + ��Â�i + �"D�̂�i � "D�̂��i � �"�̂��i
 �̂A�i = (�D + �� �D) �̂A�i + ���� �̂A�i + " �D�̂��i � �" �D�̂�i � ���"�̂�i ; (5.1.3)and are indeed of the desired form respe
ting the requirement (3.3.9). Notethat the 
ombination of the gravitinos used in the rede�nition of �̂�i trans-forms into the super-Weyl ghost thereby removing the unwanted transfor-mation properties under the super-Weyl symmetry. Again higher order an-ti�elds will not be needed.The expli
it form of the super
onformal anti�elds given above has al-ready been used to derive the results for the rigid symmetries presentedin [36℄. A 
omplete list of the BRST transformations (in
luding the Koszul-Tate part and the s1-transformations) of the anti�elds needed for the 
oho-mologi
al analysis is given in appendix C.2. In the following se
tions (andalso in the appendi
es) we have dropped the hats on the super
onformalanti�elds, but it is 
lear from the 
ontext whi
h set of variables is meant.



Chapter 6
Rigid Symmetries anddynami
al 
onservation laws
We now turn to the 
omputation of the anti�eld dependent lo
al BRST
ohomology modulo the world-sheet exterior derivative d at negative ghostnumber Hg;2(sjd), g < 0. As already explained in the introdu
tion the
orresponding lo
al BRST 
ohomology groups Hg(s) are those with g < 2.They will give us the dynami
al 
onservation laws, rigid symmetries andnontrivial Noether 
urrents of the models under 
onsideration. This is astandard result of lo
al BRST 
ohomology in the anti�eld formalism [83℄(for a re
ent review see [30℄). It is not surprising that the lo
al BRST
ohomology en
odes also the 
onstants of motion, sin
e the Koszul-Tatedi�erential implements the equations of motion expli
itly.
6.1 The 
ohomologi
al analysis for g < 2The strategy to �nd solutions to s! = 0 is to expand the lo
al fun
tionswith ghost number g into parts with de�nite anti�eld number!g = !0g + !1g + : : : :Every su
h de
omposition ne
essarily starts with an anti�eld independentpart, sin
e there are no anti�elds with negative or vanishing anti�eld num-ber. Using the de
omposition of the BRST di�erential with respe
t to theanti�eld number introdu
ed in 
hapter 5s = Æ + 
 +�k>0skstarting with the Koszul-Tate di�erential Æ, agh (Æ) = �1 the 
o
y
le 
on-dition s!g de
omposes intoÆs0g = 0; 
!00 + Æ!10 = 0; : : : (6.1.1)

48
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This de
omposition is useful, sin
e every nontrivial solution of s! = 0 isuniquely (up to s-exa
t terms) 
hara
terized by its anti�eld independentpart !0g . This is a standard statement of homologi
al perturbation the-ory [28℄ but is intimately tied to the a
y
li
ity of the Koszul-Tate di�erential,Hk(Æ) = 0 for k > 0. This again is usually a 
onsequen
e of 
ertain regularity
onditions of the equations of motion. One might wonder, if these standardregularity 
onditions are ful�lled in the present 
ase and indeed they are not.But fortunately the anti�elds whi
h do not ful�ll the regularity 
onditionsdo not 
ontribute at the ghost numbers relevant for the 
omputations in thisse
tion. Thus the de
omposition still makes sense in our 
ontext. This willbe dis
ussed in more detail when the isomorphism between the 
ohomol-ogy groups of the bosoni
 models and their supersymmetri
 
ounterparts isestablished.In this se
tion we determine the solutions up to anti�eld number 1 by
onsidering the 
ondition 
!00 + Æ!10 = 0: (6.1.2)This will already give us the nontrivial solutions to the Noether 
urrentsand the rigid symmetries. We will expli
itly 
al
ulate the 
orresponding
ohomology groups Hg(s), g < 2, for a simpli�ed model, namely under theassumption that the fun
tions Di 
oin
ide with a subset of the 
oordinate�elds XM = fX�;Dig = fX�; yig. In fa
t, this is a rather mild assumption,sin
e it 
an be a
hieved by a target spa
e 
oordinate transformation. Wewill make this more expli
it in se
tion 6.2.6.1.1 Solution at g = 0The solutions of the BRST 
ohomology Hg;2(sjd) at negative ghost num-bers 
orrespond one-to-one to dynami
al lo
al 
onservation laws [83℄. Atghost number �2 these are the dynami
al 
onservation laws of se
ond orderrepresented by on-shell 
losed (n � k)-forms (n denotes the dimension ofthe manifold), whi
h are not weakly lo
ally exa
t.1 The 
orresponding lo
alBRST 
ohomology group is H0(s).As in the 
omputation of the a
tion the starting point will be the mostgeneral fun
tion with ghost number 0 at most linear in the anti�elds. Takinginto a

ount that the 
onformal weight has to be zero this reads!0 = !00 + !10!00 = f(XM)!10 = �(A�i f i + ���i Mf iM ) + ��( �A�i �f i + ��i � M �f iM ) + "���i gi + �"��i �gi:1Topologi
al 
onservation laws are lo
ally but not globally d-exa
t.
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Using the freedom of subtra
ting trivial parts from !0 arising from Æ!2�1and restri
ting to the 
ase des
ribed above, i.e.,��Di = 0; �jDi = Æjione �nds the most general solution to (6.1.2) as!̂0 = f(yi)� ��A�i � �� �A�i � "���i + �"��i � �if: (6.1.3)In fa
t to extra
t the integrand of the solution it is ne
essary to 
ompleteit to a full solution of the 
o
y
le 
ondition. This 
an be done easily byobserving that the form of the solution suggests a dependen
e on the spe
ial
ombination of �elds and anti�eldsŷi = yi � �A�i + �� �A�i + "���i � �"��i + ���C�;whi
h is a BRST singlet, sŷi = 0. Thus any fun
tion of ŷi is a solutionto the 
ohomology at ghost number zero and we 
on
lude that there existin�nitely many se
ond order 
onservation laws f(ŷi). Here one remark isin order. Expanding the fun
tion f(ŷi) in anti�eld number one gets up toanti�eld number one (6.1.3). At anti�eld number 2 one gets a term linearin the anti�eld for the U(1) ghost �if(yi)C� and a term quadrati
 in theanti�elds for the gauge �elds �i�jf(yi)A�j �A�i . In the bosoni
 
ase this isalready the whole story (see se
tion 7 in [39℄) and gives the desired inte-grand2, but in the supersymmetri
 
ase the 
ombinations "���i and �"��i havevanishing ghost number and 
onformal weight. Thus they 
an 
ontributeeven nonpolynomially, whi
h is indeed the 
ase for arbitrary fun
tions of ŷi.6.1.2 Solution at g = 1At ghost number 1 the 
ohomology group H1(s) yields nontrivial Noether
urrents and global (\rigid") symmetries. In parti
ular, we will obtain thetarget spa
e isometries of the models under 
onsideration.The most general lo
al fun
tion with ghost number 1 independent ofanti�elds and with vanishing 
onformal weight is!01 = �A0(1;0) + ��A0(0;1) + ��A0(0;0) + ���� �A0(0;0)+"A0(1=2;0) + �"A0(0;1=2) + CiB0i(0;0)where the A's and B's do not depend on ghosts and anti�elds and thesubs
ripts (m;n) indi
ate their 
onformal weights. The part of !1 withagh (!1) = 1 
an be expanded into powers of supersymmetry ghosts!11 = 0!11+ 1!11+ 2!112The integrand has also a physi
al interpretation. It generates rigid symmetries of ofthe proper solution to the master equation via the antibra
ket [84℄.
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with 0!11 = ���A1(1;1) + ���A1(1;0) + � ���� �A1(1;0) + ����A1(0;1) + �� ���� �A1(0;1)+�CiB1i(1;0) + ��CiB1i(0;1)1!11 = �"A1(3=2;0) + ���"A1(0;3=2) + ��"A1(1;1=2) + ��"A1(1=2;1)+��"A1(1=2;0) + �� ���"A1(0;1=2) + "��C1(1=2;0) + "���� �C1(1=2;0)+�"��C1(0;1=2) + �"���� �C1(0;1=2) + "CiB1i(1=2;0) + �"Ci �B1i(1=2;0)2!11 = ""C1(1;0) + �"�"C1(0;1) + "�"C1(1=2;1=2)where the A's, B's and C's have anti�eld number 1 as is indi
ated by the su-pers
ripts. These are all possible 
ontributions, sin
e there are no anti�eldswith vanishing 
onformal weight. Using the freedom to subtra
t s-exa
tpie
es s(� ~A1(1;0) + �� ~A1(0;1) + " ~A1(1=2;0) + �" ~A1(0;1=2))we remove the terms ""C1(1;0), �"�"C1(0;1) from 2!11 and the terms ��"A1(1=2;0),�� ���"A1(0;1=2) from 1!11.As in the 
omputation of the a
tion the analysis will be based on thede
omposition of the BRST di�erential into de�nite degree with respe
t tothe supersymmetry ghosts. We expand the part of s with anti�eld number0 in supersymmetry ghosts, i.e.
 = 
0 + 
1 + 
2:The simplest pie
e in this de
omposition 
2 a
ts nontrivially only on �, �� andCi. In the equations above we have used that 
2 !01+Æ 2!11 = 0 immediatelyimplies A0(0;0) = �A0(0;0) = 0;sin
e there are no anti�eld dependent terms 
ontaining "�" and �"���" that 
an
ompensate their 
ontributions. Furthermore, we 
an immediately 
on
ludethat there are no mixed terms "���� and �"�� as well as � ���� and ���� in 
!01.Thus we are left with the following anti�eld dependent terms0!11 = ���A1(1;1) + ���A1(1;0) + �� ���� �A1(0;1)+�CiB1i(1;0) + ��CiB1i(0;1)1!11 = �"A1(3=2;0) + ���"A1(0;3=2) + ��"A1(1;1=2) + ��"A1(1=2;1)+"��C1(1=2;0) + �"���� �C1(0;1=2) + "CiB1i(1=2;0) + �"Ci �B1i(1=2;0)2!11 = "�"C1(1=2;1=2)
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Next we 
onsider the equation
2( 0!01) + 
1( 1!01) + Æ ( 2!11) = 0Using for A0(1=2;0) and A0(0;1=2) the expressionsA0(1=2;0) =  MfM (X) A0(0;1=2) = � M �fM (X);we �nd A0(1;0) = DXMfM (X)�  M N�NfM (X)A0(0;1) = �DXM �fM (X)� � M � N�N �fM (X)Furthermore, usingC1(1=2;1=2) = (F �MKM + ��iKi + ��i MKiM + ���i � m �Kim)where we subtra
ted the trivial part ÆKT (���i��j K̂ij) thereby rede�ning KiMwe �nd that the following equations have to be ful�lledB0i � Æi;MKM = 0�fM � fM + 2GMNKN � ÆM;iKi = 0�M �fN � �NfM +
MNKKK � ÆN;iKiM � Æi;MÆN;n �Kin = 0: (6.1.4)In order to save some writing we have introdu
ed the Krone
ker symbolÆM;i, whi
h should not be 
onfused with the Koszul-Tate di�erential. It isuseful to introdu
e the following 
ombinations of the 
oeÆ
ient fun
tions fand �f f+M = fM + �fM f�M = fM � �fM :Then one obtains by symmetrization and antisymmetrization of the lastequation in (6.1.4) the following 
onditionsLKGMN = �Æi;(NKiM) � Æi;(MÆN);n �Kin + Æi;(N�M)KiLKBMN = �[Mf 0+N ℄ + �[MÆN ℄;iKi � Æi;[NKiM ℄ � Æi;[MÆN ℄;n �KinB0i = Æi;MKMwith LK denoting the usual Lie-derivative along KLKGMN = KK�KGMN + (�MKK)GKN + (�NKK)GMKand where f 0N is given by f 0+N = fN � 2BNKKK :
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From these results it follows thatA1(1;0) = 0 �A1(0;1) = 0C1(1=2;0) = 0 �C1(0;1=2) = 0:Next we turn to 
ontributions 
ontaining U(1) ghosts. Using the followingexpressions for the 
oeÆ
ient fun
tions di
tated by the 
onformal weight
ondition B1i(1=2;0) = ���jBji �B1i(0;1=2) = ��j �BjiB1i(1;0) = A�jbji + ���j MbjiM �B1i(0;1) = �A�j�bji + ��j � M�bjiMone �nds �MB0i = (ÆM;j)Bji �MB0i = �(ÆM;j) �Bji�MB0i = (ÆM;b)bji �MB0i = �(ÆM;b)�bji :This implies that B0i (X) is a fun
tion of the yi's only, B0i (X) = B0i (y).The other terms give only trivial 
ontributions. Thus one ends up with thefollowing terms in the anti�eld dependent part of the solution0!11 = ���A1(1;1) + �CiB1i(1;0) + ��CiB1i(0;1)1!11 = ��"A1(1;1=2) + ��"A1(1=2;1) + "CiB1i(1=2;0) + �"Ci �B1i(0;1=2;)2!11 = "�"C1(1=2;1=2)where B1a(1;0); B1a(0;1); B1a(1=2;0); B1a(0;1=2;); C1(1=2;1=2) are given in the equationsabove. To determine the 
omplete solution we make the general ansatz forthe anti�eld dependent part A1(1;1)A1(1;1) = X�MHM(0;0) +  �MHM(1=2;0) + � �MHM(0;1=2) + F �MHM(1=2;1=2) +��iGi(1=2;1=2) + ��iGi(1;1=2) + ���iGi(1=2;1) +A�iGi(0;1) + �A�iGi(1;0) +D��iGi(0;1=2) + �D���iGi(1=2;0) + �DA�iGi(0;0) +D �A�i �Gi(0;0) (6.1.5)where the 
oeÆ
ient fun
tions 
ontained in (6.1.5) are 
onstrained by their
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onformal weights to be of the formHM(0;0) = HMHM(1=2;0) =  NHNMHM(0;1=2) = � N �HNMHM(1=2;1=2) = FNhNN +  N � KhNKM + �ih MiGi(1=2;1=2) = FNGNi +  N � KGNKi + �jG ijGi(1;1=2) = D � MPMi +DXM � NPMNi +  M N � KPMNKi+FM NQMNi + �j MQMji + �jQ ijGi(1=2;1) = �D M �PMi + �DXM N �PMNi + � M � N K �PMNKi+FM � N �QMNi + �j � M �QMji + ��j �Q ijGi(0;1) = �DXM �RMi + � M � N �RMNiGi(1;0) = DXMRMi +  M NRMNiGi(1=2;0) =  MgMiGi(0;1=2) = � M�gMiGi(0;0) = Gi�Gi(0;0) = �GiWe still have the freedom to remove trivial parts by using the nilpoten
yof the Koszul-Tate di�erential. To this end we examine how the 
oeÆ
ientfun
tions are rede�ned under ! ! ! � ÆKT !̂, where!̂ =  �M ���i ĤMi + � �M��i �̂HMi + F �M ���i � NĤNMi + F �M��i N ~̂HNMi+F �MF �NĤ[MN ℄ + F �M��i ~̂HMi + ��i ��j N ĜNij + ��i ���j � N �̂GNij+��i��j Ĝ[ij℄ + ��i��j Ĝ(ij)(1;0) + ���i ���j Ĝ(ij)(0;1) + ��i ���j Ĝij(1=2;1=2)+A�i��j Ĝij(0;1=2) + �A�i ���j Ĝij(1=2;0) +A�i �A�j ~̂Gij(0;0)+D��i��j Ĝij(0;0) + �D���i ���j �̂Gij(0;0) + C�i F i(0;0):Th 
oeÆ
ient fun
tions 
ontained in this expression are 
onstrained to beof the form Ĝ(ij)(1;0) = DXM ĝM (ij) +  K Lĝ[KL℄(ij)Ĝ(ij)(0;1) = �DXM �̂gM (ij) + � K � L �̂g[KL℄(ij)Ĝij(1=2;1=2) = FN ~̂gNij + �k ~̂gkij +  K � L ~̂gKLijĜij(0;1=2) = � K �̂FKijĜij(1=2;0) =  KF̂Kij
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~̂Gij(0;0) = ~̂GijĜij(0;0) = ĝij�̂Gij(0;0) = �̂gijF i(0;0) = F i:This indu
es the following rede�nitions of the 
oeÆ
ient fun
tions in (6.1.6)HM ! HMHNM ! HNM + ÆN;iĤMi�HNM ! �HNM � ÆN;i �̂HMihNM ! hNM + 4GNKĤ[MK℄ � ÆN;i ~̂HMih Mi ! h Mi � 2ÆN;iĤ[MN ℄hNKM ! hNKM � ÆN;iĤKMi � ÆK;i �̂HNMi + 2
NKLĤ[ML℄GNi ! GNi � 2GNM ~̂HMi � 2ÆN;jĜ[ij℄G ij ! G ij + ÆM;j ~̂HMiGNKi ! GNKi �
NKM ~̂HMi � ÆK;j ĜNij � ÆN;j �̂GKijPMi ! PMi � 2GMN �̂HNi � ÆM;j ĝjiPMNi ! PMNi � 
MNK �̂HKi � 2ÆN;j ĝM (ij) + ÆMj �̂FNjiPMNKi ! PMNKi �RNMLK �̂HLi � 
NKL �̂HMLi�2ÆK;j ĝ[MN ℄(ij) + ÆM;j ~̂gNKijQMNi ! QMNi � 
NKM �̂HKi � 2GMK �̂HNKi+ÆM;j ĜNji + ÆN;j ~̂gMijQMji ! QMji + ÆK;j �̂HMKi + ÆM;k ~̂gjkiQ ij ! Q ij + ÆM;j �̂HMi�PMi ! �PMi � 2GMNĤNi + ÆM;j �̂gji�PMNi ! �PMNi � 
NMKĤKi + 2ÆN;j �̂gM (ij) � ÆMjF̂Nji�PMNKi ! �PMNKi +RKLNMĤLi � 
KMLĤNLi+2ÆK;j �̂g[MN ℄(ij) + ÆM;j ~̂gKNji�QMNi ! �QMNi +
KNMĤKi � 2GMKĤNKi+ÆM;j �̂GNji � ÆN;j ~̂gMji�QMji ! �QMji + ÆK;jĤMKi � ÆM;k ~̂gjki�Q ij ! �Q ij � ÆM;jĤMi
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RMi ! RMi + ÆM;j ~̂GjiRMNi ! RMNi � ÆM;jF̂Nij�RMi ! �RMi + ÆM;j ~̂Gij�RMNi ! �RMNi + ÆM;j �̂FNijgMi ! gMi + ÆM;j �̂gij�gMi ! �gMi � ÆM;j ĝijGi ! Gi +F i�Gi ! �Gi +F iwhi
h allows us to remove 
ertain parts of the fun
tions o

urring in A1(1;1).Choosing, a

ording to the de
omposition HNM = ÆN;�H�M + ÆN;iHiM ,ĤMi = �HiMwe see that we 
an remove HiM from the 
ohomology. In the same way weremove without loss of generality �HiM by the appropriate 
hoi
e of �̂HMi.Furthermore we remove hiM , h �i , hi Mk , h�iM , hijM , Gj ik , G jin , Gjki, Pji,�Pji, Qk ij , �Qk ij , �Rji, R ji� , Rj i� , R[jk℄i, �R�ji, �Rj i� , �R[jk℄i and �Gi. Thus the
oeÆ
ient fun
tions take the following formHNM ! ÆN;� H�M�HNM ! ÆN;� �H�MhNM ! ÆN;� h�MhiM ! ÆM;j hijhNKM ! ÆN;�ÆK;� h��MGNKi ! ÆN;�ÆK;� G��iPMi ! ÆM;�P�i�PMi ! ÆM;� �P�iQMji ! ÆM;�Q�ji�QMji ! ÆM;� �Q�ji�RMi ! ÆM;� �R�iRMNi ! ÆM;�ÆN;� R[��℄i�RMNi ! ÆM;�ÆN;� �R[��℄i;where for simpli
ity we keep the old symbols for the new fun
tions. This
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imposes the following 
onditions on the fun
tions0 = B0i + ÆM;iHM0 = (fM � �fM ) + 2GMN HN + ÆM;i Gi0 = (�NfM � �M �fN ) + 
MNKHK + ÆM;iÆN;� �R� i � ÆN;iRMi0 = (�MfN � �NfM )� 
NKMHK � 2GMK ÆN;� H�K�ÆM;�ÆN;i �P�i + ÆM;i gNi0 = (�M �fN � �N �fM ) + 
KNMHK + 2GMK ÆN;� �H�K�ÆM;�ÆN;i P�i + ÆM;i �gNi0 = �K�[M �fN ℄ +RKLNMHL +
K[M jL ÆN ℄;� �H�L�PK[MiÆN ℄;i � ÆK;iÆ[M;�ÆN ℄;� �R��i0 = �K�[MfN ℄ �RNMKLHL �
[M jKLÆN ℄;� H�L� �PK[MiÆN ℄;i � ÆK;iÆ[M;�ÆN ℄;� R��i0 = �ÆK;iÆM;� h�K + hikÆK;kGKM � ÆM;j G ji0 = h(jk)0 = 
MNj hij � ÆL;iÆM;�ÆN;� h��L � ÆM;�ÆN;j Q�ij � ÆM;jÆN;� �Q�ij0 = ÆM;�ÆN;iH�N + ÆM;j �Q ji0 = ÆM;�ÆN;i �H�N + ÆM;j Q ji0 = 2GK(MÆN);� h�K +
K(MN)HK � Æ(M;i GN)i0 = 2GMLÆN;�ÆK;� h��L + ÆM;�
NKL h�L +HL�L
NKM+ÆN;� 
LKMH�L + ÆK;�
NLM �H�L�ÆM;iÆN;�ÆK;� G��i � ÆK;iQMNi � ÆN;i �QMKi0 = 12 HR�RRNMLK � ÆN;� RMRLKH�R + ÆL;�RNMRK �H�R+ÆN;�ÆL;�
MKR h��R � ÆL;i PMNKi � ÆM;i �PKLNi (6.1.6)where the last equation has to be antisymmetrized in M $ N and K $ L.We will now work out these 
onditions and remove simultaneously 
obound-ary terms. Sin
e h[ab℄ 
an be removed by a 
oboundary term the equationsh(ij) = 0 ÆK;iÆM;� h�K � hikÆK;kGKM + ÆM;j G ji = 0require hmi = G ji = 0Furthermore
MNj hij � ÆL;iÆM;�ÆN;� h��L � ÆM;�ÆN;j Q�ij � ÆM;jÆN;� �Q�ij = 0ÆM;�ÆN;iH�N + ÆM;j �Q ji = 0ÆM;�ÆN;i �H�N + ÆM;j Q ji = 0
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require h��i = Q�ij = �Qj�i = 0H�i = �H�i = Q ji = �Q ji = 0Again we introdu
e the following 
ombinations for the f 'sf+M = fM + �fM f�M = fM � �fM ;where f�M is determined by(fM � �fM ) + 2GMN HN + ÆM;i Gi = 0:Exploiting the freedom to rede�nefM ! fM + �M f̂ + ÆM;iĝi�fM ! �fM + �M f̂ + ÆM;i �̂giwe 
an remove Ga by an appropriate 
hoi
e of ĝa� �̂ga. Still we are left withthe freedom to rede�ne f+M . From the third equation of (6.1.6) we obtain bysymmetrization and antisymmetrization and the use of the se
ond equationLHGMN = Æ(M;iÆN);� �R i� � Æ(N;iRM)iLHBMN = ��[Mf 00+N ℄ + Æ[M;iÆN ℄;� �R i� � Æ[N;iRM ℄i; (6.1.7)where f 00M = fM + 2BMK HK :Symmetrization and antisymmetrization of the fourth and �fth equation of(6.1.6) yieldsLHGMN = 2GK(M ��N)HK � ÆN);� H K� ��Æ(M;�ÆN);i �P�i + Æ(M;i gN)i;LHBMN = ��[Mf 00+N ℄ � 2GK[M ��N ℄HK � ÆN ℄;� H K� �+Æ[M;�ÆN ℄;i �P�i � Æ[M;i gN ℄i;LHGMN = 2GK(M ��N)HK � ÆN);� �H K� �+Æ(M;�ÆN);i P�i � Æ(M;i �gN)i;LHBMN = ��[Mf 00+N ℄ + 2GK[M ��N ℄HK � ÆN ℄;� �H K� �+Æ[M;�ÆN ℄;i P�i � Æ[M;i �gN ℄i; (6.1.8)i.e., they are of the same stru
ture as (6.1.7). We will thus be able to redu
ethe number of independent 
oeÆ
ient fun
tions by 
omparing (6.1.7) with
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(6.1.8). Furthermore the equations for C1(1=2;1=2) (6.1.5) give the followingidenti�
ations HM = �KM ) f 0+ = f 00+Gi = Ki; �K i� = �R i� KMi = RMiTo 
omplete the solution we make the following ansatz for A1(1;1=2) andA1(1=2;1)A1(1;1=2) = � �MAM(0;0) + F �MAM(1=2;0) + ��iAi(1=2;0)+��iBi(1;0) + ���iBi(1=2;1=2) +A�i E i(0;1=2) +D��i E i(0;0)A1(1=2;1) =  �M �AM(0;0) + F �M �AM(0;1=2) + ��i �Ai(0;1=2)+��i �Bi(1=2;1=2) + ���i �Bi(0;1) + �A�i �E i(1=2;0) + �D���i �E i(0;0)The 
oeÆ
ient fun
tions 
ontained in the expression above areAM(0;0) = AMAM(1=2;0) =  NANMAi(1=2;0) =  NANiBi(1;0) = DXMBMi +  M NBMNiBi(1=2;1=2) = FMbMi + �jb ij +  M � NbMNiE i(0;1=2) = � MEMiE i(0;0) = E i�AM(0;0) = �AM�AM(0;1=2) = � N �ANM�Ai(0;1=2) = � N �ANi�Bi(0;1) = �DXM �BMi + � M � N �BMNi�Bi(1=2;1=2) = FM�bMi + �j�b ij +  M � N�bMNi�E i(1=2;0) =  M �EMi�E i(0;0) = �E iFollowing the pro
edure for A1(1;1) we remove trivial parts by 
onsidering theKoszul-Tate part of the BRST transformations ofA2(1;1=2) = F �M ���i ÂiM(0;0) + ��i ���j Âji(0;0) +A�i ��j B̂ji(0;0)+��i ���j B̂ji(1=2;0) + ���i ���j Ê(ji)(0;1=2)A2(1=2;1) = F �M��i �̂AiM(0;0) + ��i ��j �̂Aji(0;0) + �A�i ���j �̂Bji(0;0)+��i ���j �̂Bji(0;1=2) + ��i��j �̂E(ji)(1=2;0):
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The 
oeÆ
ient fun
tions are again independent of ghosts and anti�elds and
onstrained by the 
onformal weight indi
ated in the subs
ript bra
kets(m;n). Going through the same steps as des
ribed in detail for A1(1;1) andC1(1=2;1=2) one �nds the 
orresponding equations, whi
h are of the same stru
-ture as (6.1.4) and (6.1.4). For A1(1;1=2) they expli
itly read0 = B0i + ÆM;iAM0 = (fM � �fM ) + 2GMN AN + ÆM;i E i0 = (�NfM � �M �fN ) + 
MNKAK�ÆM;iÆN;� E�i + ÆN;i BMi0 = (�MfN � �NfM )� 
NKMAK � 2GMK ÆN;� A�K+ÆM;iANi + ÆN;iÆM;� b�i0 = �K�[MfN ℄ �RNMKLAL � 
[M jKLÆN ℄;� A�L+Æ[N;ibM ℄Ki + ÆK;iÆ[M;�ÆN ℄;� B��i0 = ÆM;iÆN;� A M� + ÆN;j b ji :The analogous equations for A1(1=2;1) are0 = B0i � ÆM;i �AM0 = (fM � �fM )� 2GMN �AN + ÆM;i �E i0 = (�NfM � �M �fN )� 
MNK �AK+ÆM;iÆN;� �B�i � ÆN;i �EMi0 = (�M �fN � �N �fM )� 
KNM �AK + 2GMK ÆN;� �A�K�ÆM;i �ANi + ÆM;�ÆN;i �b�i0 = �K�[M �fN ℄ �RKLNM �AL +
K[M jLÆN ℄;� �A Ln�d[M;i�bKjN ℄i � ÆK;iÆ[M;�ÆN ℄;� �B��i0 = ÆM;iÆN;� �A M� � ÆN;j �b jiComparing the equations above with the the relevant equations for A1(1;1)leads to the following identi�
ationsHM = AM = � �AM Gi = E i = �E iRMi = �BMi = �EMi R�i = �B�i = �E�iH �� = A �� �H �� = �A ��gNi = ANi �gNi = � �ANi P�i = ��b�i �P�i = �b�iR��i = �B��i �R��i = �B��i PKMi = �bMKi �PKMi = bKMiThus the 
omplete result !01 + 0!11+ 1!11+ 2!11 up to anti�eld number 1



Chapter 6. Rigid Symmetries and dynami
al 
onservation laws 61
reads!01 = (�DXM + �� �DXM )12 f+M � (�DXM � �� �DXM )GMNHN�(� M N + �� � M � N)12 �Nf+M+(� M N � �� � M � N)�N (GMKHK)+12 (" M + �" � M)12 f+M � 12 (" M � �" � M)GMNHN � CiÆM;iHM
0!11 = ���(X�MHM +  �M NÆN;�ÆM;�H �� + � �M � NÆN;�ÆM;� �H ��+F �M(FNÆN;�ÆM;�h �� +  N � KÆN;�ÆK;�ÆM;�h���)+��i (FNGNi +  N � KÆN;�ÆK;�G��i)+��i (D � MÆM;�P�i +DXM � NPMNi+ M N � KPMNKi + FM NQMNi)+���i ( �D MÆM;� �Pmi + �DXM N �PMNi+ � M � N K �PMNKi + FM � N �QMNi)+A�i ( �DXMÆM;� �R�i + � M � NÆM;�ÆN;� �R��i)+ �A�i (DXMRMi +  M NÆM;�ÆN;�R��i)+ �D���i MgMi +D��i � M�gMi��CiA�j (�jÆM;iHM) + ��Ci �A�j (�jÆM;iHM )1!11 = ��"� � �MHM + F �M NÆN;�ÆM;�H �� + ��i NgNi���i (DXMRMi +  M NÆM;�ÆN;�R��i)����i (FMÆM;� �P�i +  M � NPNMi)�A�i � NÆN;� �R�i�+��"��  �MHM + F �M � NÆN;�ÆM;� �H �� � ��i � N�gNi���i (FMÆM;�P�i �  M � N �PMNi)+���i ( �DXMÆM;� �R�i + � M � NÆM;�ÆN;� �R��i)+ �A�i NRNi�+"Ci���j (�jÆM;iHM)� �"Ci��j (�jÆM;iHM)2!11 = "�"�� F �MHM + ��iGi + ��i NRNi + ���i � NÆN;� �R�i�where the 
oeÆ
ient fun
tions have to ful�ll the equations (6.1.7) and (6.1.8)and the remaining equations of (6.1.6). In fa
t it turns out that the numberof independent 
oeÆ
ient fun
tions 
an be redu
ed, sin
e (6.1.7) and (6.1.8)are of the same stru
ture and the higher order di�erential equations in (6.1.6)(i.e., the sixth and seventh equation in (6.1.6)) turn out to be derivatives ofthe generalized Killing equations. We will not work this out for the general
ase but instead investigate a spe
i�
 example in the next se
tion.
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As a �nal remark we note that the solution given above is de�ned onlyup to rede�nitionsf+M ! f+M + �Mf + ÆM;agaP aMN ! P aMN � 2ÆN;b ĝ (ab)MP aMNK ! P aMNK � 2ÆK;b ĝ (ab)[MN ℄ + ÆM;b ~̂g abNKQ aMN ! Q aMN + ÆN;b ~̂g abM�P aMN ! �P aMN + 2ÆN;b �̂g (ab)M�P aMNK ! �P aMNK + 2ÆK;b �̂g (ab)[MN ℄ + ÆM;b ~̂g baKN�Q aMN ! �Q aMN � ÆN;b ~̂g baMwhi
h alter the solution by a 
oboundary.

6.2 Global symmetries6.2.1 Simpli�ed a
tionFor further dis
ussion we shall assume in the following that the fun
tionsDi 
oin
ide with a subset of the �elds XM . We denote this subset by fyigand the remaining X's by x�,fXMg = fx�; yig; Di = yi: (6.2.9)In fa
t, this assumption is a very mild one be
ause, ex
ept at stationarypoints ofDi(X), (6.2.9) 
an be a
hieved by a �eld rede�nition XM ! ~XM =~XM (X) (\
oordinate transformation in X-spa
e"), where this rede�nition issu
h that ea
h non
onstantDi(X) be
omes one of the ~X's. Indeed, 
onstantDi give only 
ontributions to the Lagrangian whi
h are total derivatives and
an thus be negle
ted, at least 
lassi
ally; non
onstant Di 
an be assumedto be independent by a suitable 
hoi
e of basis for the gauge �elds and maythus be taken as ~X's, at least lo
ally (e.g., if D1 = D2, the Lagrangiandepends only on the 
ombination A1m + A2m whi
h 
an be introdu
ed as anew gauge �eld).It is now easy to see that the Lagrangian (4.1.14) 
an a
tually be sim-pli�ed by setting the �elds  i; F i; �i; �i to zero. Indeed, owing to (6.2.9),the 
lassi
al equations of motion for �i and �i yield  i = 0 and F i = 0,respe
tively. The latter equations are algebrai
 and 
an be used in the La-grangian. Then the Lagrangian does not 
ontain �i and �i anymore andthe only remnant of the gauge multiplets are the terms e"mnyi�mAin. Thisre
e
ts that the gauge multiplets 
arry no dynami
al degrees of freedomsin
e the world-sheet is 2-dimensional. Of 
ourse, the BRST transforma-tions given in se
tion 3.2 must be adapted in order to provide the gauge
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symmetries of the simpli�ed Lagrangian: those �elds that are eliminatedfrom the a
tion must also be eliminated from the transformations of theremaining �elds using the equations of motion of the eliminated �elds. Thisonly a�e
ts the supersymmetry transformations of yi and Aim. The newsupersymmetry transformation of yi is then simply zero owing to the �eldequation for �i ( i = 0). This is not in 
ontradi
tion with the supersymme-try algebra be
ause the equations of motion for the Aim give �myi = 0 (of
ourse, after eliminating the �elds  i; F i; �i; �i, the supersymmetry algebraholds only on-shell). The latter also shows that the �elds yi 
arry no dy-nami
al degree of freedom. The new supersymmetry transformation of Aimis more 
ompli
ated and arises from the original one by using the equationsof motion for F i and  i to repla
e �i and �i, and then setting F i and  i tozero.6.2.2 Nontrivial global symmetriesLet us now dis
uss the nontrivial global symmetries of the a
tion (4.1.14)as obtained from the BRST 
ohomology in the spa
e of anti�eld dependentlo
al fun
tionals with ghost number �1. This 
ohomology feels of 
ourse theparti
ular a
tion, for the latter enters the BRST transformations of the anti-�elds through the Euler-Lagrange derivatives of the Lagrangian. We presentnow the resulting global symmetries for the simpli�ed form of the a
tionarising from the Lagrangian (4.1.14) by eliminating the �elds  i; F i; �i; �ias des
ribed above, assuming (6.2.9). The nontrivial symmetries3 are gen-erated by the following transformations,�hmn = 0���m = 0�XM = HM ; Hi = Ki(y); H� = V �(X)� �� =  ����V �(X)�F� = F ���V �(X) + 12 � � �����V �(X)�Aim = biM (X)�mXM + " nm aiM (X)�nXM � ÆjkAjm�iKk(y)��n
m
n
� �ai�(X) + i2 � �
m ��[�bi�℄(X)+ i2 � �
m
� ��[�ai�℄(X) (6.2.10)where HM , aiM and biM have to solve the following generalized Killing ve
torequations, LHGMN = �2Æi(Ma iN)LHBMN = �2�[MpN ℄ � 2Æi[Mb iN ℄ (6.2.11)3A global symmetry is 
alled trivial in this 
ontext when it is equal to a gauge trans-formation on-shell.
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for some fun
tions pM(X) (LH is the standard Lie derivative along HM , ÆiMis the Krone
ker symbol, i.e., ÆiM = 1 if M = i and ÆiM = 0 otherwise).Note that the pM do not o

ur in the �-transformations; however, they do
ontribute to the 
orresponding Noether 
urrents.The equations (6.2.11) are a
tually the same as the equations whi
halso determine the symmetries of bosoni
 string and D-string a
tions [38{40, 42℄, spe
i�ed for (6.2.9). In absen
e of gauge �elds (no Aim, yi, Ki;fHMg � fV �g), they readLVG�� = 0; LVB�� = �2�[�p�℄ : (6.2.12)These equations had been already dis
ussed in [87, 88, 90℄. The �rst equa-tion (6.2.12) is just the standard Killing ve
tor equation for G�� . Hen
e, thesolutions of equations (6.2.12) are those Killing ve
tor �elds of G�� whi
hsolve the se
ond equation (6.2.12) (for some p�).The situation 
hanges when gauge �elds are present. Then equations(6.2.11) read for M;N = �; �:LVG�� = �Ki�iG��LVB�� = �Ki�iB�� � 2�[�p�℄ (6.2.13)where LV is the Lie derivative along the ve
tor �eld VM given by V i = 0,V � = V �(X). The remaining equations (6.2.11) just determine the fun
tionsaiM and biM , ai� = �LHG�i ; aji = �2LHGijbi� = LHB�i � �ip� ; bji = 2LHBij : (6.2.14)Here we have used that pi and the parts of aji resp. bji whi
h are antisym-metri
 resp. symmetri
 in i; j 
an be set to zero without loss of generality(the 
orresponding 
ontributions to � 
an be removed by subtra
ting trivialglobal symmetries from �).The global symmetries are thus 
ompletely determined by equations(6.2.13). Note that these equations reprodu
e (6.2.12) for Ki = 0, ex
eptthat now G�� and B�� depend in general not only on the x� but also on theyi. Hen
e, in general V � and p� also depend on the yi. For the dis
ussionof equations (6.2.13), the yi may be viewed as parameters of G�� and B�� .Solutions to equations (6.2.13) with Ki = 0 
an thus be regarded as solu-tions to equations (6.2.12) for some G�� and B�� involving parameters yi.The global symmetries with Ki = 0 are thus analogous to the symmetriesof ordinary superstrings and 
orrespond to isometries of the (parameter-dependent) metri
 G�� . In 
ontrast, solutions to (6.2.13) with Ki 6= 0 haveno 
ounterparts among the solutions of (6.2.12). Su
h solutions may be
alled \dilatational" solutions, be
ause in spe
ial 
ases they are true dilata-tions, as we will see in the example below (further examples 
an be foundin [38, 39, 42℄).
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Finally we note that the solutions to equations (6.2.13) 
ome in in�nitefamilies and that, as a 
onsequen
e, the 
orresponding 
ommutator algebraof the global symmetries is an in�nite dimensional loop-like algebra. Thishas been observed and dis
ussed already in [38, 39℄ and is an immediate
onsequen
e of the fa
t that the a
tion depends on the Aim only via their �eldstrengths [89℄. All members of a family arise from one of its representativesby multiplying the fun
tions V �(X), Ki(y), p�(X) of that representativewith an arbitrary fun
tion of the yi. One 
an dire
tly verify that this makessense: if V �(X), Ki(y), p�(X) is a solution to equations (6.2.13), thenanother solution is obtained by simply multiplying V �, Ki, p� by the samearbitrary fun
tion of the yi. As the yi are 
onstant on-shell (by the equationsof motion for the Aim), this in�nite dimensionality of the spa
e of globalsymmetries has no pra
ti
al importan
e, i.e., in order to dis
uss the globalsymmetries it is suÆ
ient to 
onsider just one representative of ea
h family.

6.3 ExampleTo illustrate the results presented above, we spe
ify them for a simple 
lassof models, whi
h were treated already in [38, 39℄ for the purely bosoni

ase. These models are 
hara
terized by Lagrangians 
ontaining only oneU(1) gauge �eld Am and the following 
hoi
es for the ba
kgroundGyM = 0; G�� = f(y)��� ;By� = 0; B�� = B��(y); (6.3.15)leading toe�1L = �12 hmn�mx��nx�G�� + 12 "mn�mx��nx�B��+�m(
n
m) ��nx�G�� � 14 �m(
n
mC)�n � �G��+ i2  �
m�m �G�� � i4  �(
m
�) ��my �yB��+12 "mn(�mAn � �nAm)y; (6.3.16)where the assumption fXMg = fx�; yg is taken into a

ount. As shown in[38, 39℄, in this 
ase the general solution of equations (6.2.11) is (modulorede�nitions 
orresponding to trivial global symmetries)V � = �12 K(y)[ln f(y)℄0x� + r�(y) + r[��℄(y)���x�a� = �V �0f(y)���; ay = 0b� = �12 (K(y)B0��)0x� �B0��V � ; by = 0p� = K(y)B0��x� + 2B��V � ; (6.3.17)where a prime denotes di�erentiation with respe
t to y:0 � ��y :
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K(y), r�(y) and r[��℄(y) are arbitrary fun
tions of y and 
orrespond tofamilies of dilatations, translations and Lorentz-transformations in targetspa
e, respe
tively. For two reasons the dilatations are spe
ial. Firstly, asdis
ussed already above, they have no 
ounterpart among the global sym-metries of the ordinary superstring on a 
at ba
kground. Se
ondly, they
an map solutions to the 
lassi
al equations of motion with vanishing �eldstrength �mAn��nAm to solution with non-vanishing �eld strength. This isin sharp 
ontrast to the translations and Lorentz-transformations and mosteasily seen from �y = K(y), using that the �eld strength is related to yby the equations of motion through f 0(y) � "mn�mAn + : : : where � isequality on-shell. An analogous reasoning shows that the latter propertyof `dilatational symmetries' extends to more 
ompli
ated ba
kgrounds forwhi
h solutions to (6.2.13) with Ki 6= 0 exist.



Chapter 7
General solution for g < 4
7.1 On-shell 
ohomologyWe shall now de�ne and analyse an \on-shell BRST 
ohomology" H(�)and show that it is isomorphi
 to its purely bosoni
 
ounterpart at ghostnumbers < 4, i.e., to the on-shell BRST 
ohomology of the 
orrespondingbosoni
 string model. The relevan
e of H(�) rests on the fa
t that it isisomorphi
 to the full lo
al s-
ohomology H(s) (in the jet spa
e asso
iatedto the �elds and anti�elds), at least at ghost numbers < 4,g < 4 : Hg(�) ' Hg(s): (7.1.1)This will be proved in se
tion 7.2.The analysis in this and the next se
tion is general, i.e., it applies toany model with an a
tion (4.1.13) (or, equivalently, (4.1.14)) provided thattwo rather mild assumptions hold, whi
h are introdu
ed now. The �rstassumption only simpli�es the a
tion a little bit but does not redu
e itsgenerality: as we have argued already in [36℄, one may assume that thefun
tions Di(X) whi
h o

ur in the a
tion 
oin
ide with a subset of the�elds XM . We denote this subset by fyig and the remaining X's by x�,fXMg = fx�; yig; Di(X) � yi: (7.1.2)For physi
al appli
ations this \assumption" does not represent any loss ofgenerality be
ause it 
an always be a
hieved by a �eld rede�nition (\targetspa
e 
oordinate transformation") XM ! ~XM = ~XM(X). The yi maybe interpreted as 
oordinates of an enlarged target spa
e leading to \frozenextra dimensions" [36℄. The se
ond assumption is that G��(x; y) is invertible(in 
ontrast, GMN need not be invertible). This is parti
ularly natural in thestring theory 
ontext, sin
e it allows one to interpret G�� as a target spa
emetri
. It is rather likely that our result holds for even weaker assumptions(but we did not study this question), be
ause the results derived in [39, 40℄for bosoni
 string models do not use the invertibility of G�� .67
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Let us remark that the isomorphism (7.1.1) is not too surprising, be
auseit is reminis
ent of a standard result of lo
al BRST 
ohomology stating thatH(s) is isomorphi
 to the on-shell 
ohomology of 
 in the spa
e of anti�eldindependent fun
tions, where 
 is the part of s with anti�eld number 0 (see,e.g., se
tion 7.2 of [30℄). However, (7.1.1) is not quite the same statementbe
ause the de�nition of � given below does not take the equations of motionfor �, ��, � or �� into a

ount. Hen
e, (7.1.1) 
ontains information in additionto the standard result of lo
al BRST 
ohomology mentioned before: theequations of motion for �, ��, �, �� are not relevant to the 
ohomology! Thisis a useful result as these equations of motion are somewhat unpleasant,be
ause they are not linearizable (the models under study do not ful�ll thestandard regularity 
onditions des
ribed, e.g., in se
tion 5.1 of [30℄).7.1.1 De�nition of � and H(�)� is an \on-shell version" of s de�ned in the spa
e of lo
al fun
tions made ofthe �elds only (but not of any anti�elds). We work in the `Beltrami basis'and use the equations of motion obtained by varying the a
tion (4.1.13) withrespe
t to the �elds X,  , � , F̂ , �̂, �, �� and Am. The 
ovariant versionof these equations of motion 
an be obtained from the s-transformations ofthe 
orresponding 
ovariant anti�elds given in appendix C.2 by setting theanti�eld independent part (`Koszul-Tate part') of these transformations tozero. This gives the following \on-shell equalities" (�):F̂ i � 0 (7.1.3) i � 0 (7.1.4)� i � 0 (7.1.5)Dyi � 0 (7.1.6)�Dyi � 0 (7.1.7)�̂i � 2Gi�F̂� +  � � �
��i (7.1.8)�i � 2Gi�D � � +Dx� � �
��i + F̂� �
�i�+ � � � �R��i� (7.1.9)��i � �2Gi� �D � � �Dx� �
��i + F̂� � �
i��+ � � � � �R�i�� (7.1.10)F̂ � � �12  � � �
��� (7.1.11)�D � � �12 [ �Dx� �
��� + 12  � � � � �
���
���+ � � � � �R����℄ (7.1.12)D � � � 12 [�Dx� � �
��� + 12  � � � �
���
���+ � � � �R����℄ (7.1.13)
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F i � 2Gi�D �Dx� +Dx� �Dx�
��i � F̂�F̂ �
i���D � � � �
i�� +  � �D �
�i��Dx� � � � �R�i�� � �Dx� � �R���i�F̂� � � ��i
��� � 12  � � � � � ��iR���� (7.1.14)D �Dx� � 12 [�Dx� �Dx�
��� + F̂ � F̂ �
���+D � � � �
��� �  � �D �
����Dx� � � � �R���� + �Dx� � �R����+F̂ � � � ���
��� + 12  � � � � � ���R����℄ (7.1.15)where indi
es � of 
, R, � have been raised with the inverse of G��(x; y), and i, � i and F̂ i belong to the same supersymmetry multiplet as yi (the auxil-iary �elds F̂ i should not be 
onfused with the super
ovariant �eld strengthsF i of the gauge �elds). Note that the right hand sides of (7.1.8), (7.1.9),(7.1.10), (7.1.14) and (7.1.15) still 
ontain F̂�, �D � or D � �, whi
h are tobe substituted for by the expressions given in (7.1.11), (7.1.12) and (7.1.13),respe
tively. Furthermore, in (7.1.14) one has to substitute the expressionresulting from (7.1.15) for D �Dx�. Using Eqs. (7.1.3) through (7.1.15) andtheir D and �D derivatives, we eliminate all variables on the left hand sidesof these equations and all the 
ovariant derivatives of these variables. Fur-thermore, we use these equations to de�ne the �-transformations of theremaining �eld variables from their s-transformations. For instan
e, onegets �yi = 0 (7.1.16)�x� = (�D + �� �D)x� + " � + �" � � (7.1.17)� � = �D � � 12 ��[ �Dx� �
���+12  � � � � �
���
��� +  � � � � �R����℄+12 �� � + "Dx� + 12 �" � � �
���: (7.1.18)The �-transformations of �, ��, ", �", �, ��, �, �� 
oin
ide with their s-transformations. The 
ohomology H(�) is the 
ohomology of � in the spa
eof lo
al fun
tions of the variables fu`; v`;WAg, where the u's and v's are thesame as in se
tions 3.3 and 4, while the W 's are given byfWAg = fyi; x�;Dkx�; �Dkx�;Dr �; �Dr � �; �r�; ��r���r"; ��r�"; Ci : k = 1; 2; : : : ; r = 0; 1; : : : g: (7.1.19)H(�) is well-de�ned be
ause � squares to zero,�2 = 0: (7.1.20)This holds be
ause the (
ovariant) equations of motion of the �elds X,  ,� , F̂ , �̂, �, ��, Am and their 
ovariant derivatives transform into ea
h other
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under di�eomorphisms and supersymmetry transformations but not intothe equations of motion of �, ��, � or �� [as 
an be read o� from the s-transformations of the anti�elds X�,  �, � �, F̂ �, �̂�, ��, ��� and A�m inappendix C.2℄.7.1.2 Relation to H(�;W)� a
ts on the variables fu`; v`;WAg a

ording to �u` = v`, �WA = rA(W ).Furthermore, analogously to (4.0.2) one hasn� ; ��(��) oWA = L0WA ; n� ; ��(����) oWA = �L0WA ; (7.1.21)i.e., in the spa
e of lo
al fun
tions of the W 's the derivatives with respe
t to�� and ���� are 
ontra
ting homotopies for L0 and �L0, respe
tively. Hen
e,the same standard arguments, whi
h were used already in se
tion 4 yield thatH(�) is given by HdR(GL+(2))
H(�;W), where HdR(GL+(2)) re
e
ts thenontrivial de Rham 
ohomology of the zweibein manifold (see theorem 5.1of [79℄), while H(�;W) is the �-
ohomology in the spa
e of lo
al fun
tionswith vanishing 
onformal weights made solely of the variables (7.1.19),H(�) = HdR(GL+(2))
H(�;W);W = f! : ! = !(W ); (L0!; �L0!) = (0; 0)g: (7.1.22)The fa
tor HdR(GL+(2)) is irrelevant for the following dis
ussion be
auseit just re
e
ts det eam 6= 0 and makes no di�eren
e between superstring andbosoni
 string models.7.1.3 De
omposition of �To studyH(�;W) we de
ompose � into pie
es of de�nite degree in the super-symmetry ghosts and the fermions1. The 
orresponding 
ounting operatoris denoted by N , N = N" +N�" +N +N � (7.1.23)with N" and N�" as in (4.0.4) andN =Xr�0(Dr �) ��(Dr �) ; N � =Xr�0( �Dr � �) ��( �Dr � �) :Using the formulae given above, it is easy to verify that � de
omposes intopie
es with even N -degree,� =Xn�0�2n ; [N;�2n℄ = 2n�2n (7.1.24)1We are referring here to the variables (7.1.19) themselves, and not to the fermionsthat are impli
itly 
ontained in these variables through 
ovariant derivatives.
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where, on ea
h variable (7.1.19), only �nitely many �2n are non-vanishing.For instan
e, (7.1.18) yields�0 � = �D � � 12 �� �Dx� �
��� + 12 �� � + "Dx��2 � = �14 �� � � � � �
���
��� � 12 �� � � � � �R���� + 12 �" � � �
����2n � = 0 for n > 1:7.1.4 De
omposition of �0We shall prove the asserted result by an inspe
tion of the 
ohomology of�0. To that end we de
ompose �0 a

ording to the supersymmetry ghosts.That de
omposition has only two pie
es owing to the very de�nition of �0and N ,�0 = �0;0 + �0;1 ; [N" +N�" ; �0;0℄ = 0 ; [N" +N�" ; �0;1℄ = �0;1 :(7.1.25)�0;1 a
ts notrivially only on the fermions and their derivatives Dr � and�Dr � � with r = 0; 1; : : : . One easily veri�es by indu
tion that �0;1 has thefollowing simple stru
ture

�0;1Dr � = rXk=0�rk��k"Dr+1�kx��0;1 �Dr � � = rXk=0�rk���k�" �Dr+1�kx� (7.1.26)
7.1.5 H(�0;W) at ghost numbers < 5The 
o
y
le 
ondition of H(�0;W) reads�0! = 0; ! 2 W: (7.1.27)We analyse (7.1.27) using (7.1.25). To that end we de
ompose ! a

ordingto the number of supersymmetry ghosts,

! = kXk=k !k ; (N" +N�")!k = k!k : (7.1.28)
Note that k is �nite, k � gh (!). Hen
e, the 
o
y
le 
ondition (7.1.27)de
omposes into�0;1!k = 0; �0;0!k + �0;1!k�1 = 0; : : : ; �0;0!k = 0: (7.1.29)We 
an negle
t 
ontributions �0;1!̂k�1 to !k be
ause su
h 
ontributions 
anbe removed by subtra
ting �0!̂k�1 from !. Hen
e, !k 
an be assumed to be
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a nontrivial representative of H(�0;1;W). That 
ohomology is 
omputed inappendix A.1 and yields!k = h(y; x; C; ["; �℄; [�"; ��℄) + �Dx�h�(y; x; ��; C; [�"; ��℄)+�� �Dx��h�(y; x; ����;C; ["; �℄)+���Dx� �Dx�h��(y; x; ��; ����;C) (7.1.30)where �0;1-exa
t pie
es have been negle
ted, and ["; �℄ and [�"; ��℄ denote de-penden
e on the variables �r"; �r� and ��r�"; ��r�� (r = 0; 1; : : : ), respe
tively.The result (7.1.30) holds for all ghost numbers and shows in parti
ular that!k 
an be assumed not to depend on the fermions (Dr �, �Dr � �) at all.We now insert this result in the se
ond equation (7.1.29), whi
h requiresthat �0;0!k be �0;1-exa
t. At ghost numbers < 5 this requirement kills 
om-pletely the dependen
e of !k on the supersymmetry ghosts as we show inappendix A.2. The result for these ghost numbers is thus that, modulo �0-exa
t pie
es, the solutions to (7.1.27) neither depend on the fermions nor onthe supersymmetry ghosts,gh (!) < 5 : ! = �0!̂ + h(y; x; C; [�℄; [��℄)+�Dx�h�(y; x; ��; C; [��℄)+�� �Dx��h�(y; x; ����;C; [�℄)+���Dx� �Dx�h��(y; x; ��; ����;C): (7.1.31)Furthermore, (7.1.25) and (7.1.26) show that a fun
tion whi
h neither de-pends on the fermions nor on the supersymmetry ghosts is �0-exa
t if andonly if it is the �0-transformation of a fun
tion whi
h does not depend onthese variables either. Combining this with (7.1.31) one 
on
ludesg < 5 : Hg(�0;W) ' Hg(�0;W0); (7.1.32)where W0 is the subspa
e of W 
ontaining the fun
tions with vanishingN -eigenvalues, W0 = f! 2 W : N! = 0g:This subspa
e 
an be made very expli
it. The only variables (7.1.19) withnegative 
onformal weights on whi
h a fun
tion ! 2 W0 
an depend are theundi�erentiated ghosts � and �� [note: the only other variables (7.1.19) withnegative 
onformal weights are the undi�erentiated supersymmetry ghosts,but they 
annot o

ur in ! 2 W0 by the very de�nition of W0℄. Sin
e �and �� are anti
ommuting variables and have 
onformal weights (�1; 0) and(0;�1), respe
tively, ea
h of them 
an o

ur at most on
e in a monomial
ontributing to ! 2 W0. Hen
e, fun
tions in W0 
an only depend on thosew's with 
onformal weights � 1 (as higher weights 
annot be 
ompensated
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for by variables with negative weights), and a variable with L0-weight (�L0-weight) 1 must ne
essarily o

ur together with � (��). This yields! 2 W0 , ! = f(y; x; C; ��; ����; �Dx�; �� �Dx�; ��2�; �� ��2��): (7.1.33)Note that H(�0;W0) is nothing but the on-shell 
ohomology H(�;W) of the
orresponding bosoni
 string model, sin
e elements of W0 neither dependon the fermions nor on the supersymmetry ghosts, and sin
e �0 redu
es inW0 to �0;0, whi
h en
odes only the di�eomorphism transformations but notthe supersymmetry transformations.7.1.6 H(�) at ghost numbers < 4We shall now show that H(�;W) is at ghost numbers < 4 isomorphi
 toH(�0;W0), g < 4 : Hg(�;W) ' Hg(�0;W0): (7.1.34)Be
ause of (7.1.22) this implies that H(�) is isomorphi
 to its 
ounterpart inthe 
orresponding bosoni
 string model (re
all that the fa
tor HdR(GL+(2))is present in the 
ase of bosoni
 strings as well, and that Hg(�0;W0) is theon-shell 
ohomology of the bosoni
 string model). To derive (7.1.34), we
onsider the 
o
y
le 
ondition of H(�;W),�! = 0; ! 2 W: (7.1.35)We de
ompose ! into pie
es with de�nite degree in the supersymmetryghosts and fermions,

! = nXn=n!n; N!n = n!n; (7.1.36)
with N as in (7.1.23) [a
tually there are only even values of n in this de
om-position be
ause ! has vanishing 
onformal weights℄. The 
o
y
le 
ondition(7.1.35) implies in parti
ular �0!n = 0; (7.1.37)where we used the de
omposition (7.1.24) of �. Hen
e, every 
o
y
le !of Hg(�;W) 
ontains a 
oy
le !n of Hg(�0;W). Our result (7.1.32) onHg(�0;W) implies that this relation between representatives of Hg(�;W)and Hg(�0;W) gives rise to a one-to-one 
orresponden
e between the 
oho-mology 
lasses of Hg(�;W) and Hg(�0;W0) for g < 4 and thus to (7.1.34).The arguments are standard and essentially the following:(i) When g < 5, !n 
an be assumed to be nontrivial in Hg(�0;W) andrepresents thus a 
lass of Hg(�0;W0). Indeed, assume it were trivial, i.e.,
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!n = �0!̂n for some !̂n 2 W. In that 
ase we 
an remove !n from ! bysubtra
ting �!̂n. !0 := ! � �!̂n 2 W is 
ohomologi
ally equivalent to !and its de
omposition (7.1.36) starts at some degree n0 > n unless it van-ishes (whi
h implies already ! = �!̂n). The 
o
y
le 
ondition for !0 implies�0!0n0 = 0 and thus !0n0 = �0!̂0n0 for some !̂0n0 2 W as a 
onsequen
e of(7.1.32) (owing to n0 > n � 0). Repeating the arguments, one 
on
ludesthat ! is �-exa
t, ! = �(!̂n+ !̂0n0 + : : : ) [it is guaranteed that the pro
edureterminates, i.e., that the sum !̂n + !̂0n0 + : : : is �nite and thus lo
al, be-
ause the number of supersymmetry ghosts is bounded by the ghost numberand thus the number of fermions is bounded too be
ause ! has vanishing
onformal weights℄.(ii) When g < 4, every nontrivial 
o
y
le !0 of Hg(�0;W0) 
an be 
om-pleted to a nontrivial 
o
y
le ! of Hg(�;W). Indeed suppose we had 
on-stru
ted !n 2 W, n = 0; : : : ;m with ghost number g su
h that !(m) :=Pmn=0 !n ful�lls �!(m) = Pn�m+1Rn with NRn = nRn [for m = 0 this isimplied by �0!0 = 0 whi
h holds be
ause !0 is a �0-
o
y
le by assumption℄.�2 = 0 implies �Pn�m+1Rn = 0 and thus �0Rm+1 = 0 at lowest N -degree.Note that Rm+1 is in W (owing to �W �W) and that it has ghost numberg + 1 < 5 be
ause !(m) has ghost number g < 4. (7.1.32) guarantees thusthat there is some !m+1 2 W su
h that Rm+1 = ��0!m+1, whi
h impliesthat !(m+1) := !(m) + !m+1 ful�lls �!(m+1) = Pn�m+2R0n. By indu
tionthis implies that every solution to (7.1.37) with ghost number < 4 
an indeedbe 
ompleted to a solution of (7.1.35) [the lo
ality of ! holds by the samearguments as above℄. If !0 is trivial in Hg(�0;W0), then its 
ompletion ! istrivial in Hg(�;W) by arguments used in (i). Conversely, the triviality of !in Hg(�;W) (! = ��) implies obviously the triviality of !0 in Hg(�0;W0)(!0 = �0�0) be
ause there are no negative N -degrees.
7.2 Relation to the 
ohomology of bosoni
 stringsWe shall now derive (7.1.1) and the announ
ed isomorphism between the s-
ohomologies of a superstring and the 
orresponding bosoni
 string model.Both results 
an be tra
ed to the existen
e of variables f~u~̀; ~v ~̀; ~W ~Ag onwhi
h s takes a form very similar to � on the variables fu`; v`; wAg used inse
tion 7.1. In the `Beltrami basis' the set of ~u's 
onsists of: (i) ~u's withghost number 0 whi
h 
oin
ide with the u`; (ii) ~u's with ghost number �1given by the super
onformal anti�elds X�M ,  �M , � �M , F �M , ��i , ��i ���i , A�i(re
all that we have dropped the hats on these anti�elds) and all 
ovariantderivatives of these anti�elds plus the �A�i and all their �D-derivatives ( �Dr �A�i ,r = 0; 1; : : : )2; (iii) ~u's with ghost number �2 given by the anti�elds of the2The Dk �Dr �A�i with k > 0 do not 
ount among the u's be
ause the anti�eld independentparts of sDk �Dr �A�i and �sDk�1 �Dr+1A�i are equal (both are given by Dk �Dr+1yi). Rather,they are substituted for by the v's 
orresponding to the Dk�1 �DrC�i (k > 0) owing to
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ghosts, i.e., by ��, ���, "�, �"�, C�i and all their derivatives. It 
an be readily
he
ked that a 
omplete set of new lo
al jet 
oordinates in the Beltramibasis is given by f~u~̀; ~v ~̀; ~W ~A(0)g with ~v ~̀= s~u~̀ andf ~W ~A(0)g=fyi; x�;Dkx�; �Dkx�;Dr �; �Dr � �; �r�; ��r��; �r"; ��r�"; Ci;�r��; ��r���; �r��; ��r ��� : k = 1; 2; : : : ; r = 0; 1; : : : g: (7.2.38)Note that f ~W ~A(0)g does not only 
ontain the WA listed in (7.1.19), but inaddition the variables �r��, ��r���, �r��, ��r ���. The latter o

ur here be
ausetheir s-transformations 
ontain no linear parts and 
an therefore not be usedas ~v's3. The ~W ~A(0) fulfull s ~W ~A(0) = r ~A( ~W(0)) +O(1) (7.2.39)where O(1) 
olle
ts terms whi
h are at least linear in the ~u's and ~v's. Asshown in [94℄, (7.2.39) implies the existen
e of variables ~W ~A = ~W ~A(0) +O(1)whi
h ful�ll s ~W ~A = r ~A( ~W ) (7.2.40)with the same fun
tions r ~A as in (7.2.39). Furthermore the algorithm de-s
ribed in [94℄ for the 
onstru
tion of the ~W ~A results in lo
al expressionswhen applied in the present 
ase. This 
an be shown by means of argumentssimilar to those used within the dis
ussion of the examples in [94℄4.(7.2.40) implies that the s-transformations of those ~W 's whi
h 
orre-spond to the variables (7.1.19) 
an be obtained from the �-transformationsof the latter variables simply by substituting there ~W 's for the 
orrespondingW 's. For instan
e, this givessyi0 = 0; (7.2.41)sx�0 = �(Dx�)0 + ��( �Dx�)0 + " �0 + �" � �0 (7.2.42)where here and in the following a prime on a variable indi
ates a ~W -variable5.For instan
e, yi0 is the ~W -variable 
orresponding to yi and expli
itly givensDk�1 �DrC�i = �Dk �Dr �A�i + : : : .3The other derivatives of the anti�elds ��, ���, ��, ���, su
h as the ��k�r�� (k > 0), donot o

ur among the ~W(0)'s be
ause they are substituted for by the ~v's 
orresponding to��, ���, "�, �"� and their derivatives (e.g., one has s�� = ����� + : : : ).4In the present 
ase, the suitable `degrees' to be used in these arguments are the
onformal weights and the ghost number. Using these degrees one 
an prove that thealgorithm produ
es lo
al (though not ne
essarily polynomial) expressions: the resulting~W 's 
an depend nonpolynomially on the x�, yi and on the two parti
ular 
ombinations"���i and �"��i but they are ne
essarily polynomials in all variables whi
h 
ontain derivativesof �elds or anti�elds.5The 
onstru
tion of the ~W 's implies (�r�)0 = �r�, (��r��)0 = ��r��, (�r")0 = �r" and(��r�")0 = ��r�" be
ause the s-transformation of these ghost variables do not 
ontain any ~u'sor ~v's. This has been used in (7.2.42).
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by yi0 = yi + "���i � �"��i � �A�i + �� �A�i + ���C�i : (7.2.43)This very 
lose relation between s on the ~W -variables and � on the variables(7.1.19) would immediately imply H(s) ' H(�) if the ~W -variables (�r��)0,( ��r���)0, (�r��)0, ( ��r ���)0 were not present. Nevertheless the asserted isomor-phism (7.1.1) holds be
ause the 
onformal weights of the latter variables aretoo high so that they 
annot 
ontribute nontrivially to Hg(s) for g < 4. Toshow this we analyse H(s) along the same lines as H(�) in se
tion 7.1.The �rst step of that analysis givesH(s) ' HdR(GL+(2))
H(s; ~W);~W = f! : ! = !(w); (L0!; �L0!) = (0; 0)g: (7.2.44)This result is analogous to (7.1.22) and expresses that the zweibein gives theonly nontrivial 
ohomology in the subspa
e of ~u's and ~v's and that there isa 
ontra
ting homotopy for L0 and �L0 be
ause (7.2.40) impliesns ; ��(��) o ~W ~A = L0 ~W ~A ; ns ; ��(����) o ~W ~A = �L0 ~W ~A :
The 
onformal weights of ��0, ���0, ��0 and ���0 are (3=2; 0), (0; 3=2), (2; 0)and (0; 2), respe
tively.H(s; ~W) 
an be analysed by means of a de
omposition of s analogous tothe �-de
omposition in (7.1.24), using a 
ounting operator N 0 for all those~W 's whi
h have half-integer 
onformal weights,N 0 = N" +N�" +N 0 +N � 0 +N��0 +N���0 :The de
omposition of s readss =Xn�0 s2n ; [N 0; s2n℄ = 2n s2n :
Next we examine the s0-
ohomology. Analogously to (7.1.25) one hass0 = s0;0 + s0;1 ; [N" +N�" ; s0;0℄ = 0 ; [N" +N�" ; s0;1℄ = s0;1 :We now determine the 
ohomology of s0;1 along the lines of the investigationof the �0;1-
ohomology in appendix A.1 by inspe
ting the part of s0;1 whi
h
ontains the undi�erentiated ghost ". That part is the analog of �0;1;1 in(A.1.2) and takes the form " Ĝ0�1=2. Ĝ0�1=2 a
ts nontrivially only on the  0,��0 and their (
ovariant) derivatives a

ording toĜ0�1=2(Dr �)0 = (Dr+1x�)0 ; Ĝ0�1=2(�r��)0 = �(�r��)0
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We de�ne a 
ontra
ting homotopy B0 whi
h is analogous to the 
ontra
tinghomotopy B in appendix A.1,B0 =Xr�0 h(Dr �)0 ��(Dr+1x�)0 � (�r��)0 ��(�r��)0 i:Using B0 one proves that the fun
tions f 0r with r > 0 whi
h are analogousto the fun
tions fr in appendix A.1 
an be assumed not to depend on thevariables (Dr �)0, (Dr+1x�)0, (�r��)0 or (�r��)0.6 In the 
ase r = 0 one getsthat f 00 does not depend on (�r��)0 or (�r��)0, simply be
ause the 
onformalweights of these variables are too large [
f. the arguments in the text after(A.1.9)℄. This implies the analog of equation (A.1.11), with fun
tions f 0rand g0� whi
h may still depend on ( �Dr � �)0, ( �Dr+1x�)0, ( ��r ���)0 or (��r���)0.The dependen
e on these variables 
an be analysed analogously, using a
ontra
ting homotopy �B0 for these variables, along the lines of the remain-ing analysis in appendix A.1. One �nally obtains the following result forH(s0;1; ~W): s0;1! = 0; ! 2 ~W )! = h(y0; x0; C 0; ["; �℄; [�"; ��℄)+ �(Dx�)0h�(y0; x0; ��; C 0; [�"; ��℄)+ ��( �Dx�)0�h�(y0; x0; ����;C 0; ["; �℄)+ ���(Dx�)0( �Dx�)0h��(y0; x0; ��; ����;C 0)+ s0;1!̂(w); !̂ 2 ~W: (7.2.45)Hen
e, H(s0;1; ~W) is 
ompletely isomorphi
 to H(�0;1;W) (for all ghostnumbers). In parti
ular, the representatives do not depend on (�r��)0,( ��r ���)0, (�r��)0 or (��r���)0 [re
all that the reason is that the 
onformalweights of these variables are too high; if, for instan
e, ��0 had 
onformalweights (1; 0) instead of (2; 0) it had 
ontributed to (7.2.45) analogously to(Dx�)0℄. This implies the results announ
ed above: arguments whi
h are
ompletely analogous to those used to derive �rst (7.1.31) and then (7.1.34)lead tog < 4 : Hg(s; ~W) ' Hg(s0; ~W0); ~W0 = f! 2 ~W : N 0! = 0g: (7.2.46)Analogously to (7.1.33), the elements of ~W0 
an only depend on those w's6For this argument it is important that there is a �nite maximal value r of r. In the
ase of the �-
ohomology, r was bounded from above by the ghost number but now theghost number alone does not give a bound be
ause there are variables with negative ghostnumbers, the (�r��)0, (��r ���)0, (�r��)0 and (��r���)0. Nevertheless there is a bound be
ause!( ~W ) does not only have �xed ghost number but also vanishing 
onformal weights. Indeed,it is easy to show that this forbids arbitrarily large powers of " be
ause the (�r��)0 and(�r��)0 have ghost number �1 and 
onformal weights � 3=2.
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with 
onformal weights � 1, i.e.,!0 2 ~W0 , !0 = f(y0; x0; C 0; ��; ����; �(Dx�)0; ��( �Dx�)0; ��2�; �� ��2��):(7.2.47)Be
ause of (7.2.40), s0 takes exa
tly the same form in ~W0 as �0 inW0. Thisimplies (for all ghost numbers)H(s0; ~W0) ' H(�0;W0): (7.2.48)Be
ause of (7.2.46) and (7.1.34) (as well as (7.2.44) and (7.1.22)) this yields(7.1.1). (7.2.46) establishes also the equivalen
e between the 
ohomologiesof the superstring and the 
orresponding bosoni
 string at ghost numbers< 4 be
ause HdR(GL+(2))
H(s0; ~W0) is nothing but the s-
ohomology ofthe bosoni
 string.



Appendix A
Cal
ulations
A.1 Cohomology of �0;1 in WIn this appendix we 
ompute H(�0;1;W) where �0;1 is given in (7.1.26). The
o
y
le 
ondition reads �0;1! = 0; ! 2 W: (A.1.1)We de
ompose this equation into pie
es with de�nite degree in the undif-ferentiated supersymmetry ghosts ". �0;1 de
omposes into two pie
es, �0;1;0and �0;1;1, where �0;1;0 does not 
hange the degree in the undi�erentiated ",whereas �0;1;1 in
reases this degree by one unit. �0;1;1 reads�0;1;1 = " Ĝ�1=2 ; Ĝ�1=2 =Xr�0(Dr+1x�) ��(Dr �) : (A.1.2)
! 
an be assumed to have �xed ghost number and is thus a polynomial inthe undi�erentiated ",

! = rXr=r "rfr ; (A.1.3)
where fr 
an depend on all variables (7.1.19) ex
ept for the undi�erentiated". At highest degree in the undi�erentiated ", (A.1.1) implies �0;1;1("rfr) = 0and thus Ĝ�1=2fr = 0: (A.1.4)We analyse this 
ondition by means of the 
ontra
ting homotopyB =Xr�0(Dr �) ��(Dr+1x�) :

79
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The anti
ommutator of B and Ĝ�1=2 is the 
ounting operator for all variablesDr � and Dr+1x� (r = 0; 1; : : : ),fB; Ĝ�1=2g =Xr�0 h(Dr �) ��(Dr �) + (Dr+1x�) ��(Dr+1x�)i:Hen
e, (A.1.4) implies by standard arguments that fr is Ĝ�1=2-exa
t up toa fun
tion that does not depend on the Dr � or Dr+1x�,fr = Ĝ�1=2 gr + hr(y; x; C; [ �Dx; � ℄; [�"; �℄; [�"; ��℄) (A.1.5)where gr is a fun
tion that 
an depend on all variables (7.1.19) ex
ept for theundi�erentiated ", [ �Dx; � ℄ denotes 
olle
tively the variables �Dr+1x�; �Dr � �,and [�"; �℄ and [�"; ��℄ denote 
olle
tively the variables �r+1"; �r� and ��r�"; ��r��,respe
tively (r = 0; 1; : : : in all 
ases). We shall �rst study the 
ase r > 0[the 
ase r = 0 will be in
luded automati
ally below℄. (A.1.5) implies

r > 0 : ! = �0;1("r�1gr) + "r�1f 0r�1 + r�2Xr=r "rfr+"rhr(y; x; C; [ �Dx; � ℄; [�"; �℄; [�"; ��℄) (A.1.6)where f 0r�1 = fr�1 � �0;1;0 gr :The exa
t pie
e �0;1("r�1gr) on the right hand side of (A.1.6) will be ne-gle
ted in the following, i.e., a
tually we shall examine !0 := !��0;1("r�1gr)in the following. However, for notational 
onvenien
e, we shall drop theprimes (of !0 and f 0r�1) and 
onsider now
r > 0 : ! = r�1Xr=r "rfr + "rhr(y; x; C; [ �Dx; � ℄; [�"; �℄; [�"; ��℄) (A.1.7)

We have thus learned that, if r > 0, the pie
e in ! with highest degree inthe undi�erentiated " 
an be assumed not to depend on any of the variablesDr � or Dr+1x� (r = 0; 1; : : : ). As a 
onsquen
e, the �0;1-transformationof that pie
e does not depend on these variables either and �0;1! = 0, with! as in (A.1.7), implies Ĝ�1=2fr�1 = 0: (A.1.8)We 
an now analyse (A.1.8) in the same way as (A.1.4) and repeat thearguments until we rea
h an equationĜ�1=2f0 = 0 (A.1.9)
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where f0 is a fun
tion with 
onformal weights (0; 0) whi
h does not dependthe undi�erentiated " [note that fr has 
onformal weights (r=2; 0) be
ause"rfr has 
onformal weights (0; 0); if r had been zero, we had arrived at(A.1.9) immediately℄. The only way in whi
h f0 
an depend nontrivially onthe variables Dr � or Dr+1x� (r = 0; 1; : : : ) is through terms of the form� � �f��(y; x; ��; C; [ �Dx; � ℄; [�"; ��℄), ��" �f�(y; x; ��; C; [ �Dx; � ℄; [�"; ��℄), or�Dx�g�(y; x; ��; C; [ �Dx; � ℄; [�"; ��℄) [re
all that the only variables (7.1.19) withnegative L0-weights are the undi�erentiated � and " and that � is an anti-
ommuting variable℄. (A.1.9) implies f��(y; x; ��; C; [ �Dx; � ℄; [�"; ��℄) = 0 andf�(y; x; ��; C; [ �Dx; � ℄; [�"; ��℄) = 0. We 
on
ludef0 = �Dx�g�(y; x; ��; C; [ �Dx; � ℄; [�"; ��℄)+h0(y; x; C; [ �Dx; � ℄; [�"; �℄; [�"; ��℄) (A.1.10)We thus get the following intermediate result: without loss of generality we
an assume ! = Xr "rhr(y; x; C; [ �Dx; � ℄; [�"; �℄; [�"; ��℄)+�Dx�g�(y; x; ��; C; [ �Dx; � ℄; [�"; ��℄): (A.1.11)The only part of �0;1 whi
h is a
tive on su
h an ! is the part�̂0;1 =Xr�0 rXk=0�rk�(��k�" �Dr+1�kx�) ��( �Dr � �) :Note that �̂0;1 tou
hes only the dependen
e on the variables �Dr � �, �Dr+1x�and ��r�" (r = 0; 1; : : : ) and treats all other variables as 
ontants. Hen
e, for! as in (A.1.11), �0;1! = 0 implies�̂0;1hr(y; x; C; [ �Dx; � ℄; [�"; �℄; [�"; ��℄) = 0 8r;�̂0;1g�(y; x; ��; C; [ �Dx; � ℄; [�"; ��℄) = 0: (A.1.12)These equations are de
omposed into pie
es with de�nite degree in the un-di�erentiated �" and then analysed using the 
ontra
ting homotopy�B =Xr�0( �Dr � �) ��( �Dr+1x�) :By means of arguments analogous to those that have led to (A.1.11) we
on
lude that we 
an assume, without loss of generality,hr(y; x; C; [ �Dx; � ℄; [�"; �℄; [�"; ��℄) =Xq �"qhr;q(y; x; C; [�"; �℄; [ ���"; ��℄)+�� �Dx�gr;�(y; x; ����;C; [�"; �℄);g�(y; x; ��; C; [ �Dx; � ℄; [�"; ��℄) =Xq �"qh�;q(y; x; ��; C; [ ���"; ��℄)+�� �Dx�g�;�(y; x; C; ��; ����): (A.1.13)
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Sin
e the hr;q, gr;�, h�;q and g�;� do not depend on the fermions, they are�0;1-invariant. We have thus proved that (A.1.1) implies! = h(y; x; C; ["; �℄; [�"; ��℄)+�Dx�h�(y; x; ��; C; [�"; ��℄) + �� �Dx��h�(y; x; ����;C; ["; �℄)+���Dx� �Dx�h��(y; x; ��; ����;C) + �0;1!̂ (A.1.14)where the fun
tions on the right hand side (h, �Dx�h�, : : : , !̂) are ele-ments of W. Note also that the sum on the right hand side is dire
t: nononvanishing fun
tion h+ �Dx�h� + �� �Dx��h� + ���Dx� �Dx�h�� is �0;1-exa
tbe
ause the various terms either do not 
ontain variables Dr+1x� or �Dr+1x�at all, or they 
ontain Dx� but no ", or �Dx� but no �". Hen
e, our result
hara
terizes H(�0;1;W) 
ompletely.
A.2 Derivation of (7.1.31)We shall show that (7.1.30) implies (7.1.31). The proof is a 
ase-by-
asestudy for g = 0; : : : ; 4. Sin
e !k does not depend on the fermions andhas vanishing 
onformal weights, it 
an be assumed to 
ontain only termswith even N"-degree and even N�"-degree. Hen
e, it does not depend on thesupersymmetry ghosts if g = 0 or g = 1 whi
h gives (7.1.31) in these 
ases.If 2 � g � 4 the assertion follows from�0;0!k + �0;1!k�1 = 0; (A.2.15)whi
h is the se
ond equation in (7.1.29).g = 2: Only !k=2 
an depend on the supersymmetry ghosts. One has!k=2 = "�"a(X) + �"���"�a(X)where a(X) and �a(X) are fun
tions of the undi�erentiated x� and yi. �0;0!2
ontains for instan
e �(�")2a(X) and ��(���")2�a(X) be
ause �0;0" and �0;0�"
ontain ��" and �� ���", respe
tively. If a 6= 0 or �a 6= 0, these terms are not�0;1-exa
t be
ause they do not 
ontain derivatives of an x�. We 
on
ludethat a = 0 and �a = 0 and thus that (7.1.31) holds for g = 2.g = 3: Again, only !k=2 
an depend on the supersymmetry ghosts. Theterms in !k=2 depending on " or its derivatives are�"�2"a(X) + "�"��b(X) + "�"����
(X) + "�"Cidi(X)+�� �Dx�"�"e�(X) + �(�")2f(X) + �2�"2g(X): (A.2.16)In addition there are analogous terms with �" or its derivatives. A straight-forward 
al
ulation shows that (A.2.15) imposesb = 0; 
 = 0; di = 0; e� = ��a; f = a; g = �12 a (A.2.17)
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where a = a(X) is an arbitary fun
tion of the yi and x�. Using (A.2.17) in(A.2.16), the latter be
omes[�"�2"+ �� �Dx�"�"�� + �(�")2 � 12 �2�"2℄a(X)= �0["�"a(X)℄ + �0;1[��" ���a(X)℄: (A.2.18)This shows that all terms 
ontaining " or its derivatives 
an be removed from!k=2 by the rede�nition !0 = ! � �0["�"a(X) + ��" ���a(X)℄. Similarlyone 
an remove all terms 
ontaining �" or its derivatives. Hen
e, without lossof generality one 
an assume !k=2 = 0 whi
h implies (7.1.31) for g = 3.g = 4: Now !k=4 and !2 
an depend on the supersymmetry ghosts. Onehas !k=4 = "3�2"a(X) + "2(�")2b(X) + �"3 ��2�"�a(X)+�"2(���")2�b(X) + "�"�"���"
(X):The fa
t that �0;0�2" 
ontains �(1=2)"�3� implies a = 0. Analogously one
on
ludes �a = 0. The fa
t that �0;0�" and �0;0 ���" 
ontain ��2" and �� ��2�",respe
tively, implies b = 0, �b = 0 and 
 = 0.!2 is of the form PA(ghosts;Dx�; �Dx�)aA(X) where the PA either de-pend on " and its derivatives, or on �" and its derivatives. The 
omplete listof polynomials PA depending on " and its derivatives is���"�2"; ���(�")2; �2���"2; ��2�"�"; ��3�"2;�� �Dx��"�2"; �� �Dx��(�")2; �� �Dx���"�"; �� �Dx��2�"2;� ����"�2"; � ����(�")2; �� ��2��"�"; �� ����"�"; �2� ����"2; �� �Dx� ����"�";�Ci"�2"; �Ci(�")2; ��Ci"�"; �2�Ci"2; ����Ci"�"; �� �Dx�Ci"�"; CiCj"�";Starting with the terms"�2"���A1(X) + (�")2���B1(X) + "2���2�E2(X) (A.2.19)one �nds that (A.2.15) implies A1(X) = B1(X) = 2E2(X). Considering theterms "�"��2�B5(X) + "2��3�E1(X)+"�2"��� �Dx�A4;�(X) + (�")2��� �Dx�B4;�(X)+"�"���� �Dx�C4;�(X) + "2�2��� �Dx�E6;�(X); (A.2.20)one observes that the �0 transformation of these terms neither 
ontain ��k��or ��k�" terms nor U(1) ghosts. Thus they have to ful�ll (A.2.15) separatelyand one obtainsC4;�(X) = ���A1(X)B4;�(X) = ���B5(X) + ��A1(X)� 2E6;�(X)A4;�(X) = �2��E1(X)� 2E6;�(X):
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Eliminating the 
oeÆ
ients one �nds that (A.2.19) + (A.2.20) 
an be ex-pressed by �0��(�")2(B5(X)�A1(X)) + �"�2"E1(X)+"�"��A1(X)� 2"�"�� �Dx�E6;�(X)�+�0;1�� ����" ���A1(X)� 2����" �Dx� ���E6;������" �Dx� �
���E6;��; (A.2.21)where we have used the on-shell equality (7.1.15). Next we 
onsider theterms involving derivatives of ��"�2"� ����A2(X) + (�")2� ����B2(X) + "�"�� ��2��B6(X)+"�"�� ����B7(X) + "2�2� ����E3(X) + "�"������ �Dx�C5;�(X); (A.2.22)whi
h implies via (A.2.15)B7(X) = 0; A2(X) = B6(X) = B2(X) = �2E3(X);C5;�(X) = ���A2(X): (A.2.23)Thus (A.2.22) 
an be written as�0 �"�"����A2(X)�� �0;1 ��"����� ���A2(X)� (A.2.24)and thus be removed from !2. In the last step we 
onsider 
ontributions
ontaining U(1) ghosts, i.e."�2"�CiA3;i(X) + (�")2�CiB3;i(X) + "�"��CiB8;i(X)+"2�2�CiE4;i(X) + "�"����CiB9;i(X)+"�"Ci�� �Dx�C6;�i(X) + "�"CiCjB10;ij(X): (A.2.25)(A.2.15) imposes B10;ij(X) = B9;i(X) = B8;i(X) = 0. Furthermore wederive the 
onditionsA3;i(X) = B3;i(X) = �2E4;i(X) C6;�i(X) = ���A3;i(X): (A.2.26)Using the on-shell equality (7.1.14), (A.2.25) 
an be written as�0 �"�"CiA3;i(X)�+ �0;1��"Ci� ���A3;i(X)��"��� � �Dx�(
��i �
���G�i)A3;i(X)�: (A.2.27)Hen
e, as in the 
ase g = 3 one �nds that (A.2.15) implies !2 = �0(: : : ) +�0;1(: : : ) whi
h implies (7.1.31) for g = 4.



Appendix B
Analysis of Bian
hi identities
In this appendix we summarize brie
y the investigation of the Bian
hi iden-tities for two-dimensional supergravity 
oupled to Maxwell theory. Thestarting point is the stru
ture equation[DA;DBg = �TABCDC �RABÆL � FABiÆi; (B.0.1)where [�; �g denotes the graded 
ommutator, fDAg = fDa;D�g 
ontains the
ovariant derivatives Da and 
ovariant supersymmetry transformations D�,ÆL = (1=2)"ablab is the Lorentz generator and Æi are the U(1) generators(represented trivially in our 
ase). The \torsions" TABC , \
urvatures" RABand \�eld strengths" FABi are generi
ally �eld dependent and determinedfrom the Bian
hi identities implied by (B.0.1). Using the 
onstraints (3.2.6)and (3.2.7) one obtains for the torsionsT��a = 2i(
aC)��Ta�� = 14 S(
a)��Tab� = i4 "ab(C
�)��D�S; (B.0.2)where S is the auxiliary s
alar �eld of the gravitational multiplet. For the
urvatures one obtains R�� = iS(
�C)��Ra� = i2 (
a
�)��D�SRab = 14 "ab(S2 +D2S); (B.0.3)and the �eld strengths are given byF��i = 2i(
�C)���iFa�i = (
a)���i� : (B.0.4)

85
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The supersymmetry transformations of �i� and F iab turn out to beD��i� = i(
a
�C)��Da�i + i2 (
�C)��"abF iba + i2 (
�C)��S�iD�F iab = �(
bDa�i)� + (
aDb�i)� + 12 "abD�S�i+12 "abS(
�)�Æ�iÆ: (B.0.5)Introdu
ing the 
orresponding 
onne
tion 1-forms and pro
eeding along thelines of [82℄ one identi�es the 
ovariant derivatives Da in terms of partialderivatives and 
onne
tions, and the 
urvatures, �eld strengths and torsionswith two lower Lorentz indi
es in terms of the 
onne
tions and the other�eld strengths. Owing to the 
onstraint Tab
 = 0 this yields the expression(3.2.3) for the spin 
onne
tion. Furthermore one obtainsFabi = EanEbm(�nAim � �mAin � (�m
n�i) + (�n
m�i)� 2i(�m
�C�n)�i)and the expression for Tab� 
an be used to express the supersymmetry trans-formation of the auxiliary �eld S asD�S = 4i(
�C)��"nmrm�n� � i(
mC)���m�S:The full BRST transformations (3.2.2), (3.2.4) and (3.2.5) are then obtainedby adding the Weyl transformations by hand and imposing s2 = 0 on all�elds. To a
hieve this in an o�-shell setting, one introdu
es the super-Weylsymmetry on the gravitino and the gaugino and the lo
al shift symmetry ofthe auxiliary �eld S.



Appendix C
BRST transformations
C.1 BRST transformations of super
onformal ten-sor �eldsThis appendix 
olle
ts the BRST transformations of the super
onformaltensor �elds and 
orresponding ghost variables derived in se
tion 3.3. Thetransformations of the undi�erentiated �elds reads� = ��� � ""s�� = �� ���� � �"�"s" = ��"� 12 "��s�" = �� ���"� 12 �"����sCi = ���F i + ��"�i + ��"��i + "�"�̂isXM = (�D + �� �D)XM + " M + �" � Ms M = (�D + �� �D) M + 12 �� M + "DXM � �"F̂Ms � M = (�D + �� �D) � M + 12 ���� � M + �" �DXM + "F̂MsF̂M = (�D + �� �D)F̂M + 12 (�� + ����)F̂M + "D � M � �" �D Ms�̂i = (�D + �� �D)�̂i + 12 (�� + ����)�̂i + "�i + �"��is�i = (�D + �� �D)�i + (�� + 12 ����)�i + "D�̂i + �"F i + �"�̂is��i = (�D + �� �D)��i + (12 �� + ����)��i + �" �D�̂i � "F i + ���"�̂isF i = (�D + �� �D)F i + (�� + ����)F i � "D��i + �" �D�i � �"��i + ���"�iThe s-transformations of 
ovariant D or �D derivatives (of �rst or higherorder) of a �eld are obtained by applying D's and/or �D's to the transforma-tions given above, using the rules D� = ��, D�� = 0, D" = �", D�" = 0 et
,

87



Appendix C. BRST transformations 88
as well as [D; �D℄ = 0. E.g., one getssDXM = (�D + �� �D)DXM + ��DXM + "D M + �"D � M + �" Ms �DXM = (�D + �� �D) �DXM + ���� �DXM + " �D M + �" �D � M + ���" � MsD �DXM = (�D + �� �D)D �DXM + (�� + ����)D �DXM+"D �D M + �"D �D � M + �" �D M + ���"D � MsD M = (�D + �� �D)D M + 32 ��D M + 12 �2� M+"D2XM + �"DXM � �"DF̂Ms �D � M = (�D + �� �D) �D � M + 32 ���� �D � M + 12 ��2�� � M+�" �D2XM + ���" �DXM + " �DF̂Ms �D M = (�D + �� �D) �D M + 12 �� �D M + ���� �D M+"D �DXM � ���"F̂M � �" �DF̂MsD � M = (�D + �� �D)D � M + ��D � M + 12 ����D � M+�"D �DXM + �"F̂M + "DF̂M
C.2 BRST transformations of super
onformal an-ti�eldsIn this appendix we present the full s transformations of the super
onfor-mal anti�elds asso
iated with the matter and gauge multiplets, using thefollowing notation:GMN := H(MN)(X)Di := Di(X)
KNM := �KHMN (X)� �MHKN (X) + �NHKM (X)= 2�KNM �HKNM (HKNM = 3�[KHNM ℄)RKLMN := �M�[KHL℄N (X)� �N�[KHL℄M (X)= 12 (�K
LMN � �L
KMN ) = 12 (�M
KNL � �N
KML):
KNM and RKLMN enjoy the following properties:
KMN +
KNM = 
MKN +
NKM = 2�KGMNRKLMN = �RLKMN = �RKLNM ; �[JRKL℄MN = 0:
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The full BRST transformations of the undi�erentiated super
onformal mat-ter anti�elds aresF �M = ��̂i�MDi + 2GMN F̂N +  K � N
KNM+(�D + �� �D)F �M + 12 (�� + ����)F �M � " � �M + �" �Ms �M = ��i�MDi + � N �̂i�N�MDi + 2GMN �D N+ �DXN K
KNM � F̂N � K
MKN �  K � N � LRKMLN+(�D + �� �D) �M + (12 �� + ����) �M + "X�M + �" �DF �M + ���"F �Ms � �M = ��i�MDi �  N �̂i�N�MDi + 2GMND � N+DXN � K
NKM + F̂N K
KMN +  K L � NRLKMN+(�D + �� �D) � �M + (�� + 12 ����) � �M + �"X�M � "DF �M � �"F �MsX�M = �2GMND �DXN �DXK �DXL
KLM + F̂K F̂L
MKL+D � K � L
MLK �  K �D L
KML+DXN � K � LRNMLK + �DXN K LRLKNM+F̂N K � L�M
KLN + 12  R K � N � L�MRKRLN+F i�MDi � ( N ��i � � N�i + F̂N �̂i +  N � K �̂i�K)�N�MDi+(�D + �� �D)X�M + (�� + ����)X�M+"D �M + �" �D � �M + �" �M + ���" � �MThe s transformation of the super
onformal anti�elds for the gauge multipletread s��i = � M�MDi+(�D + �� �D)��i + 12 ������i + "��i � �" �A�is���i = � M�MDi+(�D + �� �D)���i + 12 �����i + �"��i � "A�is��i = �F̂M�MDi �  M � N�N�MDi+(�D + �� �D)��i + 12 (�� + ����)��i+"D��i + �" �D���i � "�"C�isA�i = �DXM�MDi+(�D + �� �D)A�i + ��A�i+�"D��i � "D���i � �"���i � �"�"C�is �A�i = �DXM�MDi+(�D + �� �D) �A�i + ���� �A�i+" �D���i � �" �D��i � ���"��i � ""C�isC�i = �D �A�i � �DA�i + (�D + �� �D)C�i + (�� + ����)C�iThe BRST transformations of 
ovariant derivatives of the 
ovariant anti�elds(su
h as sDX�M ) are obtained from the above formulae by means of the rulesdes
ribed in appendix C.1.
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