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Z s f ss

Die Suche nach einer vereinheitlichten Theorie aller Naturkrafte ist eines
der Hauptziele der modernen Physik. Die Stringtheorie ist zur Zeit der
vielversprechendste Kandidat fiir eine solche Theorie. Sie vereint nicht nur
die Gravitation mit den Kraften des Elektromagnetismus und der starken
und schwachen Wechselwirkung, sondern sie vereint auch die fundamentalen
Bausteine der Natur in ein einziges Objekt, ndmlich eine schwingende Saite,
den String.

Mitte der neunziger Jahre hat die “zweite String-Revolution” gezeigt,
dass sich die fiinf bis dahin bekannten und als unterschiedlich betrachteten
Stringtheorien als verschiedene Limiten einer einzigen fundamentalen Theo-
rie verstehen lassen. Die verschiedenen Versionen dieser fundamentalen The-
orie sind durch ein Netz von Abbildungen, genannt Dualitdten, miteinan-
der verbunden. In diesem Zusammenhang spielen nicht storungstheoretis-
che, ausgedehnte Objekte, sogenannte D-branes, eine herausragende Rolle.
Von besonderem Interesse ist die sogenannte Selbst-Dualitat der Typ II-
B Stringtheorie. Die zugehorige Dualitatstransformation (SL(2,7Z)) bildet
eine Theorie geschlossener (fundamentaler) Strings auf eine Theorie von
D(irichlet)-Strings ab.

In dieser Arbeit werden allgemeine Modelle von fundamentalen Strings
und Dirichlet-Strings in der NSR Formulierung mit den Methoden der BRST
Kohomologie untersucht. Diese Methode hat sich im Zusammenhang mit
der Beschreibung von Eichtheorien als duflerst niitzlich erwiesen. Sie fafit
wesentliche Eigenschaften der Eichsymmetrie in eine einzige nilpotente An-
tiderivation zusammen. Diese Antiderivation wird BRST Differential genannt.
In den Kohomologiegruppen des BRST Differentials sind wichtige physikalis-
che Informationen iiber einer Eichtheorie enthalten, sowohl die Ebene der
klassischen Physik als auch die der Quantenphysik betreffend.

Die Klasse der untersuchten Theorien wird durch ihren Feldinhalt und
die auferlegten Eichsymmetrien definiert. Im besonderen wird Invarianz
unter lokaler N = 1 Supersymmetrie verlangt. Durch die Einfiirung einer
geeigneten Basis der Felder 148t sich die Berechnung der Kohomologiegrup-
pen auf die Betrachtung superkonformer Tensorfelder und geeignet definierter
Geistfelder einschranken. In einem ersten Schritt der Kohomologie wird die
allgemeinste Wirkung fiir diese Klasse von Modellen berechnet. Im Falle der



D-String Modelle wird die bekannte Superstring Wirkung um einen U(1)
Anteil erweitert. Die so erginzte Wirkung 148t sich in einem erweiterten
Target-Raum interpretieren.

Die allgemeinste Wirkung bestimmt die Transformationen der fiir die
weitere Analyse wichtigen Antifelder unter der Einwirkung des BRST Dif-
ferentials. Mit den vollstindigen BRST Transformationen der Felder und
Antifelder werden die globalen Symmetrien der betrachteten Modelle klas-
sifiziert und an einem vereinfachten Beispiel veranschaulicht. Es zeigt sich,
dass im Falle der D-String Modelle die globalen Symmetrien durch jene der
fundamentalen Superstring-Modelle nicht ausgesch6pft werden. Es treten
nichttriviale Symmetrien der zusitzlichen Target-Raum Dimensionen auf
und die Isometrien des “standard Target-Raumes” werden um Dilatationen
erweitert.

Im folgenden wird gezeigt, dafl alle physikalisch relevanten Kohomolo-
giegruppen der betrachteten supersymmetrischen Modelle zu jenen der rein
bosonischen Modelle (Modelle ohne Supersymmetrie) isomorph sind. Dieses
Ergebnis ist tiberraschend, zeigt es doch, dafl die lokale N = 1 Super-
symmetrie keinen Einflu} auf die Kohomologie des BRST Differentials hat
und somit auch auf wesentliche physikalische Eigenschaften der betrachteten
Modelle nicht einwirkt. Dies steht im Gegensatz zu Theorien mit “mehr”
Supersymmetrie. So ist bekannt, dass lokal N = 2 supersymmetrische
Stringtheorien die Struktur der zugrundeliegenden Raum-Zeit Mannigfaltig-
keiten auf sogenannte Kahler-Mannigfaltigkeiten einschranken.
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Why Strings?

String theory [1-3] is a promising candidate for a consistent theory of all
forces of nature. It combines a number of ideas that have been put for-
ward in search for a unified theory, like compactification of extra dimensions
(Kaluza-Klein mechanism), grand unification and supersymmetry. More-
over, string theory necessarily contains a massless spin-2 state, i.e., it con-
tains gravity. All of these features of the theory arise from the simple idea
to replace the standard point particle by one dimensional objects, namely
strings. This might raise the question, why not two dimensional objects,
called membranes, or even higher dimensional objects (“p-branes”)? The
answer to this question is, as in most cases in string theory, given by math-
ematical consistency. Only for one-dimensional objects the mathematical
structure seems to control the difficulties arising from divergences, both
space-time and internal. Nevertheless, the idea of higher dimensional objects
reappears in several ways and plays an outstanding role in the description
of string theory at strong coupling.

Until the mid nineties the existence of five different consistent string the-
ories puzzled the scientific community and disappointed those, who claimed
the absolute uniqueness of string theory. This was related to the limited un-
derstanding of string theory in terms of perturbation theory, the interaction
of few strings at weak coupling. The increasing insight into the dynamics of
strings at strong coupling resolved this unsatisfactory situation in an elegant
way. It turned out that the seemingly different consistent string theories at
weak coupling are merely different limits in the space of vacua of a single
underlying theory, thereby relating different weakly coupled string theories
by dualities. By now a web of dualities connects the different string theories
and the eleven dimensional “M-theory”.
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Why D-branes?

An essential ingredient in the understanding of nonperturbative effects in
string theory is the appearance of new extended objects, D-branes [5, 6].
These dynamical objects have the simple interpretation as objects on which
strings can end. The massless states, which correspond to D-brane modes
arising from an open string attached to it, give rise to a vector field living on
the world volume of the D-brane and a number of scalars describing the em-
bedding of the brane into space-time. Thus D-branes are closely related to
gauge theories and a fruitful interplay between gauge theory, the geometry
of D-branes and string theory has been the origin of many insights in recent
years. D-branes provide a remarkably simple description of nonperturbative
phenomena, since they have the correct properties to fill out duality multi-
plets and a highlight of “D-brane physics” is the application to the quantum
mechanics of black holes.

An especially interesting case of strong-weak duality in string theory is
the conjectured self duality of type IIB theory. The dual objects to the
fundamental string are conjectured to be D-strings. They have the same
massless excitations (recall that a gauge field in two dimensions has no dy-
namics), but they are different objects. Especially their tensions are different
with their quotient given by the string coupling. At weak coupling the fun-
damental string is much lighter than the D-string, while at strong coupling
the situation is reversed. Thus one is naturally led to the conclusion that the
theory at weak coupling is the same as at strong coupling, with the réle of
the fundamental string and the D-string reversed. The corresponding dual-
ity transformation is conjectured to be the integer subgroup of the SL(2,R)
symmetry of the low energy IIB supergravity. It acts on (p, q) strings, i.e,
the bound states of p fundamental strings with ¢ D-strings, and is believed
to be an exact symmetry of the theory.

It is well known that the tension of a super-p-brane may be generated
dynamically as the flux of a world volume p-form gauge field [7, 8]. This sug-
gests to combine the gauge field of the D-string and the tension-generating
gauge field into an SL(2,R) doublet [9, 10]. The result is a twelve dimen-
sional theory. The idea to construct manifestly duality invariant actions
for strings and branes has been taken up by several authors in a variety of
contexts [11-18].

Why BRST cohomology?

Gauge invariance is a basic principle in models of fundamental interactions.
The BRST formalism, first established by Becchi, Rouet and Stora [19-21],
provides an extremely useful tool for dealing with gauge symmetries. It
encodes the gauge symmetry and its properties in a single antiderivative,
usually denoted by s, which is strictly nilpotent on all the fields and in
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its extension to the so-called field-antifield formalism also on the antifields.
This antiderivative is called BRST differential. The nilpotency of the BRST
differential defines the BRST cohomology in the space of local functions of
the fields and antifields, which is the space of all BRST closed functions w,
sw = 0, modulo BRST exact functions. A function w is called BRST exact,
if it lies in the image of s, i.e., w = sn. Due to the nilpotency of s BRST
exact functions are automatically closed.

The cohomology of the BRST differential captures important physical
information on the quantum level as well as on the classical. In fact this was
realized at first at the quantum level, where it turns out to be a useful tool
in the perturbative renormalization of quantum field theories. Quantizing a
gauge theory usually starts with fixing a gauge. The BRST symmetry then
becomes a substitute for gauge invariance. The applications of BRST meth-
ods at the quantum level include the classification of candidate anomalies,
the determination of gauge invariant counter terms, and the renormaliza-
tion of composite, gauge-invariant operators in the context of the operator
product expansion.

The relevance of the BRST cohomology at the classical level has been
realized more recently. At negative ghost number the BRST cohomology
is isomorphic to the “characteristic cohomology”. This cohomology gener-
alizes the notion of conserved currents and involves necessarily antifields,
since these are the only elements with negative ghost number. Another im-
portant application of BRST methods at the classical level is the relation
to deformation theory. This is of interest for the construction of consistent
interactions and the proof of their uniqueness up to field redefinitions.

For all of the physical questions above, a complete treatment of the
problem in the language of the BRST formalism requires the consideration
of antifields. In the following fifteen years after the initiation of the inves-
tigation of the BRST cohomology with the seminal papers [19-21] many
results on the antifield independent cohomology were established. However,
the antifield dependent problem remained largely untouched. Originally the
antifields were considered as sources for the BRST variations of the fields.
This point of view was apt for the purposes of renormalization of gauge
theories but obscured their central role for cohomological calculations. The
novel interpretation of the antifields as being associated to the equations of
motion and thereby implementing them into the cohomological problem in
an algebraically well defined way opened the road to new progress. This
interpretation originates from the Hamiltonian formulation of the BRST
symmetry [22-24]. There the antifields are regarded as the momenta con-
jugate to the ghosts. The implementation of the equations of motion via
the so-called Koszul-Tate differential is essential for the generalization of the
BRST construction to the case where the gauge algebra closes only on-shell.
In its present form the antifield formalism was established in [25-27].

For an introduction to the BRST formalism see the book of Henneaux
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and Teitelboim [28] and the reviews on the antifield formalism [29] and on
the applications of BRST cohomology in the context of gauge theories of
Yang-Mills type [30], where also an extensive list of the relevant literature

can be found.

Outline of the thesis

Motivated by the considerations discussed above we present in this thesis a
BRST cohomological analysis of superstring models in the NSR formulation
[31-33] with local (1,1) supersymmetry [34, 35] including an arbitrary num-
ber of abelian gauge fields. The class of models under study is quite general
since it is characterized only by requirements on the field content and the
gauge symmetries. In particular it contains both, models of fundamental
superstrings and of their SL(2,Z) dual D-strings, but it is not restricted to
them.

As a first step of the cohomological analysis all local world-sheet ac-
tions compatible with these requirements are determined. This analysis is
accomplished by a cohomological computation in the space of local func-
tions which do not depend on antifields (this is possible because we use a
formulation in which the commutator algebra of the gauge transformations
closes off-shell). Its result has been reported and discussed already in [36]:
when abelian gauge fields are absent, the cohomological analysis reproduces
the general superstring action found already in [37]; in presence of abelian
gauge fields, it yields locally supersymmetric extensions of the purely bosonic
actions derived in [38, 39] and may be interpreted in terms of an enlarged
target space with one ‘frozen’ extra dimension for each gauge field. In partic-
ular there are locally supersymmetric actions of the Born-Infeld type among
these actions [36].

The second step of the cohomological analysis investigates the local
BRST cohomology, denoted by H(s) throughout the thesis, for the mod-
els whose world-sheet actions were determined by the first step. The action
is needed to fix the BRST transformations of the antifields. Our analysis
is general except for a very mild assumption (invertibility) on the “target
space metric”.

We explicitly compute the cohomology groups with ghost numbers 0 and
1, which contain the information on the rigid symmetries and dynamical con-
servation laws and discuss the results for a simplified model. In view of a
possible interpretation of the actions in terms of a twelve dimensional theory
(in the case of two abelian world sheet gauge fields), it is interesting that
the symmetries of the super-D-string action are not exhausted by the isome-
tries of the ten-dimensional standard superstring target space. Additional
symmetries are possible, acting nontrivially also on the extra dimensions.
Interestingly the solutions to the superstring BRST cohomology at ghost
numbers 0 and 1 are already characterized by their purely bosonic coun-
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terparts. This suggests the conjecture that the cohomology groups of the
supersymmetric models are in one to one correspondence with those of the
purely bosonic models.!

That this is indeed the case, at least for the physically interesting coho-
mology groups, is the subject of the last part of this thesis. We shall prove
that the cohomology groups of H(s) at ghost numbers g < 4 are isomor-
phic to their counterparts in the corresponding bosonic string models? [the
bosonic model corresponding to a particular superstring model is obtained
from the latter simply by setting all fermions to zero in the world-sheet
action]. Furthermore, the correspondence is very explicit: the representa-
tives of the s-cohomology of a superstring model are simply extensions of
their “bosonic” counterparts, i.e., they contain the representatives of the
s-cohomology of the corresponding bosonic string model and complete them
to s-cocycles of the superstring model [analogously to the superstring action
itself, which contains the bosonic string action and completes it to a locally
supersymmetric one].

This result provides a complete characterization of the cohomology groups
HY(s), g < 4 because the cohomology H(s) for the bosonic string models
has been completely determined in [40] (ordinary bosonic strings) and [39]
(bosonic strings with world-sheet gauge fields). In particular, this implies
that the nontrivial Noether currents, global symmetries, consistent deforma-
tions, background charges and candidate gauge anomalies of an NSR super-
string model with (1,1) supersymmetry are in one-to-one to correspondence
with those of the bosonic string model. The results for the bosonic models
were derived and discussed in detail in [38—42]. We shall not repeat or sum-
marize these results here, but we shall briefly comment on the relevance of
our results to the deformation problem at the end of section 4.1.

The result is quite remarkable and surprising since it means that the
local (1,1) supersymmetry of the models under study has no effect on the
structure of the cohomology at alll We note that our analysis and result
applies analogously to models with less supersymmetry, notably heterotic
strings with local (1,0) supersymmetry (by switching off one of the super-
symmetries). However, we do not expect that it extends to superstrings with
two or more local supersymmetries of the same chirality, such as heterotic
strings with local (2,0) supersymmetry. These supersymmetries restrict al-
ready the world-sheet action to special backgrounds [43-45]. Accordingly,
we expect that the local BRST cohomology of such superstring models is
“smaller” than the one for corresponding bosonic strings.

The thesis is organized as follows. In section 2 we give a lightning review

'Indeed already the different supersymmetric world sheet actions are parametrized by
the same “target space functions” as the bosonic actions.

2We believe that the isomorphism extends to all higher ghost number sectors as well
since most parts of our proof (in fact, everything except for the case-by-case study in
appendix A.2) hold for all ghost numbers.
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of string theory with special emphasis on the relevance in view of “D-brane”
physics. In particular we explain that the existence of D-branes is required
by consistency of string theory with T-duality. Furthermore, we summa-
rize some well known results on strings in background fields and finally we
discuss the emergence of noncommutative geometry from open strings in
background fields. For the case of general backgrounds we give a Kont-
sevich type product and discuss its properties in the context of conformal
invariance. In the following sections we turn to the BRST cohomological
analysis of superstrings and D-strings.

In section 3.2 we specify the field content and the gauge symmetries of
the models under consideration. The BRST transformations of the fields
corresponding to the gauge symmetries are given. In section 3.3 we con-
struct field variables (jet space coordinates) that are well suited for the
cohomological analysis. This involves the super-Beltrami parametrization
for the gravitational multiplet and a construction of superconformal tensor
fields for the matter and gauge multiplets. In section 4 the first part of
the cohomological analysis is carried out. We determine the most general
action for the field content and gauge transformations introduced before by
computing H?(s) in the space of antifield independent local functions.

In section 5 we introduce the antifields, give their BRST transformations
and extend the superconformal tensor calculus by constructing supercon-
formal antifield variables. The explicit analysis of the antifield dependent
cohomology at ghost numbers 0 and 1 is carried out in chapter 6. A detailed
calculation is given and the results are discussed for a simplified model.

Then we turn to the general proof of the one to one correspondence of
the BRST cohomology H(s) to the purely bosonic one at ghost numbers
g < 4. In section 7.1 we define and analyze an on-shell BRST cohomology
H(o); in section 7.2 we show that H9(o) is isomorphic to HY(s) and to
the cohomology of the corresponding bosonic string model when g < 4.
Some details of the analysis of sections 7.1 and 7.2 are collected in the
appendices A.1 and A.2. The remaining appendices give a short summary
of the derivation of the gauge transformations from the supergravity Bianchi
identities and contain a collection of the s-transformations of the covariant
(= superconformal) field and antifield variables.
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This chapter is devoted to a lightning review of string theory. Due to its
rich structure it is hopeless to cover the subject in a self contained way
without restricting to certain subareas of the theory. Thus, we will focus
mainly on the basic concepts relevant for the topics discussed in the rest
of the thesis. Most of the material presented here can be found in any
introductory lectures on string theory and D-branes [1-4].

2.1 Open and closed strings

A bosonic string propagating in a D dimensional flat space-time is described
by the embedding functions X*(7,0), with 4 = 0,1,...,D — 1, of the two
dimensional “world-sheet” parameterized by 7 and o into “space-time”. In
analogy to the point particle case one can write down an action proportional
to the area of the world-sheet measured by the induced metric on the world
sheet. This action is called the Nambu-Goto action. It has the awkward
property of containing derivatives under the square root and is thus not
well suited for quantization. There is a fairly easy way to circumvent this
problem, by introducing an additional auxiliary metric ¢,,, on the world-
sheet, which is the analog to the einbein introduced for the point particle.
The resulting world sheet action, which is usually called Polyakov! action is
given by

1
Sp=— /dea\/—g 9" O X 0 X Ny, (2.1.1)
4o

where g denotes the determinant of the world-sheet metric. The factor in
front of the integral is proportional to the tension of the string written in
terms of the Regge? slope o/, which has the dimension of (space-time) length

!The action was in fact found by Brink, Di-Vecchia and Howe and Deser and Zumino.
Polyakov pointed out its relevance in the path integral quantization.

2String theory was originally proposed to be a theory of strong interactions. Meson
resonances obey a linear spin-mass relation, with o’ ~ (1GeV)™? being the slope of the

7
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squared. 7, is the space-time metric and g™" is the inverse of the world-

sheet metric. This action is classically equivalent to the Nambu-Goto action,
i.e., it gives rise to the same equations of motion.

The Polyakov action possesses a large number of symmetries, namely
D-dimensional Poincaré invariance

X'P = AP XV 4+ AH
g;nn = Ymn, (212)

where A*, is a Lorentz transformation and A* is a translation, two dimen-
sional diffeomorphism invariance

SXH = MY, XM
5gmn = glalgmn+(8m£l)gln+(an£l)glma (2-1-3)

for two parameters ¢!(7, o) and Weyl invariance

X' = Xx#
Ton = € g, (2.1.4)

Poincaré invariance is a consequence of taking space-time to be flat and is
a global symmetry in the world-sheet sense. Equation (2.1.2) states that
the embedding functions X (7, 0) simply transform as a vector, while the
world sheet metric is invariant. The invariance under two dimensional world
sheet diffeomorphisms and the invariance under local rescalings of the world-
sheet metric are nontrivial gauge symmetries. From equations (2.1.3) it
follows that X" (7,0) transforms as a scalar under local reparametrizations
of the world-sheet, while the metric transforms of course as a covariant rank
two tensor. These symmetries are essential features of the theory and in
section 3.2 we will use them, extended by additional gauge symmetries and
supplemented with a prescribed field content, to characterize the whole class
of models considered in the BRST cohomological problem. Moreover, they
are features of the classical theory and give interesting results when one tries
to retain them in a quantum theory. We will come back to this point later,
when we discuss strings propagating in background fields.

The equations of motion following from the variation of the Polyakov
action are

™™ = 0 (2.1.5)
Om (V/Gg™ O XM) = 0, (2.1.6)

trajectories. In string theory the parameter is of the order of the natural scale determined
by the fundamental constants of gravity and quantum mechanics, i.e., the inverse Planck
mass squared Mp>.
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where T™" is the world sheet energy momentum tensor. It is conserved
V,I™ = 0 as a consequence of reparametrization invariance and more-
over, Weyl invariance requires the energy momentum tensor to be traceless,
T»™ = 0. The second equation has to be supplemented with appropriate
boundary conditions. Taking the world-sheet to be parameterized such that
0 < o < 7' one has

open string : X'#(7,0) = X'"*(1,7) =0,
closed string : X'#(7,0) = X"*(7,7)
XH(1,0) = XH(1, )
Gran(,0) = Goun (7, 7), (2.1.7)

where a prime denotes the derivative with respect to o. Note that we have
introduced closed strings by imposing periodicity. The boundary conditions
for the open string are the standard Neumann boundary conditions stated
more covariantly n™3d, X* = 0, where n™ is a vector normal to the bound-
ary. The boundary conditions (2.1.7) are the only ones that are compatible
with space-time Poincaré invariance and the equations of motion. If the con-
dition of Poincaré invariance is relaxed there are certain other possibilities,
which will become important in the context of D-branes, see section 2.2.
Their relevance and consistency was discovered in the context of T-duality.

The Polyakov action (2.1.1) defines a two dimensional field theory on the
string world-sheet. It describes D massless scalar fields X* coupled to the
metric g,,,. From the world-sheet point of view Poincaré invariance is an
internal symmetry acting on fields at fixed 7 and o. Amplitudes for space-
time processes are given in terms of matrix elements of this two dimensional
quantum field theory. In section 2.3 we will consider generalizations of the
Polyakov action, namely nonlinear sigma models.

2.2 D-branes

D-branes are extended objects defined by the fact that open strings may
end on them. The existence of such extended objects in string theory has
been uncovered in the context of T-duality [46, 47]. Let us review some of
the arguments.

Using two dimensional diffeomorphism invariance and Weyl symmetry,
which are three local or gauge symmetries, to fix the three independent
degrees of freedom of the world-sheet metric, we can at least locally choose
it to be of the form gmp = dmn. Furthermore, choosing complex coordinates
on the world sheet and mapping it to the complex plane one can write the
Polyakov action as

S d?2 0X*0X,,. (2.2.8)

- /
2T b
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The equations of motion then take the form
00X* =0, (2.2.9)

which implies that 0X* is holomorphic and 0X* is antiholomorphic. In
terms of the corresponding Laurent expansions the general solution is given
by

o 9 o 1 s
Xto=at =i e iy > ~(aha "+ ahE ")
n#0
= X'+ X4 (2.2.10)

for closed strings and for open strings

! Vi 1
XH = gh — i%p“ln\z\Q +iy/ % 27;0 —ali(z "2 ). (2.2.11)
n

The overall motion of the string is described by its center of mass position x*
and its momentum p*, which is identified with the zero mode of the Laurent
expansion of 9X* and 0X*. The mode expansions describe the oscillatory
degrees of freedom of the string.

T-duality for closed strings

Now consider closed strings in a target space with one compact dimension,
say X25. Let us work out the implications of the periodicity X% = X?° +
27 R for the solution to the equations of motion. We focus on the zero mode
contributions written in terms of the original variables

/ /
XH =gk + 3 -1y %(ag + a)T + 1/ %(ag — ap)o + (oscillators).

(2.2.12)

In the case of a non-compact dimension the term proportional to ¢ has

to vanish so that aff = &). The compact dimension allows an additional

solution. Running once around the closed string we get

/

XH(2,2) —)XH(Z,Z)—FQW\/%(QS —ap). (2.2.13)

But now X* need not be single valued under the change 0 — o + 27. It
can change by an integer multiple of 2rR. Furthermore the momentum

identified with p* = /5 (af + &fy) has to be an integer multiple of the

2a’

inverse radius of the compact dimension to ensure the single valuedness of



Chapter 2. String theory in a nutshell 11

exp(ip- X). Solving the two resulting equations for the compact dimension
X7 one finds

o5 o (n n wR\ o
° 2 \ R o )2 Pr
. o (n  wR o
(135 = 5 (E — 7) = EPR, (2214)

where n and w are integers. We conclude that in the case of a compact
dimension a whole tower of new states appears corresponding to a closed
string wound w times around the compact dimension. For a large radius R
of the compact dimension the momentum states are light and the winding
states are heavy, i.e., it costs much energy to excite them in the spectrum.
In the case of a small radius the situation is reversed. The momentum states
are heavy while the winding states are light.

One can push this further and ask what happens in the decompactifi-
cation limit R — oo and in the limit of R — 0. In the decompactification
limit the winding modes become infinitely massive and decouple from the
spectrum. The momentum states go over to a continuum of states. Indeed
this perfectly fits with what one should intuitively expect, namely to recover
the uncompactified situation. But what happens in the R — 0 limit? The
momentum states become infinitely heavy and decouple from the spectrum.
In the case of point particles this would be all we observe. The compacti-
fied dimension vanishes and we are left with one dimension less. But closed
strings behave quite differently. The winding states now form a continuum
and the uncompactified dimension reappears! In fact a theory of closed
strings compactified on a circle of radius R is dual to a theory compactified
on a radius 1/R, i.e., the spectrum is invariant under the exchange of n +» w
and R <> o//R. The fully interacting theory can be described in terms of
the T-dualized coordinate X'(z,z) = X(z) — X (z), which is a parity trans-
formation acting on the right moving part only. It has the same operator
products and energy momentum tensor, since the minus sign enters in all
these cases in pairs. The dual coordinate accounts only for the change in
the sign of the right moving zero mode in the conformal field theory, which
changes the spectrum from the theory with radius R to that of the theory
with radius 1/R. The theories are identical, one being written in terms of
X and one in terms of X'.

This duality is called T-duality and it is an exact symmetry of pertur-
bative closed string theory. This gives evidence to the idea of a minimal
length in string theory, namely the self dual radius R = v/o/. The same
considerations hold for toroidal compactification of several dimensions and
even for more general compactifications.
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T-duality and open strings

Something different has to happen in the case of open strings. This is clear,
since there is no conserved winding number for open strings. So in the
R — 0 limit there is no tower of winding states, which effectively generates
a dimension. Rather the situation is similar to the field theory case: the
states with nonzero momentum become infinitely heavy and decouple from
the spectrum and we are left with one dimension less. Now the puzzling
point in this story is that a theory of open strings necessarily contains closed
strings. After taking the R — 0 the open strings live in one dimension less
than the closed strings! The solution to this puzzle is that the endpoints of
the open strings are confined to a D — 1 dimensional hyperplane. Indeed the
interior of an open string cannot be distinguished from a closed string and
thus should still vibrate in all D dimensions just like a “real” closed string.

Let us work this out in more detail starting from the open string mode
expansion X#(z,z) = X#(z) + X*(z)

1

1 p
XH(z) = Ea:”—l—ix'“fia'p“lnz—l—i % —ahz™"
n#0
1 1 o 1
H(Z) — Zgh_ 2 _ia/ptlnz i = Zokzm
XH(z) 5T — 5% ia'p'Inz +1i 5 02 (2.2.15)

n#0

and consider the coordinate X2° compactified on a circle of radius R. The
T-dual coordinate is X'?%(z,2) = X2°(2) — X?°(%). Thus we get?

o 1
XP(z2) = &P —iap () +i T —al@ -z ")
n#0
1 .
= 2P 42 pPo + V2 —ae " sinno
n#0 "
1 .
R 21&’%0 + V2o —a?feﬂm sinno.  (2.2.16)
n
n#0

The essential point is the absence of a 7 dependence in the zero mode sector,
i.e. there is no momentum in the X’?® direction. The Neumann boundary
conditions 8, X = 0 are replaced by Dirichlet boundary conditions ;X = 0!
The oscillator terms vanish at the endpoints ¢ = 0,7 and the ends are
confined to

X'5(n) - X'*(0) = 27‘(‘6!’% = 2ra/nR. (2.2.17)

3After Wick rotating to Euclidean time 7 — —it and mapping the cylinder to the
complex plane one has z = exp(t + io) = exp(ioc™).
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The difference is an integer multiple of the radius of the dual dimension.
Thus we conclude that under T-duality the normal and the tangential deriva-
tive are exchanged

X% (2,2) = 0,X%(2) + 0: X%5(2) = 8,X'%(z, 2)
NX?(2,2) = 0,X%%(2) — 0:X2(2) = 9,X'%(z,2)  (2.2.18)

This gives a consistent picture of what happens in the T-dualized direction.
In all other directions the situation is not changed and the string endpoints
are still free to move. The 24 dimensional hyperplane to which the string
ends are confined are called a Dirichlet 24-brane or D24-brane for short. The
same picture goes through for any number of coordinates giving D-branes
of higher codimension.

It is natural to expect that these objects are really dynamical objects,
because in a theory containing gravity perfectly rigid objects do not exist.
Rather one expects the D-branes to fluctuate in shape and position. One can
work this out by looking at the massless spectrum of the theory. Massless
states arise from non-winding states because the string tension contributes
an energy to a stretched string. Sticking to the example of the D-24 brane
we find

at k>, V = 8, XHekX
B k>, V=8X%erX =5, X' PekX (2.2.19)

These are of course the same massless states as those of the original theory
but viewed from the dual theory. The first line in (2.2.19) is a gauge field
living on the D-brane with 25 components tangent to the brane depending
on the world volume coordinates of the brane. The second line, representing
the gauge field in the compact direction in the original theory, becomes the
position of the brane in the dual picture. From the D-brane world volume
point of view it is simply a scalar living there. Again this picture goes
through for several T-dualized directions. Now let us consider the meaning
of these modes. Let the value of the scalar vary while we move along the
brane. This corresponds to an embedding of the brane into the transverse
dimensions and thus determines the shape of the brane. The scalar thus
plays the same role as the coordinate function X*, which describes a string.
Recall that from the world-sheet point of view the X*’s are scalar fields!

The values of the gauge field background describe the shape of the D-
brane as a (possibly solitonic) background for the gauge degrees of freedom
and their quanta describe fluctuations about that background.

World-volume actions for D-branes

We started from open strings compactified on a circle and were naturally
led to the existence of extended objects on which open strings are allowed
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to end. Moreover, due to the presence of gravity we conclude that these
are in fact dynamical objects. Thus one might ask how the low energy
effective world-volume action looks like. This is easily answered taking into
account the discussion of the previous paragraph. The massless fields on
the brane world-volume are given by a gauge field A,, and a number of
transverse scalars corresponding to the position of the brane. Introducing
the corresponding world-volume fields £% one is led by direct analogy to the
string case to the following action for a single D-brane

Sp=-T, deP™e ®\/det(Gup + Bap + 21’ Fp), (2.2.20)
¥

where G4, and Bg, denote the pullback of the space-time metric and the
antisymmetric tensor field of the closed string background to the (p + 1)
dimensional D-brane world-volume. This is nothing but the analog of the
Nambu-Goto string action and is known as the Born-Infeld action for non-
linear electrodynamics. The dependency on B+ 2ma/F * can be understood
by the fact that in the open string action the B-field and the boundary
gauge field A are related by a space-time gauge invariance

Bu, = Buy +0uh, —0,A, A, — Ay — ——A,, (2.2.21)

2mwa!

which is preserved by the combination 27ra’.7:m, = By, + 27ra’FW. This is
invariant under both space-time gauge symmetries, the one mentioned above
and the U(1) gauge symmetry of A.

An interesting modification arises when one considers a number of co-
incident D-branes. Intuitively it is clear that additional massless degree
of freedom arise from strings ending on different branes. The U(1) gauge
symmetry is enhanced and becomes a non-abelian U(N) gauge symmetry,
where N is the number of coincident branes, and the gauge field becomes
an N x N matrix. The same happens to the collective coordinates for the
embedding of the D-branes. This is the first appearance of “noncommuta-
tive geometry” in terms of matrix coordinates. Again some insight into the
form of the low energy effective action can be gained by T-duality starting
from the Born-Infeld action.

As a concluding remark to this section we comment on the dilaton fac-
® in the Born-Infeld action and the brane tension Tp. The dilaton
dependency can be understood from the the fact that this is an open string
tree level effective action computed on the disk. The Dp-brane tension is
determined by T-duality (by a recursion relation) up to an overall normal-
ization. The actual value of the D-brane tension can be computed from the
exchange of a closed string between two D-branes and is of the order of the
inverse string coupling.

tor e~

4For convenience we will set 2ra’ = 1 in the following and reintroduce the explicit
dependency on o' where it is necessary.
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2.3 Strings in background fields

We have written down the Polyakov action (2.1.1) assuming that the strings
are propagating in an uncompactified flat target space with a Minkowskian
metric 7,,,. A first step towards a generalization is to consider the nonlinear
sigma model

1

4o

S = drdo/—g g™ O X 0, X" G (X)), (2.3.22)
with a nontrivial space-time metric G, (X). From the two-dimensional
world-sheet point of view this corresponds to a theory of D scalar fields
with field dependent couplings. That this is indeed a sensible choice can
be seen by considering an expansion around the flat background G, (X) =
N + huw (X), where hy, (X) is a small deviation from flat space. Inserting
this into the (Euclidean) path integral one finds a term

1

4o/

d?2 hy (X)0X*0X,. (2.3.23)

Setting hy, (X) o< (u exp(ik - X) with a symmetric polarization matrix (.
one is simply inserting a graviton vertex operator into the path integral.
The insertion of the full metric G, (X) corresponds to a coherent state of
gravitons. Generalizing this procedure to include other backgrounds of the
massless sting states one obtains for the closed string sector

1
S = — drdo/=g [¢"" Om X 0, X" G (X)

™D X 0, XV By (X) + o/ RPB(X)], (2.3.24)

where R(?) denotes the two-dimensional Ricci scalar associated with the
world-sheet metric gp,,. We have added terms corresponding to the antisym-
metric tensor field B, (X) and the dilaton ®(X). In the limit of small B and
® the vertex operators for these backgrounds are By, (X) x a,, exp(ik - X)
and ®(X) o« ¢exp(ik - X) with an antisymmetric polarization matrix a,.
Here some remarks are in order concerning the coupling of the dilaton.
Firstly one observes that this action is classically invariant under global
scale transformations but not under local Weyl transformations. The dila-
ton term breaks this invariance unless the dilaton is constant. Let us con-
sider a constant dilaton for the moment. Then the first and the third term
together look like the action for D massless scalars minimally coupled to
gravity in two dimensions. But there is no dynamics associated with the
world-sheet Ricci scalar appearing in the dilaton term. This is easily seen
from the Einstein equations in two dimensions, because Ry, — % Gmn R van-
ishes identically. However, the Hilbert action has a topological meaning. In
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the path integral a term

drdo/—g R, (2.3.25)

4o

where A for now is an arbitrary parameter, will give rise to a factor exp(—\y).
x denotes the Euler number of the string world sheet y = 2—2h—b—c¢, where
h,b,c are the numbers of handles, boundaries and crosscaps, respectively.
For open strings (2.3.25) is in fact modified. One then has to include the
extrinsic curvature on the boundary. For instance an open string tree level
diagram has the topology of the disk and will thus be weighted with a factor
exp(—A). The emission and reabsorption of an open string will be related
to a change in the Euler number of §y = —1. Relative to the tree level open
string diagram the amplitude for emitting an open string will be weighted
by a factor exp(A\/2), which we thus regard as the open string coupling. In
the same way one gets for the amplitude for emitting a closed string a factor
exp(A), which is regarded as the closed string coupling. Hence the coupling
constants in string theory are controlled by the Euler term in the action.
Now let us return to the situation for the constant dilaton background. From
the discussion above one might suspect that the string coupling is a free pa-
rameter, but this is not the case. Different values for the string coupling do
not correspond to different theories but to different backgrounds in a single
theory and the only free parameter in the theory remains the string tension.
Now before we turn to implications resulting from Weyl invariance let
us inspect some possible extensions for open string backgrounds. The most
general action for open strings coupling to massless background fields® is

1
- _ — mn I v
S=-1— Zdrdm/ 9[9™"Om X 00 X" G (X)
™D X0 XY By (X) + o' RA$(X)]
1 2
~5 8245 [27a’ A0, X" + o/ KD B (X)) (2.3.26)

We have included the extrinsic curvature of the boundary K () and the open
string gauge field A, with the vertex operator [, ds(,0; X" exp(ik - X),
where 0; denotes the tangential derivative to the world-sheet boundary 9%.
The Gauss-Bonnet term, which gives the Euler number, is now

1 R®2 4 1 K® =y (2.3.27)

47 » 2T oy ’ e
which explains the necessity to include the boundary curvature because the
dilaton determining the coupling constant must multiply the entire Euler
density.

5It is also possible to include other backgrounds, for instance for the tachyon field or
higher order tensor fields corresponding to massive spin > 2 modes. For closed strings the
term corresponding to the tachyon is S = — 2 [drdo/~gT(X).
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To define a consistent string theory the action (2.3.26) has to be Weyl
invariant, both classically and as a quantum theory. This is related to the
tracelessness property of the two dimensional energy momentum tensor. For
the closed string sector one finds [1-3]

m 1 G mn v 1 B _mn v 1 P (2
T = 5 Bud™" Om X 0n XY — B e O X0, XY — R®),
(2.3.28)

where the coefficient functions are the renormalization group beta function-
als associated with the coupling functions indicated as superscripts.

Scale invariance in a quantum field theory is related to the vanishing of
the renormalization group (8 functions, which arise from ultraviolet diver-
gences in Feynman diagrams. Since Weyl invariance implies scale invariance,
which in turn is related to the vanishing of the beta function, the ultraviolet
finiteness of the two dimensional quantum field theory and Weyl invariance
are intimately related®. The breakdown of scale invariance in the quan-
tum theory can be understood by the fact that there is no regularization
scheme preserving conformal invariance. The subtraction of contributions
of a massive regulator field as in the Pauli-Villars regularization breaks scale
invariance whereas dimensional regularization violates scale invariance be-
cause the sigma model is only scale invariant in two dimensions.

There have been a large number of contributions to this subject, most of
them in the 80’s [48-53]. The remarkable result is that the vanishing of the
beta functions gives rise to space-time field equations. Explicitly the beta
functions for the closed string sector are given by

85, = o (Ru + 29,908 — § H, B,V 4 0(a”)
,Bf,, =a (f% VAH) 0 + VA@HA,“J + 0(a/?) (2.3.29)
B = D52 — o (V20 — VA8V D +  Hy B ) + O(a?)

For the gauge field background the beta function is given by [51, 52]

G Av
A _
b= aomrm VB

1 (B+F) 1
- ——— -  H),(B+F ~VY®(B+ F),,, (2.3.30
+2 G*(B—{—F) A ( + )PM+2 ( + )M ( )
which is valid to all orders in & and to lowest order in derivatives of B + F.
7 Recall that only the combination F which is invariant under both space-
time gauge transformations, the U(1) gauge transformation of A and the

SConsiderations concerning full ultraviolet finiteness also have to take into account
wave function renormalization not just the renormalization of the couplings.

"Displaying the o dependency of the beta functions in the case of a pure gauge field
background gives 3; = 2ma’ (1 — (271'0/F)2)71 MV \Fupu.
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combined transformation (2.2.21) of B and A, enters in these expressions.
H),, is the corresponding field strength and is given by

Hyy = 0zByy + 0,Byy + 0,B),. (2.3.31)

Indeed it is possible to derive these space-time equations of motion from a
space-time action. For the closed string background this is

1 1
closed __ Dy / -2¢ — Auv
Seff = 2—52 d X —Ge |:R + 4V'u(I)V“(I) — 12H)\'ul/H "
2(D — 26
_% +O(a’)]_ (2.3.32)

By a field redefinition one can remove the dilaton factor in front of the space-
time Ricci scalar and thus obtain the standard Einstein-Hilbert action. This
is usually referred to as going to the “Einstein frame”. In this terminology
the action (2.3.32) is written in the “string frame”. To lowest order in o’
the effective action corresponding to the open string sector is given by the
Yang-Mills action

Seff = *% dPXe ®F,, F* + O(d/). (2.3.33)

Note that the appearance of the factor exp ® in the actions above is con-
sistent with the factors one would expect for the appearance of the string
coupling.

In (2.3.30) we gave the space-time equation of motion for the gauge field
A to all orders in o’ but the Yang-Mills action comprises only leading order
terms in o’. One might ask if one can do better and indeed the space-time
effective action including all orders in o/ and lowest order in derivatives of
B + F is given by the Born-Infeld action

SH = d’Xe ® det(G+B+F). (2.3.34)
One might propose that the proper way to describe interacting open and
closed strings is to simply add the space-time effective actions for the closed
and open string sector. The equations of motion arising from the combined
action reproduce correctly the beta functions for the gauge field but the
closed string beta functions are extended by additional terms corresponding
to gauge field source terms. This is quite reasonable since the gauge fields
should act as a source for gravity. But the presence of a boundary does not
change the beta functions of the closed string massless fields. Nevertheless
one can argue that the corresponding equations of motion are interpretable
as string loop corrected beta functions [52].

We will not be concerned with higher order loop corrections to the beta
functions, but the Born-Infeld action will once again show up in the context
of noncommutative geometry arising from D-branes in nontrivial background

fields.
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2.4 Noncommutative Geometry

This section is devoted to an old idea in a new guise and also contains some
comments on recent work done in collaboration with Manfred Herbst [54].
The idea® that the structure of space-time changes at short distances and
thereby provides an effective ultraviolet cut-off, which regularizes the no-
torious infinities present in quantum field theory, was already proposed by
Heisenberg in the 1930’s. He suggested a lattice structure, which of course
breaks Lorentz invariance. Nevertheless, for practical and numerical reasons
this lattice version of space-time is quite satisfactory, when random lattices
are used. In this Lattice approximation Lorentz symmetry is a classical sym-
metry and is broken at the microscopic level. Some time later Snyder [57]
proposed the idea to use a noncommutative structure at small length scales.
It was von Neumann who introduced the term “noncommutative geometry”
for a general geometry in which the algebra of functions is replaced by a
noncommutative algebra.

The argument that a noncommutative structure provides an effective
cut-off can be seen from analogy with the quantization of the classical phase-
space, where coordinates are replaced by generators of the algebra. Since
these do not commute they cannot be diagonalized simultaneously and thus
it is no longer justified to speak of the phase-space in terms of points. Rather
the points of phase-space have to be replaced with Bohr cells. In the same
way one replaces the points of space-time with Planck cells with the di-
mension of the Planck area.? In a coherent description this “pointlessness”
eliminates the ultraviolet divergences of quantum field theory by coarse-
graining space-time just like an ultraviolet cut-off A prevents a theory to
probe length scales smaller the A~!. The question is how does this coher-
ent description of space-time look like? The simplest but by far not the
only possibility is to introduce noncommuting space-time coordinates, i.e.
to replace the coordinates by generators satisfying commutation relations

(", ¢"] = k6™ . (2.4.35)

The parameter k is a fundamental area scale.

A simple and probably the most prominent example of a noncommuta-
tive “space” covariant under the action of a continuous symmetry group is
provided by the “fuzzy sphere” [56]. Let us review how noncommutative
geometry makes its appearance in string theory.

8For a historical review of noncommutative geometry see for instance [55]. The stan-
dard reference for a rigorous mathematical presentation of noncommutative geometry is
the book of A. Connes [58], but see also for instance the introductory lectures of Giovanni
Landi [59].

9This assumption is in fact not mandatory, since experimental bounds would allow
much larger scales.
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Open strings in a constant B-field

The most prominent example for the appearance of noncommutative geom-
etry in string theory, which is also most extensively covered in the literature,
arises from open strings in the background of a constant antisymmetric ten-
sor field By, [60-63]. The simplest case is to consider bosonic open strings
moving in a flat Euclidean background

S_

4o

(90 Om X O™ XY + 1™ By O X0, X"). (2.4.36)
P

The term involving the B-field background can be rewritten as a boundary
term

i

Sp B, X"9, X", (2.4.37)

- 4rad oy
where 0; denotes the derivative tangential to the world-sheet boundary. The
only effect of this boundary action is that it modifies the boundary conditions
to

GuuOn X" +iBud X" =0, (2.4.38)

with 3, denoting the normal derivative. For B = 0 these are simply Neu-
mann boundary conditions, whereas for large B (or ¢ — 0) the boundary
conditions become Dirichlet. Thus (2.4.38) interpolates between these two
cases. By conformally mapping the string world sheet to the upper half
plane (we will only be concerned with the tree level approximation) and
choosing complex coordinates the propagator consistent with the boundary
conditions (2.4.38) is [51, 52]

< XH(2,2) XY (w, @) >=—0a |g" In|z — w| — ¢" In|z — w|

FG* |z — @2+ 0" 22 ] (2.4.39)
Z—w
where the following quantities are introduced
1 pv
[
g— B

y B w

oOn = [g - 32} . (2.4.40)

These quantities are to be understood as series in g and B. Note that G*
is symmetric and O*" is antisymmetric. In fact these quantities have al-
ready appeared in a different context. The beta functions for the gauge
field background (2.3.30) contain exactly these quantities generalized to a
nonconstant B field and a possibly curved metric. Moreover the effect of the
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gauge field is taken into account by replacing the B field by the gauge in-
variant quantity B+ F. We will keep this in mind, when we try to generalize
the setting used in (2.4.36) to arbitrary backgrounds.

Restricting the propagator (2.4.39) to boundary values of z and w, i.e.,
z=2z=7and w=w = 7/, one gets the propagator relevant for open string
vertex operators

< XH(1T)XY (1) >= —a'G* In(1 — 7')? + ind/ O e(T — 1), (2.4.41)

with €(7) denoting the sign function being 1 or -1 for positive or negative
7. This suggests a simple intuitive interpretation of the objects defined in
(2.4.40), namely that G, is the metric effectively seen by the open strings.
This is justified by the way G*” appears in the boundary propagator.

The interpretation of ®*” becomes clear, when one computes the com-
mutator interpreting 7 as time

[XH(r), X"(1)] = T(X¥(r),X"(r") = X"(1),X"(r"))
= oM, (2.4.42)

which is exactly the relation (2.4.35) for noncommutative coordinates! This
suggests that we should be able to describe the theory in terms of a non-
commutative deformed product defined on functions. Indeed this can be
accomplished by taking the zero slope limit o’ — 0 to decouple the string
behavior, while keeping the open string parameters G and O fixed. In this
limit one is left with a topological action for the bulk and the boundary de-
grees of freedom are governed by the boundary action (2.4.37). The product
of functions is identified as the Moyal-Weyl product

f(@) * g(z) = 3" @ f(y)g(2)] (2.4.43)

y=z=cx
An interesting thing happens when an abelian gauge field is added by cou-
pling it to the boundary in the usual way. Due to the presence of divergences
in the quantum field theory, the theory has to be regularized. Choosing a
point splitting regularization on finds that the usual gauge transformation
has to be modified to the gauge invariance of noncommutative Yang-Mills
theory. On the other hand, if one would have chosen a Pauli-Villars regular-
ization the ordinary gauge transformation would have been preserved. But
ambiguities arising from different choices of regularization schemes should
be related to field redefinitions in the effective action. This has led Seiberg
and Witten [63] to propose a map from “ordinary” gauge theory to noncom-
mutative gauge theory, which by now is well-known as the Seiberg-Witten
map. The natural question arises if the effects of a more general (noncon-
stant) B-field can still be described in the elegant way of replacing ordinary
products by a star product.
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Open stings in general backgrounds

Physically the situation described in the previous subsection corresponds
to the embedding of a flat brane into flat background. The first step to-
wards a generalization of this situation is to allow for a varying B-field and
field strength F' of the boundary gauge field, but to demand that the field
strength H = dB should vanish. The physical picture in this situation is the
embedding of a curved brane into a flat background. This situation is closely
related to the problem of deformation quantization of Poisson manifolds. A
typical example of a Poisson manifold is provided by a symplectic mani-
fold, i.e., a differentiable manifold endowed with a nondegenerate closed two
form. This two form is provided by the B field due to the vanishing of the
field strength. It was shown by Kontsevich [64] that every finite dimensional
Poisson manifold can be quantized in the sense of deformation quantization.
Stated without mathematical rigour this means that there exists an isomor-
phism from equivalence classes of associative algebras (we think of them as
the algebras of functions) to the equivalence classes of Poisson manifolds.
This boils down to the problem of identifying an appropriate star product
on the space of formal power series in a deformation parameter, suggestively
denoted by A, with coefficients in the space of smooth functions C*°(M) on a
differentiable manifold M. We denote this algebra with A[[h]]. Appropriate
means in this context that the star product is associative and reduces to

frg=fog+ 5 if0)+00%) (2444

where {f, g} denotes the Poisson bracket on the manifold M. More gener-
ally a star product is defined in terms of bidifferential operators B;, where
the subscript 7 indicates the order in the deformation parameter A. There
is a natural gauge group acting on star products, which consists of auto-
morphisms of the algebra A[[R]] of the form f — f+> A" Dy(f), where
the D,, are differential operators. It is natural to consider star products
up to this gauge equivalence. Kontsevich showed that every Poisson bracket
comes from a canonically defined star product modulo equivalence. In doing
so he took advantage of ideas from string theory. This was clarified by a
work of Cattaneo and Felder [65], who showed that the formula given by
Kontsevich can be interpreted in terms of the perturbative expansion of the
path integral of a topological model of open strings.

From the sigma model point of view the symplectic case is similar to the
constant case in the sense that locally one can choose Darboux coordinates.
The algebra of functions on the D-brane world-volume is deformed to a non-
commutative (but still associative) algebra in terms of the Kontsevich star
product. In the field theory limit o’ — 0 correlators can still be computed
using the star product. So the structure obtained for the constant case per-
sists for the more general symplectic case. But is this true for the more
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venturous case of a B field with nonvanishing field strength? This clearly
corresponds to the embedding of a curved brane into a curved space-time.
The open string sigma model with general background fields defines a highly
nonlinear field theory. Thus one can hardly expect to get exact results. One
can think of two conceptually rather different approaches to this problem.
One is to look for certain controllable settings, for instance strings on group
manifolds [66-69], most prominently on the group manifold of SU(2) [70].
In this setting there exists an exact conformal field theory description for
certain maximally symmetric branes on S%, namely those wrapped on con-
jugacy classes of SU(2), which are generically 2-spheres. The algebra of
functions on the brane correspond to the well known “fuzzy-spheres”. The
exact form of the algebra depends on the size of the 3-spheres, i.e. the level
of the corresponding WZW model, in which they are embedded. D-branes
on the group manifold of SU(2) have been studied intensively. In [71] and
subsequent work [72, 73] it has been argued that the spherical branes are
stabilized due to the interplay between the nontrivial B field and the quan-
tized U(1) world volume flux. An interesting feature present in the SU(2)
WZW model are the nonassociative deformations of the algebras of func-
tions on the worldvolume at finite level k. In the limit where the level k is
sent to infinity, i.e., when the background becomes flat (remember the level
k is associated to the radius of the S3), these algebras become associative.
We will also find nonassociative algebras by taking a different route.

A rather different approach, though conceptually more straightforward,
is to generalize the methods used in [60] to the situation of curved back-
grounds by using a perturbative expansion [54, 78]. The starting point for
these calculations is the open string sigma model with generic background for
the space-time metric g, (X) and the gauge potentials B, (X) and A,(X).
Then one employs the standard background field method [48, 74-77] to ex-
pand around the zero modes X* = x* 4+ (#. This allows to expand the
action into a free part and additional interaction terms. The propagator for
the free field theory is then given by (2.4.39), which in turn can be used to
perturbatively calculate correlation functions of the interacting theory. Car-
rying out these calculations one can read off a noncommutative and even
nonassociative product from the correlators [54]

1 1
f(l‘) o g(iE) = fg- 59/“/ D[Lf D,g — g@uu@po‘ D[LDpf D,Dsg

1
~ 50"D,0"" (DuDyf Dog+ Dof DuDug)
+ 0(e%, (2.4.45)
where O is essentially of the same form as in (2.4.40) with B replaced by
the fully gauge invariant combination F = B + €wa’F. The important

difference is, however, that in this case © is not constant but depends on
the zero modes z#. The product defined in (2.4.45) has the same structure
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as the formula given by Kontsevich, but the partial derivatives are replaced
by covariant derivatives compatible with the metric g,, and most notably
© does in general not define a Poisson structure.

The key properties of this product are that it is noncommutative and
nonassociative, but inserted into an integral it becomes associative and en-
joys a cyclic symmetry

d’z g—Ffio...ofp 10fux A%z g— Ffuofic...ofn 1, (2.4.46)

which is usually referred to as trace property. Here some discussion is in
order. Both properties, associativity as well as the trace property (2.4.46)
hold only in a certain sense, namely if the space-time background fields fulfill
their equations of motion. In the approximation above (i.e., to second order
in ©) this means that we have to use the beta function for the background
gauge field (2.3.30). By virtue of this equation and due to the contribution
of the measure, the additional terms give a total divergence and thus the
claimed properties indeed hold. At first sight this may seem to be an ad hoc
assumption, but let us give some arguments that this is indeed a sensible
result.

Both properties are closely related to conformal invariance. This is easily
explained for the trace property. Take the world-sheet of the open string to
be the disk. Open string vertex operators are inserted on the boundary and
thus correlation functions have to be invariant under cyclic permutations of
the operator insertions. In fact the correlators have to be invariant under the
conformal Killing group of the disk, which is SL(2,R). Nevertheless we can-
not expect conformal invariance to hold, if we do not impose the restrictions
on the space-time background fields arising from the beta functions. There
are, however, some subtleties to be taken care of. First of all, if one insists
to describe correlation functions in terms of the generalized star product
(2.4.45) one has either to deal with the logarithmic divergences, which come
from the G* term of the boundary propagator (2.4.41), by an appropriate
renormalization procedure or one has to consider a certain decoupling limit,
similar to that of Seiberg and Witten. The second solution is definitely the
less involved way, but it is not quite clear in which sense the beta functions
should be interpreted in a field theory limit of o’ — 0. On the other hand,
studying the problem of renormalization in this context is an interesting
question by itself. Thus we plan to investigate this topic in future work.
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3.1 The cohomological problem

After exploring the playground provided by string theory we turn to the
hard facts of the BRST cohomological analysis of superstring models. This
analysis will be carried out in the framework of the NSR formulation [31-
33] with local (1,1) supersymmetry [34, 35] including an arbitrary number of
abelian gauge fields. The class of models under consideration is quite general
since it is characterized only by requirements on the field content and the
gauge symmetries. The field content is given by the component fields of three
types of supersymmetry multiplets: the 2d supergravity multiplet, ‘matter
multiplets’ containing the ‘target space coordinates’, and abelian gauge field
multiplets. The number of matter multiplets and gauge field multiplets is
not fixed. Thus our results apply to any target space dimension (1,2, ...
) and an arbitrary number (0,1, ... ) of abelian world-sheet gauge fields.
The supersymmetry transformations are obtained from an analysis of the
Bianchi identities of 2d supergravity in presence of abelian gauge fields.

Before starting with the technical part let us summarize some basic facts
about the BRST cohomology we are going to analyze. Here and through-
out this thesis H(s) denotes the cohomology of the BRST differential in the
space of local functions, which neither depend explicitly on the world-sheet
coordinates nor on the world-sheet differentials, but only on the fields, anti-
fields and their derivatives. This cohomology is the most important one for
the models under study because the other local BRST cohomology groups
can be easily derived from it. This is due to the invariance of the models
under world-sheet diffeomorphisms, owing to a general property of diffeo-
morphism invariant theories discussed in detail in sections 5 and 6 of [79]
(see also [80-82]).

In particular, H(s) yields directly the cohomology in form-degree 2 of s

25
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modulo the “world-sheet exterior derivative” d. ! This cohomology is the
most relevant one for physical applications and denoted by H92(s|d), where
g specifies the ghost number sector. Cocycles of H92(s|d) are denoted by
w92 and the cocycle condition is

sw9? + dwITH =0, (3.1.1)
where w9t11 is some local 1-form with ghost number g+1. w9? is a cobound-
ary in H92(s|d) if w9? = sw9™ 12 4+dw9'! for some local forms w912 and w9!.
H92(s|d) is related to H(s) through the descent equations as explained in
[79-82]. The physically interesting cohomology groups H92(s|d) are those
with ghost numbers g < 2: H~12(s|d) yields the nontrivial Noether currents
and global symmetries [83], H%?(s|d) and H!?(s|d) determine the consistent
deformations [85], background charges [41] and candidate gauge anomalies
(see, e.g., [86]). The corresponding cohomology groups of s are HY(s) with
g < 4. These will be the objects of interest in the remainder of this thesis.

3.2 Field content and gauge symmetries

The field content of the models we are going to study is given by the su-
pergravity multiplet consisting of the vielbein e %, the gravitino x5, and an
auxiliary scalar field S.2 Furthermore we consider a set of scalar multipets
{XM M FM} corresponding to the string “target space coordinates” and
their superpartners and a set of abelian gauge multiplets {A% A2, ¢'}. On
Minkowskian world-sheets all fields are real and the fermions are Majorana-
Weyl spinors. The number of scalar multiplets and gauge multiplets is
not specified, i.e. our approach covers any number of such fields. As
gauge symmetries we impose world-sheet diffeomorphisms, local 2d Lorentz
transformations, Weyl and super-Weyl transformations and of course local
(1,1) world-sheet supersymmetry. Furthermore we require invariance under
abelian gauge transformations of the A’  and under arbitrary local shifts of
the auxiliary field S. The gauge symmetries entail the corresponding ghost
fields, which fixes the field content to

QA = {enga X’n’?’ S’ XM’ 1/}é\4’ FM’ A:TL’ AZX’ ¢Z7 gm’ §a’ Cab’ CW’ T]a’ W’ Cz}’

where €™ denote the world sheet diffeomorphism ghosts, £ are the super-
symmetry ghosts and C® is the Lorentz ghost. C" and n® are the Weyl and
super-Weyl ghosts, respectively. ¢! are the ghosts associated with the U(1)
transformations of the gauge fields and W denotes the ghost corresponding
to the local shifts of the auxiliary field S. The gauge transformation of the

! Actually d is defined on the jet space of the fields and antifields [30].
2m, a, a denote 2d world-sheet, Lorentz and spinor indices, respectively.
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supergravity multiplet written as BRST transformations are

= £"Oneq + (Omé™)es — 66X, 2 (1 Clap + Cyer + CVe 8

= Xy + (Om€ )X + V€™ — 2 €Pe,58(7a)5™ + 5 CVx,0
+in® (vm) 8 = FCx P ean (1) 5"

sS = 9,S-CVS+ W

— 47 (14C)ra™ " VX +1€7 (7" C)raXm Ss (3.2.2)

se

SX

3a

ERY

where C, is the charge conjugation matrix satisfying —(v*)7 = C~1(y%)C.
7 is defined through 7%4° = 91 + €%+, and %! = €9 = 1. V,, denotes
the Lorentz covariant derivative

1 b
szam—ﬁwnf lab

in terms of the Lorentz generator [, and the spin connection

wﬂtllb = EanEbk(w[mn}k — Wlnklm + w[km]n)
Winnlke = €kdOnemy — XnVeXms  BJ"eh =6, (3.2.3)

The BRST transformations of the scalar multiplets read
sXM = Mo XM ey
g’ = €7 0mta’ i€ ("C)pa(OnX ™M — x ) + € Cpa P
+5 C%ean(v) g’ — 3 CV sy
SFM = €m0 P + € (y™) AVt + ixm (1" C)yp(0n X — X 05")
—x CgFM} — CW M, (3.2.4)
The BRST transformations of the U(1) multiplets are

s¢' = £"0nd' + € (1) N — C o'
sXg = £"0p\p + E¥(1(1xC)age™™ (Om Al + Xm¥n X' — iXn 1 CxXmd')
(1" C)ap(Om¢’ — Xm1X') +i(1C)apSe')
+1 C%%ap (1) 5 Xy + 2n%(1:C)apd’ — 5 C N5
sAL, = E"0nAL + (0mE™)AL + O’
—20E7X, (1 C)pad’ — € (Ym) - (3.2.5)
These transformations were obtained by analyzing the 2d supergravity alge-
bra in presence of the scalar matter and gauge multiplets [91] analogously

to the superspace analysis of [92]. A short summary of the analysis is given
in appendix B. In the supergravity sector we used the constraints

Ta/ga = 2i(’ya0)a5, Tabc = Ta/g’y =0 (326)
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and in the U(1) sector
Flp =2i(1:C)apd'". (3.2.7)

All constraints are conventional, i.e., can be achieved by redefinitions of the
connections. The transformations of the ghosts are such that the BRST
differential s squares to zero,

s€" = MO0 +1E%EP (Y C)ap
€% = 0"~ (" Cpyxm — 5 CVE ewm(n)g" + 3 CE
SO = 00" = E°678(1.C)ape™ — i€ (V" C)patwyy”
—20° % (74C)ape®
sCW = 9,0V 4 21P¢4
a ng a_lcabﬁ a 2 ¢ nalacW_’y C
sn® = &£"0wn i n 5ab(7*),3 +1€7 (v ),8 (2 n N7 (Xn )"/)
—5 OV oW
sW = £0,W = 4i&°(Y"C)pa (Vo™ = § X W = § X (") (8,C™))
—4E%m (YY" C)apn? (xnC)y — C"W
sct = EM0nc +i6%° (1.0)apd’ — 67 (" C)ap A, (3.2.8)
We remark that the use of Weyl, super-Weyl and Lorentz transformations, as
well as the shift symmetry associated with the auxiliary field S are artefacts
of the formulation and disappear in an equivalent formulation based on
a Beltrami parametrization of the world-sheet zweibein (see sections 3.3
and 4). Of course we could have used the Beltrami approach from the

very beginning, but we decided to start from the more familiar formulation
presented above.

3.3 Superconformal tensor calculus

The first part of our cohomological analysis consists in the construction
of a suitable “basis” for the fields and their derivatives (more precisely:
suitable coordinates of the jet space associated with the fields). The goal is
to find a basis {uf,v’,w'} with as many s-doublets (uf,v%) as possible and
complementary (local) variables w! such that sw! can be expressed solely

in terms of the w’s, i.e.,
sut =t sw! =rl(w). (3.3.9)

On general grounds, such a basis is related to a tensor calculus [82, 93, 94].
In the present case the tensor calculus is a superconformal one, generalizing
the conformal tensor calculus in bosonic string models found in [40] (see
also [39]). The w’s with ghost number 1 are specific ghost variables corre-
sponding to the superconformal algebra, the w’s with ghost number 0 are
“superconformal tensor fields” on which this algebra is represented.
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3.3.1 Super-Beltrami parametrization

The superconformal structure of the models under consideration is related
to the supersymmetric generalization of the so-called Beltrami parametriza-
tion [95, 96]. Beltrami differentials parametrize conformal classes of 2d met-
rics, and this makes them natural quantities to be used as basic variables in
the present context. Since Beltrami differentials change only under world-
sheet reparametrizations but not under Weyl or Lorentz transformations,
their use leads to a simpler formulation of the models under study (cf. re-
marks at the end of section 3.2, and in section 4). In the following we choose
a Euclidean notation and parametrize the worldsheet with independent vari-
ables z and z rather than with light cone coordinates, because this simplifies
the notation and avoids some factors of i.3
As it is not hard to guess the supersymmetric generalization of the Bel-
trami parametrization involves in addition to the bosonic Beltrami differ-
ential 4 a fermionic partner «, the Beltramino. The starting point is the
parametrization of the vielbein
e = (dz+dzus)eS

z

e = (dz+dzp)es. (3.3.10)

The coefficients p;* and p,* are the Beltrami differentials

= ,Z = —62
Koot 27 ezza
P z ezg

whereas the factors e,” and e;* are referred to as conformal factors. One
should note that the Beltrami differentials transform under diffeomorphisms
but do not change under Weyl or Lorentz transformations. The latter “struc-
ture group transformations” are carried solely by the conformal factors which
form s-doublets (u’,v?) with ghost variables substituting (in the new basis)
for the Lorentz ghost and the Weyl ghost.

The fermionic superpartners of the Beltrami differentials are suitable
combinations of the gravitino fields

o = efz (XEQ - qu2)
a = ei (x.' — nxs') - (3.3.12)

The Beltraminos are also invariant under structure group transformations.
Especially they do not change under super-Weyl transformations. Again one

3Note that reality conditions of spinors are subtle after Wick rotation to Euclidean

space: In our left-right symmetric case of (1,1) supersymmetry we could define (¢)* =

1 and work with manifestly real actions, but obviously this would not be possible for
heterotic theories. This is, however, irrelevant in our algebraic context.
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can find complementary combinations of the gravitinos forming s-doublets
with ghost variables that substitute for the super-Weyl ghosts. The fact
that Weyl, Lorentz and super-Weyl ghosts (and not just their derivatives)
occur in s-doublets as we just described reflects that Weyl, Lorentz and
super-Weyl invariance are artefacts of the formulation.

The Beltrami parametrization involves also a redefinition of the diffeo-
morphism ghosts, sometimes called the Beltrami ghost fields. This again
has to be supplemented with a redefinition of the supersymmetry ghosts.
The new ghost variables, which replace the diffeomorphism ghosts £ and
€% and the supersymmetry ghosts ¢! and ¢2 are

n o= (& + u&)

n o= (&4 pg) -

e = 3@+, &= L&

g = L +¢€a), &= K¢ (3.3.13)

In terms of the new ghost variables the BRST transformations of “right-
moving” and “left-moving” quantities decouple from each other [95],

sp = (0—pd+ (8p))n+ ae

sa = (20 —2ud+ (0p)) e+ nda+ 1 adn

sm = non—ee

se = nde— 1edn, (3.3.14)

with analogous transformations for the right movers.

3.3.2 Superconformal ghost variables and algebra

We have now paved the road for the construction of field variables {ue, vt w!}
fulfilling (3.3.9). In fact we have already identified some s-doublets (uf, v?),
namely the u’s given by the conformal factors and their fermionic counter-
parts and the corresponding v’s given by ghost fields substituting in the new
basis for the Weyl, Lorentz and super-Weyl ghosts. Furthermore, the field
S obviously forms an s-doublet with a ghost field substituting for W. The
derivatives of these u’s and v’s form s-doublets as well. The Beltrami dif-
ferentials p, & and their derivatives are u’s too. From (3.3.14) one observes
that sy and sfi contain derivatives On and 07 and of the reparametrization
ghosts, respectively. Taking derivatives of these transformations, one sees
that the m-th derivatives of the Beltrami differentials pair off with ghost
variables that substitute in the new basis for all (m 4 1)-th derivatives of
the reparametrization ghosts except for 9™*1n and ™*'5. Analogously,
the s-transformations of the Beltraminos contain derivatives de and 0 of
the supersymmetry ghosts. Thus the m-th derivatives of o and & pair off
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with ghost variables substituting for all (m + 1)-th derivatives of ¢ and €
except for 0™t 1e and 0™*'é. We introduce the following notation for those
ghost variables which do not sit in s-doublets:

1 1
{(CN} = (P, 7P, P72, 872 1p=-1,0,1,...}, (3.3.15)
with
1
P p+1
(. (p—i—l)!a "
1 _
R p+1—-
T i T
6P+% — 1 ortl
(p+1)!
1 1 -
gtz = otz (3.3.16)
(p+1)!

These ghost variables fulfill the requirement imposed in (3.3.9) on w’s. In-
deed, using (3.3.14), one easily computes their s-transformations:

s = *%nan fo+ %Easb - »

= %nqn’"(r — Q)07 — %e“e”%ﬁb (3.3.17)
5% — —Enpscfcp“r%scnp pca

= —” (]23 - c) Ope- (3.3.18)

The f’s which occur in these transformations are the structure constants of
a graded commutator algebra of operators Ay to be represented on tensor
fields constructed of the component fields of the matter and U(1) multiplets,

{AN} = {Lp,Lp,Gp+% ,Gp+% :p=-1,0,1,...}. (3.3.19)

This graded commutator algebra is nothing but the NS superconformal al-
gebra

b
[Lps L] = (P — @) Lp+qy  {GayGo} = 2Latb,  [Lp, Ga] = (5 - a) Gp+a;
(3.3.20)

with the analogous formulas for the L’s and G’s and the usual property that
the holomorphic and antiholomorphic generators (anti-)commute,

[Lpa Eq] =0, {Gaa C_TYb} =0,

[Lp, Ga] = 0, [Lp, Gq] = 0.
The representation of this algebra on superconformal tensor fields, and the

explicit construction of these tensor fields, will be given in the following
subsection.
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3.3.3 Superconformal tensor fields

We shall now summarize the representation of the algebra (3.3.20) on super-
conformal tensor fields constructed of the fields and their derivatives (the
representation on antifields is discussed in section 5) such that the BRST
transformation of these tensor fields reads®
_ L1 L1
sT = WLy +7PL, +"2G 1 +672G
>-1 e e
p>—

T.  (3.321)

The superconformal tensor fields correspondlng to the fields XM, M FM
and their derivatives are denoted by X mn, 1bmn, ¢%n, Fnj‘fn , Where the
subscripts take the values (m,n € {0,1,2,...}) and denote the number of
operations L_; and L_; acting on X(%, 1p(%, J)%, F(%, respectively. L_1

and L_; will be identified with covariant derivatives (see below),

XM = XM, g = (e2/2)2 g ,1/7 = (e2/2)T M,
1 1
FM =1 ()% (e)2 F

XM= (L )™(L-1)" X0 (m,n€{0,1,2,...}) etc.

The representation on these tensor fields can be inductively deduced from
the algebra (3.3.20) usmg that all operations L,,, Ly,, G4, Gq vanish on
Xoo except for L_q, ; G_1/2 and G_ 172, with G_ 1/2X00 = 1/)00 and
G_1/2X00 = ¥ (as can be read off from sXM). This gives on XY

m,n-*

M
I xM {(mpl)men for p <m
pr*mmn
forp>m
_ forg<n
forg>n
for p<m
G XM, = <mp1mp1n p
pt3 for p > m
a . xM (nq1|1/;mnq1 forg <n
gty ™" for g >n

The action on the other fields is then easily obtained using

[LpaGil]:%(p"Fl)Gilﬁ {G liGil}:QLP
2 p P+2 2

4T stands for any of these superconformal tensor fields; n’s and ¢’s are the ghost
variables (3.3.16).
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and the analogous formulas for L and G in (3.3.20). One obtains

s (m—p+5@+1)yh ., forp<m

LM —
P¥m,mn 0 forp>m
M
G ypM = me pn forp<m
pt3 m,n 0 forpzm
M
G 11/)M = manq ; forg<n
Q+§ m,n 0 forqzn
LoyM = (n—q— 1|"pmn g forg<n
q9¥mn
’ 0 fOI‘an
L,FM  — o (m—p+ 5+ 1)) FL,, forp<m
P~ m,n 0 forp>m
G 1FM — (m—p— 1|¢m p.n fOI‘p<m
p+§ m,n 0 forpzm

and analogous formulas for L’s, G’s, L’s and G’s acting on 1bmn, and L’s
and G’s acting on F#L/{n

The relation to the fields and their derivatives is established by identi-
fying the operations L_; and L_; with covariant derivatives D and D along
the lines of [82],

1 _ -
Li=D = [0 @0 (ML, iMPLy)
1= pp >0
y
— (A°G, - ﬂA“Ga)}
~ _ 1 _ o
L.=D = [0 pd—  (MPLy — uMPLy)
1= pp >0
bz
— (AG, - u[l“éa)} (3.3.22)
where
1 v 1 S _
MP = i) 8p+1'u’ MP = i) ap+1u,
1 1
+5 1 ipty 1 Aptls
A2 = (pr1)12 o"tla, ATTZ = (112 ortla.

One readily checks that these formulas result in local expressions for the
superconformal tensor fields and their s-transformations. Introducing the
following notation for the lowest weight superconformal matter fields

XMEX%, q/)MEw(%, @MEJ;{]‘{O, FMEF(%, (3.3.23)



Chapter 3. Characterization of the models 34

one gets in particular the following supercovariant derivatives

1 r _ _
pXM = i |@ - o)XY fayt 4 o™
1 r _ R
DM = [0 - )M + S O™ + §aFY + ) oDX ]
_ 1 . .
DY = [0 pdp — § (O™ — §aDX M~ pa ]

(3.3.24)

and analogous expressions for DXM DM and DyM. We do not spell out
higher order covariant derivatives explicitly because it turns out that they do
not contribute nontrivially to the cohomology. The BRST transformations
of the superconformal tensor fields are summarized in appendix C.1.

The construction of the superconformal tensor fields arising from the
gauge multiplets is similar, once one has identified the suitable ghost vari-
ables and the lowest order tensor fields. The gauge fields A% and their
symmetrized derivatives Oy, - - .BmkAfnkH) (k =1,2,...) form s-doublets

with ghost variables that substitute for all the derivatives of the ghosts c’.
Therefore one expects that only the undifferentiated ghosts ¢’ give rise to
w-variables. Promising candidates for these w-variables are ghost variables
C'* of the same form as in the purely bosonic case [39)],

C'=c' +¢mAL, . (3.3.25)

The s-transformations of the gauge fields, written in terms of C?, and of the
C' themselves read

m -+ af m* ax
sC' = 7L (OmAl — OnAL,) + $E°EPF,
HEMEOX L Fig + M€, (3.3.26)

sAL = MO AL — 0 AL) 48,0 — ¥y, P, — €% OF

where we used notation of appendix B. Since we expect C? to count among
the w’s, its s-transformation should involve only w’s again, see (3.3.9). This
suggests a strategy to determine the superconformal tensor fields corre-
sponding to the undifferentiated fields ¢, A}, and to the field strengths
of Al : one tries to rewrite sC? in (3.3.26) in terms of the ghost variables
(3.3.16) and to read off from the result the sought superconformal tensor
fields. This strategy turns out to be successful; one obtains

sC' = ﬂﬁFé,o + 775)\6,0 + 7755\6,0 + 55056,0
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where
$oo = eseld
o = 5 (—elN 3¢
Mo = % (e +xie)
Fi, = 11Mﬂ(%gmn(8mA;—8nAfn)
+IpaX — L aadt - Laadh). (3.3.27)

An explicit computation shows that the s-transformations of these quantities
are indeed of the desired form (3.3.21), with

=G 1dho  XN=0C1dhy  Fo=G 1G 1dh (3328)

N[ =

It is now straightforward to construct, along the previous lines, variables
v Ay My Finn on which the algebra (3.3.20) is represented and
(3.3.21) and (3.3.22) hold. We do not spell out these tensor fields (with m or
n different from 0) explicitly because it turns out that they do not contribute
nontrivially to the cohomology. The resulting BRST transformations are
summarized in appendix C.1 too.
We introduce the following notation for the lowest order (i.e. lowest
weight, see below) superconformal tensor fields arising from the gauge mul-
tiplet:

$=dho, N=Xg, N=Xy, F=F,. (3.3.29)

Again tensor fields of higher order will be denoted by ’DngSi, f)ngSi, D'Dq@i etc.
but as already stated above their explicit form will not be needed.
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We shall now determine the most general action for the field content and
gauge transformations specified in section 3.2. The action has vanishing
ghost number and is independent of antifields. Furthermore the requirement
that the action be gauge invariant translates into BRST invariance up to
surface terms. The integrands of the world-sheet actions we are looking for
are thus the antifield independent solutions w®? of equation (3.1.1). They
are related through the descent equations to the solutions of

sw=0, w# sw,

gh(w) =2, agh(w)=agh(®w)=0 (4.0.1)

where gh is the ghost number and agh is the antifield number (=“antighost
number”, see section 5 for the definition). In the previous section we have
constructed a basis for the fields and their derivatives satisfying the require-
ments of (3.3.9). By standard arguments this implies that w and & can
be assumed to depend only on the w!, i.e., on superconformal tensor and
ghost fields introduced in section 3.3.! Furthermore we can restrict the in-
vestigation to functions w and @ with vanishing “conformal weights” by an
argument used already in [39, 40]: we extend the definition of Ly and Lg to
all w’s (including the ghost variables) by

{s, %}wl = Low' {s, % }wl =Low! . (4.0.2)

Hence, in the space of local functions of the w’s the derivatives with respect
to On and 07 are contracting homotopies for Ly and Ly, respectively, and
the cohomology can be nontrivial only in the intersection of the kernels of
Lo and L.

!The u’s and v’s contribute only “topologically” via the de Rham cohomology of the
zweibein manifold to the s-cohomology, cf. theorem 5.1 of [79]. In particular they do not
contribute nontrivially to the solutions of (4.0.1).

36
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All w’s are eigenfunctions of Ly and Ly with the eigenvalues being their
“conformal weights”. The only w’ with negative conformal weights are the
undifferentiated diffeomorphism ghosts 7,7 and the undifferentiated super-
symmetry ghosts €, £; their conformal weights are (—1,0), (0, —1), (—1/2,0)
and (0, —1/2), respectively [here (a,b) are the eigenvalues of (Lg, Lg)]. The
only superconformal tensor fields with vanishing conformal weights are the
undifferentiated X . These properties simplify the analysis enormously.

Our strategy for finding the solutions to (4.0.1) will be based on an
expansion in supersymmetry ghosts

k
w = wg, (Ne+ Ne)wg = kwy,
k=0
s = S2+81+ S0, [NE + Néa sk] = kska (403)

where we have introduced the counting operator N, for the susy ghost € and
all its derivatives

N.= (9")
n>0

567e] (4.0.4)

and analogously N counts & and derivatives thereof.? One observes that sy
is the simplest piece in the above decomposition of s. It acts nontrivially
only on the reparametrization ghosts 7, 1, derivatives thereof and on C*,

Son = —ee, Soff=—E&&, sC" =¢&@".

We shall base the investigation on the cohomology of so. The cocycle con-
dition sw = 0 decomposes into

sowp, =0, s1wp + sawj_ =0, ... (4.0.5)

Due to the requirement of ghost number 2 and antifield number 0 in (4.0.1),
one is left with 0 < k < 2. The three possible values for k are now analysed
case by case.
k=0: The general form of wy according to the condition of vanishing confor-
mal weight is

wo = niAa) +nonAqe + 7757714(0,1) + 775773(1,0) +70nB o)
+n0°*nA 0,0y + 10°71A0,0) + OnONB(g,0) + C'C? Dyj(0.0)
+nC" Dj(1,0y + 1C" Dj(0,1) + InC" Dy ) + 57701[71'(0,0),

*We note that the expansion (4.0.3) holds because we are studying the antifield in-
dependent cohomology here. The analogous expansion in presence of antifields is more
involved; in fact, it can even involve infinitely many terms. Therefore the strategy applied
here to determine the action is not practicable in the same way for analysing the full
(antifield dependent) cohomology later.
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where the A’s, B’s and D’s do not depend on the ghosts and the subscripts
(m,n) indicate their conformal weights. It is easy to verify explicitly that

sowg =0 & wy=0. (4.0.6)

k=1. The general form of w; is

wi = neA)2,0 +MEA©03/2) + MEAQ,1/2) T TEAM/2,)
+ndeA(1)2,0) + NOEA(0,1/2) +€ONB(1/2,0) + €01 B 0,1/2)
+e0C 1 /2,0) + E0nC 0,1 /2) + €C' D;(1/2,0) + EC* Dj(0.1/2),
where again the A’s, B’s and D’s do not depend on the ghosts and their

conformal weights are indicated in brackets. A straightforward computation
shows that sswi = 0 imposes

Ag2,0) = Aw3/2) = Cay20) = Clo/2) =0
A2 = Diijo0) s Ay = Dio1)2)
Aay20) = =2Bay20 . Awa/2) = —2B0,/2)
The conformal weights (1/2,0) and (0,1/2) imply

(
Di1/2,0) = ¥ Dui(X), Digo.1/2) = ¥ Dri(X)
B1/2,0) = ¥MBum(X), Bo,12) = ¥ By(X)

where we indicated that the remaining B’s and D’s are arbitrary functions
of the X’s. Hence, we get

wi = (8" +eC)YM Dygi(X) + (7ed’ + ECT )M Dagi(X)
+(e0n — 210e)yp™ By (X) + (€07 — 2708)p™ By (X).

The second equation (4.0.5) requires that s;w;j be sg-exact. This imposes

By =By =0, Duyi=Dyi, ONDiny =0mDin

where we have introduced the notation
0
oxXM -
Furthermore, the second equation (4.0.5) uniquely determines the function
wp, which corresponds to wj [the uniqueness follows from (4.0.6)]. It turns

out that the other equations (4.0.5) do not impose further conditions in this
case, but are automatically fulfilled. Altogether we find

wi = [(neg! +eCHYM + (e’ + eCY)Pp™M)y Di(X) (4.0.7)
wo = —mlpMN — VN 4 FMG 4 M PN Gon1om Di(X)
+C (nDXM + DX M)y D;(X) (4.0.8)

Oom =
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Using the freedom to add a coboundary we obtain by adding s[C?D;(X)] to
wi + wo the equivalent solution

i F Di(X) = mii(pM XN — M+ FM G4 M PN G o) 0y Di(X)
+nE(N + ¢ O) Di(X) + fie(N + ¢'9pM Oar) Di(X)
+e2¢ Di(X). (4.0.9)
k=2. The general form of ws is given by
wy = 6614(1’0) + 5514(0’1) + 6514(1/2’1/2) + Eaé‘B(X) + 5853()(),
where due to the indicated conformal weights one has
A(l,O) = DXMAM(X) + ’L/JM’L,bNAMN(X)
A(O,l) = T)XMAM(X) + ’I,ZMI/_)NAMN(X)
Aapap = FMHy(X)+ ¢ Hi(X) + MY Hyn(X)

We can simplify ws using the freedom to subtract s-exact pieces from an
s-cocycle. In particular, we can therefore neglect pieces in w; which are of
the form s1w1 + s2wg (i.e. we consider w’ = w — s(@1 + @y) where w is an
s-cocycle arising from ws). Choosing

o1 = & (€M — ™) Hy (X)
we get
s101 = eeFM Hpy(X) + 3 (eDXM — eeDXM)Hp (X)
—2 (M — ep™M) (e + eyp™)ONHu (X).

This shows that by subtracting sj@w; from ws, we can remove the piece
FMH(X) from A(1/2,1/2); thereby redefining Ay g), A1) and Hyn(X).
Furthermore, we have
ecAq o)+ EEA( 1) + e6¢ Hi(X) + e9e B(X) + E0eB(X) = sadv,
Go = —nAq0) — TApa) + C'Hi(X) — 5 0nB(X) — 5 07B(X).
Hence, we can also remove the pieces containing Ay g), A(o,1), Hi(X), B(X)

and B(X) from ws. Without loss of generality, we can thus restrict the
investigation of the case k = 2 to

ws = egp™M PN Hyrn (X). (4.0.10)

Obviously ws satisfies the first eqation (4.0.5), since it does not involve 7,
7j or C'. One now has to analyze the remaining equations (4.0.5). It is
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straightforward to compute sjws and to verify that the second equation
(4.0.5) is solved by

wy = neDXMPN —pMEN 4 pMpNypK g Han (X)
—e[pMDXN 4+ FMPN — pMGpN K og Hyrn (X). (4.0.11)

The third eq. (4.0.5) requires that sgw; + sjw1 be sg-exact. This turns out
to be the case (for arbitrary Hpysny) and determines wg. One finds

wog = 0,

Q = (DXMDXN 4+ FMEN L DMN — M Dy™N)Hprn(X)
—(DXMyYNpE + DXNpMypF) o Hypn (X)
H(EMEGN — PEYMpN 4 ENGMyFY G iy (X)
+pMapE Nl OO, Hprw (X). (4.0.12)

The remaining two equations (4.0.5) are also satisfied and the functions
Hpyn(X) are completely arbitrary. The symmetrized part Hpy)(X) and
the antisymmetrized part Hysn)(X) give rise to the “target space metric”
Gy and the “Kalb-Ramond field” By, respectively. Despite of our string
ingpired terminology we stress that there are no conditions imposed on G sy
and By apart from their symmetry properties. In particular the “metric”
G N need not be invertible (in section 7.1 we shall impose that a submatrix
of Gy be invertible). Bpsy is determined only up to

Hiyny(X) = Hppygny(X) + O B (X)

where Bj(X) are arbitrary functions. This originates from the fact that
the s-cocycle w = w5 4+ wy + wp remains form invariant under

w — w+ s[(epM + ™ + 9 DXM + G DXMYBp(X) + ... ]

where the dots stand for terms at least bilinear in the fermions. Changing w
by such s-exact pieces results in the above change of Hy (X) and modifies
the Lagrangian by a total derivative.

4.1 Result

We conclude that up to redefinitions by coboundary terms, the general solu-
tion of (4.0.1) is given by the sum of the functions (4.0.9)-(4.0.12). The so-
lution involves arbitrary functions D;(X) and Hp;n(X), which parametrize
the various possible actions. The antisymmetric part of Hyn(X) is de-
termined only up to redefinitions of the form Hyn(X) — Huyn(X) +
Om By (X), which modify the Lagrangian only by total derivatives. The
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functions D;(X) are determined up to arbitrary constants, since only deriva-
tives thereof enter in the equivalent solution (4.0.7) and (4.0.8).3 Owing to
general properties of descent equations in diffeomorphism invariant theories
[79-82], the integrand of the action is obtained from the solution of (4.0.1)
simply by substituting world-sheet differentials for diffeomorphism ghosts
&™. The resulting Lagrangian, written in terms of the Beltrami fields, is a
generalized version of the one found in [95]:

L = Lmatter + Ltn
LMatter = ﬁ [(6 - ﬁg)XM(g — /.La)XN(GMN + BMN)

— (0 — g XMayN + (8 — pd) XMayN) Gun
—%aapMPpNGuyn] — (1 - pa) FMFNGuy

— (N0 — pd)PM + N (0 — pd)W™) Gun
—pMPN(0 — pO) X" (Trnm — 3 Hrnvwm)
—pMyN(D — ud)XE(Trnm + 3 Hxnwm)

+1 (MY — apMyNypF)Hgeyn

+(1 — pp) FMyEGN (2T v — Hren)
+3(1— pi) M E NG Ry

Lyi = F'Di— (1 —pp)[p™ (N - § 2 pad)
—pM (N = § 2 fad)
+EFM G pMpN On]00 D; (4.1.13)

where we have introduced the following notations

Gun = Hyn(X)  Bun:= Hpyn(X)
D; = Di(X) F':=™ (0,4, —0,A)
Qrnv = OxkHun(X) - O0mHrn(X) + ONHrm(X)
= 2'knm — Hxnm
Rrxrun = OMOxHpn(X) — ONOik Hpjm (X)

The “target space curvature” Riryn we have introduced is of course not
the Riemannian one. The Riemannian curvature appears after eliminating
the auxiliary fields from the action.

Of course, the action can be also written in terms of the original fields
introduced in section 3.2. One obtains from the matter part the well known

3A constant in D; yields a topological term in the action proportional to the Chern
class of the gauge bundle.
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superstring action including the B-field background [37]

Lie = 10,XM8,XN(—h™Grin + ™ Bun) + 58 A" 0mtN Garn
HIFMEN Gy + iy N 0, XM = LC0x " N )G
+FFMY N =i M 0 X ) D
L FMEE N — N ™ 0 X ) Hiy e
*ﬁXm’Yn’YmiﬁMEN’Yn’YHbKHMNK
+1L6EM(]1 + ’Y*WNEK(]I + Y)Y " Ricmin
™ DO AL + 1M N $i 0N 0y D
LA N — iV G + Xy N ¢')On Di (4.1.14)

Thus the cohomological analysis shows that in the absence of gauge multi-
plets the Lagrangian derived in [37] is in fact unique up to total derivatives
and choices of the background fields. It should be kept in mind, however,
that this uniqueness is tied to the gauge transformations specified in sec-
tion 3.2. It gets lost when one allows that the gauge transformations get
deformed. This deformation problem can be analysed by BRST cohomo-
logical means too, but then the relevant cohomological problem includes
the antifields [85]. The results which we shall derive in the second part of
this work imply that the nontrivial deformations correspond one-to-one to
the deformations of the bosonic string models. All deformations of bosonic
string models without world-sheet gauge fields were derived in [41]. We can
thus conclude that the nontrivial deformations of the standard superstring
world-sheet action [37] and its gauge transformations are supersymmetric
generalizations of the actions and gauge transformations given in [41]. A
full analysis (to all orders in the deformation parameters) of the deforma-
tion problem for bosonic models with world-sheet gauge fields is missing so
far, but a complete classification of the first order deformations was given
in [39]. The latter results extend thus to the superstring models too.
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To proceed with our analysis we have to bring the antifields into the game.
According to the principles of the field-antifield formalism [25, 26, 28, 29]
to each field a corresponding antifield ®7 is introduced with ghost number
and statistics

gh (®%) = —gh(®%) — 1, €(®%) =e(®*) + 1 (mod 2),

such that the statistics of the antifields is opposite to that of the correspond-
ing fields. It is useful to introduce still another grading into the algebra of
fields and antifields, namely the already mentioned antifield (or antighost)
number. On all the fields (including the ghosts) the antifield number is de-
fined to be zero, i.e., agh (®4) = 0. On the antifields the antifield number
equals minus the ghost number, agh (®%) = —gh (®%).

The antibracket for two arbitrary functions of the fields ®# and antifields
®* is defined as

0rF 6LG  6RrF 6,G
JOA DY 5d% 64

(F’G):

Thus the antibracket has odd statistics and carries ghost number one. The
BRST transformations of the antifields are generated via the antibracket by
the proper solution S to the classical master equation (S,S) = 0 according
to

s(I)A:(S,@A):(S(I;ﬁ.

Owing to the off-shell closure of the gauge algebra S simply reads
S=25y— (s®4)®%,
where S; is the classical action and s®4 are the BRST transformations

given in section 3.2. It is useful to decompose the BRST differential accord-
ing to the grading with respect to the antifield number s = . _; s with

43
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agh (sx) = k (this decomposition should not be confused with the one in
(4.0.3) even though we use the same notation). The decomposition starts
with the field theoretical Koszul-Tate differential 6 = s_; and the differ-
ential v = s9. Contrary to the bosonic case the decomposition does not
terminate at this level. An additional part s; raising the antifield number
by one unit shows up reflecting field dependent gauge transformations in the
commutator of supersymmetry transformations. The Koszul-Tate differen-
tial acts nontrivially only on the antifields and implements the equations of
motion. Hence, the knowlegde of the classical action is necessary to deter-
mine the §-transformations of the antifields. However, the action of the part
of the BRST differential leaving the antifield number unchanged is deter-
mined solely by the imposed gauge transformations. The ~y-transformations
of the antifields corresponding to the matter fields and the U(1) multiplet
read

VXY = Om(E™X) — i0m (€8 (Y™C) gatlS)
—5 Om(E* ("™ C)apxnFir)

WA = Om(EMURD) + E°XGy — I (" C)raXintat — 5 Om(E (V™) FRy)
— L () e iy — 5 €%, (V " C)psx Fi
— 1 C%e () Sy + 5 CV e

VEy = Om(€Fip) — 6Csa0i — 3 E8(Y"C)pax Fip + CV Fiy

YA = On(§"ATT) — (0nE) AT
+ian(§a(7*c)aﬁ5nm>‘:5)

VB = Om(E7) — EX(1C)ap ™ X (1 C) X N

0 (€7 (1™ C)ap N — 1 €7(1.C)ap SN
2N, (1:0) g AL™ — 207 (1.C)1p N + CW g

YN = Om(E™N®) = P (Ym) S AT + €5 (1) 505
—i2 (1.4 C) gy (1) O AT = 1 (1 )™ (X7 (m),%) A;°
1 C“bsab(’y*)ﬁ"‘)\:ﬂ +3 cW e, (5.0.1)

s1 acts nontrivially on A}™, ¢; and on the antifields for the gravitational
multiplet x2™, e;™ and S*. In particular one finds

s1 AT =P (Y Cpact,  s10) = —i%EP (1uC)gact,

where ¢ denote the antifields corresponding to U(1) ghosts.

The explicit form of the BRST transformations of the antifields for the
gravitational multiplet and the ghosts will not be needed in the following.
In section 7.2 it is shown that they do not contribute nontrivially to the
cohomology, at least at ghost number g < 4.



Chapter 5. Antifields 45

5.1 Superconformal antifields

We shall now identify “superconformal antifields” whose «y-transformations
take the same form as the s-transformations of superconformal tensor fields
n (3.3.21). The identification of superconformal antifields is somewhat more
involved than the procedure for the fields. From experience with the bosonic
case one expects reasonable candidates to arise from redefinitions of the form
% — ﬁ ®%, accounting for the fact that antifields transform under dif-
feomorphisms as tensor densities rather than tensors. In addition we have to
take care of their “structure group transformations”, i.e., of their conformal
weights, their Lorentz transformations and super-Weyl transformations'.
Yet this does not suffice to obtain 7-transformations of the desired form.
It turns out that the antifields have to be mixed among themselves. These
considerations lead us to the following definitions of the lowest order matter
antifields

[ * 1 s _ L *
Fao = Py =12 uﬂ(ezze;) 2 Fy
- i 1 1 1%e
/I,Z)* = ,l/)* —_ — e z 2¢* 7F*
M M(©0) = 5T - MM( ) M M
~ - i 1 -1 po
* = 1/}* - — gz 3 ofy* 1 7F*
M M(©0) = 5T - MM( ) MOT T M
5 1 no o~ uo = ad o~
Xy = Xioo = ——X; ; T E——
M M©0) T T g M+1_Mﬂ1/)M+1_u'a M+1_MﬂM

Their v-transformations are indeed of the desired form (3.3.21) and read
explicitly

vEy = (0D +iD)E}y — ey + &0k + & ((9n) + (87) Ey

v = (1D + D)y +eXiy +EDEy + (5 (0n) + (87))is + (99 By
vy = (D +aD)Phy +EXy — eDEY + ((On) + L (0M)das — (9e) Fy
vXir = (D +0D)Xi; + Dy + eDyy + () + (87) X

()P + (98)DY. (5.1.2)

The expressions above are in fact already complete, since s; does not act
nontrivially on the matter antifields. Analogously to the situation of the
superconformal tensor fields the algebra (3.3.20) is represented on these
fields and their derivatives, which we denote by

Fitgmn) = (L-0)™(L1)"F3y = (D)"(D)" Fiy,

! Antifields transform “contragradiently” under structure group transformations as
compared to the corresponding fields.
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etc, where the operators L_; and L_; are identified with supercovariant
derivatives as in (3.3.22). In particular one finds on the antifields with
lowest conformal weights the following expressions

_— 1
DFy = 1_uﬂ((5—u3—§(5u)
1. 1 a1,
+§M(3M)) M*§M0“/JM*§0¢¢M)
e -1
DFy = 1—;41((8 no — 5(9n)
1 a-\\ 1% 1 Tk 1 _ Tx
+§M(5N)) M+§a¢M+§Na¢M)
1 I T
DYy = 1—uﬂ(( — A0 — (Op) + (Om) iy
(WU I D
—ghaXy — 50D M*§(50¢)FM)
1L 1 S
Dy = 7= ((0— pd—5(0p) + w(Om)¥i

1 5 1 o 1 R
—|—§an’(,, + EﬂaDFj(/[ + Eﬂ(aa)F]T/[)

and analogous formulas for Dl/_J*M and 151/7?\4 Again higher order antifields
will not be needed.

The construction of the covariant antifields for the gauge multiplet fol-
lows the arguments given above, with the additional task to get rid of the
super-Weyl transformations. We introduce the redefinitions

% * 1 z
A /\i(o,o) T i €

\* )\ ¥ 1 z -1 Z\—1y%
A= Ai(O,U):l_u'a( S)72(eS) A
- 1 1 r 1
o= : = — eV 2 (e2) 2 ¢pF
¢1 ¢1(0,0) \/§ 1— ,Uﬂ( z ) ( z ) ¢z
11 . e 1001 N
21— puf (Xz2 ,U’XEQ) Ai — 21— i (Xgl ule) A
P 1 1 - " ~
A = Al =— A 4+ nAY) — (—)\* y A*)
i (0,0) ﬁlfuﬁ( i TH z) — i QA; + paA;
& - 1 1 - 1 ~ R
? 1(070) \/51 _ uﬂ ( ? +/1/ Z) 1 —,uﬁ Oé)‘z +,U,Oé>\z 3

where we have used the shorthand notation for the corrections involving

gravitions x,! = e% x,' and ¥,2 = 8 X,2 with obvious expressions for
z z

e
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the z components. The y-transformations then read

YA = (D + D)X + L 00! + et — eA:

YA = (D + D)X + L anA; + & — e

v$; = (WD +7D)é; +3(On+ dn)dr + eDXF + ED)\*

yA? = (qD+7D)A; + nA; + EDA; — eDA! — De;

yA* = (4D +iD)A: + B Ar + DA — eDA! — DENE,  (5.1.3)

and are indeed of the desired form respecting the requirement (3.3.9). Note
that the combination of the gravitinos used in the redefinition of QAS:‘ trans-
forms into the super-Weyl ghost thereby removing the unwanted transfor-
mation properties under the super-Weyl symmetry. Again higher order an-
tifields will not be needed.

The explicit form of the superconformal antifields given above has al-
ready been used to derive the results for the rigid symmetries presented
in [36]. A complete list of the BRST transformations (including the Koszul-
Tate part and the s;-transformations) of the antifields needed for the coho-
mological analysis is given in appendix C.2. In the following sections (and
also in the appendices) we have dropped the hats on the superconformal
antifields, but it is clear from the context which set of variables is meant.
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We now turn to the computation of the antifield dependent local BRST
cohomology modulo the world-sheet exterior derivative d at negative ghost
number H9%(s|d), g < 0. As already explained in the introduction the
corresponding local BRST cohomology groups HY(s) are those with g < 2.
They will give us the dynamical conservation laws, rigid symmetries and
nontrivial Noether currents of the models under consideration. This is a
standard result of local BRST cohomology in the antifield formalism [83]
(for a recent review see [30]). It is not surprising that the local BRST
cohomology encodes also the constants of motion, since the Koszul-Tate
differential implements the equations of motion explicitly.

6.1 The cohomological analysis for g < 2

The strategy to find solutions to sw = 0 is to expand the local functions
with ghost number ¢ into parts with definite antifield number

_,0 1
wg—wg—l—wg—i—....

Every such decomposition necessarily starts with an antifield independent
part, since there are no antifields with negative or vanishing antifield num-
ber. Using the decomposition of the BRST differential with respect to the
antifield number introduced in chapter 5

5:5+’Y+Zk>05k

starting with the Koszul-Tate differential d, agh (§) = —1 the cocycle con-
dition swy decomposes into

552 =0, qwi+dwi=0,... (6.1.1)

48
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This decomposition is useful, since every nontrivial solution of sw = 0 is
uniquely (up to s-exact terms) characterized by its antifield independent
part wg. This is a standard statement of homological perturbation the-
ory [28] but is intimately tied to the acyclicity of the Koszul-Tate differential,
H(8) = 0 for k > 0. This again is usually a consequence of certain regularity
conditions of the equations of motion. One might wonder, if these standard
regularity conditions are fulfilled in the present case and indeed they are not.
But fortunately the antifields which do not fulfill the regularity conditions
do not contribute at the ghost numbers relevant for the computations in this
section. Thus the decomposition still makes sense in our context. This will
be discussed in more detail when the isomorphism between the cohomol-
ogy groups of the bosonic models and their supersymmetric counterparts is
established.

In this section we determine the solutions up to antifield number 1 by
considering the condition

Ywg + Swg = 0. (6.1.2)

This will already give us the nontrivial solutions to the Noether currents
and the rigid symmetries. We will explicitly calculate the corresponding
cohomology groups HY(s), g < 2, for a simplified model, namely under the
assumption that the functions D; coincide with a subset of the coordinate
fields XM = {X*, D;} = {X*,y'}. In fact, this is a rather mild assumption,
since it can be achieved by a target space coordinate transformation. We
will make this more explicit in section 6.2.

6.1.1 Solution at ¢ =0

The solutions of the BRST cohomology H92(s|d) at negative ghost num-
bers correspond one-to-one to dynamical local conservation laws [83]. At
ghost number —2 these are the dynamical conservation laws of second order
represented by on-shell closed (n — k)-forms (n denotes the dimension of
the manifold), which are not weakly locally exact.! The corresponding local
BRST cohomology group is HO(s).

As in the computation of the action the starting point will be the most
general function with ghost number 0 at most linear in the antifields. Taking
into account that the conformal weight has to be zero this reads

wy = wg—i-wé
wy = f(XM)
wy = n(ALf XM )+ A(ALF A+ MM fiy) +eXig + NG

!Topological conservation laws are locally but not globally d-exact.
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Using the freedom of subtracting trivial parts from wy arising from dw?;
and restricting to the case described above, i.e.,

8,D; =0, &D;=4
one finds the most general solution to (6.1.2) as
@o = f(ys) — (nA} — 1A; — eXf + EX}) O f. (6.1.3)

In fact to extract the integrand of the solution it is necessary to complete
it to a full solution of the cocycle condition. This can be done easily by
observing that the form of the solution suggests a dependence on the special
combination of fields and antifields

§' =y —nA] +A] + X — EN +niC”,

which is a BRST singlet, s = 0. Thus any function of ' is a solution
to the cohomology at ghost number zero and we conclude that there exist
infinitely many second order conservation laws f(7%). Here one remark is
in order. Expanding the function f(§') in antifield number one gets up to
antifield number one (6.1.3). At antifield number 2 one gets a term linear
in the antifield for the U(1) ghost 8;f(y')C* and a term quadratic in the
antifields for the gauge fields 9;0;f (yl)A;‘/_l:‘ In the bosonic case this is
already the whole story (see section 7 in [39]) and gives the desired inte-
grand?, but in the supersymmetric case the combinations 55\;-* and £X; have
vanishing ghost number and conformal weight. Thus they can contribute
even nonpolynomially, which is indeed the case for arbitrary functions of .

6.1.2 Solution at g =1

At ghost number 1 the cohomology group H'!(s) yields nontrivial Noether
currents and global (“rigid”) symmetries. In particular, we will obtain the
target space isometries of the models under consideration.

The most general local function with ghost number 1 independent of
antifields and with vanishing conformal weight is

wi = nAQ o)+ 1A% + Al o) + A
+5A?1/2,0) + 8714?0,1/2) + CnBzQ(o,o)

where the A’s and B’s do not depend on ghosts and antifields and the
subscripts (m,n) indicate their conformal weights. The part of w; with
agh (w1) = 1 can be expanded into powers of supersymmetry ghosts

1 0 .1 1,1 ,2 1

2The integrand has also a physical interpretation. It generates rigid symmetries of of
the proper solution to the master equation via the antibracket [84].
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with
Owp = 777714%1,1) + 7787714%1,0) + 775771‘1%1,0) + 7787714%0,1) + 77577[1%0,1)
+7701‘31‘1(1,0) + ﬁCiBil(O,l)
wi = 77514%3/2,0) + 77514%0,3/2) + 77514%1,1/2) + 77&4%1/2,1)
+77‘9514%1/2,0) + 775514%0,1/2) + 6‘9770(11/2,0) + 6577(7(11/2,0)
+E0nC(o,1/2) + E0MC(y 1 9y + €C* By 9.0y + EC* B4 )
2pl = 660(11’0) + 550(1071) + 650(11/2’1/2)

where the A’s, B’s and C’s have antifield number 1 as is indicated by the su-
perscripts. These are all possible contributions, since there are no antifields
with vanishing conformal weight. Using the freedom to subtract s-exact
pieces

5(77;1%1,0) + 77‘21%0,1) + EA%U?’O) + 6_’4%0’1/2))

we remove the terms 5501(1,0), éECl(O’l) from 2w} and the terms 77(95141(1/2,0),
7’)56’141(0’1/2) from 'w}.

As in the computation of the action the analysis will be based on the
decomposition of the BRST differential into definite degree with respect to
the supersymmetry ghosts. We expand the part of s with antifield number

0 in supersymmetry ghosts, i.e.

Y=Y + 71+ e

The simplest piece in this decomposition 79 acts nontrivially only on 7,  and
C"®. In the equations above we have used that g w? 4§ 2w} = 0 immediately
implies

A[(]o,o) = A?o,o) =0,

since there are no antifield dependent terms containing ede and £0¢ that can
compensate their contributions. Furthermore, we can immediately conclude
that there are no mixed terms 97 and £0n as well as nd7 and 707 in yw?.
Thus we are left with the following antifield dependent terms

+770iBz'1(1,0) + ﬁCiBil(U,l)
wy = 77514%3/2,0) + 775_14%0,3/2) + 775—14%1,1/2) + 77514%1/2,1)
+0nC(1 2,0+ E07C (0,1 /2) + €C" By 2,0 + EC" Bia )

2w = Egc’(11/2,1/2)
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Next we consider the equation
12(°w) + (1) +6 () = 0

Using for A((]1/2 0) and A(()0 1/2) the expressions

A(()1/2,0) - waM(X) A((]O,l/Z) = ¢MfM(X)a
we find
A(()I,O) = DXMfu(X) = pMypN oy far(X)
A((]o,u = DXMfu(X) — PMPpNon fur(X)
Furthermore, using
Clyyanj2) = (FaKM + 1K + XM Ky + Ay ™K)

where we subtracted the trivial part 6KT(5\;*)\;I€U) thereby redefining K,
we find that the following equations have to be fulfilled

B) —5;uk™ = 0
i — fu +2GunKN — 6 K0 = 0
' 0.

aMJT‘N - aNfM + QMNI(ICK — 6N,i’C§V[ — 61',M6N,n’€; = (6.1.4)

In order to save some writing we have introduced the Kronecker symbol
dn,i, which should not be confused with the Koszul-Tate differential. It is

useful to introduce the following combinations of the coefficient functions f
and f

fir=fu+fu far=fu— fu.

Then one obtains by symmetrization and antisymmetrization of the last
equation in (6.1.4) the following conditions

LxGun = —51',(1\7’@\4) — 0 (ON) K + 65 (v O K
LxBun = 5[Mf'§} + O On1, K" = 63 N K — i K,
B? = 51'7M’CM

with Lx denoting the usual Lie-derivative along K
LxGun = KX0xGun + (0uK")Grn + (ONK") Gk
and where f}; is given by

"= fy — 2By KX,
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From these results it follows that
A%I,O) == 0 A%O,l) - 0
Clij20) =0 Clo/2) =0

Next we turn to contributions containing U(1) ghosts. Using the following
expressions for the coefficient functions dictated by the conformal weight
condition

Bi1(1/2,0) - S‘;Bg Bi1(0,1/2) - )‘;Bg
Bjygy = A5b] + XMy, Bjg,y = A5b] + x9N0,
one finds
OB = (6rr)B] OuBY = —(0r;) B!
O BY = (a1 O BY = —(Oar)b.

This implies that BY(X) is a function of the y'’s only, BY(X) = BY(y).
The other terms give only trivial contributions. Thus one ends up with the
following terms in the antifield dependent part of the solution

“wi = mMA( +nC Bj ) +nC By y)

1,1 ~p1 ~ a1 i pl il
wp = 775A(1,1/2) + 775A(1/2,1) + ECnBz'(l/z,o) + ECnBi(o,1/2,)
wp = 55—0(11/2,1/2)
where Bi(l,o)’ B;(o_,l)’ B;(1/2,0)’ Bi(0,1/2,)’ 0(11/2’1/2) are given in the equations

above. To determine the complete solution we make the general ansatz for
the antifield dependent part A’

(L1)
Ay = XaH(o) +YaH {20 T OuH (012 + FiH i/ +

¢fg21/2,1/2) + Afgél,l/z) + j‘fgfl/z,l) + AngU,l) + Afg@,o) +
DA:gzoyl/Q) + D)\:gzl/zo) + DA:QEO,U) + DA:QEO’O) (615)

where the coefficient functions contained in (6.1.5) are constrained by their
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conformal weights to be of the form
M M
Hiljpoy = ¢VHNY
Moz = PVHNY

Hil o1y = FVANY + 9N hnre™ +¢'n, M
g21/2,1/2) = FNGN' + 9 V"G’ + ¢G)
951’1/2) = DYMPu’ + DXMYNPynt + MNP E Py vk’
+FY N Qunt 4+ M Quist + N Q)
gf1/2,1) = DYMPy' + DXMYN PNt + PM PN Pk’

+FMPN Oyt + TP Qupt + N Q)

gél,o) = DXMRuy' + pMPN RN’
Gliooy = vMau'
Gloayy = ¥Manr'

Gloogy = G

GéO,O) = g

We still have the freedom to remove trivial parts by using the nilpotency
of the Koszul-Tate differential. To this end we examine how the coefficient
functions are redefined under w — w — dgw, where

b = PNTEM L G ATV g B NN M By AN H M
FEFRAHMN 4 Bt 1 4 g NG 4 g NN G
+67 0501+ NG + NG + NG 0
A1) T ARG )+ ATAT
+D)\2‘)\;C;Eg’0) + @j\fj\;.&;%’o) + C;]:(iO,U)‘

Th coefficient functions contained in this expression are constrained to be
of the form

Gy = DXMan ™) g
Giony = DXMau D+ K g @
621/2,1/2) = FNgn" +¢" 37 + "9 gpr

Ai' _K’L Z
Goap) = " Fx”

7 K 1+ ij
gd/QaU) = d) FKJ
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QN%,O) = v

A

gE(J),o) = 9
G%,O) = g’
FEO,O) = fl .

This induces the following redefinitions of the coefficient functions in (6.1.6)

hnk

ONK

Punk"

A

A 1

{

{

M
HNM + Sy 1M

HyM — oy HM

hv™ + 4Gy HIME - 5N,ﬂ:~lMi
hM 25y N

hve™ — onHEM — 6K,iﬁNMi + 20N HME

Gn' — 2GNM?A~1Mi — 20, G

gji 4 5M’j7:~lMi

ONK' — QNKMﬁMi — 0k GNY — 0N Gx'
Pt — 2GunHN = 601 57

Pun’ — QunkHE - 26N g ) + 5ij?Nji
Punk' — RvmreH" — QngrHar™

—20K,j G N (@) 4 O, Ink"

Qun' — O HE? — 2G i H N

+ou,j Gn7t ON,j §Mij

Quij’ + 6 Har ™ + Sa g;"

Q' + bar HM

Pyt — 2GunHY + oM, g’

Pun' — Qv 15+ 20N, G2, — Sar; Fn?
Punk' + RernuH"™ — Qe Hy™

+20K,; G ) 4 6015 Gren

Oun' + QxnuH — 2GukHN

+0m,; Gnlt NG ar’

O’ + Sk 1™ — dars 9,

0 — by HM
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R’ + 0ar; G

'R,MZ —
Run' — Run'— 5M,jﬁNij
Ru' — Rum'+0my Gii
Run' — Run'+ 5M,j-%Nij
g’ = gu' +0m;§7
g’ = gu' — o g9
G - G+F
G - G+F

which allows us to remove certain parts of the functions occurring in A%l 1)

Choosing, according to the decomposition Hy™ = (5N,l,’H,,M + 5N,Z"HiM,
[Mi _ _qiM

we see that we can remove H*M from the cohomology. In the same way we
remove without loss of generality #*™ by the appropriate choice of HM?,
Furthermore we remove h'M, bt hi, M p M piiM Gl t G 7t Giki pii
P, QRi Ok RIL R, R, RUFE R, RY), RUF and G'. Thus the
coefficient functions take the following form

HNY = N, HM
7:[NM — 5N,u 7:[1/M
M = Sy, M
Mo §Mipy,
hnve™ = ONuOr s hoaM
ONK' = ONWOK.k Gun'
Pu' — P
ﬁMi — 5M’“ ﬁuz
Oumj' = Oy Qs
Onmj' = Onrp Qs
Ry’ — SmuRy
RuN' = SMudN. R[W]i
Run' = Smpudnw R’

where for simplicity we keep the old symbols for the new functions. This
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imposes the following conditions on the functions

0 = B4y, HM

0 (fm — Fur) +2Gun HY + 60,3 G

0 =

0 = (Oufy —Onfu) — OnemHE —2G Kk on, HE

—SM 0N, Py’ + Sni gN'

0 = (Oufy —Onfu) + QrenuHS +2G 0k on, HE
M ,uON,i Pu' + Sari OGN

0 = OkOufn + Reovu™” + Qi Ony, o™
—Prim N1 — Ok, 1ON] . R’

0 = OxOmfn — RvmxrH" — Qurxrdng, Ho"

—~Prim' Ny — Ok,i0(ar,uON] » R’

0 = —Oxidnuh S + hid®* Grar — 6ar; G,
0 = hgr
0 = Qun?hij —65:00mu0Nw hyu™ — S01,4ON.; Qui® — S ;0N OQui?
0 = Smudni My +0m; Q)
0 = Smudn, ﬁuN + Qij
0 = 2GruoN), ™ + Qe HE = dari Gny'
0 = 2GMLONLOKx hun™ + 00 OUnicr ™ + H OLON e
40N Qe H " + 0kw Qv "
— 000N OK w Gur' — OK.i QuN' — Oni Ok’
0 = 3 HEORRNMLK — Ny RurrxHo™ + 013 RvmrrHAT

+ON0L) QxR hon® — 00 Punk® — Oari PRLIN'

(ONfrr — O fN) + QuneHE + 00080 Ry — On.i Rus'

(6.1.6)

where the last equation has to be antisymmetrized in M < N and K < L.
We will now work out these conditions and remove simultaneously cobound-
ary terms. Since hj,; can be removed by a coboundary term the equations

hij)

=0 5K,i5M,u huK - hikéK’k Grwm + 5M,j gij =0
require
hmi = G;” =0

Furthermore

Qun? hij — 01,00 10N w Py ™ — 01,40 Qui® — O1 0N Qui®
SaruONi Hy™N + 6 QF
M uON Hy™ + S Q)
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require
huwi = Qui’ = Qf” =0

Hyi = Hpi = Qij = Qij =0

Again we introduce the following combinations for the f’s
fir=fu+ fu fir = for — furs
where f,, is determined by
(fvr — fu) + 2Gun HY + 60, G = 0.

Exploiting the freedom to redefine

fu = fu+0uf 4o
fu = futOuf+ Sm,ig
we can remove G by an appropriate choice of §% — §*. Still we are left with

the freedom to redefine f;;. From the third equation of (6.1.6) we obtain by
symmetrization and antisymmetrization and the use of the second equation

i

LyGun = 0Ny R, — O R
£HBMN = _a[Mf”_]t,] + 5[M,i5N],u ﬁlj — 5[]\{,1- RM}i, (6.1.7)

where

fir = fu + 2By HE.

Symmetrization and antisymmetrization of the fourth and fifth equation of
(6.1.6) yields

LyGun = 2Ggmr (OnyHS —on) 1)
—0(MuON)i P+ O(M,i gN)ia

LyBun = —G[Mf"];] — 2G g (O R = onp0 1)
+0[mr,u0N),i Pt - O gN]i,

LyGun = 2Gxm (OnyH" = on), 1)
+6uON)i Pu' — S Gy’

LyBun = _8[Mf”j\_]] +2Gxpr (O HE = 6y H)

001,083 Pu’ — O G (6.1.8)

i.e., they are of the same structure as (6.1.7). We will thus be able to reduce
the number of independent coefficient functions by comparing (6.1.7) with
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(6.1.8). Furthermore the equations for C’(

) (6.1.5) give the following
identifications

1/2,1/2

HM — M s 1t —
Gi—Ki, Kj=R; Kuyi=Ra

To complete the solution we make the following ansatz for A%
Al

A%1,1/2) = wMA ) T FMA (1/2,0) T ‘15234%1/2,0)
+)"B(1 0t )"3(1/2 1/2) T A;ggO,I/Z) + D)‘;g(io,o)

A%1/2,1) = wM-A )t FMA (0,1/2) ‘153“‘_{%0,1/2)
+Ai 3(1/2,1/2) + A 3(0,1) + 1‘13531/2,0) + @j‘fggo,m

1,1/2) and

The coefficient functions contained in the expression above are
AM _ AM
Al (1/2,0) — wN-AN M
AE1/2,0) - wNANi
Blioy = DXYBy'+¢MyNBuyn’
Bl = FMoar' + @b + M Nbyy'
550,1/2) = @MgMi
Eog = &
AM _ QM
A, (0,1/2) — N AN
AE0,1/2) = VAN’
Bioy = DXMByi+ MV By

521/2,1/2) = FMoy' + ¢j6ji + M NN
5(11/2 0 = PMEN"
oo = &

Following the procedure for A! 1,1y We remove trivial parts by considering the
Koszul-Tate part of the BRST transformations of
Ay = FiAARG +¢; JAfg 00) T A;‘A;B{g’o)
+A*A*Bg; 1oy FANNER )
Aoy = FR ARG + oAl o) + A;x;égg,o)
( i)
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The coefficient functions are again independent of ghosts and antifields and
constrained by the conformal weight indicated in the subscript brackets

(m,n). Going through the same steps as described in detail for Aél,l) and
1
Clij2a/2)

ture as (6.1.4) and (6.1.4). For A%l 1/2) they explicitly read

one finds the corresponding equations, which are of the same struc-

= B+ 6oy, AM

(far — far) +2Gun AN + 651, &

= (Onfu — Omfn) + Qunk A
—S0mi0N .y ES + SN B

0 = (Oufy —0nfu) — Onem AR —2G K dn, ALK
+on,i ANi +On,i0m bui
0 = OkOufn) — Rvmxr A" — Qurrdng, A"

+On b’ + OK,i0[n,uO N0 B’
0 = 6M,i6N,u .AVM + 5N,j bij.

The analogous equations for A%l /2,1y are

= BY  dy; AM

(far — far) — 2Gun AN + 601, €

= (Onfu — Omfn) — Qunk A
+0mi0Ny Bt — Oni Er’

0 = Omfnv —0nfu) — Qenm AX +2Guk On, AT
_(5M,i ANi + 5M,M5N,i Eui
0 = 0kOmfn — R A" + Qpianrong, A"

i

~dnibr N — 0K, w0 B!
0 = Smidny AM —dn ;b
Comparing the equations above with the the relevant equations for A%l 1)
leads to the following identifications
HM:AM:_AM gz:gz:gz
Rt = —Buf = Exf' Rui _ Bui _ 7&/'
HVK — AVK ’}:LVK: — AVK
N = AN G = ANt Pui= 75/11' 75Mz' _ *bui
Ruui = _Buui Ruui = Buui PKMl = _bMKZ PKMl = bKMZ

Thus the complete result w? 4+ %wi +'wl +%w] up to antifield number 1
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reads
w) = @DXM +aDX)L 8 — (DXM — i DXM)GunHY
— (npMpN + MM L o £
+ (™M — M PN )N (G HE)
+3 (epM + &ML i — 3 (9™ — e )GunHY - CHon HMY

Swi = ma(XyHY + oh N o O + N O, 6N
+Fy (FNOn 6B+ N R O 10k w6 Ry )
+¢5(FNGN' + NP5 6N, 0K wGur’)
+A] (Dl/;M(SM,u/PNi + 'DXMLZN'PMNi

+ M NpE Pkt + FMN Qun®)
AN (DYM sy Pt + DXMpN Pyt

+ MV E Py Nk + FMYN Qpn')
+A; (DX Mo Ry + DM N O0r N R )
+A;(DXMRy + MYV Sp 00N Ry’
+DA M gnr’ + DAFHM g’
—nC A5 (87 501, HM ) + nC A% (0750, HM)

'wi = ne(WyHY + FapN oy oman M + 5N gnt
N (DXMRy + MV S ON R’
_S‘f(FM‘SM,uﬁui + wM@NPNMi)
—AipNon, R,)
+ie(— Yy HM + Fyb™N on, 0P — ¢ipN gt
=N (FMon Py — MNPy’
AN (DXM s R+ DMV Sag uOn Rt
+ AN RYY)
+eC' N} (I Spri HM) — eCN3 (0 0, HM)

wi = e(— FyHM + 671G+ Ny N Ry + XN on R

where the coefficient functions have to fulfill the equations (6.1.7) and (6.1.8)
and the remaining equations of (6.1.6). In fact it turns out that the number
of independent coefficient functions can be reduced, since (6.1.7) and (6.1.8)
are of the same structure and the higher order differential equations in (6.1.6)
(i.e., the sixth and seventh equation in (6.1.6)) turn out to be derivatives of
the generalized Killing equations. We will not work this out for the general
case but instead investigate a specific example in the next section.
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As a final remark we note that the solution given above is defined only
up to redefinitions

o = i+ 0uf 4 0mag”
Pun® = Pun® — 26859, "
Punk' — Punk — 2059 ) 4 arp i
Qun" = Qun" + s aaf”
Pun® — Pun®+20np ?M(ab)
Punk” = Punk” +20Kb9n ) 4 rp Grn"™
Oun® = Oun®— Onp g™

which alter the solution by a coboundary.

6.2 Global symmetries

6.2.1 Simplified action

For further discussion we shall assume in the following that the functions
D; coincide with a subset of the fields X™. We denote this subset by {y'}
and the remaining X'’s by x*,

(XM} ={at,y"}, D=y’ (6.2.9)

In fact, this assumption is a very mild one because, except at stationary
points of D;(X), (6.2.9) can be achieved by a field redefinition X™ — XM —
XM (X) (“coordinate transformation in X-space”), where this redefinition is
such that each nonconstant D;(X) becomes one of the X’s. Indeed, constant
D; give only contributions to the Lagrangian which are total derivatives and
can thus be neglected, at least classically; nonconstant D; can be assumed
to be independent by a suitable choice of basis for the gauge fields and may
thus be taken as X’s, at least locally (e.g., if D1 = Dj, the Lagrangian
depends only on the combination Al + A2 which can be introduced as a
new gauge field).

It is now easy to see that the Lagrangian (4.1.14) can actually be sim-
plified by setting the fields ¢¢, F%, X}, ¢’ to zero. Indeed, owing to (6.2.9),
the classical equations of motion for A\’ and ¢ yield ¢* = 0 and F* = 0,
respectively. The latter equations are algebraic and can be used in the La-
grangian. Then the Lagrangian does not contain A’ and ¢’ anymore and
the only remnant of the gauge multiplets are the terms ec™"49,, A: . This
reflects that the gauge multiplets carry no dynamical degrees of freedom
since the world-sheet is 2-dimensional. Of course, the BRST transforma-
tions given in section 3.2 must be adapted in order to provide the gauge
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symmetries of the simplified Lagrangian: those fields that are eliminated
from the action must also be eliminated from the transformations of the
remaining fields using the equations of motion of the eliminated fields. This
only affects the supersymmetry transformations of y* and A . The new
supersymmetry transformation of y* is then simply zero owing to the field
equation for ' (¢* = 0). This is not in contradiction with the supersymme-
try algebra because the equations of motion for the A%, give 0,,9° = 0 (of
course, after eliminating the fields ¢, F*, \', ¢, the supersymmetry algebra
holds only on-shell). The latter also shows that the fields 3* carry no dy-
namical degree of freedom. The new supersymmetry transformation of A,
is more complicated and arises from the original one by using the equations
of motion for F* and v to replace A' and ¢’, and then setting F and 9" to
ZEro.

6.2.2 Nontrivial global symmetries

Let us now discuss the nontrivial global symmetries of the action (4.1.14)
as obtained from the BRST cohomology in the space of antifield dependent
local functionals with ghost number —1. This cohomology feels of course the
particular action, for the latter enters the BRST transformations of the anti-
fields through the Euler-Lagrange derivatives of the Lagrangian. We present
now the resulting global symmetries for the simplified form of the action

arising from the Lagrangian (4.1.14) by eliminating the fields v, F*, \i, ¢*

as described above, assuming (6.2.9). The nontrivial symmetries® are gen-

erated by the following transformations,
Ah'mn =
AXm =
AXM = M W = Ki(y), H'=VHX)
Al = Pad,VH(X)
1.
AFF = FY9,VH(X)+ 5qpvq;ﬂaﬁwﬂ(x)
A4l = by (X)X M + 0l (X)0, XM — 65, A, 0, K" (y)
_Xn’}’m'yn’)/*w“aL(X) + %J}“*qu[)"a[ybz](X)
+5 PPyt ), ap, (X) (6.2.10)

where HM | aﬁw and b’M have to solve the following generalized Killing vector
equations,

LyGyun = _25i(Ma1\2})

LyBun = —20mpn) — 26imbpy (6.2.11)

3 A global symmetry is called trivial in this context when it is equal to a gauge trans-
formation on-shell.
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for some functions pps(X) (L3 is the standard Lie derivative along HM, 6;ar
is the Kronecker symbol, i.e., d;3y = 1 if M = i and d;37 = 0 otherwise).
Note that the pas do not occur in the A-transformations; however, they do
contribute to the corresponding Noether currents.

The equations (6.2.11) are actually the same as the equations which
also determine the symmetries of bosonic string and D-string actions [38-
40, 42], specified for (6.2.9). In absence of gauge fields (no A%, v, K%
{HM} = {V*}), they read

LyvGuw =0, LyBu =—20,p, - (6.2.12)

These equations had been already discussed in [87, 88, 90]. The first equa-
tion (6.2.12) is just the standard Killing vector equation for G,,,,. Hence, the
solutions of equations (6.2.12) are those Killing vector fields of G, which
solve the second equation (6.2.12) (for some p,).

The situation changes when gauge fields are present. Then equations
(6.2.11) read for M, N = pu,v:

LyvG, = —-K'9G.
L:VBMV = _KiaiB;w_28['upy] (6213)

where Ly is the Lie derivative along the vector field VM given by V* = 0,
V# = V#(X). The remaining equations (6.2.11) just determine the functions
aﬁw and béw,

ai, = —LyGpi, d =-2LyGy;

Here we have used that p; and the parts of ag resp. bg which are antisym-
metric resp. symmetric in 4,5 can be set to zero without loss of generality
(the corresponding contributions to A can be removed by subtracting trivial
global symmetries from A).

The global symmetries are thus completely determined by equations
(6.2.13). Note that these equations reproduce (6.2.12) for K* = 0, except
that now G, and B, depend in general not only on the z# but also on the
y'. Hence, in general V* and pu also depend on the y*. For the discussion
of equations (6.2.13), the y may be viewed as parameters of G, and By,.
Solutions to equations (6.2.13) with K® = 0 can thus be regarded as solu-
tions to equations (6.2.12) for some G, and By, involving parameters Yyt
The global symmetries with K = 0 are thus analogous to the symmetries
of ordinary superstrings and correspond to isometries of the (parameter-
dependent) metric G . In contrast, solutions to (6.2.13) with K* # 0 have
no counterparts among the solutions of (6.2.12). Such solutions may be
called “dilatational” solutions, because in special cases they are true dilata-

tions, as we will see in the example below (further examples can be found
in [38, 39, 42]).
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Finally we note that the solutions to equations (6.2.13) come in infinite
families and that, as a consequence, the corresponding commutator algebra
of the global symmetries is an infinite dimensional loop-like algebra. This
has been observed and discussed already in [38, 39] and is an immediate
consequence of the fact that the action depends on the A?, only via their field
strengths [89]. All members of a family arise from one of its representatives
by multiplying the functions V#(X), K'(y), pu(X) of that representative
with an arbitrary function of the y*. One can directly verify that this makes
sense: if VH(X), K'(y), pu(X) is a solution to equations (6.2.13), then
another solution is obtained by simply multiplying V#, K*, pu by the same
arbitrary function of the y*. As the y* are constant on-shell (by the equations
of motion for the A%), this infinite dimensionality of the space of global
symmetries has no practical importance, i.e., in order to discuss the global
symmetries it is sufficient to consider just one representative of each family.

6.3 Example

To illustrate the results presented above, we specify them for a simple class
of models, which were treated already in [38, 39] for the purely bosonic
case. These models are characterized by Lagrangians containing only one
U(1) gauge field A,, and the following choices for the background

GyM = 07 Guu = f(y)n;wa
By, =0, By = B (y), (6.3.15)
leading to
e 'L = —% h™" Opzt Oz’ G + %em”amxﬂanx”Bw,

+Xm('7n7m)"/]y8nqu;w - %Xm(’yn'YmC)XnEM"/JVG;w

+% ¢M7m m¢uGuu - i¢y(7m7*)¢uamy 8yBIW

+3 €™ (OmAn — OnAm)y, (6.3.16)
where the assumption { XM} = {z#,y} is taken into account. As shown in

[38, 39|, in this case the general solution of equations (6.2.11) is (modulo
redefinitions corresponding to trivial global symmetries)

Vi = LK@ fy))z" + i (y) + i (y)ns

ay, = =VVNFy)nu, ay=0

by = —3 (K(y)B,,)'z" — B, V", b,=0

pu = K(y)B,,z"+2B,V", (6.3.17)

where a prime denotes differentiation with respect to y:

9
Oy’
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K(y), m(y) and r#N(y) are arbitrary functions of y and correspond to
families of dilatations, translations and Lorentz-transformations in target
space, respectively. For two reasons the dilatations are special. Firstly, as
discussed already above, they have no counterpart among the global sym-
metries of the ordinary superstring on a flat background. Secondly, they
can map solutions to the classical equations of motion with vanishing field
strength 0, A, — 0, A, to solution with non-vanishing field strength. This is
in sharp contrast to the translations and Lorentz-transformations and most
easily seen from Ay = K(y), using that the field strength is related to y
by the equations of motion through f'(y) ~ €™"0,A, + ... where =~ is
equality on-shell. An analogous reasoning shows that the latter property
of ‘dilatational symmetries’ extends to more complicated backgrounds for
which solutions to (6.2.13) with K* # 0 exist.
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7.1 On-shell cohomology

We shall now define and analyse an “on-shell BRST cohomology” H(o)
and show that it is isomorphic to its purely bosonic counterpart at ghost
numbers < 4, i.e., to the on-shell BRST cohomology of the corresponding
bosonic string model. The relevance of H (o) rests on the fact that it is
isomorphic to the full local s-cohomology H(s) (in the jet space associated
to the fields and antifields), at least at ghost numbers < 4,

g<4: HIo)~HIs). (7.1.1)

This will be proved in section 7.2.

The analysis in this and the next section is general, i.e., it applies to
any model with an action (4.1.13) (or, equivalently, (4.1.14)) provided that
two rather mild assumptions hold, which are introduced now. The first
assumption only simplifies the action a little bit but does not reduce its
generality: as we have argued already in [36], one may assume that the
functions D;(X) which occur in the action coincide with a subset of the
fields X™. We denote this subset by {7’} and the remaining X’s by z*,

{(XM} = {a*,y'}, Di(X)=y" (7.1.2)

For physical applications this “assumption” does not represent any loss of
generality because it can always be achieved by a field redefinition (“target
space coordinate transformation”) XM — XM = XM(X). The y' may
be interpreted as coordinates of an enlarged target space leading to “frozen
extra dimensions” [36]. The second assumption is that G, (z,y) is invertible
(in contrast, Gy need not be invertible). This is particularly natural in the
string theory context, since it allows one to interpret G, as a target space
metric. It is rather likely that our result holds for even weaker assumptions
(but we did not study this question), because the results derived in [39, 40]
for bosonic string models do not use the invertibility of G,

67
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Let us remark that the isomorphism (7.1.1) is not too surprising, because
it is reminiscent of a standard result of local BRST cohomology stating that
H(s) is isomorphic to the on-shell cohomology of 7 in the space of antifield
independent functions, where 7 is the part of s with antifield number 0 (see,
e.g., section 7.2 of [30]). However, (7.1.1) is not quite the same statement
because the definition of o given below does not take the equations of motion
for p, @i, o or & into account. Hence, (7.1.1) contains information in addition
to the standard result of local BRST cohomology mentioned before: the
equations of motion for u, i1, a, & are not relevant to the cohomology! This
is a useful result as these equations of motion are somewhat unpleasant,
because they are not linearizable (the models under study do not fulfill the
standard regularity conditions described, e.g., in section 5.1 of [30]).

7.1.1 Definition of ¢ and H (o)

o is an “on-shell version” of s defined in the space of local functions made of
the fields only (but not of any antifields). We work in the ‘Beltrami basis’
and use the equations of motion obtained by varying the action (4.1.13) with
respect to the fields X, 1, v, ﬁ’, </3, A, A and A,,. The covariant version
of these equations of motion can be obtained from the s-transformations of
the corresponding covariant antifields given in appendix C.2 by setting the
antifield independent part (‘Koszul-Tate part’) of these transformations to
zero. This gives the following “on-shell equalities” (~):

Fi 0 (7.1.3)
W 0 (7.1.4)
o 0 (7.1.5)
Dy 0 (7.1.6)
Dy 0 (7.1.7)
o 2Gi P P Qi (7.1.8)
N & 26, DPF + Dat Pt Qi + FHP Qi
+¢H¢V¢9Rym.p (7.1.9)
Noox 2G, DY — Dty + FPPY
+pPY P Ry (7.1.10)
Fro~ —lyrgrq,r (7.1.11)
DYt ~ —1[Da"pPQuH 4+ L TPy, Ok,
P P R ) (7.1.12)
DY~ 5 [=Da PPt + 5 P Y PP,

+ PP Ryt (7.1.13)
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Fo~ QGW'D@:E“ + ’D:I:“@J:VQNW- - ﬁ’“ﬁ’”ﬂiw
— DY Qi + P DY Qi
—Dz P P Ripy — DM pY PP Ry i
— P PO,y — & P PP D5 R (7.1.14)
DDx* =~ % [—’Dx”@:z:pﬂ,,p“ + FV}?’PQMW)

+DYY PP, — PV DYPOLH,
—Dz Y " YPRH 55 + DY PP Ryt
+FOY PO, + L M TP R,y e]  (7.1.15)

where indices p of 2, R, 0 have been raised with the inverse of G, (z,y), and
W', ¢t and Fi belong to the same supersymmetry multiplet as y* (the auxil-
iary fields F should not be confused with the supercovariant field strengths
Fi of the gauge fields). Note that the right hand sides of (7.1.8), (7.1.9),
(7.1.10), (7.1.14) and (7.1.15) still contain F*, Dy* or Dyp*, which are to
be substituted for by the expressions given in (7.1.11), (7.1.12) and (7.1.13),
respectively. Furthermore, in (7.1.14) one has to substitute the expression
resulting from (7.1.15) for DDz#*. Using Eqgs. (7.1.3) through (7.1.15) and
their D and D derivatives, we eliminate all variables on the left hand sides
of these equations and all the covariant derivatives of these variables. Fur-
thermore, we use these equations to define the o-transformations of the
remaining field variables from their s-transformations. For instance, one
gets

oyt = 0 (7.1.16)
ozt = (nD+qD)z* + eyt + et (7.1.17)
ot = DY — 5 n[Da PR, H

+% ,(/J)‘/l/_)axng)\o'yﬂupy + ,l/)Vpr,(/_JD'RMVUp}
+3 Oyt + eDaH + & PP QP (7.1.18)

The o-transformations of n, 1, €, €, u, @, o, & coincide with their s-
transformations. The cohomology H (o) is the cohomology of o in the space
of local functions of the variables {uf,v*, W4}, where the u’s and v’s are the
same as in sections 3.3 and 4, while the W’s are given by
(W = {y',2" Dkt Drak, D'y#, D"Y#, 0", 0"
e, 0"5,C* : k=1,2,... , 7r=0,1,...}. (7.1.19)

H(o) is well-defined because o squares to zero,
o2 =0. (7.1.20)

This holds because the (covariant) equations of motion of the fields X, 1,
v, F, ¢, A\, A\, A, and their covariant derivatives transform into each other
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under diffeomorphisms and supersymmetry transformations but not into
the equations of motion of u, fi, @ or & [as can be read off from the s-
transformations of the antifields X*, o*, 9*, ﬁ’*, (]3*, A*, A* and A%, in
appendix C.2].

7.1.2 Relation to H(o, W)

o acts on the variables {uf, v, W4} according to ou’ = v¢, cW4 = rA(W).
Furthermore, analogously to (4.0.2) one has

0 A A 0 A T A

{o—, 5] }W — LoW* | {0, 567 }W —Low4,  (1.1.21)
i.e., in the space of local functions of the W’s the derivatives with respect to
On and 07 are contracting homotopies for Lo and Ly, respectively. Hence,
the same standard arguments, which were used already in section 4 yield that
H (o) is given by Har(GL"(2))® H(o, W), where Hqr(GL"(2)) reflects the
nontrivial de Rham cohomology of the zweibein manifold (see theorem 5.1
of [79]), while H(o, W) is the o-cohomology in the space of local functions
with vanishing conformal weights made solely of the variables (7.1.19),

H(o) = HdR(GL+(2)) ® H(o, W),
W={w:w=wW), (Lw,Lw) = (0,0)}. (7.1.22)
The factor Hqr(GL™(2)) is irrelevant for the following discussion because

it just reflects det e?, # 0 and makes no difference between superstring and
bosonic string models.

7.1.3 Decomposition of ¢

To study H (o, W) we decompose o into pieces of definite degree in the super-
symmetry ghosts and the fermions!. The corresponding counting operator
is denoted by N,

N:NE+N§+N/¢)+N1Z) (7.1.23)
with N, and N; as in (4.0.4) and
0 I 0
Ny= (D)oo Ny= (D)oo
r>0 o(Dryr) 20 A(Drpr)

Using the formulae given above, it is easy to verify that o decomposes into
pieces with even N-degree,

o= oo s [N,o9,] =2no9, (7.1.24)
n>0

'"We are referring here to the variables (7.1.19) themselves, and not to the fermions
that are implicitly contained in these variables through covariant derivatives.
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where, on each variable (7.1.19), only finitely many o9, are non-vanishing.
For instance, (7.1.18) yields

oo = nDy* — %ﬁ@m”d)pﬁpy“ + %me“ + eDz#

ot = *411 ﬁxb/\@zad_’pgkaygupu - %ﬁxb%;pi)aRuuap + %&bpd_’yﬂpvu
oot = 0 for n>1.

7.1.4 Decomposition of g

We shall prove the asserted result by an inspection of the cohomology of
og. To that end we decompose gy according to the supersymmetry ghosts.
That decomposition has only two pieces owing to the very definition of g
and N,

oo =000+ 00,1, [Ne+ Ne,000l=0, [Ne+ Ne,001] =001
(7.1.25)

00,1 acts notrivially only on the fermions and their derivatives D"¢* and
Dyp# with r = 0,1,.... One easily verifies by induction that o has the
following simple structure

o1 DYt = L e D1 yH
k=0
! T

001 DYt = L ke Drlkyr (7.1.26)
k=0

7.1.5 H(op,W) at ghost numbers < 5
The cocycle condition of H(og, W) reads

oow =0, weW. (7.1.27)

We analyse (7.1.27) using (7.1.25). To that end we decompose w according
to the number of supersymmetry ghosts,

ESll

w=  wg, (Ne+ Ne)wg=kuwy . (7.1.28)

Note that k is finite, & < gh(w). Hence, the cocycle condition (7.1.27)
decomposes into

00,1W = 0, 00,0Wf + 001W,_ 1 = 0, ... 00,0Wg = 0. (7129)

We can neglect contributions g 1w;_; to wg because such contributions can
be removed by subtracting oow;_; from w. Hence, wg can be assumed to be
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a nontrivial representative of H (o 1,)V). That cohomology is computed in
appendix A.1 and yields

Wy = h(ya €T, C’ [57 77}’ [5’ ﬁ]) + anE“h,u(ya T, 877’ Ca [5, ﬁD
—|—77'[)Z'Nilu(y, "Ea 577” 07 [6a 77])
+niDx* Dz’ by (y, x, O, 07, C) (7.1.30)

where 0 1-exact pieces have been neglected, and [, 7] and [£, 77] denote de-
pendence on the variables 8"e,8"n and 8"¢,0"7 (r = 0,1, ...), respectively.
The result (7.1.30) holds for all ghost numbers and shows in particular that
wy can be assumed not to depend on the fermions (D"y*, D"9*) at all.
We now insert this result in the second equation (7.1.29), which requires
that oo,0wg be 0g 1-exact. At ghost numbers < 5 this requirement kills com-
pletely the dependence of wy on the supersymmetry ghosts as we show in
appendix A.2. The result for these ghost numbers is thus that, modulo o¢-
exact pieces, the solutions to (7.1.27) neither depend on the fermions nor on
the supersymmetry ghosts,

gh(w)<b5: w = gow+h(y,z,C,[nl,[7])
+nDzth,(y, z, 0n, C, [1])
+7Dathy(y, =, 01, C, [n])
+nDx*Dx" hyy (y, x,0n,00,C).  (7.1.31)

Furthermore, (7.1.25) and (7.1.26) show that a function which neither de-
pends on the fermions nor on the supersymmetry ghosts is og-exact if and
only if it is the og-transformation of a function which does not depend on
these variables either. Combining this with (7.1.31) one concludes

g<b5b: H oo, W)~ H (0o, Wo), (7.1.32)

where W)y is the subspace of W containing the functions with vanishing
N-eigenvalues,

Wy ={weW: Nw=0}.

This subspace can be made very explicit. The only variables (7.1.19) with
negative conformal weights on which a function w € Wy can depend are the
undifferentiated ghosts n and 7 [note: the only other variables (7.1.19) with
negative conformal weights are the undifferentiated supersymmetry ghosts,
but they cannot occur in w € Wy by the very definition of Wy]. Since 7
and 7] are anticommuting variables and have conformal weights (—1,0) and
(0, —1), respectively, each of them can occur at most once in a monomial
contributing to w € Wy. Hence, functions in Wy can only depend on those
w’s with conformal weights < 1 (as higher weights cannot be compensated
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for by variables with negative weights), and a variable with Lo-weight (Lg-
weight) 1 must necessarily occur together with 7 (7). This yields

weEWy & w= f(y,z,C,dn, 07, nDz*, 7Dz*, nd*n, 10°7). (7.1.33)

Note that H(og, W) is nothing but the on-shell cohomology H (o, W) of the
corresponding bosonic string model, since elements of Wy neither depend
on the fermions nor on the supersymmetry ghosts, and since og reduces in
W to 09,0, which encodes only the diffeomorphism transformations but not
the supersymmetry transformations.

7.1.6 H(o) at ghost numbers < 4

We shall now show that H(o, W) is at ghost numbers < 4 isomorphic to
H (o9, Wo),

g<4: Hg(U,W)ﬁHg(O'o,Wo). (7.1.34)

Because of (7.1.22) this implies that H (o) is isomorphic to its counterpart in
the corresponding bosonic string model (recall that the factor Har(GL™(2))
is present in the case of bosonic strings as well, and that H9(og, Wy) is the
on-shell cohomology of the bosonic string model). To derive (7.1.34), we
consider the cocycle condition of H (o, W),

ow=0, wéeW. (7.1.35)

We decompose w into pieces with definite degree in the supersymmetry
ghosts and fermions,

|

W= Wn, Nwp=nuwy,, (7.1.36)

n=n

with N as in (7.1.23) [actually there are only even values of n in this decom-
position because w has vanishing conformal weights]. The cocycle condition
(7.1.35) implies in particular

oown, = 0, (7.1.37)

where we used the decomposition (7.1.24) of o. Hence, every cocycle w
of H9(o,W) contains a coycle w,, of HY%(og,)V). Our result (7.1.32) on
H9(0p, W) implies that this relation between representatives of H9(o, W)
and H9(op, W) gives rise to a one-to-one correspondence between the coho-
mology classes of H9(o, W) and H9(og, Wy) for g < 4 and thus to (7.1.34).
The arguments are standard and essentially the following:

(i) When g < 5, wy, can be assumed to be nontrivial in H9(og, W) and
represents thus a class of H9(og, Wy). Indeed, assume it were trivial, i.e.,
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wp = Ogwy for some w, € ¥. In that case we can remove w, from w by
subtracting o@,. w' := w — ow, € W is cohomologically equivalent to w
and its decomposition (7.1.36) starts at some degree n’ > n unless it van-
ishes (which implies already w = o@y). The cocycle condition for w’ implies
oow,, = 0 and thus w), = oow!, for some &, € W as a consequence of
(7.1.32) (owing to n’ > n > 0). Repeating the arguments, one concludes
that w is o-exact, w = o(&p + @), +...) [it is guaranteed that the procedure
terminates, i.e., that the sum E’n + @, + ... is finite and thus local, be-
cause the number of supersymmetry ghosts is bounded by the ghost number
and thus the number of fermions is bounded too because w has vanishing
conformal weights|.

(ii) When g < 4, every nontrivial cocycle wy of H9(og, W) can be com-
pleted to a nontrivial cocycle w of H9(o, W). Indeed suppose we had con-
structed w, € W, n = 0,...,m with ghost number g such that wm) =

o wn fulfills ow(™m = n>mi1 Bn With NR, = nR, [for m = 0 this is
implied by ogwg = 0 which holds because wy is a gg-cocycle by assumption].
o2 = 0 implies o n>mal R, = 0 and thus ogR,,+1 = 0 at lowest N-degree.
Note that Ry,41 is in W (owing to oW C W) and that it has ghost number
g+ 1 < 5 because w(™ has ghost number g < 4. (7.1.32) guarantees thus
that there is some wy,, 1 € W such that R,,11 = —ogwm+1, which implies
that w(™+1) .= WM 4 o fulfills ow™t) = S R],. By induction
this implies that every solution to (7.1.37) with ghost number < 4 can indeed
be completed to a solution of (7.1.35) [the locality of w holds by the same
arguments as above]. If wy is trivial in H9(og, W)p), then its completion w is
trivial in H9(o, ) by arguments used in (i). Conversely, the triviality of w
in H9(o,W) (w = on) implies obviously the triviality of wy in H9 (oo, Wp)
(wo = ognp) because there are no negative N-degrees.

7.2 elation to the cohomology of bosonic strings

We shall now derive (7.1.1) and the announced isomorphism between the s-
cohomologies of a superstring and the corresponding bosonic string model.
Both results can be traced to the existence of variables {af, 5!, W4} on
which s takes a form very similar to o on the variables {u’, v¢, w4} used in
section 7.1. In the ‘Beltrami basis’ the set of @’s consists of: (i) @’s with
ghost number 0 which coincide with the u?; (ii) @’s with ghost number —1
given by the superconformal antifields X}, ¥%,, Vi, Fif, &F, A\ Af, Af
(recall that we have dropped the hats on these antifields) and all covariant
derivatives of these antifields plus the A¥ and all their D-derivatives (D" A},

r=0,1,...)% (iii) @’s with ghost number —2 given by the antifields of the

2The D'“Djfi;;‘ with k£ > 0 do not count among the u’s because the antifield independent
parts of sD*D" A} and —sD* " 'D ! A} are equal (both are given by D*D™*1y"). Rather,
they are substituted for by the v’s corresponding to the D*"'D"C} (k > 0) owing to
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ghosts, i.e., by n*, n*, €, €*, C; and all their derivatives. It can be readily
checked that a complete set of new local jet coordinates in the Beltrami
basis is given by {af, o, W(g)} with #¢ = saf and
{W(Aé)} = {yl’ :I"M’ kaﬂ’ bkmuﬂ DTI/)Mﬂ 17)7‘1/_)“7 6r777 grﬁﬂ 6r6’ grg_’ CZ’
o', 0"p*,0"a*,0"a* :k=1,2,... , r=0,1,...}. (7.2.38)

Note that {W(‘g)} does not only contain the W4 listed in (7.1.19), but in

addition the variables 0" u*, 0" i*, 0"a*, 0"a*. The latter occur here because
their s-transformations contain no linear parts and can therefore not be used

as 9's®. The W fulfull

Wiy = (W) + O(1) (7.2.39)

where O(1) collects terms which are at least linear in the @’s and ¥’s. As

shown in [94], (7.2.39) implies the existence of variables WA = W(ﬁ) +0(1)
which fulfill

sWA = rA(W) (7.2.40)

with the same functions r# as in (7.2.39). Furthermore the algorithm de-

scribed in [94] for the construction of the W4 results in local expressions
when applied in the present case. This can be shown by means of arguments
similar to those used within the discussion of the examples in [94]%.

(7.2.40) implies that the s-transformations of those W’s which corre-
spond to the variables (7.1.19) can be obtained from the o-transformations
of the latter variables simply by substituting there W’s for the corresponding
W’s. For instance, this gives

sy’ = 0, (7.2.41)
st = n(Dzt) + n(Da) + et + eyt (7.2.42)

where here and in the following a prime on a variable indicates a W -variable®.
For instance, y" is the W-variable corresponding to " and explicitly given

sD*'D'Cf = —D*DTA; + ...

3The other derivatives of the antifields p*, i*, o*, &, such as the 8*8"u* (k > 0), do
not occur among the W(O)’s because they are substituted for by the 9’s corresponding to
n*, 7%, €*, € and their derivatives (e.g., one has sn* = —du™ +...).

“In the present case, the suitable ‘degrees’ to be used in these arguments are the
conformal weights and the ghost number. Using these degrees one can prove that the
algorithm produces local (though not necessarily polynomial) expressions: the resulting
W’s can depend nonpolynomially on the z*, y* and on the two particular combinations
eX; and £)] but they are necessarily polynomials in all variables which contain derivatives
of fields or antifields.

The construction of the W’s implies (8"n) = 8™, (8"7) = 877, (8"c)’ = 8"e and
(0"&)" = "¢ because the s-transformation of these ghost variables do not contain any @’s
or ¢’s. This has been used in (7.2.42).
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by
Y =yl 4+ eX — ENF — Al + GAF + niCy . (7.2.43)

This very close relation between s on the TW-variables and o on the variables

(7.1.19) would immediately imply H(s) ~ H(o) if the W-variables (8" u*)’,

(0mp*)', (0"a*)', (0"a*)" were not present. Nevertheless the asserted isomor-

phism (7.1.1) holds because the conformal weights of the latter variables are

too high so that they cannot contribute nontrivially to H9(s) for g < 4. To

show this we analyse H(s) along the same lines as H (o) in section 7.1.
The first step of that analysis gives

H(s) ~ Hqr(GLT(2)) ® H(s, W),
W= {w:w=uww), (Lw,Low) = (0,0)}. (7.2.44)

This result is analogous to (7.1.22) and expresses that the zweibein gives the
only nontrivial cohomology in the subspace of 4’s and ¢’s and that there is
a contracting homotopy for Ly and Ly because (7.2.40) implies

0 i 5y O /i _ 7 /A
{s, 557) }W — LoWA {s, 5% }W — LA
The conformal weights of a*, a*, p* and p* are (3/2,0), (0,3/2), (2,0)
and (0,2), respectively.

H(s, W) can be analysed by means of a decomposition of s analogous to
the o-decomposition in (7.1.24), using a counting operator N’ for all those
W’s which have half-integer conformal weights,

N' = N, +Ng—|—N1/,I +N&/ + Nyt + Ngxr .
The decomposition of s reads

/
s = S2n [N as2n] = 2n Sop .
n>0

Next we examine the sg-cohomology. Analogously to (7.1.25) one has
s0 = S0,0 + 50,1, [Ne+ Ne,s00]=0, [Ne+ Ne,soi] =501 -

We now determine the cohomology of sq ; along the lines of the investigation
of the 0 1-cohomology in appendix A.1 by inspecting the part of sq; which
contains the undifferentiated ghost €. That part is the analog of ¢ 1,1 in
(A.1.2) and takes the form e QLI/Q. GL1/2 acts nontrivially only on the 1)/,
o and their (covariant) derivatives according to

GL1/2(DT¢#)/ — (DTJrl:E,U)/ , GAil/Q(ara*)l _ _(aru*)l
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We define a contracting homotopy B’ which is analogous to the contracting
homotopy B in appendix A.1,

0 0
BI — D'r ©y/ _ T %/ .
PV ey ) ey

Using B’ one proves that the functions f] with » > 0 which are analogous
to the functions f, in appendix A.1 can be assumed not to depend on the
variables (D"yH), (D" T1zH) | (0"a*) or (0"p*)".% In the case r = 0 one gets
that fj does not depend on (9"a*)" or (9" u*)’, simply because the conformal
weights of these variables are too large [cf. the arguments in the text after
(A.1.9)]. This implies the analog of equation (A.1.11), with functions f]
and g;, which may still depend on (D"¢#)', (D" 1z, (8"a*)" or (9"p*)'.
The dependence on these variables can be analysed analogously, using a
contracting homotopy B’ for these variables, along the lines of the remain-
ing analysis in appendix A.1. One finally obtains the following result for

H(So’l, W)

s0,1w = 0, weW =
w=h(y,z',C", [e,n],[&7])
+0(Da*) hu(y', 2, 0n, €', [€, 7))
+7(Dzt) hyu(y', 2, 01, C', [, 7))
+nij(Dz") (D) hyw (y', 2', O, 07, C')
+ so10(w), &€ W. (7.2.45)

Hence, H(sg,1,) is completely isomorphic to H(og1,WW) (for all ghost
numbers). In particular, the representatives do not depend on (9"a*),
(0ra*), (0"p*)" or (0"@*)" [recall that the reason is that the conformal
weights of these variables are too high; if, for instance, u* had conformal
weights (1,0) instead of (2,0) it had contributed to (7.2.45) analogously to
(Dz#)']. This implies the results announced above: arguments which are
completely analogous to those used to derive first (7.1.31) and then (7.1.34)
lead to

g<4: HI(s,W)~ HI(so, Wy), Wo={weW:Nw=0}. (7.2.46)

Analogously to (7.1.33), the elements of W, can only depend on those w’s

5For this argument it is important that there is a finite maximal value 7 of r. In the
case of the o-cohomology, » was bounded from above by the ghost number but now the
ghost number alone does not give a bound because there are variables with negative ghost
numbers, the (0"a*)’, (0"a*)’, (0"u*)" and (0" i*)". Nevertheless there is a bound because
w(W) does not only have fixed ghost number but also vanishing conformal weights. Indeed,
it is easy to show that this forbids arbitrarily large powers of € because the (8"a*)’ and

(8"u*)" have ghost number —1 and conformal weights > 3/2.
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with conformal weights < 1, i.e.,

JEW & W= f(y',a:',C",an,gﬁ,n(Dac“)',77('1537”)',778277,775277).
(7.2.47)

Because of (7.2.40), sg takes exactly the same form in Wo as og in Wy. This
implies (for all ghost numbers)

H(s0, Wo) =~ H(o0, Wo). (7.2.48)

Because of (7.2.46) and (7.1.34) (as well as (7.2.44) and (7.1.22)) this yields
(7.1.1). (7.2.46) establishes also the equivalence between the cohomologies
of the superstring and the corresponding bosonic string at ghost numbers
< 4 because Har(GL*1(2)) ® H(so, Ws) is nothing but the s-cohomology of
the bosonic string.



endix

A.1 Cohomology of op; in W

In this appendix we compute H(cq 1, W) where o 1 is given in (7.1.26). The
cocycle condition reads

00,1W = 0, weWw. (A.l.l)

We decompose this equation into pieces with definite degree in the undif-
ferentiated supersymmetry ghosts €. 01 decomposes into two pieces, 7,1,
and o09,1,1, where ¢ 1,0 does not change the degree in the undifferentiated e,
whereas 0¢,1,1 increases this degree by one unit. 0q 1,1 reads

0

o011 =G 1o, G ip= (D'a") (D)

r>0

(A.1.2)

w can be assumed to have fixed ghost number and is thus a polynomial in
the undifferentiated ¢,

il

w= e fr, (A.1.3)

r=r

where f, can depend on all variables (7.1.19) except for the undifferentiated
e. At highest degree in the undifferentiated e, (A.1.1) implies 09 1,1(e" f7) = 0
and thus

G_1)2fr=0. (A.1.4)

We analyse this condition by means of the contracting homotopy

0
= T “ —_—
B= W) i
r>0

79
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The anticommutator of B and C;’,l /2 is the counting operator for all variables
Drap# and D'zt (r=0,1,...),

0

+ (Dr+1$'u) W .

N , 0
(B.Gap= (P S

Hence, (A.1.4) implies by standard arguments that fr is G’,l/z—exact up to
a function that does not depend on the D"y* or D" t1zH,

fF = é*l/? g7 + hF(ya z, Ca [ij, IZ]a [865 77}5 [Ea ﬁ]) (A15)

where g7 is a function that can depend on all variables (7.1.19) except for the
undifferentiated e, [Dz,] denotes collectively the variables D" tlz# DrapH,
and [0g,7n] and [£, fj] denote collectively the variables 8"*'e, 9"n and 0" ¢, 077,
respectively (r = 0,1,... in all cases). We shall first study the case 7 > 0
[the case T = 0 will be included automatically below]. (A.1.5) implies

rT—2

F>0: w = Uo,l(eT_lgF) +e o+ e fr

r=r
T hely, 7, C, (Do, ], [0e,n, 1) (A.L6)
where
fr1=fr-1—001,00F -
The exact piece ag1(e" 'gr) on the right hand side of (A.1.6) will E)elne—
" gr)

in the following. However, for notational convenience, we shall drop the
primes (of w’ and fi ;) and consider now

glected in the following, i.e., actually we shall examine w' := w—091(e

r—1
F>0: w= & fp+eh(y,x,C [Da, ¢, [0, [5,7])  (ALT)

r=r

We have thus learned that, if 7 > 0, the piece in w with highest degree in
the undifferentiated £ can be assumed not to depend on any of the variables
Dyt or D"Hak (r = 0,1,...). As a consquence, the 00,1-transformation
of that piece does not depend on these variables either and o 1w = 0, with
w as in (A.1.7), implies

G,l/fofl =0. (A18)

We can now analyse (A.1.8) in the same way as (A.1.4) and repeat the
arguments until we reach an equation

éfl/QfO — 0 (Alg)
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where fj is a function with conformal weights (0, 0) which does not depend
the undifferentiated ¢ [note that f, has conformal weights (r/2,0) because
e" fr has conformal weights (0,0); if 7 had been zero, we had arrived at
(A.1.9) immediately]. The only way in which fy can depend nontrivially on
the variables D"y or D" Hlz# (r = 0,1,...) is through terms of the form
771/)M¢Vful/(ya T, 877; C’_[ij 1/)]’ [5’ ﬁ])’ 77851/1“fu(ya T, 877, C’ [D'/Lla 1”5 [ga 77”)’ or
nDxtg,(y, z,0n, C, [Dz, ], [€,7]) [recall that the only variables (7.1.19) with
negative Lg-weights are the undifferentiated n and ¢ and that 7 is an anti-
commuting variable]. (A.1.9) implies f,.(y,z,dn, C,[Dz,¢], ¢, 7]) = 0 and
fuly,z,0n,C, Dz, 4], [¢,7]) = 0. We conclude

fo = nDatgu(y.z,0n,C,[Dz,y], [ 7)])
+ho(y, z, C, [Dz, 9], [0, 1), [, 7)) (A.1.10)

We thus get the following intermediate result: without loss of generality we
can assume

w = 5rhr(yama07 [153:,@[7},[85,77},[5, 77/])
+nDztg,(y, x,0n, C, [Dz, Y], [, 7]). (A.1.11)
The only part of o1 which is active on such an w is the part
T
- T Ak=Ar+l—k 0
00,1 = (0"eD ") =
>0 k=0 A(Dryr)

Note that 60,1 touches only the dependence on the variables Dropt, Drtigh
and 0"¢ (r =0,1,...) and treats all other variables as contants. Hence, for
w as in (A.1.11), op, 1w = 0 implies
&O,Ihr(?% €T, Ca [T)"Ea ";Z]a [86, 77]7 [6_, ﬁ]) =0 VT',
&O,IQM(yamaanaC’ [DZ‘,@[JL [5_" ﬁ]) = 0. (A112)
These equations are decomposed into pieces with definite degree in the un-
differentiated £ and then analysed using the contracting homotopy

_ L 0
B = (D"y*) Aoy -
0 d(Dr1zr)

By means of arguments analogous to those that have led to (A.1.11) we
conclude that we can assume, without loss of generality,

h’T(ya ma Ca [ﬁﬂ?, 1:5]7 [857 77}5 [E’ ﬁ]) = Eﬂhﬂq(:% LE, Ca [65, n]a [557 ﬁ])
q
+7Dzt gy (y, x, 07, C, [9e, n)),

gu(ya ZE, 677, Ca [ﬁm, J)]/ [§7 ﬁ]) = Eﬂlhﬂ,q(ya ZE, 677’ Ca [655 ﬁ])
q
+71Dz" 9.0 (y, 2, C, 0n, 07). (A.1.13)
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Since the h, g4, gru, huq and g, do not depend on the fermions, they are
0p,1-invariant. We have thus proved that (A.1.1) implies

w = h(y.z,C,[e,n)[em])
—|—’I’]D.’,E‘uh“(y, ma 877’ Ca [{f’ ﬁ]) + ﬁﬁm#h}ll(ya iE, 877/3 07 [Ea ’I’]D
+ni Dz Dz hy (y, T, 0n, 00, C) + 001@ (A.1.14)
where the functions on the right hand side (h, nDz*h,, ..., @) are ele-

ments of WW. Note also that the sum on the right hand side is direct: no
nonvanishing function h + nDx*h, + ﬁ’Dm“l_lu + nﬁDa:“'Dx”hW is 09 1-exact
because the various terms either do not contain variables D" +1z# or D" +lgH
at all, or they contain Dz* but no e, or Dz* but no & Hence, our result
characterizes H (09,1, W) completely.

A.2 Derivation of (7.1.31)

We shall show that (7.1.30) implies (7.1.31). The proof is a case-by-case
study for ¢ = 0,...,4. Since wg does not depend on the fermions and
has vanishing conformal weights, it can be assumed to contain only terms
with even N.-degree and even Nz-degree. Hence, it does not depend on the
supersymmetry ghosts if g = 0 or ¢ = 1 which gives (7.1.31) in these cases.
If 2 < g < 4 the assertion follows from

00,0W; + 00,1W,_ 1 = 0, (A.2.15)

which is the second equation in (7.1.29).
g = 2: Only w;_, can depend on the supersymmetry ghosts. One has

wr_, = e0ea(X) + 0za(X)

where a(X) and a(X) are functions of the undifferentiated z* and y*. o¢ ows
contains for instance n(9¢)?a(X) and 7(02)%a(X) because ogoe and 0q &
contain nde and fOg, respectively. If a # 0 or a # 0, these terms are not
0o,1-exact because they do not contain derivatives of an z#. We conclude
that a = 0 and a = 0 and thus that (7.1.31) holds for g = 2.

g = 3: Again, only w;_, can depend on the supersymmetry ghosts. The
terms in wg_, depending on € or its derivatives are

ned*ca(X) + e0ednb(X) + e0edijc(X) + edeC'd;(X)
+nDxtedee,(X) +n(0e)2f(X) + 8%neg(X). (A.2.16)

In addition there are analogous terms with £ or its derivatives. A straight-
forward calculation shows that (A.2.15) imposes

b=0, ¢c=0, di=0, e, =0, f=a, g:—%a (A.2.17)
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where a = a(X) is an arbitary function of the y* and z#. Using (A.2.17) in
(A.2.16), the latter becomes

[ned%e + nDzHeded, + n(0e)? — § 9*ne?]a(X)
= ogledea(X)] + 00,1 [n0ep* 0 a(X)]. (A.2.18)
This shows that all terms containing € or its derivatives can be removed from
wg_o by the redefinition w’ = w — ogledea(X) + ndeyp*d,a(X)]. Similarly
one can remove all terms containing £ or its derivatives. Hence, without loss
of generality one can assume w;_, = 0 which implies (7.1.31) for g = 3.

g = 4: Now wg_, and wy can depend on the supersymmetry ghosts. One
has

wi_, = e°0%a(X)+¢e*(9e)*b(X) +&°0%ca(X)
+£2(98)*b(X) + edegdéc(X).
The fact that g0 contains —(1/2)ed3n implies a = 0. Analogously one
concludes a = 0. The fact_that 00,00 and 0g 00 contain nd%e and no%e,
respectively, implies b = 0, b= 0 and ¢ = 0.
wy is of the form P4 (ghosts, Dz*, Dz*)aa(X) where the P4 either de-

pend on ¢ and its derivatives, or on € and its derivatives. The complete list
of polynomials P4 depending on € and its derivatives is

noned®e, ndn(de)?, 8*ndne?, nd*nede, ndne?,
nDzFned?e, 7Dxtn(0e)?, nDxHOnede, Dz 0’ne?,
n0ned?e, non(0e)?, n0*nede, Ondnede, 0*nodne?, NDxHOnede,
nCied?e,nC*(0e)?, OnCiede, 0*nC'e?, 0nCiede, D2+ C'ede, C'CI 0k,
Starting with the terms
£0%endnA;(X) + (0e)*nonB1(X) + 20n0*nEy(X) (A.2.19)
one finds that (A.2.15) implies A1(X) = Bi(X) = 2E5(X). Considering the

terms
9end®nBs(X) + *nd°nEr (X)
+e02eniDat Ay, (X) + (0)?niDxt By, (X)
+e0e0nDzH Ca (X)) + e20°niDxt Eg (X)), (A.2.20)
one observes that the o( transformation of these terms neither contain 6*7

or 0%¢ terms nor U(1) ghosts. Thus they have to fulfill (A.2.15) separately
and one obtains

Cap(X) = ~0,A1(X)
Biyu(X) = ~8,B5(X)+ 9, A1(X) - 2Bq,,(X)
Ay (X) —20, 1 (X) — 2Eg ,(X).



Appendix A. Calculations 84

Eliminating the coefficients one finds that (A.2.19) 4+ (A.2.20) can be ex-
pressed by

o0 (n(9€)*(Bs(X) — A1(X)) + ned*cE1(X)
+e0ednA1(X) — 2e0enDat Eg (X))
—i—ao,l( — ndndeyd, A1(X) — 2imdeDztp* d, Eg
—ndeDzPp” QL Eg ) (A.2.21)

where we have used the on-shell equality (7.1.15). Next we consider the
terms involving derivatives of 7

£0%en0nAs(X) + (0e)*nonBa(X) + e0end*nBg(X)
+e0e0nONB7(X) + 20?101 E3(X) + ede0niDz+C5 (X)), (A.2.22)

which implies via (A.2.15)

Br(X) =0, Ay(X)=Bs(X)=By(X) = 2Es(X),
Cs (X)) = —0,Ay(X). (A.2.23)

Thus (A.2.22) can be written as
0o (688577142()()) — 00,1 (aeéﬁmp“auAg(X)) (A.2.24)

and thus be removed from wo. In the last step we consider contributions
containing U(1) ghosts, i.e.
8826770iA3,i(X) + (88)2770i33’i(X) + E@EanCiBg,i(X)
+52627’]CiE4’i(X) + 8683ﬁCiBg’i(X)
+£0eC'DzH Cp i (X) + £0eC*CY By ij(X). (A.2.25)

(A.2.15) imposes Big,i;(X) = Bg;(X) = Bg;(X) = 0. Furthermore we

) )

derive the conditions
A3i(X) = B3i(X) = —2E4;(X) Cui(X) = —0,A43,:(X). (A.2.26)
Using the on-shell equality (7.1.14), (A.2.25) can be written as

00 (€0eC? A3;(X)) + 00,1 (0eC'np#d, A3 i (X))
—DenmpH D’ (Vi — Q;w)‘GM)Ag,i(X)). (A.2.27)

Hence, as in the case g = 3 one finds that (A.2.15) implies wy = og(...) +
00,1(...) which implies (7.1.31) for g = 4.
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In this appendix we summarize briefly the investigation of the Bianchi iden-
tities for two-dimensional supergravity coupled to Maxwell theory. The
starting point is the structure equation

[Da,Dp} = —T4“De — Rapdr, — Fap'd;, (B.0.1)

where [, -} denotes the graded commutator, {Ds} = {D,, D,} contains the
covariant derivatives D, and covariant supersymmetry transformations D,,

61, = (1/2)e%l,, is the Lorentz generator and 6; are the U(1) generators

(represented trivially in our case). The “torsions” T4 BC, “curvatures” Rap

and “field strengths” F4p* are generically field dependent and determined
from the Bianchi identities implied by (B.0.1). Using the constraints (3.2.6)
and (3.2.7) one obtains for the torsions

Tap” = 2i(v"C)ap
T.s" = 5(7a)s"
Taba = isab(C'y*)aﬁDﬁS, (B.0.2)

where S is the auxiliary scalar field of the gravitational multiplet. For the
curvatures one obtains

R.s = iS(7C)ap
Ry = > ’Ya'Y*)a/BDBS

2
Ry = 1eaw(S*+D2S), (B.0.3)
and the field strengths are given by
Faﬁi = 21(7*C)aﬂ¢l
Faal = (’Ya)aﬁ)\?g . (B04)
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The supersymmetry transformations of )\% and F;'b turn out to be

,Da)‘% = i(’ya"y*C)aﬂDagbi + % (’Y*C)aﬁganga + % (V*C)aﬁs(ﬁi
DoFgy = —(WDaX)a + (¥aDpA')a + %Eab’DaSQSl
+1eanS(1)a’ X (B.0.5)

Introducing the corresponding connection 1-forms and proceeding along the
lines of [82] one identifies the covariant derivatives D, in terms of partial
derivatives and connections, and the curvatures, field strengths and torsions
with two lower Lorentz indices in terms of the connections and the other
field strengths. Owing to the constraint T,;,¢ = 0 this yields the expression
(3.2.3) for the spin connection. Furthermore one obtains

Fu' = E,"Ey™ (0, AL, — Om AL — (XY A) + (XnYmA?) = 21(XmYsCxn)d')

and the expression for T,;* can be used to express the supersymmetry trans-
formation of the auxiliary field S as

DS = 4(14C)age™ Vinxn” = i(¥"C)apgxm”S.

The full BRST transformations (3.2.2), (3.2.4) and (3.2.5) are then obtained
by adding the Weyl transformations by hand and imposing s> = 0 on all
fields. To achieve this in an off-shell setting, one introduces the super-Weyl
symmetry on the gravitino and the gaugino and the local shift symmetry of
the auxiliary field S.
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C.1 B ST transformations of superconformal ten-
sor fields

This appendix collects the BRST transformations of the superconformal
tensor fields and corresponding ghost variables derived in section 3.3. The
transformations of the undifferentiated fields read

sm = non—ee
s = n0n—é&e
se = 7](98—%66’/)
se = 70¢— +&0n

sC' = niF 4+ nEXN + el + ey

sX" = D+ D) XM + ep™M + M
spM = (D +aD)M + LonyM + eDXM — eFM
spM = (D + D)™ + L o™ + eDXM 4 M
sFM = (nD 4 7D)FM 4 L (9n + dn) FM 4 DM — eDypM
s¢' = (MD+7D)P + L (9n+ 9n)d + e +EN
s\ = (D +7D)N + (3 + L AN + €D + eF' + 9
sA' = (WD + DN + (300 + )N + EDP' — eF + §z4
sF' = (D + qD)F' + (n+ 07)F' — eDX' + DA — deX’ + e

The s-transformations of covariant D or D derivatives (of first or higher
order) of a field are obtained by applying D’s and/or D’s to the transforma-
tions given above, using the rules Dn = 0n, D = 0, De = 0e, Dé = 0 etc,
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as well as [D, D] = 0. E.g., one gets

sDXM
sDXM
sDDXM
sDyM
sDyYM
sDyYM

sDyM

C2 B

(nD 4+ 7D)DXM + onDXM + eDYM + eDPM + Geyp™
(nD 4+ 7D)DXM + oDXM + eDyYM + eDPM + dayp™
(nD + 7D)DDXM + (8n + 0n)DDXM

+eDDYM + eDDYM + 9eDyYM + deDyYM

(0D + nD)Dyp™ + 3 omDy™ + 1 0°nyp™

+eD?’XM + 9eDXM — eDFM

(nD + nD)DpM + 3 onDy™ + 1 9™

+&D?XM 1 §eDXM + eDFM

(nD + 7D)DyY™ + L anDy™ + dDyM

+eDDXM — §eFM — eDFM

(0D + 7D)DYM + oDy + 1 oDy

+eDDXM 4+ 9 FM + eDFM

ST transformations of superconformal an-
tifields

In this appendix we present the full s transformations of the superconfor-
mal antifields associated with the matter and gauge multiplets, using the
following notation:

Gun
D;

QrNnm

Rixrmn

Ok Hun(X) —OmHrN(X) 4+ OnHrem (X)
2Nknm — Henm (Heknm = 30k Hy )
OmO g Hpn(X) — ONO Hjp (X)

2 (OkQrmn — 0Lk mN) = 5 (OMQrNL — ONQEML)-

Qrnm and Rirppmn enjoy the following properties:

Qrun + Qv = Qurn + Ovkm = 20kGun

Rxrun = —Rrkmn = —Rixrnm ;. O yRgpmn = 0.
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The full BRST transformations of the undifferentiated superconformal mat-
ter antifields are

sFy =

sYu =

sy =

*

SXM =

~¢' O D; + 2GunEFN + 5PN Qv

+(nD + D) Fyy + 5 (90 + 90 Fiyy — by + iy

NoyD; + N §'OnOu Di + 2G DY

+DX VR Qrenn — FNOE Qurn — 59N P Remrn
+(nD + D) Yirs + (5 0n + On)Yrs + Xy + EDFyp + 02Fy,
~XoyD; — N OnOmD; + 2G N DPY

+DXNPE QN + FNYEQrenn + 5 N R
+(nD + 7D)Yrs + (On + 3 0n)Yy, + eXyy — eDFyy — 0eFyy
—2GunDDXYN - DXEDX Qg0 + FEF ' Quicr
+DYE P k — DY Qe

+DXNYEPE Ry + DXNEYE R v
+ENE Loy Qucrn + 3 RN Loy Ricpn
+F O Di — (NN — PNVA 4 FN G+ N oK 310k ) Ondn D;
+(D + 7D) X}y + (9 + 9n) X3y

+eDYiy + DYy + Oepiyy + Oy

The s transformation of the superconformal antifields for the gauge multiplet

read

sAf = Moy D;

+(nD + AD)A; + 5 ONAS + e — EA;

sxf = —¢MoyD;
+(nD + AD)X; + 3 O} + £ — e Al
sp; = —FMoyD; —yMypNonoy D;
+(nD + D)} + 5 (3 + 9N}
+eDA] + EDA; — eeC
sAr = ~DXMayD;
+(nD + 7D) A} + OnA;
+EDA! — DAl — Oe)} — eeC;
sAr = DXMoyD,

+(nD + nD)Af + OnA?
+eDAl — eDAF — 9eX! — eeCf

sC} = —DA* —DA* + (0D +nD)C; + (9n + 0n)C?

The BRST transformations of covariant derivatives of the covariant antifields
(such as sDX},) are obtained from the above formulae by means of the rules
described in appendix C.1.
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