DIPLOMARBEIT

Covariant Quantization of the Superstring

ausgefithrt am Institut fir

Theoretische Physik
der Technischen Universitat Wien

unter der Anleitung von
Ao. Univ. Prof. Doz. DI Dr. techn. Maximilian Kreuzer

durch

Johanna Knapp

Haitzendorf 112
A-3485 Haitzendorf

Wien, 20. Oktober 2004



to my parents



Acknowledgments

First of all I want to thank my supervisor Prof. Maximilian Kreuzer for his support, for
always having time for my questions and for his trust that I am actually capable of doing
theoretical physics. His enthusiasm for string theory has been an inspiration for me. I also
want to thank him for giving me the opportunity to write my Phd thesis at CERN.

I am deeply grateful to my “supervisor number two” Sebastian Guttenberg for his great
patience with me and for always carefully answering my questions, especially the silly ones I
would not have dared to ask otherwise. Our long discussions helped me to find quick access
to the topic of this thesis. Thanks, you did a great job, Sebastian!

I want to thank the other members of the string theory group, Thomas Drescher, Erwin
Riegler, Ulrich Theis and especially Emanuel Scheidegger for enlightening discussions and
more.

Special thanks go to Robert Schofbeck for great team work and constant intellectual challenge
during the last five years — it has been an inspiration and I probably would have worked half
as hard as I did without Robert’s presence.

Furthermore I want to thank my office mates Christian Bohmer and Luzi Bergamin as well
as Herbert Balasin and Urko Reinosa for many enjoyable discussions about physics and life,
the universe and everything during coffee breaks and on many other occasions.

Thanks to all the other members of the institute for creating a great working atmosphere and
for making me feel at home on the tenth floor. In particular, I am grateful to Prof. Manfred
Schweda for organizing a scholarship for my Phd studies.

Finally I owe great thanks to my friends and family for moral and financial support. Special
thanks to Gige for always listening to the monologues on my problems and Birgit and Stefan
for distracting me from physics, especially by frequently going to the Heurigen with me.



Contents

1 Introduction
1.1 Motivation . . . . . . . . . e e
1.2 Outline of the Thesis . . . . . . . . . . . . .

2 String Models with Manifest Target Space Supersymmetry
2.1 The Green-Schwarz Superstring . . . . . . . .. .. ... ... ....
2.1.1  Free Field Action and Constraints . . . .. .. .. ... ...
2.2 Pure Spinor Formalism . . . . . . .. ... ... . 0L

3.1 Imtroduction . . . . . . . . . ...
3.2 The Superstring as a Gauged WZNW Model . . . .. .. ... ...
321 WZNW Models . . . .. ... ..
3.2.2 The Superstring as a WZNW model . . . . .. .. ... ...
3.2.3 Problems using WZNW technology for the Superstring . . . .
3.3 Gauging the Action via the Noether Procedure . . . . . ... .. ..
3.3.1 The Heterotic String . . . . . .. ... ... ... ... ....
332 Typell String . . . ... ... ... ... ...,
34 N=2Algebra . . . ... . . ...
3.4.1 Kazama Algebra . . . . . ... ... L.
3.4.2 Topological Quartet and N = 2-Algebra . . . . . . ... ...
3.5 BRST Operator and Cohomology . . . . . . ... ... ... .....
3.5.1 Cohomology in the Old Approach and the Grading Condition
3.5.2 Coset Gauging and Second BRST Operator . . . . ... ...
3.5.3 Deforming the BRST charge @ . . . . .. ... ... .....
3.5.4 Worldsheet Diffeomorphism Invariance . . . . . . . ... ...
3.6 N=4 Algebra . . . . .. . . .. ..
3.7 Worldsheet Covariant Formulation of the Superstring . . . . . . . ..
3.7.1 Gauging Diffeomorphisms . . . . . ... ... ...
3.7.2 Gauging the Fermionic Symmetry . . . .. . ... ... ...
3.7.3 WZNW BRST Symmetry . . ... ... ... ... ......
3.74 Gauge Fixing . . . . . .. ...
3.7.5 Worldsheet Covariant Formulation of the Type II Superstring

4 Summary and Outlook

N = =

N O w W

Covariant Quantization of the Superstring without Pure Spinor Constraints 14

14

14
18
22
26
27
34
39
39
40
42
42
44
48
o4
56
99
60
64
70
72
75

78



Conventions
A.1 General Definitions . .
A.2 Superspace Conventions

A.3 Gamma Matrices and Spinors in 10 dimensions . . . . . . ... ... ... ..

Fields and Ghosts

C.1 Beltrami Differentials

Mathematica File

C Identities in 2 Dimensions

i

80
80
81
82

84

87
88

90



Chapter 1

Introduction

1.1 Motivation

There exist two basic formalisms in superstring theory, the RNS formalism and the Green—
Schwarz formalism. In the RNS formalism space time supersymmetry is not manifest. The
theory is worldsheet—supersymmetric, but target space supersymmetry only comes in after
GSO projection, which eliminates the tachyon from this theory and at the same times yields
a space—time supersymmetric physical spectrum.

The Green—Schwarz (GS) formalism, on the other hand, is manifestly target—space supersym-
metric by construction. The physical spectrum of this theory is equivalent to the spectrum
of the RNS formalism. There is, however, a long standing problem. Quantization has so far
only been possible in light—cone gauge. A covariant quantization prescription is not known.

In spite of the tremendous problems with covariant quantization new interest has been

laid in the Green—Schwarz formalism. The reason for that are some inconvenient features
of the RNS formalism. For example, amplitudes with more than four external fermions are
difficult to compute in a Lorentz covariant manner because picture—changing operators and
bosonization are needed.
Furthermore, the Green—Schwarz formalism provides the natural setup to describe the super-
string in supergravity backgrounds. The motivation to consider this is the AdS—-CFT corre-
spondence, which is a conjectured duality between type IIB string theory on an AdSs ® S°
background and N = 4, D = 4 super Yang-Mills theory. The AdSs ® S°-space is equipped
with a fermionic 5—form field, the Ramond—Ramond background, which cannot be described
in the RNS formalism in a straight forward way. In the GS formalism the theory can be easily
coupled to Ramond-Ramond backgrounds.

In the past five years some new approaches concerning the covariant quantization of the
Green—Schwarz superstring have been developed. Already in the early 80s Siegel related the
GS string to a free field theory via a constraint. In 2000 Berkovits presented his pure spinor
formalism, where this constraint is implemented cohomologically. Covariant quantization of
this model is possible, but there is the “pure spinor constraint”, which has to be satisfied
by the ghost field. The effect of this constraint is that not all components of the ghost are
independent, which complicates many calculations.

To avoid these difficulties Grassi, van Nieuwenhuizen and collaborators presented a new ap-



proach, where the pure spinor constraint is no longer needed. Instead, new ghosts and aux-
iliary fields have to be introduced. A relation of this approach to Wess—Zumino—Novikov—
Witten (WZNW) models was found. This model for the superstring is the basis of this
diploma thesis.

1.2 Outline of the Thesis

The paper is organized as follows:

In chapter 2 we review string models with manifest target space supersymmetry. An intro-
duction to the GS superstring and Siegel’s free field approach is given. Then we present
Berkovits’ pure spinor formalism and cite the most important results that can be obtained
from this model.

Chapter 3, which is the central chapter of this diploma thesis, deals with the covariant quan-
tization of the superstring without pure spinor constraints and is based on the works of van
Niewenhuizen et al. In section 3.2 we give a short introduction to WZNW models and point
out the WZNW properties of the superstring model. We also point out some problems of the
WZNW formulation, in particular when it is applied to the type II superstring.

In section 3.3 we derive a WZNW action for the heterotic and the type II superstring using
the Noether method to gauge the free field action, and we perform BRST quantization.

In section 3.4 we review the operator algebra of the WZNW model, which is a Kazama alge-
bra, and revisit the idea to use a topological quartet to turn this algebra into a twisted N = 2
superconformal algebra.

Section 3.5 is dedicated to the BRST operator and the cohomology. We summarize some
older approaches to the cohomology problem and then follow the ideas of van Nieuwenhuizen
and collaborators to define a cohomology for the superstring as a WZNW model with two
BRST operators.

In section 3.6 we present a review of the construction of a twisted N = 4 superconformal
algebra out of the fields and currents of the model.

Section 3.7 deals with the worldsheet covariant formulation of our model, which we implement
by gauging diffeomorphisms and the fermionic symmetry that is found in WZNW models.
In chapter 4 we summarize our results and discuss some open problems.

In the appendices we explain our conventions and discuss gamma matrices and spinors in ten
dimensions. We give a summary of the properties the fields and ghosts in our model and the
most important operator products. Furthermore we discuss the Beltrami parameterization
and some useful identities which hold in two dimensions. Finally we give an extract of a
Mathematica file that was written to compute the products.

Some of the results presented in this thesis were published in [1].



Chapter 2

String Models with Manifest Target
Space Supersymmetry

2.1 The Green-Schwarz Superstring

In this section we construct a classical string action with manifest target space supersymmetry.
We follow the arguments of [2]. We start the discussion with the massless superparticle. A
simple worldline action is given by:

1

S = = [dreti?, (2.1)
2

where e is the square root of a one-dimensional metric. This action is invariant under local
reparameterizations 7 — f(7) and global Poincaré transformations:

o™ = a™m 40" "

de = 0, (2.2)

where V", is antisymmetric.

Now we extend this action such that it is invariant under IV supersymmetries. We introduce N
anticommuting space—time spinor coordinates HAO‘(T) with A=1,...,N and a = 1...2P/2,
To construct supersymmetry transformations we introduce infinitesimal Grassmann parame-
ters €. The SUSY variations are then given by:

oz = iermed

604 = €4

504 = e

de = 0 (2.3)

It is easy to check that the following Poincaré invariant action is invariant under these trans-
formations:

_ 1 —1( ..m -NATmMm A 2
S = 5/d7’e <x —ZGFG) (2.4)

The equations of motion are given by:

p’ =0 P =0 "pmd = 0, (2.5)



where we defined:
pro= ™ —ifArmeA (2.6)

The action (2.4) has an additional local fermionic symmetry. With the parameter x4 (7) the
corresponding transformations read:

804 = iImp,, kA
sz™ = 0 rmsed
be = 4defr? (2.7)

Computing the anticommutator of two x variations we find that the symmetry algebra only
closes on—shell:

[61,0,]04 = (%rmﬁg‘éBrnpnrmn? + 42Tmpm/<a‘24§BH]18> — (172 (2.8)

The first term is proportional to the equations of motion, the second term is again a k
symmetry transformation.

There is another bosonic symmetry of the superparticle action. The transformations with
scalar parameter A(7) read:

504 = oA
sz = ifATms0A
e = 0 (2.9)

Superstring

We generalize the results of the point particle to the superstring. The action for the bosonic
string is:

s — —8i / Lo /G 2™ B, T (2.10)
Y

In analogy to the superparticle we make the following guess for a superstring action which is
diffeomorphism invariant and has N global supersymmetries.

1
S = —8—/d2a\/§g“”HMmHT, (2.11)
T
with
Iy = 9ua™ —ifT™o,0% (2.12)

k—symmetry of this action is lost but it can be recovered for N < 2 by adding another term,
the Wess—Zumino (WZ) term, to the action. It can be constructed as follows (We follow
the line of [4]): We specialize to D = 10, see Appendix A.3 for gamma matrix conventions
and spinor properties. First we consider the term 0,2™(07v,0"¢) in (2.11). In light-cone
gauge v = :ca' + pTt one finds that this expression contains a term p*60v,9;0 which is a
candidate for a kinetic term for the 4. But for a kinetic term we would also need p*6+.,9,6.
Such a term could be obtained if the action contained a term of the form (dyz™)0v4 0,0,



which reads ¢#V0,2™0v,,0,0 in covariant form, but this expression is not supersymmetric. A
supersymmetric Lagrangian Ly z that is proportional to eé*¥ can be written as a two—form
which should be SUSY invariant up to a total derivative:

wy = Lyzd®x Swy = dX (2.13)

d? = 0 implies that édws = ddws = 0. Thus, we can define a threeform as ws = dws, which
has the properties dwg = 0, dwg = 0. To construct a SUSY invariant wg we have the invariant
one—forms IT"™ and df#4 at our disposal. The only Lorentz invariant quantity that can be
written down is:

w3 = aspll™do?y,,do7, (2.14)

where a4p is a real symmetric N X N matrix. Diagonalizing aqp by a real orthogonal
transformation yields:

dws = —i <Z dHAwmd0A> (Z aBdHBWdeB> (2.15)
A B

The direct terms cancel using the Fierz identity 7™d#!'(d#'y,,d8') = 0 whereas the cross
terms only vanish if N = 2 and the matrix asp has entries (+1,—1). Thus, we have:

wy = ™ (d@ymde—dévmd«@) (2.16)

Computing the inverse of this expression yields the WZ—term up to an overall constant. Thus,
we get for the complete type II Green—Schwarz action:

1 1
[l — /dzm/_—g — I + Ly 2
8 2 K
Lwz = —ie I (09d,0) — Orn0,0)) = e (697 0,0) (i)
7 = gua™ — i0y"0,0 — i6y™0,0 (2.17)
A Green—Schwarz action that is supersymmetric can also be defined in D = 3 where 6 is
Majorana, in D = 4 for § Majorana or Weyl and in D = 6 where 0 is a Weyl spinor [2]. In
a lengthy calculation it can be shown [2] that the action is invariant under the following
symmetry:
0% = 2iy" I,k
60% = 2iy™I,, A
Sz = i6y™50 + b 50
I = 2i8,07™60 + 2i0,,0~™ 60
5(\/39"™) = —3249 (P“%”aw + Pa%”aAé) (2.18)

Note that the transformation parameter k now gets an additional worldsheet index as com-
pared to the superparticle. For the definition of the chiral projectors P*” and P*” we refer



to Appendix C.
The supersymmetry transformations for the superstring in D = 10 read:

0% = €
608 = &
o™ = iey™0 + iey™0 (2.19)

Furthermore it can be shown that the superstring action is invariant under the following local
bosonic transformations:

50° = JgP",0%N,

80% = JgP"a,0%N,
bz™ = i0y™0 + by 60 (2.20)

One can find this symmetry by considering the algebra of x—transformations. Its closure
requires the transformations above.

Quantization of the Green—Schwarz string has only been possible in light—cone gauge where
manifest covariance is lost.

We can have the following types of superstrings:

1. Type 1. For the open superstring we only have N = 1 supersymmetry, i.e. 6 =0. In
this case suitable boundary conditions have to be satisfied.

2. Type Il A/B. Each of the spinors 6 and 6 can be either chiral or antichiral. Chiral spinors
will be denoted with contravariant indices #¢ and antichiral spinors with covariant
indices 0,. We will introduce hatted indices for the right-moving sector in order to
treat both cases at the same time:

ja { qa for type IIA (2.21)
¢ for type IIB

3. Heterotic String. As in the open string case we only have N = 1 supersymmetry but
still a left-moving and a right—-moving sector and the critical dimension is 10. If we only
have 0%(z) there is no supersymmetry for the right-moving sector. Since there are only
ten ™ the Virasoro anomaly in the right moving sector is not 0. To compensate this one
has to introduce 32 additional Majorana—Weyl fermions M to cancel this anomaly. This
leads to the gauge groups SO(32) and Eg x Eg depending on which boundary conditions
these fields obey [2]. Whenever we refer to the heterotic string in the following we will
ignore these additional fields.

2.1.1 Free Field Action and Constraints

In [5] Siegel proposed to relate the Green—Schwarz string to a free field theory via a constraint.
In that paper a Poisson bracket algebra for a free theory was derived from the Green—Schwarz
superstring. Our discussion follows [4]. One can rewrite the Green—Schwarz action (2.17) in
terms of chiral derivatives 9 and 0:

1 _ _ . .
L —§8xm8xm +102™ 07,00 + 10z 6~,,00

6



1 = A A 1 . A = PO
+§(97m89)(97m89 + 04,00) + 5(977”(99)(97,%89 + 67,,00)
1. - 1 W -
— 502" 0w, <i6xm(wm9)a + 5 (mb)a (wﬂae + Wﬂ@e)) 50~
- <13xm(’ym9)d + 5 (mb)a (6’7"@9 + Wﬂaa)) 8%
1 _ _ N
= —§8xm8xm + (pza)s,daé?“ + (155@)301660‘ (2.22)

Now one can obtain a free field Lagrangian by introducing new elementary fields p,, and
pza which become the conjugate momenta of 8% and 6%, respectively. To get back to the
qriginal Green—Schwarz action one imposes the constraints that d., = p.a — (Pza)sol and
ds4 = Dza — (Pza)sol vanish. The complete expressions are given by:
) 1 14 A
dooe = DPra — (Ymb)a | 102™ + 597’”89 + 597’”89
) O T R I
dsa = Dza — (Ymb)a | 102™ + 597 00 + 597 00 (2.23)
The free field action now reads:

1 1 ~ - .
S = — /d20 g — =0x" 0Ty, + Pra00% + Ps500¢
8 2
1 1 = A s
= &= / d%o\/g — ST e + Lw 7 + d=a 00 + d=500%, (2.24)
s

where Lyyz is given in (2.17). The constraint d., is part of the following closed algebra:

o (1)

Zdza(Z)Zdzﬁ(w) ~ =2 zZ— W

, o mapd0”(w)

Zdza(Z)Hzm(w) 2 zZ—w

Nlmn

Hzm(Z)Hzm(w) ~ _m

()~ >
Lza\Z w (z — UJ)Q |

For the right—moving algebra one has to replace z — z, § — 6 and p— D.

The constraints d,, = 0 and cfgd = 0 have to be implemented cohomologically but the
standard BRST procedure does not work because the d,, are mixed first and second class
constraints. The first class constraints correspond to the k symmetry. In the free theory the
second class property of d,,, is reflected by the fact that the OPE of d,, with itself does not
form a closed subalgebra.

2.2 Pure Spinor Formalism

In the previous section we found that in order to relate the free field action (2.24) to the
Green—Schwarz superstring one has to implement the constraints d,, = 0 and dz, = 0. In a



series of papers [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] Berkovits set up a formalism, the pure
spinor formalism for the superstring, where these constraints are implemented cohomologi-
cally. Physical states are defined as elements in the cohomology of the following BRST-like
operator:

where A% is a commuting ghost. Since the d,, do not have vanishing OPEs with themselves
this BRST operator is not nilpotent unless one imposes the pure spinor condition for the A%:

AN =0 (2.27)

Due to this equation only eleven of the sixteen components of this spinor are independent. To
obey this condition the A* must be complex. The equation can be solved by decomposing A*
with respect to a U(5) subgroup of the Wick-rotated Lorentz group SO(10). For a detailed
description of this decomposition we refer to Appendix D in [4]. A decomposition in terms of
irreducible U(5) components is given by [10]:

1
AT =€ Aab = Ugp A = —ge_se“b“leubcude, (2.28)

where a = 1,...,5 and ug, = —up,. These expressions transform as (1% , 10 1 5_%) represen-
tations of SU(5)y(1). For practical calculations all the expressions that involve ghosts and
their conjugate momenta w,, have to be decomposed via (2.28) and the conjugate momenta
t and v® of s and u,,. After the calculations the results can then be written again in terms
of ten—dimensional covariant quantities.

In this formalism there is a subtlety concerning the Lorentz currents. In the RNS string the
fermionic contribution to the Lorentz current is given by M = Y™™ [17]. These currents
satisfy a Lorentz algebra which corresponds to the following OPE:

nm[le]n(w) _ nn[le}m(w) nknnlm _ nkm,r}ln

Mkl(z)an(,w) ~ po—— + (Z — w)2 (229)

The fermionic contribution to the Lorentz current of the superstring is by naive considerations

MM = —%pwmnﬂ where ™" is the antisymmetrized product of two Gamma matrices. The
double pole contribution of the OPE of M™" with itself yields %(nk"nlm — nFmpin). At the

quantum level vertex operators for the superstring can only be equivalent to vertex operators
of the RNS string if one defines the Lorentz current as follows:

1
M™ = —Zpy™E N (2.30)
where
ml[l prkln _ pnll pyklm knIm _ km,ln
Nkl(Z)Nmn(w) ~ n (w) n (w) _ 377 n non (2‘31)
z—w (z —w)?

N™" can be explicitly constructed from the pure spinor A\“:

1
N = o™ (2.32)



N™" has a non—vanishing OPE with A\“:
NN W)~ () (2.33)
The most general massless vertex operator is:
U = \'A.(z,0) (2.34)

The conditions QU = 0 and U = @2, where § and (2 are the gauge variation and the gauge
parameter respectively, imply:

aff —
Vmnpgr Do Ag =0
0A, = DyQ (2.35)

The first equation is derived as follows: Applying Q to the vertex operator yields A*\3 D,Ag =
0. It follows from the Fierz identity that in ten dimensions every bispinor f,g can be decom-
posed as fo3 = Vo fm + ngﬁnp Smnp + ngﬁnp U frnpgr- For a symmetric bispinor the term with
the three gamma matrices vanishes. Using the pure spinor constraint only the expression

with five gamma matrices is left. One can define field strengths from A, by:

1

1
AY = 1—07%‘3 (DA™ = 9™ Ap)
1 o
Fon = a[mAn] = g(’)’mn)aﬁ (DBA ) (236)

Equations (2.35) are the super-Maxwell equations and gauge invariances written in terms of
a spinor superfield. D, = 80% + 2657(%&% is the supersymmetric derivative. It can be shown
[10] that there exists a gauge choice such that A, can be decomposed as follows:

Aa(xa 0) = (Vme)ozam(w) + CQ(H’Ymnpe)('Ymnp)aﬁxﬁ(x) + C3a[man} (Ganpa)(’YpH)a +..
(2.37)
where c1, ..., c3 are numerical constants. a,,(z) can be identified with the gluon and x®(x)

with the gluino. Their equations of motion describe on—shell super Yang—Mills theory.

To compute scattering amplitudes one also needs integrated vertex operators V. In the RNS
formalism V can be obtained from the unintegrated vertex operator U by computing its
anticommutator with the b ghost. There is no ghost of conformal weight 2 in this theory.
Thus one makes a general ansatz for a massless integrated vertex operator:

1
Vo= 90" Aa(@,0) + I A (2,6) + do A%(2,0) + 5 Ny ™" (2.38)

Note that the Lorentz current N™" appears here since it has a non—vanishing OPE with the
pure spinor that appears in the BRST charge. Massive states were described in [14]. The
most general vertex operator at the first mass level is given by:

U = ON"Au(x,0)+ : 90°N\*Bog(x,0) : + d@)\aCﬁa(:v,H) c 4 A Hopo (, 0)
+: JXNEq(2,0) : + : N X Fopnn(z,0) : (2.39)



Ay ... Fomn are superﬁelds J = waA¥ is the ghost current, the normal ordered product is
defined by : O4X\*®4(2) 1= § = dw - O (w)A*(2)@aa(z). It was shown in [14] that the physical
states form a massive spln 2 multlplet containing 128 bosons and 128 fermions.

One can define N—point tree level amplitudes as the correlation function of three unintegrated
vertex operators (2.34) and N — 3 integrated vertex operators (2.38):

.A = <U1(21)U2(22)U3(23)/dZ4V4(Z4).../dZNVN(ZN)> (2.40)

At first one eliminates all worldsheet fields of non—zero dimension, i.e. 9z™, 90“, d, and
N™ by computing the OPEs with the other worldsheet fields. After integrating over the
zero modes of ™ one gets:

A = /dz4...dzN()\O‘)\BX’fag,y(zr,kr,nr,0)>, (2.41)

where A*A\P\7 comes from the three unintegrated vertex operators and fapy 1s a function
of the z., the momenta k., the polarizations 7, and the 6 zero modes. It is reasonable to
define a correlation function (A*\\Y fapy) such that Y = ANE N fapy is supersymmetric
and gauge invariant, which means that QY = 0 and (Y) = 0if Y = Q€. The only state at
zero momentum and ghost number three in the cohomology is (Ay™8)(AY"0)(AYP8)(0Ymnp?)-
Thus, for

Fon(®) = Aagy + 0 Bus+ ...+ OO0 A0 O F + ... (2.42)

one defines:

<)\a)\6)\7faﬁ7(zrakranr79)> = F(kamnr) (2'43)

For three—point scattering one finds, using (2.37) and (2.43), that ()\O‘A}IABA%)\VA?’Y> repro-
duces the super Yang-Mills vertex: Each of the A, contributes one, two or three fs. If the
five fs are distributed as (1,1,3) one gets the three-gluon vertex al a? oM whereas if
they are distributed as (2,2,1) one gets the gluon—gluino—gluino vertex (lemXQ) . In [11]
a prescription for functional integration over the zero modes for a surface of arbltrary genus
was given that consistently incorporates (2.43).

To compute amplitudes on genus g surfaces one has to count the zero—modes of the fields on
this surface. A® has eleven independent zero modes, 0 has sixteen. N,,, and J have 11g
independent zero modes on a genus g surface. For the definition of an integral measure it is
useful to define a Lorentz invariant, gamma matrix—traceless tensor 7((a,asaz3))[5162656455] L Nis
expression is unique up to rescaling and can be constructed out of ;" 5 77, 52753 55 (Ymnp) 455
by symmetrizing with respect to the alpha indices, antisymmetrizing with respect to the delta
indices and subtracting off the gamma matrix trace in the alpha indices. The measure factor
[DA] for the ghosts is defined as follows:

(@L)fer-anl [D)\](ET)E?% ﬁalﬁﬂ)))‘ﬁl 52 \Bs (2.44)

with (eT)E((Xé ﬁalﬁlg])) = €17 (5, 8,3,))[arz...arg)- Measure factors for the N and for J can

be constructed analogously [11].

10



To take care of the zero mode integration of 6, Berkovits defines three picture changing
operators:

Yo = Cl0%5(Cs\?)

1
Zp = 5Ban(0""d)5(BYN,,)
Z; = (A%da)3(J) (2.45)

C, is a constant spinor, B,,, is a constant antisymmetric tensor. These operators are BRST
invariant and their derivative is BRST exact. In addition, their supersymmetry variations
are BRST trivial. The tree level amplitude is now defined as:

.A = <U1 (Zl)UQ(ZQ)Ug(Zg) /dZ4V4(Z4) N /dZNVN(ZN)YCI (yl) N Y011 (y11)>, (2.46)

where Yo, (yr) = Cra0*(yr)o(CrA(yr)). Integration over the non—zero modes yields:
A = QNN fa5,(0)(C10) ... (C110)5(C1N) ... 6(C1i\)) (2.47)

With the measure factors the amplitude reads:
A = / 419 / DAN NN £ (C16) . .. (CLLB)S(CLA) . .. 5(C1iN)

= / al(e7 1)) / AN AN fop (C16) ... (C110)3(CLA) ... 6(Cyy )
(2.48)

Lorentz invariance implies that the amplitude must be independent of the C;. The X inte-
gration can be carried out and the result is [11]:

A = (e )P [ qlbggsr  grig o () (2.49)

[Hl---ﬁll]

¢ is a normalization constant.
To compute g—loop amplitudes one needs to insert (3g — 3) b, ghosts of ghost number —1
that satisfy

Q. b(2)] = T(2) (2.50)

into the correlation function, where T'(z) is the energy momentum tensor. There is no such
ghost in the theory but one can construct an expression such that:

[Q753(27w)] = T(2)Zp(w)
[@:b5(2)] = T(2)Zp(2), (2.51)
with
bp(z,w) = bB(z)+T(z)/wdepqﬁNpq(v)é(BN(v)) (2.52)
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The local expression bp(z) can be constructed by an iterative procedure [11]. Now it is
possible to compute N—point g—loop closed superstring amplitudes. For g > 1 this amplitude
is defined as:

39—3

.A = /dQTl...d2T39_3<’ H /d2up,up(up)53p(up,zp)
P=1

10g g 11 N
1T Zse(zp) I] Zston) [] Yor )P T /thTVT(tT» (2.53)
P=3g-2 R=1 I=1 T=1

Vr(tr) are dimension (1, 1) closed string vertex operators for the NV external states (see below).
pup(up) are Beltrami differentials (cf. Appendix C.1), the 7p are the Teichmiiller parameters
associated to the Beltramis, | |? signifies the left-right product. For g = 1 the amplitude is
given by:

~ 10 11 N
A = /dZTU/dZW(U)bBl(% 21) [T 2 (2p)250) T[] Yo, () PUL (1) ] /dZtTVT(tT»
P=2 =1 T=2

(2.54)
For the closed superstring the unintegrated vertex operator is defined as:
U = XNNA;4(,0,0) (2.55)
Physical states satisfy:
QU = QU = 0 U = Q0+ QQ (2.56)

where Q = — ¢ i\¢dzs and QN = QN = 0. This implies the following equations of motion
and gauge transformations [10]:

D'YAaB + DO‘A’YB = 0
DA/AO{B + DBAQA/ = 0 (2.57)
0A; = DQQB + DBQa (2.58)

AaB can be gauged to the following form [11]:

Apl2,0,0) = &t (hmn(wm@a(w"é)g + U (1"8)a(7"9) 5 (1b)5

U000 (1) + F (7)) (7"8) () + . )
(2.59)

with
k2 = K™y = K hpn = K™% = EMyS = 0

kn(’)’nlﬁm)d - kn(’)/nwm)oz - km'Yg?yF,yé = km’YOTSF,yé =0 (2'60)
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A, 4 describes the on—shell type IIB supergravity multiplet where h,,,, comprises the graviton,

the antisymmetric tensor and the dilaton, and %, and 1&% denote gravitini and dilatini. F o
are the Ramond-Ramond field strengths.
The integrated vertex operator for the closed string is given by:

Vo= 00°00°A 5+ 00°TI™ Ay, + IT"00% Ay + T Ay
+do (00°ES + T ES, ) + da (007 E5 + T B, )
Ly (80P0mn + firgmn) + LR (99fqmn 1 rpdymn
+§ mn B + D + 5 mn ﬁ + D
+daciBP°‘3 + Nonda C™™ 4 doy Ny CO™™ 4+ Noyyy N ST (2.61)

A systematic approach to compute the equations of motion and the gauge transformations as
well as the component expansions was given in [18].

There are some further constructions related to the Green—Schwarz superstring and the
pure spinor formalism that should be mentioned.
In [19] a superembedding formulation for the superstring is related to the GS string and the
pure spinor formalism.
In [20, 21] the pure spinor constraint is implemented via a BRST double complex.
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Chapter 3

Covariant Quantization of the
Superstring without Pure Spinor
Constraints

3.1 Introduction

This is the central chapter of this thesis. In the following we will discuss the covariant
quantization of the superstring without pure spinor constraints as it was introduced by Grassi,
van Nieuwenhuizen and collaborators. First we will give a short introduction to WZNW
models and discuss the relation of this covariant formulation of the superstring to these
models. Some difficulties concerning the generalization of the WZNW model to the type two
superstring will lead to a different approach that involves the Noether method to construct an
action for type II. The construction of the BRST operator and the problems concerning the
definition of physical states will be investigated. It will be shown how the fields in the model
can be used to construct a twisted N = 2 superconformal algebra and in the subsequently
an N = 4 algebra. Finally it will be shown how to implement worldsheet diffeomorphism
invariance into this model.

3.2 The Superstring as a Gauged WZNW Model

In this section we discuss the relation of the covariant quantization of the superstring to Wess-
Zumino-Novikov-Witten (WZNW) models. First we will give an introduction to WZNW
models. Then we will show that the heterotic superstring can be written as a WZNW model.
Nilpotency of the BRST transformations will imply that we have a gauged WZNW model.
Finally we discuss the problems that arise when we use the WZNW technology for the type
II superstring, which will be the motivation for a different approach to the problem in section
3.3.

3.2.1 WZNW Models

WZNW models were first introduced by Witten [22] in the context of the bosonization of
fermions with non—abelian symmetries in 1 + 1 dimensions. In this paper an action was
derived based on a current algebra that was obtained from the bosonization of a fermionic
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Lagrangian. In this short introduction we will mostly follow the lines of [23].
The two dimensional WZNW model is a classical conformally invariant field theory whose
basic fields are harmonic maps ¢g from a Riemann surface X, the worldsheet, to a bosonic Lie
group GG. We denote the generators of the Lie algebra by Th;. The pullback of the Maurer
Cartan form ©, i.e. the left invariant Lie algebra valued one—from, to the worldsheet is given
by:

90 = g 'dg = dotg 0.9 = (—)MT0M (3.1)

Analogously we can define the pullback of the right-invariant one-form ©%:
gof .= dggt = (-)MTy,00M (3.2)

Now we define the following action:

Skinlg] = WHQ*GH2

= ﬁ/(g‘ldg,*(g‘ldg»

= 4)\2 dzaf( ~o.g9,9710"g)
1

Sy iy 03

Here we called the determinant of the metric h to avoid confusion with the group element g.
In the last line the scalar product (,) was computed explicitly using:

<TM,TN> = Hun, (3.4)

where H sy is the Killing metric.

Now we add a non—local term to the action, the Wess—Zumino term. This term is defined on
a three dimensional manifold B with @B = Y. The map g is extended to § with g: B — G
such that g|s; = g. The Wess—Zumino term of the action is now defined as follows:

Swald = —5p= [ 5. aa)

= 5 [ a0, 00)

- 5 | @e.dae)

_ 2; BreT* 0,0 OM

- = /B dacFHorp fly p OOV O (3.5)
The last line can be computed if one starts with Sy z[g] = 247T fB —1dg,571dgg—'dg) and
uses [Thr, Tn] = Trf N
The complete action is defined as:

Slgl = Sunlg] +n Swzldl, (3.6)
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where the integer n is called the level of the WZNW model. For our purposes the level will
be set to —2 and the constant A is given by A? = |477T|

It can be shown that the action is invariant under the action of the infinite dimensional group
G(oh) x G(o™) with:

9(0,0%) = (oM )glo™,0T)A07) (37)
We can split this symmetry into a chiral and an antichiral contribution:

deg(o™,0) g(c™, 0 )w(o™)
daglo™ o) = —@(0T)g(o™,0") (3.8)

In the following we will refer to these “semilocal” chiral symmetries as global symmetries.
The corresponding conserved currents can be computed to bel:

n _ mn

JL = _8_7Tg lf“)g = _8_7'('@_

JE = —lLgggt = —Lon 3.9
8 99 8r T (3:9)

The conservation laws are 9J% = 0 and J® = 0. The currents satisfy the following Poisson
bracket algebra:

(k™) Th( )} = JE@ ) apd(e! = o) + - Hapdhd(o! — ™)
RO IR} = I )fCapd(e! —o™) = = Hapdd(o! =) (3.10)

This corresponds to the following OPEs at the quantum level, expressed in terms of the ©
with n = —2:

_ P OLale)f” H
@EA(U )953(0 )~ — CZ —w 48 (2 _A£)2
- o Ofa(eT)fC H
Oy (07)0 (0" ) ~ - A2+ € _Ai)Q (3.11)

Gauged WZNW Models

Now we make the symmetry transformation (3.7) local by gauging a subgroup H C G x G:

) Nplo™,07), (3.12)

g(o™,0") = A o7, 0M)g(o™ 0

where A\, p : ¥ — H are arbitrary smooth maps. We will focus on the gauging of a diagonal
subgroup H. In this special case we set p = A so that the transformations read:

glo™,0") — )\_1(0_,0+)g(0_,0+))\(0_,U+) (3.13)

We introduce gauge fields with components A and A which transform as follows under gauge
transformations:

A — AHo+ A

A — XY+ A (3.14)

!Note that we use @ and d_ synonymously. See Appendix A for our conventions.

16



It can be shown [23] that the following extended action is invariant under the local symmetry:

n

17 ﬂ <

Sulg: A A = Splg) - /2 (A, TR) + (7, A)

Here we indicated explicitly the dependence on the Killing metric H of G.
Now we switch to the path integral formalism and perform the Faddeev—Popov procedure:

7 - / (dg][dA][d A]e~SHl9-A.4] (3.16)

We choose the holomorphic gauge A = 0. Assuming the absence of gauge anomalies the gauge
fixed path integral reads:

7 = / (dg][dA](detd)eSH1s-A40] (3.17)
where
detd = / [db][dc]e /= {0:00) (3.18)

is the Faddeev—Popov determinant and (b, c) are the Faddeev—Popov ghosts. The remaining
gauge fields A can be parameterized by A = —9hh~! with a smooth function h : ¥ — H.
The Polyakov—Wiegmann identity [23] states that the gauge fixed action can be written in
terms of the original WZNW action:

Snlg, A,0] = Sulgh] — Snlh] (3.19)

At the quantum level the change of variables from A to h incurs in a Jacobian factor for the
functional measure of the path integral. An arbitrary infinitesimal variation of the gauge field
A can be written as:

SA = —9(0hh™1) — [A,6hh™Y] = —D(5hh™1), (3.20)
where D is the holomorphic component of the covariant derivative. From this it can be

deduced that the Jacobian is given by: [dA] = (detD)[dh]. This determinant can be expressed
via an integral over fermionic fields:

detD = / [db)[de]e /= (-Pe (3.21)
The path integral now reads:
7 = / [dg][dR](detD)(detd)eSrlohl+Sn(h] (3.22)

To compute the determinants we have to make a short detour. We compute a more general
expression:

detDdetD = / [db][dc][db][de]e =P (b.De) (3.23)
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Now we use the following relation:
detD detD = e WA Aldetddetd, (3.24)

where W[A, A] is the integrated anomaly. Using A = —9hh~! and A = —0hh~! it can be
shown that the anomaly has the form of a WZNW action:

e WAL Slhh] (3.25)

where H' is the Killing metric of the subgroup H. For the gauged WZNW model we have to
set A =0 and h = 1. Then the path integral can be written as:

7 = / [dg][dR][db][dc] [dB)[de] e Srloml Skl o= fi (b:0c)+(b.0e) (3.26)

Finally we can make a change of variables g — gh~!. Absence of gauge anomalies implies that
the Jacobian is trivial and we finally arrive at the path integral formulation for the gauged

WZNW model:

7z = / [dg][dR][db)[dc] [dB)[de] e SrlotSrerer ] o= J (b:Oe)+(D,0) (3.27)

We observe that the action of a gauged WZNW model consists of three blocks: two indepen-
dent WZNW models based on G and H, respectively, and a ghost sector. The h—action has
the opposite sign as compared to the g—action. This implies in particular that the currents
J" and J"® have opposite signs:

gl = Lptgh = et
8w 8w
JhE = 8%5hh*1 - 8%@{13 (3.28)

In the case we are interested in, the WZNW model Sy is degenerate with H' = 0. Then the
OPEs for the ©" read:

_ _ e &(oT)fC Hap
h L hL(_t C AB
024(c7)0%E(0") ~ — - —w (z—w)2
hR( .—\ rC
0" ()" (o) ~ T an P (329

zZ—w (z —w)?

For the currents J" this means that the central terms change their signs. In the following we
will be interested in gauging the full diagonal subgroup H = G C G x G with h = g.

In the following we will mostly deal with the left—-moving currents and skip the superscript
L.

3.2.2 The Superstring as a WZNW model

Relaxing the Pure Spinor Constraint

In their works [4][24, 25, 26, 27, 28] van Nieuwenhuizen and collaborators presented a way to
covariantly quantize the superstring without the pure spinor constraint

AA = 0. (3.30)
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Only the chiral sector will be considered here. The starting point for this construction is
Berkovits” BRST charge:

Q = _/i)\adza (331)

Now we check nilpotency on the fields using the OPEs collected in Appendix B. Acting with
the BRST operator on 8¢ and A% yields s6% = iA%* and sA® = 0. Thus, nilpotency on 6¢
and A\ can be achieved. Next we compute sz = A\y"0. Without the pure spinor constraint
s22™ = iAy™\ does not vanish. Therefore one introduces a real anticommuting ghost ™ and
and sets sz = Ay, 06™. The transformations of the new ghost are chosen such that the BRST
transformation on z™ is nilpotent, which yields s¢™ = —iAy™A. In order to obtain these
altered transformations a new Q' = [IL,,,&™ is added. It would have been sufficient to write
Ox,, instead of II,,, but then " would not be supersymmetric. In a next step we construct
nilpotent transformations on d.,. We have sd.o = 2(7"N)allm, 8'dz0 = 2i™(7,,00)q and
(s + 8)%d,0 = 0(26™(ymA)a). Thus, we introduce a new BRST transformation such that
§"d,., = —0xq. Nilpotency on d., is achieved if we define sxo, = 2™ (YmA)q. Using Fierz
rearrangement it can be verified that sy, = 0. Thus we have obtained nilpotency on all the
fields and ghosts. We introduce antighosts (.., w.o and % with the OPEs:

1
m [e—
E"(m(w) ~ ———
1
A ~ =
(Jalw) ~ ———
1
o ~ = 3.32
Xal2R(w) ~ - (3:2)
B.m is anticommuting, whereas w,, and k¢ are commuting antighosts.
The BRST charge is now given by:
Q = %—idm)\o‘ —00%0 — T &™ + iBom (MY A) 4+ 28 (K2 Ym ) (3.33)
Unfortunately, the BRST transformations on the antighosts are not nilpotent:
Sﬁzm - Hzm - 2(527771)‘)
SWao = Uy — Qiﬁzm(’ym)‘)a - Q(Vmﬁz)afm
sky = 00 (3.34)

There are now two ways to proceed:

1. Continue this procedure by requiring nilpotency on the antighosts and introducing new
fields. This will eventually lead to the WZNW model.

2. Terminate the procedure by hand by adding a ghost pair (b, ¢,) with ¢(z)b(w) = —1/(z—
w). In the following we will refer to this as the “old approach” [4].

Before we consider the WZNW model we give a brief review of the “old approach”. Computing
the square of (3.33) yields:

@.Q] = / A, = / EmOE™ 4+ iIX*Oxa — iXa O™ (3.35)
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This expression is BRST invariant and we have [Q, A.] = Y with Y = i, \y""\. Now we
define:

Q = Q+/(cz+sz) (3.36)
We find:
@.Q) = [(4.-28.)-biQ. B (3.37)
Requiring Q' to be nilpotent yields:
0,B.) =0 B, = %(AeraX) 0,X] = Y (3.38)

with X = —% XaA®. With that we obtain the BRST charge of the “old approach”:

Q = % —id o A" — Hzmgm - aeaXa + Zﬂzm()\’ym)\) + 2(’£z’7m)‘)£m

3%

te,+b (%gmagm + ixaaXa - ZXM?X”) (3.39)

The altered transformations of the antighosts and the BRST transformations of the new
ghost pair can be computed using the OPEs of Q) with these fields. There are, however, some
unattractive features concerning this approach.

e The introduction of the ghost pair (b, c,) changes the central charge to ¢ = 20. In order
to obtain a theory with vanishing central charge another pair (w™,n2") is introduced
which cancels the central charge. The new fields are defined to be BRST inert.

e The cohomology of @ is trivial, i.e. all the currents are set to 0 cohomologically. To fix
this one has to introduce a grading condition to get the correct physics.

For a review of the cohomology computations in the “old approach”we refer to section 3.5.1.

Now we come to the WZNW approach that was first presented in [28]. We add “currents”
J]’\’/I = (" . id., 00%) to the BRST transformations of the antighosts:

zZm)

Sﬁzm = Hzm - Hl;}m - 2(’%27771)‘)
SWao = idye — idga - 2iﬁzm ('Ym)\)a - 2(7m’<vz)a£m
skY = 90% — 99t (3.40)

z

Demanding nilpotency of these transformations yields the following BRST transformations
for the h—currents:

SIT = 9E™ 4+ 2(\y™00")
500" = i\

sd, OXa + 2(YmA) I 4 2™ (7,,00") 4 (3.41)
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This construction implies the following BRST operator:
Q B %_(Hzm N Hgm)gm - (idzoz - id?a))‘a - (aaa — Bﬁah)Xa
FiBom(0™X) + 2 VE 5.2

which is consistent if the h—currents satisfy the following OPEs:

m 1Th h
. h . h .’YaﬁHzm(w) . h h Tm aﬁaeﬁ
Zdza(z)Zdzﬁ (U)) ~ =2 > —w Zdza(z)Hzm(w) ~ =2 5 —w
" ()" (w) M id" ()90 (w) _ida (3.43)
zm zn (Z — w)2 20 (Z — w)2 .

The central terms in the OPEs change their signs as compared those of the original currents.
This is exactly the behavior of the J ]’\1/1 of the gauged WZNW model.

WZNW action and Currents for the Heterotic String

Having established a first contact between the covariant formulation of the superstring and
WZNW models we will now stress some more WZNW properties of this model. First we
introduce the following currents with capital indices: Jy = (I, idzq,00%), the corre-
sponding h—currents have already been introduced above. The Maurer—Cartan forms are
Oum = (ym, idya, 0,0%). Defining the structure constants [Myg = 27, and fgﬁm = 2%m aB
and a metric

Nmn 0 0
Hun = o o0 il |, (3.44)
0 —idg 0
we get the following OPEs:
JKfKMN HMN
J J ~ = —
()T (w) el P
Jh fK Hun
T (2) I3 ~ DKL MN 3.45
B )~ SNy T (3.45)
These are consistent with (3.11) and (3.29).
Now we define super Lie algebra generators?:
Ty = (Pn,Qa, K%) (3.46)
They satisfy the following (anti—)commutation relations:
[Ta. Tn] = Trf yn
Qe Qs] = 275 Pm Qo Pl = 2vmasK” (3.47)
Using these generators we define a parameterization for the group manifold:
g = elm?"eiQal iK% da (3.48)

2This ansatz goes back to Siegel [29].
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This is a generalization of the WZNW models presented in [23] since in this case not all the
Lie algebra generators are bosonic.
With the formula

de? = ePdB + %eB[dB, B] + éeB[[dB, B]B] + O([[[dB, B, B, B]), (3.49)

one can easily verify that the correct chiral currents OII and 9 are produced?:
g ltag = TyuJM
= P, (02 —i0y™00) + Qni00% + K (z'a% — 2i(ymb)a 0™ — %(ymﬁ)a(67m80)>
= P,II7 +iQ,00% + K*d'9) (3.50)
We could not take p,, as elementary field but had to use ¢, instead. To establish the
connection to p., we have to define:
P = —0¢o — 2i(ymb)adz™ — g(vme)a(ewmaa) (3.51)

The WZNW action without the h—currents can be written as (n = —2):

1 1 o o
Slol = - ZdQJG‘&@ﬂ”—E/Bd?’xs”k(%mf%c@f@f, (3.52)

where © M is the extension of the Maurer—Cartan form to the three dimensional manifold B.
Using the Maurer—Cartan equations

dO = d(¢7'dg) = —g ldgg'dg = -O A0
16° = ()137%,0%", (3.53)

we can rewrite the WZ term as an integral over a total derivative and we find:

1 1 1,
S = - . Ao (—inmﬂnmu +dOH,0% — 5& dgg)ayea> (3.54)
Partial integration and the Maurer—Cartan equations then yield the final well-known result
for the action:
1

1
= 2 —I1r v (¢ [e} - UV TTM
S = 47T/Zd 0<—2H My, + PP d2)0,0% — i I, (9%,@,,9)) (3.55)

3.2.3 Problems using WZNW technology for the Superstring

Despite the discussion in the previous section there are some problems with the WZNW
description of the superstring. In particular we focus on some complications for the general-
ization to the type II superstring which kept us from finding a standard WZNW formulation
for this case and eventually led us to the unconventional approach that will be presented in
section 3.3.

3Indices are lifted with the inverse of the metric, see Appendix B.

22



Parameterization and Doubling of the Currents

If we only consider the chiral case the WZNW model yields antiholomorphic currents that do
not appear in the model for the superstring. We find:

_ _ _ _ _ _ 9 _
dgg~' = P, (0z™ + i0y™00) + iQa00% + K <2’8q§a — 262 (Y 00) o — g(ymﬁ)a(67m39)>
(3.56)

There is no interpretation for these currents for the heterotic string. It is also not possible
to interpret the antichiral currents as the currents of the right—moving sector for the type II
superstring.

Another problem is the fact that we have ¢, as an elementary field in the WZNW approach
and not p.,. The action (3.55) still contains the ¢,—field. It can be shown that variation of
the action with respect to the elementary fields ", 0<%, ¢, does not yield free field equations.

Generalization to the Type II Superstring

In order to introduce rightmovers into the WZNW model we need new Lie algebra generators
with the following commutators:

Qe Qg = —2i735Pm
[Qda Pm] = _Q’Ym dgkﬁ (3'57)
We are forced by the Jacobi identity to introduce some further non—vanishing commutators:
[Qa, Q3] = iR, = iRs, = [Q5 Qal
[Rop @3] = —275m s K°
(R @ = =290, 55K° (3.58)

These commutators imply that left— and right-moving sectors mix. All the other commutators
between generators of the left— and right—-moving sector can be chosen to be 0.

We introduce a new field y®® for the generator R4 and choose the following parameterization
for the group element:

g = ePma"HQaO K 9o tiQal +iK ot Ragy™® (3.59)

The problem would simplify if it were possible to express y*® in terms of the fields 2™, 6,
0%, ¢o and ¢4. For this purpose we compute the composition law of two group elements g;
and g9 using the Baker—-Campbell-Hausdorff formula [30]:

eAeB  —  pATBH3[ABl+15[A[AB]l-§5(B/[BA]+.. (3.60)
After a lengthy calculation we get the following contributions for the respective generators:

1. Terms proportional to P,:

1 ) . ~a A8
G192 |, = exp [Pm(xﬂn +x5') + §Pm (217(%9‘1)‘05 — 217(%6?65)}

m

= exp [Pm(;cgn + ) + i P (017™03) — (éﬂmeg))] (3.61)
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. Terms proportional to Q:

o2 |, = exp |iQu(f +65)] (3.62)
. Terms proportional to Qd:
9192 5. exp [ZQa (é(f + ég)} (3.63)
. Terms proportional to R e
9192 ‘Raﬁ = exp [Raﬁ (ylﬁ + yzﬁ) + - R (60‘65 671503‘)} (3.64)
. Terms proportional to K?:
992 |, = ©XP [in (¢165 + bas) + 1K 6a< — z1'03 + 25'607 + %{ﬁ?y?a %aﬂgy?a)

1 1
+5K° ( Y 50 VB 070703 + Yo a6V 026007 — S m 37 ea(eﬁeﬁ +eﬁaﬁ))

1 1
3 (s 030768 a2 050503 + 0502305 0165 + 0705 )

(3.65)
. Terms proportional to K S:

9192 |.; = ©oxXP [Zf{é (¢A51S + <3525) + Zf{&%n s <x§né§y — 507 + %wa?yga - Va'vegy?a>

&

+éf(5 (V5075820763 7, 5573030707 — 17 a5 (0705 + 6765))
—%f«? ( Von 5653050703 + Vo 5075 050707 + 17 505 (0765 +éfa§)>]
(3.66)
In order to get a proper composition law we must have:
Ragti™ (Ragus” L R (3.67)
Considering equation (3.64) the only reasonable choice seems to be y*? = ’(90‘6?5 but unfor-
tunately we get a wrong sign. What we want to get is:
o8 i L e (o4 03 (09 + )]
= exp [% <9f‘éf + 93‘@5 + H?ég + 93‘@?)} (3.68)

Using (3.64) to compute the product we get a negative sign in the last term as compared to

the equation above. Thus it is not possible to express y

@& in terms of the other fields and
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therefore it has to be made dynamical.
Now we compute the left— and right-moving currents from the parameterization (3.59). The
chiral currents from ¢g~'dg are:

Jm = 9x™ —i(0y™00) + i(6y™D0)
J* = 98
2
d9) = Ja = i8¢ +iz™(1m00)e — i02™ (Ym)a — 3 (1m0)a(07™00)
+ (1) (67™00) = i a0y 5 0% + v agy 3, 00
J¢ = i06”
. . . 2 .. .
Joa = 10¢s —ix™ (V00)a + 102 (ym0)s — g(WmQ)a(WmaQ)
+ () (07™00) — i, 5500 P IAO + i, 507 OO
abd ad 1 & apo anqpé
=yt o (9 90° + 0°90 ) (3.69)
We choose a metric where the mixing of right— and left—-moving sector is minimal to pull Lie
algebra indices:

Dm0 0 0 0 0
0o 0 2 o0 o0 0
0 —idgg 0 0 0 0
Hay = o 0 0 0 i 0 (3.70)
0 0 0 -5 0 0
0 0 0 0 0 hvas 7, of

1

The right-moving currents dgg~! can be computed out of the left-moving ones via:

dgg™" = —gdg™' = — (9(=6™)) "' 8 (g(6™)), (3.71)

with o™ = (2™,i0%, i}y, 6% nga, y*%). For the calculation this means that we take the chiral
currents and exchange 0 by 0 and change the sign in every term that is quadratic in ¢™.
Thus, we get:

Jn i Ar™ 4 i(074,,00) — i(67,,00)
= i00”

JE = 06 — it (Y 0)a + 2™ (Y8 — g( ) (0750)

a R
JZ

+(Ym8)a(07780) + i%m 050y V0% — iy gy, 0%
= 90"
S _ A N _ A 2 A A N
d(z(g) = JE = i0da+ iz (ynm00)s — i03™ (ymb)a — g(wme)d(efymae)

JeR

+(1m0)a (09 00) + i7,,, 45300 V500" — 17, 059" V50 00
JOOR  — gyed 4 % (édéeo‘ + 9‘”5@‘5‘> (3.72)

We make the following observations concerning these results:
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e We have a doubling of the currents. For the chiral sector we only need J7*, J& and J.q,
for the antichiral sector JI* &, J@® and JE.

e For the currents J," ) e would have expected I} = 0px™ —i(0y™0,0) — i(éfymaué).
Using the parameterization (3.59) we can achieve on—shell, i.e. using the equations of
motion 90 = 0 and 99 = 0, that the left— and right-moving sectors decouple: J* —
dx™ — i(090) and J T — Gz — i(Ay™DH).

e The d- and d-currents contain terms that are not supersymmetric. Choosing a different
parameterization like efm*" ¢?@ad® gl ¢a €iQab® ik ¢a o Raay™® (oes not solve this prob-
lem because it removes the non—supersymmetric terms only in one sector as it can be
seen already for the heterotic case (3.56).

Considering these problems we quit the attempt to construct a WZNW action for the type
II superstring via a parameterization of the group element and successfully chose a different
approach that will be presented in the following section. An approach to the construction of
a WZNW action based on supergroups can be found in [31].

3.3 Gauging the Action via the Noether Procedure

As we have seen in the previous section the standard WZNW approach to the superstring
causes some problems:

e For the heterotic string one starts with a chiral algebra and the WZNW model produces
a chiral as well as an antichiral algebra. It is not possible to interpret the antichiral
algebra as the right moving sector of the type II superstring. Consequently one has to
start with a chiral and an antichiral algebra and both of them double.

e For the type II superstring the central extension of the supersymmetry algebra forces
one, via the Jacobi identity, to introduce an additional generator with two spinor indices.
As we have seen in section 3.2.3 the corresponding field cannot be expressed in terms
of the fields 2™, 0%, ¢, and thus has to be made dynamical. It has not been possible to
produce a WZNW action for the type II superstring.

e In [28] the currents J]}\‘/[ of the gauged WZNW were introduced by hand in order to
render the BRST transformations of the antighosts nilpotent. In this section we will
present a more fundamental way to introduce these h—currents into the action.

e Some aspects concerning the relation of the WZNW field ¢, and the momentum p,, of
the free field action are unclear.

To circumvent these difficulties we will use the Noether method to perform the WZNW action.
We start with the free field action and gauge the symmetry algebra induced by the OPEs
of the currents Jy;. We will mostly follow the line of [1] but we will treat the heterotic and
the type II case separately with the intention to focus on the details of Noether procedure
for the heterotic case. This will enable us to discuss the complications that arise for the type
II string without having to distract ourselves with the technicalities that come from gauging
the symmetries.
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The Noether method is an elegant way to construct out of an action that has a global
symmetry a new action that is invariant under the local version of this symmetry. The
iterative construction works as follows:

1. Take an action Sy that is invariant under a global symmetry such that dpSg = 0. The
subscripts denote a grading that keeps track of the order of the iteration. Compute the
variation of the action Sy under the local variation é;. According to Noether’s theorem
this yields the currents:

050

5ﬁbzl/&g&¢AEb/%M&@M, (3.73)

where ¢ stands for all the fields in the action and w™ is the transformation parameter.

2. Introduce a “gauge connection” Ai‘f that transforms as 50Aﬁ/f = MwM . Add a new
term,

&:—/ﬁﬁ% (3.74)
to the action. With that one achieves 6.5y + 6951 = 0.

3. Compute 61.57 and obtain §y.S2 + 0151 + 9259 = 0 by adding a suitable S5 to the action
and/or by altering the transformations of the fields 2. These computations may carry
some ambiguities.

4. Continue until the procedure terminates or until sufficient steps are made to guess the
form of the final action and transformations.

For the superstring we would get for example: §;.5) = [ J,pr0w™ —i—jz M@d)M where the hatted
quantities stand for the right movers.

Note that it is also possible to use the Noether theorem “backwards” by considering the fact
that via partial integration we have:

1)
0150 = /%51@4 = /JHMa“wM = —/O“J“MwM (3.75)

Thus, it is possible to use the Noether theorem to compute the transformations if one knows
the conserved currents.

The standard reference for the Noether method is [32] but it was already applied in earlier
works, for example by Deser [33].

3.3.1 The Heterotic String

We start with the free field action for the heterotic string?:

1 = = 1 _ _
Sy = /—aaxmaxm + P00 = /—aﬂgnﬂzm — 117" (04,,00) + 112 (Hymaﬂ) + dyq00%
(3.76)

The conserved currents are:
o = (o, idzq, 00%) (3.77)

4From now on we absorb the prefactors in the action into the J-sign, see also Appendix A.
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The elementary fields are ¢4 = (z™,0% p.o). In order to avoid confusing prefactors and signs
in our condensed notation we use the following transformation parameters:

M

w' = (WMWY, —iwgy) (3.78)

We compute the transformations of the elementary fields by computing their OPEs with the
currents:

572 (w) = Res Joy(2)w (2)6" (w) (3.79)

Using this method of calculation we may miss off—shell contributions to the transformations.
In this simple case, however, the OPEs yield the full transformations:

0Jy = —Owpy + JPfPMNwN (3.80)
0y, = —0wp + 2 (wymdo)

000% = 10w
didso = —0wq + 2i (Ymw), 7" 4+ 20™ (vn00),, (3.81)

Since it is easier to gauge the action in terms of the elementary fields, we express the currents
in terms of the elementary fields to obtain the following transformations:

ox™ = —w™+ (wy™0)
09 = Jw*
0Pra = 10w — 2iw™ (v 00), — i0w™ (ymb),, + (Ymw), O™
3i . 1 -
+ (wymb) (v™00),, + 3 (Owym®) (v™0),, (3.82)

The first step in the Noether procedure is to compute §1.Sy. Since we got the transformations
out of the OPEs of the currents this is merely a check if we computed them correctly. Using
partial integration and Fierz rearrangement we find that this is indeed the case:

0SSy = / (02" — i0y™00) Owp, + 0“0 (—iwy) + <pa — (ymb),, (iaxm + %H’ym&?)) O™

(3.83)
Introducing
Sp = — / T AM = — / . AT + id, o AS + 00% Az, (3.84)
we have constructed 61.5g + 6pS1 = 0.
In the next step we compute §;.57:
0151 = — /Hzm (01 A7 4 2i (wy™Az)) + id.q61 AT + 00% (01 Az0 + 2™ (YmAz),)
— 0w AT — Ow™ Azq + 10w AT
_ / Tp (FPuneN AM 1 5, AF) — Gy AM (3.85)
We can read off the local transformations of the gauge connections:
AL = P vl AM (3.86)
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There are still the dwp;—terms left to be absorbed. These terms come from the central
extension of the current algebra. Theoretically we have two possibilities to get rid of them
but unfortunately none of them work here:

e Adding a term Ss that is quadratic in the gauge connections does not work because we
would need an expression of conformal weight (1,1) and there is neither a field A,y; in
our model nor are there connections with upper indices. Even if we introduced a field
AM and added a term Sy = — i A AM to the action the §-—variation would yield
A,y 0wM which we do not want.

e We cannot alter the transformations of the elementary fields because the action Sy is
quadratic in the elementary fields and therefore the term we want to cancel would have
to be linear in the fields which it is not.

Knowing that the procedure must terminate after the first step we use a trick which leads us to
the gauged WZNW model. We double the fields and subtract from the original Lagrangian the
same Lagrangian in terms of these new auxiliary fields. We demand that the double poles in
the current algebra corresponding to these fields have the opposite sign as compared to those
of the currents Jjs. Since this is exactly the behavior of the h—currents in a gauged WZNW
model we will denote the new fields with a superscript h. The new action S{} is separately
invariant under the same chiral transformations (3.82) with the coordinates replaced by their
h—analogues and with a gauge parameter wf\%. For our purpose it is necessary to set wf\% =wpy-
In the WZNW language this means that we gauge the complete diagonal subgroup H = GxG
[23]. For the action we write now Sy — Sp — S(’} = Sp. The gauge transformations of the
h—currents read:

St = Own + JEfEy 0N (3.87)
Sl = G +2 <mmaeh>
500" = 0w
Soidl, = —0wy + 2i (yw), T 4 20™ (7m89h> , (3.88)
with
Jh = (—H’;m,—idga,—aeha) (3.89)

Variation of the new action under local transformations now yields:

5150 = / (JM + ng) M (3.90)
Now we add to the action a term:

S = — / (s + Thr) A3 (3.91)
Computation of 41.57 now yields:

0151 = — / Jp (fPunw™N AY +6,AL), (3.92)
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and the procedure terminates after the first step if we define:
nAL = —fP oV AM (3.93)

With that we have achieved 65 = 0 with § = dy + 1 and S = Sy + 57.

Gauge Fixing and BRST Transformation

It is possible to use the gauge freedom to put all the gauge connections to 0 again. This is
done by the standard procedure of gauge fixing as it can be found for example in [34].
We introduce ghosts by writing the transformation parameters as:

WwM =AM, (3.94)

with a global anticommuting parameter A. The BRST variation s on the elementary fields is
then defined as:

St = A s¢t (3.95)
We add the usual gauge fixing term to the Lagrangian:
Ly = L+s(byAd) (3.96)

with

sby = Qum sQy = 0, (3.97)
where Q,; is a Lagrange multiplier field, the Nakanishi—Lautrup field. The BRST transforma-
tions of the ghosts are defined such that s becomes nilpotent. This is achieved by demanding
nilpotency of the BRST transformations on the fields (or currents) and using the Jacobi iden-
tity.
We get the BRST transformation of the gauge connection from its gauge transformation by
pulling the parameter A out in front:

6ALY = 0w — [Py AY
sAL = 9cP — (m)NTMEP P vV AY (3.98)

For the action we get, explicitly computing s(bysAY):

S, = S+ / ApAP — (2 Pbpdcl + (—)N+Mpp P N AM (3.99)

Qur and AM can be integrated out because the variation with respect to those fields yields
algebraic equations of motion:

AM = ¢
= (I + Iy ) = (VM bp Py e (3.100)
Now we define:
Moo= (=€ A% Xa) ert = (—EmyiXa, —iA%) (3.101)
b = (Bem,Waas K2) WM = (BT iKY, —iw.e) (3.102)
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With these definitions we finally arrive at the gauged and gauge fixed action of the heterotic
string, which coincides with the result of [28]:

1. - 1 _ _ _
S = / — 502" Oy + §3mmhax},§1 + P20 00% — pl 00°"
+ﬂzm5£m + wzag)\a + ”?53(&
= / —%H;”Hm — i7" (07m00) + (112" (04,2,00) + d-00%
1 _ _
5T, T (e’wmaeh) ) (e’wmaeh) — d" 5geh
+ﬂzm5£m + wzag)\a + /‘{ggXa (3103)

To conclude this subsection we give a complete list of the BRST transformations of the fields,
currents, ghosts and antighosts:

se™ = M4+ (M)

s6% = i\®
Deo = 0%+ U™ (Yn0F) + 10E™ (b + (V) D2
Y .
+5 (V) (1706) + 5 (0X7m8) (776) (3.104)
sIu = —ear + (=) Ip [Py e

S = 0&m + 2 (A 00)
s00¢ = 10X*
sidye = —i0Xa + 20 (YmA), 12" — 26™ (1,,00),, (3.105)

One obtains the transformations of the h—fields by replacing the fields by their h—counterparts.

1
scM = —(—)K§fMLKCKCL
s&™ = —i(MMA)
sA = 0
SXa = 2(ymA),&" (3.106)

SbM =

SWya —

SK =

(

sBom = (M =114, ) = 2 (27m)
(
(

9% — aeah) (3.107)

nQ
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BRST Current, Composite B—field and Energy—Momentum Tensor

We can read off the BRST current if we transform the action with local parameter A: 05(...) =

As(...)

5AS = / (JM n ng) 8 (AcM™) =65 ((—)MbprdcM) / aA JM + JM> M 4 by scM)
(3.108)
We read off the following BRST current:
‘B M B\ M Kl M K L
jr = (=) (JM + JM) = (=) §be LKC €
= (Mo — 118, ) €7 = (iduq — idly ) A = (90% = 00°") X + i (A A) + 2 (57 A) €7

(3.109)

For gauged WZNW models with H = G x G there exists an operator B,, which makes the
energy-momentum tensor BRST exact [23]:

= (@, B::] Q= jéjf (3.110)

In our approach to the WZNW model it is now easy to find the symmetry corresponding to
B, .. Looking at the ghost action

Sgn = /—(—)MbMécM = /—(—)McMébM (3.111)

one sees that by; and ¢™ can exchange their role as long as the conformal weight of by is of
no importance. Thus, one can construct a new symmetry by taking ¢ — b, which reads
in components:

" - B D o Xa < —iWzq (3.112)

Performing this exchange in all BRST transformations and in the complete BRST current
would yield another nilpotent fermionic symmetry. Our aim is, however, to make the energy—
momentum tensor BRST exact with respect to the generator B,,. T, is basically the square of
the original currents minus the square of the h—currents (Sugawara construction). The BRST
current contains (Jys + J¥ )-terms, thus we need (Jy — J)-terms in B,,. Changing the
relative sign of the transformation parameter for the elementary fields and for the h—fields does
not affect the invariance of the matter action (“matter action” as opposed to “ghost action”),
as the h—part and the original part are invariant independently. The resulting contribution
to the current coming from the matter part of the action is then the difference between Jjs

and J ]}\‘/[
We call Ap the transformation parameter corresponding to the new symmetry and ¢ the
fermionic transformation: dp,(...) = Apt(...). The variation of the complete action with

respect to this transformation then yields:

6/\3 /8/\3 JM JM) bM +cpm th> ( )MAB (JM — J&) ng

— )MAB thab —|—ABCM6 toM (3.113)
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One can easily promote this transformation to a global symmetry of the whole action by
defining:
ten = (JM—JJ’\‘4> M = 0 (3.114)

Note that B, is no longer nilpotent. Out of the variation of the action we can read off that the
current of the new symmetry is (—)" (J m—J ]’\1/1) b . In order to obtain the correct energy—
momentum tensor in an OPE with the BRST current, this expression has to be multiplied
with a factor —%. Thus, we get for B,,:

1 (e . i
B. = — (Hzm v H’;m) B+ 2 (zdm n zd’;a> R -3 (aaa v aeah) Wea (3.115)
For completeness we write down the transformations of the fields and ghosts under the

fermionic symmetry:

te™ = =07 4i(k"0)
0" = —k?
tza = Owzo — QZﬂ;n (r)/maa)a - Zaﬂ;n (r)/me)a +1 (r)/m’%z)oz oz
3 1
) (Kzvm0) (¥"00),, — ) (Ok:7m0) (7"0), (3.116)
tiy = —0ba + (=) NTMIp NN
., = —0Bum + 2i (K2ym00)
00" = —0Ok?
tidsa = Owza — 2 (Ymkz)y 112"+ 267" (vm09),, (3.117)

The corresponding h—fields and currents transform accordingly.

tey = —% <JM—J&)

fem = %(HTJFH;””)

] = —%<aea+aeah)

Xa = %(z’derz‘an) (3.118)
sby = 0 (3.119)

To conclude this section, we verify that B,, is a homotopy for the energy—momentum tensor
T,.:
1
M ((JP . J]’_%) FPync - 2acN) b
1
M5 (JM _ JMh> ((JM 4 J]i\L/[> _ (_)N-',-MbePMNcN)
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1 1

1 1
= MLl + inh ™ 4 d,,00% — d"00°" + B, O™ + w.0ON* + K2OXa

= T, (3.120)
3.3.2 Type 1I String
Our starting point is the free field action for the type II superstring:
S = / —%meéxm + P20 00% + Pza00°
::L/_%HTHW,+£WZ+dm5¢*+dma&i (3.121)
where
7 = Qua™ —i0y"0,0 — i6y™0,0 (3.122)
dyo = Dua — (Ymb), <z’8uxm + %H’yma,ﬂ + %éwaﬁ) (3.123)
duae = Pua — (mb)a <¢aﬂxm + %eymaﬂe + %%%ﬁ) (3.124)
Lwz = —ietTT <(9’ym8,,9) - (é'ym&,é)) — e (O, 0) (07 D,0).  (3.125)

Our aim is to gauge this action in a procedure similar to the heterotic case. We will, how-
ever, encounter some complications which will eventually lead us to the introduction of new
auxiliary fields into the action.

Manifest Supersymmetry of the Conserved Currents

In a first try we naively extend the gauge transformations to the closed string case:

ox™
00¢
0pza

A~

50%

—w™ 4 (Wy™0) — O™ + (y™h)

1w

00— 2™ (08, — 80 (48 - () D™+ 5 () (7"00), + & (D3 (470),

i
_ . _ . _ 3
i06g — il (Y"90) s — i00™ (Ymb)a + (Ym®)ada™ + 52@%

D00+ 5 (00nf) (0"

If we compute the gauge variation of d,, using these transformations we find the following

result:

0doe = 10wq + 2i(Ymw)a <8mm —i6y™00 — iéfy"@é) — 21" (ym8)a

3 A R
5 (n0)aly™00) +

DO | —

(108 (907™8) + 0™ (318)a (3.127)

We get Y by replacing 0 < 0 and w™ — &M . Now we make two observations:
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e The second summand in (3.127) is clearly not invariant under supersymmetry trans-
formations 6.0% = £®, §.0% = &% and §.2™ = i(ey™0) + i(éymé). In analogy to the
heterotic case we would rather want this expression to be replaced by the supersym-
metric 2i(ymw)o 7"

e The last two terms in (3.127) also violate supersymmetry, but in this case this does not
hurt because for the global symmetry these terms vanish since 9™ = 0

We want the transformations to commute with supersymmetry because through gauging and
gauge fixing they will become the BRST transformations. If we want an off-shell formalism
that is manifestly supersymmetric, BRST symmetry and supersymmetry should commute.
To overcome these problems we alter the transformations of p,, and ps4 in order to obtain
manifestly supersymmetric transformations for d,, and czgd. For that purpose we get rid of
the transformations that vanish if we only consider the chiral sector by simply subtracting
them in the p—variation. To fix the other problem we use the following trick: Remember that
there exist trivial gauge transformations [34]:

08

A By AB

ot = (—)PA 305" (3.128)
where A48 is graded antisymmetric. This is a local symmetry of the Lagrangian that is present

in any theory with more than one field. It does not imply a gauge freedom. Invariance of the
action is easily checked:

_ A _ [, 895 ,a50S _
S = 5¢A¢ /()5¢AA 555 = 0 (3.129)

Adding such trivial gauge transformations to p,, and pss4 does not change the form of the
currents but surprisingly we can find a transformation such that the gauge variation of d,,
and ds4 becomes supersymmetric. If we set ¢4 = (™, 0% ,pm,H ,Dza) we get the desired
result if the matrix A48 has the following elements®:

A%é = (Vm/l)ﬁ(’yme)a"i_(Vmﬂ)a(Vmé)B
AL = (4 )a("0)s + (Ym)s(7"0)a (3.130)

We fix the parameters p and i by demanding that the d,, and dss transform supersymmet-
rically. This yields the altered transformations for p,, and ps4:

e = 0 — 2oy (7700), — 0™ (1) + () 02 + 5 () (706, + & (D) (176),

3i N P U, T
—g(vmw)awv 39)+5(w7m39)(7 0)a — 100 (v 0)a+§(0w7 0)(Ym8)a

0pza = 100s — i (Y"00)s — 100 (Ymb)a + (Ym)adz™ + 52(@%@)(7’”8‘@)@ + %(5@%9)(7’”@)@
3 3 . e P o
—E(Vmw)d(e’Y 39)+§(W’Ym39)(7 0)a — 10w (’Yme)d+§(5w7m9)(7 0)a (3.131)

The transformations of 2™, % and 6% remain unchanged. With that we obtain supersym-
metric transformations of the conserved currents:

oIy = —0wy + JpfPynw 4 (& — terms)

5See Appendix B for an explanation of the underlined indices.
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Ol = —0wm + 2(wymd0) — Odm + 2(@ymdh)

500% = 0w

Oidye = —0wq + 20(Ymw)all2' + 20™ (117,00) o (3.132)
5j1\?[ = —dwy+ ijNdJN + (w — terms)

Mz = —0wm + 2(wWymd0) — 0 + 2(0Ymd0)

600% = Do

didze = —00a + 2i(ym@)allZ + 20™ (4 00)a (3.133)

In the condensed notation we have jM = (Hgm,idgd,ééd) and oM = (O™, &%, —idg) for the
right moving sector.

Non—Closure of the off-shell Algebra and P,,,, P,

Having found supersymmetric gauge transformations unfortunately has not solved all of our
problems. Computing the commutator of the gauge transformations on Jj;s an Jy; we find
that the gauge algebra does not close on all the currents:

[01,02]ide = 200 ((Ymw1)awy' — W (Ymw2)a) + 4i(Vm00) o (w17 w2)
+2i(Ymw2)a (—0@{" + 2(&)177”8@)) — 2i(ymwi)a (—0@5” + 2(@%3&))
(3.134)

Here the Fierz identity was used once. We find an analogous expression for the commutator
acting on idss. The first two terms correspond to transformations with the parameters w,
and w™, respectively. The last two terms show the non—closure of the algebra since off—shell
hatted quantities appear in the transformation of i¢d,.. The reason for these terms to show
up is the II,,, in the transformation of id,,. Its gauge variation contains, in contrast to the
heterotic case, also hatted variables.
Non—closure of the gauge algebra implies that at the BRST—level the transformations are not
nilpotent on id.,. Lack of BRST nilpotency on this current was already encountered in [25]
and it was solved by introducing an auxiliary variable FPj* for II*. The authors wrote all
BRST—transformations with only 0)—derivatives using the free field equations to eliminate
the dy—contributions. Nilpotency on all the fields was reinstalled but the price one has to pay
was that the transformation rules for the heterotic string were altered.
We will now present a similar ansatz to close the algebra by manifestly separating the trans-
formations of the chiral and the antichiral sector off-shell. This will be achieved by introducing
two auxiliary fields P]" and P* into the transformation of id,, and idse which transform
as II7" and II7* in the chiral and antichiral case, respectively. We will call the corresponding
gauge transformation ¢:
SP"

z

Sidg,

—0w™ + 2 (wy™00)

—0wq + 20 (Ymw), P+ 2w™ (4,00),,
0idq — 2i (Ymw),, (17 — P), (3.135)
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and analogously for the right movers. The transformations are supersymmetric if we define
the new fields to be SUSY—inert. At the same time we have to guarantee that the equations
of motion remain unchanged and that on—shell P coincides with II. It seems obvious that
this can be achieved by introducing the P into the action as a Legendre transform of the II.
This would mean that we replace —3I1™II5, by 2P Ps,, — 2Pz, — 3117 Psy,. This is
a first order action and variation with respect to P" and Pj,, yields algebraic equations of
motion PJ* =1II7" and Ps,, = 1z, which can be reinserted to reproduce the original action.
However it turns out that an action of this form is not invariant under the simple variation
we postulated for id., in (3.135)°.

A more general possibility to introduce the P into the action without changing the equations
of motion is to add a term proportional to (P — IT)? to the Lagrangian (3.121). We make the
following ansatz:

F o= [+ g (P™ — TI™) (Papr — o) (3.136)

Now we fix the parameter ¢ by the invariance condition:
55 = /Sc £ SF P I (Pa — W)
= / 6L + (5= 8) dad0® + (5= 6) d=a06°
+c { ((mmaé) - %awm> (zp — Pr) + <(w7’”59) - %&J”) (1L, — sz)}
— / 0L + S0 (P = M) + 500 (Pen — Tzn)

(=2 4 ) (wy™D0) (I, — Papn) + (—2 + ) (&™) (s — Pen) (3.137)

For the global variation to vanish we have to choose ¢ = 2. From this calculation one can see
that the conserved currents I1,,, and IIz,, are replaced by P,,, and Ps,,, respectively.
The new action has now the following form (we drop the ~again.):

1 _ L
S = / P Pey — PP Wiy = T2 Py + 5T M + Ly 7 + dza06% + d500% (3.138)

Introducing Jyr = (Pum, id.q, 00%) and Jy = (Pgm,idgd,géd) we find the following gauge
transformations of the currents:

P = —0w™ + 2i(wy™00)
000% = 0w®
didye = —0wa + 2i(Ymw)a Pl + 20™ (1 00) (3.139)
; 5 L G P AN
5JM = —(%)M + Jp Y
5Tn fact, it can be checked that the first order form of the action is invariant if we choose 5idm = —0Owqa +

2 (Ymw)a ((1 - %) o+ %PZ’”) 2™ (1 90) .
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590% = i
Jidza = —0da + 2i(Ym®)aPl + 20™ (ym00)4 (3.140)

SPI" = —do™ + 2i(0y™dh)

Noether Procedure

In principle, the procedure to implement the local gauge symmetry in order to obtain the
action of a gauged WZNW model for the type II string is completely analogous to the heterotic
case. The only difference is that we now have the P-fields instead of the II. We get an
additional gauge connection Ai\/[ for the right moving sector.The h—fields are introduced in a
completely analogous way. Gauge fixing and the introduction of ghosts and BRST symmetry
are as in the heterotic case, apart from the fact that we need a second Nakanishi-Lautrup
field Ays for gauge fixing. by = boas are fields of conformal weight 1 which will become the
antighosts. Now we give some of the crucial results:

018y = / (s + Tl ) O™ - (o + T ) 0, (3.141)

with Jjy = — (Pl idky, 00°%) and Ji = —(PY,, idss, 90°").
S1 = —/ (JZM + J£M> AY 4 <J;M + JjM) AM (3.142)
SoAM = GuM SoAM = gpM (3.143)

We get 6151 = 0 if we define:
AL = —fP N AM 0AL = —fF oM AY (3.144)

We have the following new or altered BRST transformations of the fields and currents:

ST = 9™ +2(M™ ) + 9™ + 2(Ay™9,.0)

sPI" = 0¢™ 4 2(M™00)

s0% = i\®
Sidy = —i0Xa + 2i(YmA)aPrt — 28 (Y 00) o

SPT = 9™ +2(\y"0)
0% = i\

sidza = —i0%a + 2i(ymAN)a Py — 26" (Ym00)a (3.145)

The corresponding h—currents transform accordingly.
The BRST transformations for the ghosts remain unchanged. For the new hatted ghosts

we have seM = —(—)f(%fﬂzﬁf(éf(éi where ¢V = (=€™, A% %4). For the right moving

antighosts the BRST transformations are SIA)M = (jM + JAJ]\Z) - (—)N+M8prMNéN with
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lA)M = (Bsm, @Wza, %). Note that the J contain the P-fields. In particular we have sf.,, =
(Po — Ph) = 2(kvm ).
The left— and right—-moving BRST currents are given by:

]zB = _(sz - chm)ém - (idm - id?a))‘a - (aaa - aaah)Xa + Zﬂzm(AWm)‘) + 2(“z7m>‘)fm
1B = —(Pop — PR )E™ — (idzg — idh )N — (90% — D0°) R4 + iBzm (AY™N) + 2(AzymA)E™
(3.146)

For the left— and right—-moving B—currents we find:

1 i, . i
B,, = —5 (sz + P?m) B;n + 5 (Zdza + Zd?a) I{? — 5 (89a + 89ah) Waa
A 1 B\ am (s ch N aa b (aha L Asah) -
Bee = o (P + P) B0+ 2 (idea +idls ) 38— 2 (00% + 00 ) 05 (3.147)

For the type II string B,, is a homotopy for the energy momentum tensor 7, only on the
operator level and not as an off-shell current:

1 1
sB,, = _ipzmpzm + =Pl P d,,00% — dP00°" + 3., 06™ + w0 DN + KEDXa

2zmz

onghell (3.148)

where “on-shell” means P — II and 80 = 96 = 0. In contrast to that, the off-shell holomor-
phic component of the energy momentum tensor reads:

T.. = (P,—1IL)?— (Pl—111)% - %Hmngn + %H’;ml'[?h + d.q80% — d",00°" + d,400% — dV', 56"
FBomOE™ + w,0ON + K2OX o + BemOE™ + 0.a0N* + R20X4 (3.149)

Similarly we have on—shell sBzz = T5;. The complete gauged and gauge fixed action is now
given by:
1 _ I
S = [ PP PPy T Pay I + Ly + o008 + d:00°
1 _ A
_P,;nhpgm + P;{Lhngm + Hgnhpihm - §H2nhngm - ‘CFI/LVZ - d];aaeah o dl;daeah

+BomOE™ 4 WoaOAY + KX + BemOE™ + 060N + R20%4 (3.150)

3.4 N =2 Algebra

3.4.1 Kazama Algebra

In this section we focus on the operator algebra satisfied by the energy—momentum tensor
T(z), the BRST current jZ(z), the ghost current j8"(z) and the composite B-field. By the
introduction of the fields P.,, and P, we achieved in section 3.3.2 that the left— and right—
moving sector for the type II superstring decouple on—shell. Thus, we will concentrate on the
holomorphic sector only and the results presented here are valid for both the heterotic and
the closed string case. It turns out that the currents satisfy a Kazama algebra [35]. Using the
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Mathematica—package OPE-defs.m by Kris Thielemans [36] it is straight forward to check
the following relations:

T ) ~ T A
T(:)B(w) ~ (ibi(z; oBw)
T )~ e+ o 20
7P EBw) ~ (Z:Qi)ﬁ(igi(:z;? 5(—2
P )~
B ~ 2
P~
B()Bw) ~ )
FB(2)B(w) ~ iw; (3.151)
The algebra closes on two new composite fields given by:
Few = —ifln (mr™ (00— 967)) + 3 (5r™) (Mo —T,) (315)
b = L5 59

3.4.2 Topological Quartet and N = 2—-Algebra

The only term in the algebra that prevents it from coinciding with an N = 2 twisted” super-
conformal algebra is the BRST—exact operator F.... We know from [23] that the currents of
WZNW models satisfy a Kazama algebra. It was shown in [28] how one can turn this Kazama
algebra into an N = 2 superconformal algebra.

For this purpose we introduce a topological Koszul quartet consisting of a pair of anticommut-
ing ghosts (b.,.,¢*) and a pair of commuting ones, (3.,,7'%). We assign to the anticommuting
ghosts the ghost numbers —1 and 1, respectively. The commuting ghosts, however get ghost
numbers —2 and 2 in order for B,, to have a well-defined ghost number, as will become clear

soon. Introduction of this quartet into our theory causes the following changes:

L — L+b,0d%+p.0v" (3.154)

"The algebra is twisted because the OPE of the energy momentum tensor with itself has no central term.
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T.., — T, +T9 = T, +2V,,0c% +0b, % +28.,0v* 4+ 08.,~" (3.155)
i = PP = P4, (3.156)
jgh N ]gh +j§ht0p/ — ]gh + b/ZZC/z + 2/3;Z71Z (3157)

The form of the BRST operator for the quartet induces:
sc? = —o* sp, = =U,, (3.158)

Thus, the ghosts BRST—transform into one another, i.e. they form a quartet, and do not
contribute to the cohomology.
There is also a B,, field for the Koszul quartet:

ngpl = _Qﬂ;zac/z - C/zaﬁ,;z - lu/b/zz (3159)

It can be shown that 729, sz top!, jgh P and B’ satisfy a twisted N = 2 superconformal

algebra with ghost number anomaly —3 for arbitrary parameter p/. In order to get an N = 2—
algebra for our theory we have to set i/ = 1 and alter B.. as follows:

/ /z /z / / 1 /z 1 1z

B.. — B,,—23,0c*—d?08, -V, — ¢ F,,, — 37 D, (3.160)

Now we see that assigning 7* ghost number 2 gives B,. ghost number 1. With that we find
that B,, is now nilpotent and the twisted superconformal algebra is:

T()T(w) ~ (fT_(Z))ﬁZT_(?
B (4 B (1w
T W)~ L )
TBW) ~ oo+ 2
. 25 B (w) 95 (w
T(2)j% (w) ~ G—w)p? (i—(w;2 i—(w)
: LB W) | Tw)
J (z)B(w) (Z—U))g (Z_w)Q 2 —w
)P )~ )
P ~ 2
igh( ) igh () i
R
B(:)B(w) ~ 0 (3.161)

We get the structure of an untwisted N = 2-algebra by defining: 7 = T — %aggh, J = 58,
Gt = jP and G~ = 2B where G* are the supersymmetry generators and .J is the U(1)-
current. Then we find:

PP (w) ~ c/2 - 2T (w) +8T(w)

(z —w) (z—w)?  z—w
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(z — w)? z—w
T(2)J(w) ~ (ZJ_(111)3)2 + (ZJ_(U:U)
Gt (2)G™ (w) ~ (22_0/5)3 + (22{(1:)))2 + QT(wz)ng(w)
J()GE(w) ~ i‘]_(f;)
J(2)J(w) ~ (Zc_/iij)z (3.162)

In our casae we have ¢ = 75.

3.5 BRST Operator and Cohomology

In contrast to Berkovits’ pure spinor approach the definition of physical states in our model
presents a great difficulty and unfortunately no satisfying solution has been found to the
present day. Relaxing the pure spinor constraint alters the BRST operator (). In addition
to the term [ —id% , which implements the constraint d., = 0 we get terms proportional
to all the currents II,,, and 06%, see for example equation (3.109). This implies that all
the currents of our WZNW model are set to 0 which renders the cohomology trivial. In the
WZNW approach we have the additional complication that we have to get rid of the auxiliary
h—currents. In this section we present a review of the ideas that have been suggested to fix
this problem.

3.5.1 Cohomology in the Old Approach and the Grading Condition
In the “old approach” (cf. section 3.2.2) the BRST-operator for the heterotic string reads
[4]:

Q = % —idyo A — €™ — 00%Xa + 182m (>\7m>\) +2 (’fz'Ym)‘) &

. . .
+e. +b <§§ma§m + ivam - %Xaav> , (3.163)

where the ghost number (—1,1)-pair (b,c,) with b(2)c,(w) ~ —1/(z — w) was introduced
by hand to make the BRST charge nilpotent. Now one can make an ansatz for a generic
unintegrated massless vertex operator of ghost number 1 [26]:

UD = XA, + ™A + o A”
5 (XN Fag + X3 P + €€ Fon + XX3Fo® + Xa&™ Foy + XaXsF™?)
(3.164)

The fields A,, ..., F*? are arbitrary superfields. Note that they can only depend on z,, and
6% and not on 9z™, 9%, d,. Or Pse because U has to be a worldsheet scalar.
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Now we demand QU = 0 which yields the following equations from the terms quadratic in
the ghosts:

A Do Ap) + Y5 Am +iFag = 0

AE OmAn — Do Am + 27 ap AP + Fom = 0

¢¢ OnAp] + Frpn = 0

AX DA™ +iFs® = 0

Ex: OmA*+F =0

XX : PP =0, (3.165)

where D, = 60% + 2957(%% with the normalization D,Dg + DgD, = 47(%6m. We get
another set of equations cubic in the ghosts which correspond to the Bianchi identities for the
curvatures Fog, Fom, Fimn, ', Faﬁ and F*8. Note that due to our conventions we get some
different factors and signs as compared to [26], which can be absorbed into the definitions of
the fields A, ... F9P.

From the first two equations one can derive the equations for N = 1, D = (9,1) linearized
Yang-Mills theory,

8 _
Vi v DaAs =0, (3.166)

and the definition of the vector potential A,, and the spinoral field strength A® in terms of
Ay

A, = éﬁfDQAg
1
AY = Towmaﬁ(DgAm—amAg) (3.167)

Unfortunately, this only works if we impose Fg3 = Fypo = 0. Otherwise we get the wrong
equations of motion. This is a symptom of the fact that our BRST operator sets more than
the constraint d,, to 0. Thus, we need to look for a motivation to set the unwanted field
strengths to 0.

In [24] it was argued that F,3 = F;,o = 0 could be obtained in the following way: The BRST
charge is deformed to Qi = Q +UW. This shifts the currents IL.,,, 0% and d., by the gauge
potentials A,,, A% and A,. We get the equations (3.165) from requiring the nilpotency of Qy
(up to terms quadratic in ¢ (1)) which implies [Q,(M)] = 0. Now the same shift is made for
the energy momentum tensor:

1
A = —§(H’z” — Ap) (I — Ap) — (—daa + Ap)(00¢ — AY)
+8:mOE™ 4+ w20 OXY + KSOX o — Obcy — 0N W, (3.168)
One demands that T2 satisfies the standard OPE:

2T4(w)  OT4(w)
2

TA(2)T (w) (3.169)

(z —w) z—w

This yields constraints on the gauge potentials and the field strengths including the linearized
super Yang—Mills equations of motion and gauge fixing conditions. It is then claimed that
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these equations together with the Bianchi identities imply Fl,3 = Fyuo = 0.

In the following papers [26] and [25] this ansatz was abandoned and replaced by the notion

of the grading. Physical vertex operators are defined as operators with non—negative grading.
One starts by assigning grading —1 to d,, and the opposite grading to the corresponding
ghost \¢. This assures that the term —id,,A“ has grading 0 and therefore remains in the
BRST operator. Then one demands that the grading is preserved in the operator product
expansion. Thus dd ~ II implies that II,,, has grading —2 and &£™ has grading 2. dII ~ 90
assigns grading —3 to 90¢ and grading 3 to xo. The ghost ¢, is defined to have grading 4.
The antighosts are given the opposite grading of the corresponding ghosts.
One finds that with this definition the BRST operator (3.163) has non—negative grading. In
the vertex operator (! (3.164), however, we find two terms with negative grading: The
terms b)\o‘)\ﬁFag and DAY F,,;, have grading —2 and —1, respectively, and are, according
to the new definition of physical vertex operators, not allowed. This efficiently removes the
unwanted terms from (3.165) but still the grading has some unattractive features:

e The grading is introduced by hand and does not seem to come out of the theory in some
fundamental way. In [37] the grading was related to general properties of Lie algebras
but no explicit calculations for the superstring were given.

e From the OPEs of ghosts and antighosts it follows that the unit operator has grading
0. In contrast to that the OPEs dd0 ~ (z — w)~2 and IIIl ~ (z — w)~2 imply that the
grading of the unit operator is —4. To avoid this inconsistency it was suggested in [4]
to introduce a central charge operator I for the double poles that has grading —4.

The arguments presented in this section can be generalized to the type II string which was
shown in [26].

3.5.2 Coset Gauging and Second BRST Operator

In [37] it was shown for simple Lie algebras how to gauge constraints related to coset generators
and not to those of a subgroup. A simple Lie algebra decomposed into the Cartan—Weyl basis
reads:

[Ea, E_a] = (XZHZ‘ [Hu E:I:a] = j:aiE:I:a

[Eu, Eg] = NugEayps if a+8#0  [Hi,H;j] =0 (3.170)

One can gauge the E, alone (and not together with the H;) by first gauging both E, and H;,
i.e. setting them to 0 cohomologically by a BRST operator ), and then undo the gauging of
the H; by introducing a second BRST operator .. For the superstring, FE, corresponds to
d,o and the H; correspond to Il,,, and 00,. The case of the superstring is not contained in
the discussion of [37] since the string is based on a non-semisimple Lie algebra. In [1] these
concepts were extended to an arbitrary set of constraints that generate a first class system
and then specialized to the case of the superstring.

We consider a gauge algebra with generators Gy = § Jj that satisfies:

[Gr,GN] = Grffun (3.171)

Note that there is no central extension. Thus, the following construction only works for the
superstring as a gauged WZNW model where the above algebra is satisfied for Jy; = Jyr+J &
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It cannot be applied to the “old approach”.

Now we assume that we only want to gauge symmetries which correspond to some subset of
generators G, that do not generate a subalgebra. We call Gy = (G4, G) where G4 are the
remaining generators. In order to gauge the generators G, one first has to gauge the complete
algebra and one gets the usual BRST operator of the form:

Q = /(—)MJMCM—(—)K%beMLKcKcL (3.172)

Now we undo the gauging of G by setting the corresponding ghosts ¢ to 0 in the cohomology.
This is achieved by making them BRST exact, but the ¢* cannot be made exact with respect
to @ because their BRST transformation is already fixed to something non—zero. Therefore
a new BRST operator Q. = § j. has to be introduced together with some new fields. The
ghosts ¢ and the antighosts b, as well as the new fields will be removed from the cohomology
via the following diagram:

by c®
Qc Qc
N\ /!
| K Ta @ 1K (3.173)
Q Q
/! N
b/a C/Cl

Here ¢/* and b, are new ghosts and antighosts with grading |a| 4+ 1, whereas 7, and ¢® are
fields with ghost number 0 and grading |a|. K is a homotopy operator.
The contribution of the new fields to the Lagrangian is:

L = —(=)%,0d% + 70" (3.174)
The on—shell energy-momentum tensor is modified to:
T,. — T, — (=)0 + ma00" (3.175)
As indicated in the diagram, @ has to be extended by a term (—)%rqc’®:
Q = f(—)mJMcM - (—)K%beMLKcKcL + (=) 7mad® (3.176)
This yields the desired BRST transformations sb, = m, and s¢® = /*.

One can construct a suitable ()., that anticommutes with @, as the commutator of Q) with a
homotopy operator K:

K = 741{ _ %(_)ab;ca, (3.177)
with 0 d® = —c® and dxbq = ). Now we can compute Q:
Q= fic = QK] = () met+ ()Y GH e (3.178)
From this we get the following transformations:

sebvr = mad% + (=) VMo O e
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SCSDCI — CCI.

1
sd® = (—)Kif“LKcKcL, (3.179)
where 0%, means that there is only a contribution if M belongs to the subset a.

The Jacobi identity ».[Q, [@, K]] = 0 implies, together with the nilpotency of @, that @) and
Q). anticommute:

@, Q] = 0 (3.180)

Furthermore ¥’ [Q., [@, K]] = 0 implies:

[Qe, Qc] = [Q,[K,Qc]] = 0 (3.181)

In the last step we used the fact that dx Q. = 0 trivially since it does not contain ¢’* and bq
by construction.

Physical variables are defined to lie in the relative cohomology of @@ with respect to Q..
Part of @ turns out to be exact with respect to ().. We define:

E = (—)%ad" 4 (Ja— (=)0 f % ) ©° (3.182)
Then we can write (Q as follows:
« a 1 a —_
Q = F) e = () 5h e 4 5
_(_) _b’Yf bc c _(_) faNC c ( )7+Q+N+ab/faNCNf a'ycnp
(3.183)

For gauging the roots of a simple Lie algebra all structure constants in the second line vanish
[37] and the result is a BRST charge which consists of the constraint we want to implement
plus something which is ().—exact.

Coset Gauging for the Superstring

Now we specialize the above considerations for the type II and the heterotic superstring. We
will only consider the chiral sector here. The generalization to the closed string case is straight
forward. As usual one simply has to replace Il,,, by P.,, and add the corresponding hatted
quantities to the expressions given here. For the superstring (3.183) reduces to:

QR = %(—)aJaca + 8.2 — (=) f8 c*c® (3.184)

We make the following identifications for currents and ghosts:

Ju = (Mo =10 id,g —id",,00% — 00°")  J, = (I, — O 90% — 96°") (3.185)
¢ = (=€" Xa) = (Bom,K2) (3.186)
= (=" xa) = (Bom,K2Y) (3.187)
" = (¢™, —ipa) Toa = (Tem, —i75) (3.188)
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The additional terms in the Lagrangian are given by:

L = 08" + KON, + mem0™ — 7l 0pa

For the type II superstring we also get a contribution from the right—movers:

L' = PnO™ +AYORG + Fm0@™ — 780%a

The BRST current and the corresponding transformations for the new fields read:

jf = —(m — H}zlm)gm — (idya — idga))‘a - (aea - 8‘9ah)Xa

+iﬁzm()\7m)\) + Q(Hz')/m)‘)fm - 7szglm + i?T?X/a

/ — mo__ m
S/Bzm = Tzm S — _5

1 - Ny
sk = —imy 50a = Xy

The homotopy current and the Jx—transformations are given by:

k. = _B;mgm - ’{{zaXa
5K£/m = —£m 6Kﬁzm = B;m
0kXa = —Xa OkRS = KL

The second BRST current is computed via j,. = sk,:

Jze = _Wzmgm + iW?Xa - Zﬁ;m()‘rym)‘) - 2(’{{27m)‘)£m

The corresponding BRST charge is:

Q. — 74 €™ 4 7% X — 8L, (A) — 2(K A A)E™

Scﬂzm = 7sz+2(’{;7m)‘)

Scky = —imy

ScWzae = 2Zﬁ,;m (Vm)‘)a + Q(PYWK/Z)Oéé.m
se™ = €7 5™ = i(MA)
S5:Pa = iXa SCX;/ = 2(7m>\)a£m

(3.189)

(3.190)

(3.191)

(3.192)

(3.193)

(3.194)

(3.195)

(3.196)

(3.197)

(3.198)

The new fields contribute to the on—shell energy—momentum tensor in the following way:

T., — T..+ B;magm + ”;aaX/a + Tem@™ — T3 Pa

(3.199)

In order to maintain the on—shell relation T,, = sB,, the composite B—field has to be modified

to:

B.,, — B..+ b/aaSDa
— B, + f,00™ — ik*0p,
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The ghost current changes as follows:
A . S P (3.201)

The new expressions for T}, j5, j§h and B, still satisfy an N = 2 twisted superconformal
algebra (3.161) where the ghost number anomaly is changed due to ¢* and b, by an amount
of —6 from —25 to —31.

3.5.3 Deforming the BRST charge @

Some interesting results found shortly before concluding this paper show that the deformation
of the BRST charge may not be necessary at all. Thus, this section is no longer essential for
this thesis and may be skipped. The new results will be presented in the following section.
The BRST charge (3.184) contains the constraint—term —id,,A* plus Q.—exact terms and
an additional expression. From the construction of the relative cohomology it is expected to
recover Berkovits’ cohomology up to ().—exact terms. In order to get rid of the unwanted
term we try to deform ). Unfortunately it will turn out that all reasonable ansétze for the
deformed () make the situation worse or do not change anything.

Since all the computations in this section will be performed in condensed notation we neglect
the different gradings of the fields collected by the indices M and a. This has no influence
on our results and the signs in our calculations become more transparent. In these simplified
conventions all the currents Jj; are bosonic, all the ghosts are fermionic, the primed ghosts
are fermionic, the other new fields (7.4, ¢%) are bosonic. @, Q., K and = are then:

Q= fjaca + 8.2 — by oM e (3.202)
1
Qo= QK] = f mact+ 30 fryme e (3.203)
K= j{ bac® (3.204)
= = bod® + Ja" (3.205)

We apply the following procedure to deform Q:
e Add some terms to @ that produce by f%,,cM® via s.2 = [[Q, K|, E].
e Add more terms such that the new BRST charge is nilpotent on all the fields.
e Compute j. = —I0kj].

e Compute the Q.—exact terms —d=j. and hope that the unwanted term in (3.202) is
included in the result.

The K- and Z— variations act as follows:

/a
—0g: % — ¢ R (3.206)

Tq — Jq
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Now we look for terms that produce the expression by f baNc

Ncla

when we apply first dx and

then d=. The following combinations of primed and unprimed ghosts and antighosts exist:

K =
bfdd | — | Vfed | — |V fdd
— | bfed
bfdd | — | b fed | — | bfed
— | b fdd
— |V fdd | — | bfdd
bfed | — | b fee | — | b fed
— | bfcc
bfec | — 0
bfed | — | b fed | — | bfed
— | Vfec
— | bfcc | — | bfed
bfece | — | bfecc | — | b fed
— | bfcc

Note that the only terms that can produce a term of the form V' fec' are the term itself and
the term bfcc that is the standard cubic ghost term in the BRST operator.
We make an ansatz by adding a linear combination of the deformation candidates to @:

1
Qdef = j{ JprM — §beMLKCKCL + ol + prbl fon e 0+ orbar fM et

+pamef Sy o + oo dycM

Some comments are in order:

(3.207)

e p1, 01, p2 and o9 are arbitrary constants that will be fixed by the requirement that

is nilpotent.

K L

e For the o;-term we actually should have written o1b,f% c™c¢” (and consequently
o9Jqc®) but for the string the expressions are equivalent since there is no structure

constant with an upper index a.

e The ps—term and the oo—term are added in order to achieve nilpotency of Q.

e It does not seem useful to add any of the other terms to Q) since they either reproduce

themselves or one of the others.

The altered BRST transformations are given by:

a /a a N b
st = Tt pafinep
/ / N
Sba = g+ plbcfcaNc
N
STq = _PQchcaNC
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sbg = (14o02)Jg—(1+ 201)bLfLKNcN — plb/afahKc'b + pgﬂ'cfcthDb

1
scM = (-5 + 01> fMLKcKcL
sk = (14 o9) Iy f M ney
sd® = prfoncNc® (3.208)

Now we check the nilpotency on all fields. For the superstring most terms that are quadratic
in the structure constants vanish. The only non-zero structure constants are fmaﬁ = 2z"ymaﬁ

and f% m = 2Ymag- The vanishing f? terms will not be given explicitly in the following
expressions and will be denoted by ...’ In particular we make use of beNfNLK = 0.

SZQDa _ plfachNC/h _ prGBNCNC,b 4. (3‘209)

In order to make this expression vanish we have to set p; = pa:

$2L = —pomefSne + prrefSne +...=0 (3.210)
g =...=0 (3.211)
s’ = (14 02)? I fM e = (14 200) (1 + 02) o flgene™ + (14 200)20r f e flye e

1
+(1 =+ 20'1) <—§ + O'1> bLfLKNfNRTCTCR — plﬂ'afabKCIb =+ pzﬂ.afach/b + ... (3212)

This expression cannot vanish unless o1 = o9 = 0. It follows from the Jacobi identity that
% f LK NS N rTb rel e =bp f LNTCT N K RcR. In order to use this relation in the expression above

we would have to demand (1 + 201)(1 — 209) = (1 + 201)? which is of course only fulfilled
when 1 = 0 which immediately implies that oo = 0. Adding further terms to ) to make this
expression nilpotent would amount to multiplying @) with a constant factor which, of course,
would not change anything.

With the Jacobi identity we get:

1
s* Ik = Jrf e’ Mg - §JMfMKNfNRTCTCR =0, (3.213)
and 1
$2cM = ngLKfKRTcTcRcL +...=0. (3.214)
Finally we have:
$2d%=...=0 (3.215)

Since we were forced to set 01 = 09 = 0 the deformed BRST charge now reads:

1
Qaef = %JMCM - §beMLKcKCL + 7l + b f oy ¢+ prefane (3.216)
Now we compute j. = —0xK jdef:
1
jo = §b’a 4 el 4 mac® 4 pbl fopeN el (3.217)
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Next we evaluate —d=j,.:

1
_5ch — Jaca _ §bafaLKcKCL + 7_[_ac/ct + b/afachLclb
—pbaforctc® + pbly forctc® + pbl foectd® (3.218)
~——
0

We draw the following conclusions from this calculation:

e The p—term reproduces itself but also yields further terms we did not have before.
e The term b chLc /b appears anyway since it comes from the term bM ™ I KcK cl.
Since we are not allowed to add another term of this form to @ (the o-terms) it does
not seem possible to deform @ without making matters worse.

Some attempts were made to leave @ fixed and alter the homotopy K. We found that we
have to choose K such that it only affects one field in each term of @) in order to maintain
nilpotency of Q.. The following K—deformations turned out to be bad:

1. K =2 = %q+ %/, did not work because bfcc — b’ fc'c—V fecc—bfec under K and E.
2. K = c%;q + %), K acting on —3bfcc yields —1bfec + 2ba f % pcck.

3. K such that mq — 74 and ® — ¢® yields a J,d® that would not be taken care of
properly, i.e. yielding a J,c%, by the corresponding =.

4. K such that 74 — by and ¢* — ¢® would imply that ¢ — ¢% which causes significant
trouble.

5. K such that by — b and ¢/* — % The latter implies: 74 — b}, which produces a term
blc® which we do not want.

6. K = b +bec. Then m,d® transforms into itself but then we cannot find a = that also
produces the J,c®term out of this expression.

The last attempt to deform ) was to give up the homotopy K, that guarantees that the
two BRST charges anticommute, and to make the most general ansatz for j and j., which
contains all the previous guesses. For ghost number 1 and conformal weight 1 we get:

3 = OJ <+ Iu’l‘]aca + :U'Q‘]ac/a + /1'37Taca + M47Tctclcl - ,U'Sbafabacacb
Ty af aﬁcﬁ @ — prbaf %ac” - ,Ugb e — —b, aﬁc fon
—Mlobaf 00 " 4 11T af B + ,u12jafabacaﬂp (3.219)

jo must be of the same form but may have different numerical constants:
Q. = )\OJ ¢ 4 M Jo® + Ao Jal® 4+ A3ac® + Mymal® — Asba f % ¢
X
——baf aﬁc - )qbafabaco‘c'b — Agb’af“bac b' aﬁcﬁc

106 f %0 ® + A17af Gac@” + M2jaf Gace’ (3.220)
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Demanding nilpotency of Q and Q. yields the following equations for the wand A:

,Ug — HiHe — H2H9 =

M35 + fapis + P13 =

H3He + Haply =

37 + pafiio + H11fa =

Hopt1 — H1pts — pgp2 — [12M43 =
Hop2 — prpl — MHioM2 — H12M4 =

o O O o o o

(3.221)

A= Mdg — ANy =

A3As + Mg + A11As =

A3 + Aghg =

A7 + Aghio + Aty =

AoAL — AA5 — AgA2 — A1pA3 =
AoA2 — A7A1 — ApgA2 — App Ay =

o O O o o O

(3.222)

For the most general expression for = with ghost number 0 and conformal weight 1 we find:

[1]x

= pobac’® + p1bLc® + pabac® + p3bac® + pablid®
+o5map® + poJap® + prbaf a0’ + psbiof Gac®@" (3.223)

If we demand that 5.2 yields the full Q apart from the constraint term given by A\gJac® we
get the following set of equations:

—p1 + p1Ae + peA3 + p3At =
—p2 + poA1 + paro + peAs =
—H3 + p1As+ p3A3 + psA3 =
— 4 + poA3 + pars + psAy =

ps — p1AT — p2As + prA3 + poAs =
1 1 1
2M6+2P0 9 — P2 6+2P3 6
H7 — PpoAs + poAio — P27 — p3A7 + prAy — paA7 =
Hg — P1A10 + P1As — paAg — p3Ag + padg + pgA3 =
1 1 1
2M9+2P1 6 — P2 9+2P4 9
H10 — PoAg + p1A7 — padio + pgds =
—p11 + p2Ai1 + prAs + psa
—p12 — p2A12 — P5A12 + peAo + peAi1l + prA1 + pgAe

p2ro =

o O O o O oo o o o o o o

(3.224)
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Demanding finally that () and Q. anticommute yields:

1 1 1 1
Aopo — §>\1M6 - §>\2M9 - 5)\9#2 - §>\6M1 =
Aop1 + Atpto — Apis — Agpig — A5t — Aglla — A3pi12 — A2p3 =
Aop2 — A7 + Aopio — Aafi10 — Aaft12 — A7 — Aoph2 — A2l =
—A3p11 + A3ps — Agpig — A5tz — Agpla — Ai1p3 =

0
0
0
0
1 1 1 1

—=A —=A —=A —=A =0
5 36 B 419 5 9H4 B 6 M3

0

—A3p7 — Agfh11 — A4ft10 — ATH3 — Ao — A11fla = (3.225)

We have 31 equations and 35 unknowns. It takes too long for Mathematica to find a solution
for these equations straight away. Making some reasonable assumptions for some of the
constants (preservation of the undeformed @), unaltered transformations of the Jys, etc. )
either brought us to the deformations discussed in the previous section or led to other sets of
equations which also have no solution.

One could also try to deform @) such that it squares to 0 up to Q.—exact terms.

BRST Cohomology and Vertex Operator

After many futile attempts to remove the non—Q.—exact term from our Q we recently found
out that it may not be necessary to deform the BRST charge @ (3.184) at all because the
problematic term by ba McM c®* seems to have no influence on the physical spectrum as we will
show now.

The massless vertex operator of ghost number one is:
UD = (D)2 An (2™, 0%, 0%) + (=) Wa(2™, 0%, %) + (=) Ba(z™, 0%, 0%)'13.226)

According to [37] physical states are defined to lie in the relative cohomology H (Q|H (Q.)) of
(@ with respect to Q., i.e. they are Q.—closed and QQ—closed modulo Q).—exact terms. Acting
with Q. on the vertex operator yields:

0
s = (=) sep 5g Aa(a™, 0%, %) + (=) 0" 55 Aa(a™, 6%, )"
‘2
+(_)a3c§0 WBa(xm’0047()Oc1)c/a_i_BaSCcla
0
= (_) P a(wm79a’(pa)ca + (_)acha_wAa(xm’Qa7(pa)ca

1
+(=)%" ——Bga(x™, 0%, ") + (—)K§Ba(xm,9a,goa)f“LKcKcL (3.227)

From this we conclude that B, = 0 and %Aa =0 and %Aa = 0. Using s.p" = ¢* we can
rewrite the vertex operator:

UD = () A (2™,0%) + (—)*[Qc, 9*Wal(a™, 0)] (3.228)
This is Berkovits’ vertex operator plus a Q.—exact term. Now we compute [Q,U (1)]:
QUD] = [Jac®, " Ag] + (=) [ac®, [Qes ¢"Wal] + (=)*[[Qes T, ¢ Ao
+(=)Qes Bl [Qe, 0 Wa]] = [bf Saac™d®, P Ag] = (=) baf Saac™ ¢, [Qe, W]

(3.229)
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For the second and the third term we use the Jacobi identity to get QQ.—exact expressions:

() o™, [Qes 0" Wal] + () Qe, [p"Wa, Jac™]) + (2) @ Wa, [Jac®, Qc] = 0
- [Jaca7 [Qa SpaWaH - [Q67 [‘PaWaa Jaca“ = 0
(3.230)
(_)a[[ch E]? caAa] + (_)a+1[[57 CaAoé]v QC] + (_)a+1[[caAa7 QC]? E] =0
— [Qc, E], c*An] + [Qe, [E,c*A]] = 0, (3.231)

where [Qc, Joc®] = [Qe,c*An] = 0. Using [Qc, Qc] = 0 the fourth term in (3.230) can be
rewritten as (—)°[Qc, [E, [Qc, ¢*Wa4]]. The last two terms in (3.230) are zero since both ¢* A4,
and c*W, have vanishing commutators with b, f ba ,c®. Thus, we get:

[QUW] = [Jac®, " Ag|
+H[Qe, () TP W, Jac®] + (=) E, ¢ Aa] + (2)[E, [Qe, " W]
(3.232)

The first term corresponds to Berkovits’ cohomology, all the other terms are Q. exact, as it
is needed to get a relative cohomology which yields the physical spectrum that comes out of
the pure—spinor formalism.

3.5.4 Worldsheet Diffeomorphism Invariance

In order to implement worldsheet diffeomorphism invariance one has to gauge the symmetry
corresponding to T,.. To get a complete ghost system with vanishing central charge one also
has to gauge the fermionic symmetry corresponding to B,,. These calculations were per-
formed explicitly and will be presented in section 3.7. We will use the results derived there
since they are known in the literature [38] and because we need them to conclude this section
on cohomology.

Having added a quartet (V.,, %, 3..,7'%) to obtain an N = 2 algebra we add another topo-
logical quartet (b,,,c*, 3..,7*) to our model. This quartet has the same structure as the one
used to construct the N = 2 superconformal algebra. We have:

T;,(z)p = 2bzzacz + abzzcz + 2ﬁzz872 + aﬁzz’}/z

jftOp = bzz'Yz
ngp - _Qaczﬁzz - czaﬁzz - szz
j§h7top = b..c” + 287 (3'233)
The Lagrangian is modified to:
L — b0 + 3,07, (3.234)

and bzz0¢% + B5:0~7 if one considers the type II superstring. One can add TieP, jf top - ptop

and j§h’t°p to T.., j2, B.. and j§h to obtain an N = 2 superconformal algebra with ghost
number anomaly —34.
From the gauging and gauge fixing procedure we get the following BRST operator:

1 1
Qy = }[ c? (Tzz + §T;§P> + % <BZZ + 53?;;?) (3.235)
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This operator anticommutes with @ + QP.
We can maintain the BRST—exactness of the new energy momentum tensor 7., + TEoP:

1 1
[Q +Q™P + 7{ c* (Tzz + §T§2p> +7° (Bzz + §BEZP> ,B.. + BE‘;"} = T..+ TP (3.236)

Now we finally have introduced all the fields we need in our model. Thus, we give the complete
expressions for the Lagrangian, the on—shell energy momentum tensor, the composite B—field,
the BRST current and the ghost current:

L = PP, — P"l;, —IIMP;,, + %Hgbngm + Lwz + d0d0% + ds500%
—-pyhpk, + Pk, + I PL, — %H;ﬂhn’;m — Lz — d2,00°" — d2;00%"
+BomOE™ 4 Wo0ONY + KX + BemOE™ + 060N + R2OR4
+ﬁ;m5£/m + 'f'zaéxﬁx + 7sz5¢m - 772{590(1
0L O™ + RYOR + FzmOP™ — 72 0¢4
O + B0 + Vo0 + B0

+b..0¢" + 3..07* + bzz0¢” + (3::07° (3.237)
1 m 1 h mh a h ah m « a
T,, = —§Hzml'[z + §Hzm1'[z + dq00% — d,00%" + 3,008 + w,q 0N + K5 0Xa

+ﬁ;maglm + ff;aaxla + 7sz<Pm - W?(Pa
+2b,,0% + obl, c* + 26,077 + 9B.,+*

+2b,,0¢% + Ob,,c* + 203,,07° + 00,.7° (3.238)
1 1 /. . i
B.. = — (nzm + n’;m) B+ 2 (zdm + zd2a> R =3 (aea + aeah) Waa
1 1
FBemOp™ — iR 0p — 20.,0¢% — FOB,, — b, — §C/ZFzzz - §7lzq)zzz
—QBZZBCZ - czaﬁzz (3239)

Note that we set 4 = 0 in order to obtain nilpotency.

[ (nzm _ Hgm) em _ (z’dm _ z’d’;a> AY — (aea _ aeah) Xe + Bom (OY™A) + 2(Ks79mA)E™
_Wzmglm + ’iﬂ'?)(; + b{zz'Y/Z + bzzlyz
1 1
+c* <TZZ + ET;;’P) + ~* (Bzz + §B;gp> (3.240)
= Bam€™ + e+ KXo + Bl ™ + KX A+ U+ 28167 + banc + 26,567
(3.241)
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We have two problems to define the cohomology for this model:

1. We have to get rid of the auxiliary h—currents. In gauged WZNW models, as presented
for example in [23], these currents remain in the cohomology. In [28] it was proposed
to impose the condition By|phys) = 0 as an analogue to the Siegel gauge by|phys) = 0
of the RNS-string (see for example [39]). It is argued that this condition removes the
dependence of the combinations Jy; — J & which is not fixed by the BRST charge Q
(which fixes Jyr + J ]’\1/1) Thus, for physical states Jy; and J ]}\‘/[ decouple.

2. We have to construct a Q.. Using the homotopy (3.177) to define Q. = [Q, K] does
not yield a nilpotent Q. because of the quadratic and cubic antighost terms in F},, and
®,.. in (3.239) whose contribution to Q does not vanish in Q% = —1[Q, [K, [K, Q]]].
In [41] it was proposed to construct a nilpotent Q. by using the bosonization of one of
the two quartets. We fermionize the bosonic ghosts as follows [17]:

V5= e ¥ o= e ?
B;z = 8§,€¢ ﬁzz = 3§e¢, (3242)

where the new fields satisfy the OPEs ¢(2)n(w) ~ = and ¢(2)¢(w) ~ —In(z — w),
analogously for the primed fields.
Now one can define Q. via a similarity transformation:

Q= ¢ " fet R = (Qex QpK =0 (3203

where Q. is given by (3.196). Q remains unchanged under the similarity transformation
and Q. is of the form ¢ 7. + Q.+ .... The extra terms ... are needed in order that Q
and Q. anticommute. This construction is not unique. A different choice using both
quartets is:

Q. = e 7{(7'772 + Sn;)eR R = [Q,fgle “'fK;Op] K,‘;Op = %bs,
(3.244)
with arbitrary r, s.
The problem with this construction, apart from the fact that it is not unique, is that Q.
comes out of a similarity transformation of . Similarity transformations do not change
physics. Thus, it is expected that one needs a filtration similar to the grading to define
the physical spectrum. Since the second BRST operator was constructed to replace the
grading this result is not very satisfying.

3.6 N=4 Algebra

In [41] it was shown that one can use the two topological quartets and the fields from the
WZNW model to construct a twisted N = 4 superconformal algebra. For this purpose we
split the complete expressions for the energy momentum tensor, the composite B—field, the
BRST current and the ghost current into the following components:

1 1
TV = — eI + §HgmH?h + dq00% — d" 00" 4 3., 06™ + w0 N + K2DXa
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T2 = B;mag/m + “IzaaX; + Tom@™ — T3 Pa

TE' = 2 ac% + o, + 28,07 + 8B4
TE = 2b..0¢% + 0b..¢* + 28..07v° + 0B3..7* (3.245)
W 1 h m i - 1h « i « ah 1 Iz 1 1z
B, = D) (Hzm + Hzm) B+ B (’Ldza + Zdza) Ky — 9 (89 + 00 ) Wea — 50 Firw — 57 L
B = Bn09" — ik 0pa
BE = 243 ad* - dFop., — .,
Bg = —QBZZBCZ - Czaﬁzz - ,U'bzz (3246)
PV = (M =112, ) €7 = (i — ) X — (96° — 06°") e
+iBom (AMY"A) 4+ 2(K2ymA)E™
PP = €™+ imixG
PR = bt
PR = by (3.247)
JghW = ﬁzmgm + wWoaA® + K?Xa
JEO = B + KNG
I
FEE = b.et 428, (3.248)
Out of these expressions we construct the following N = 4 superconformal currents:
T.. = TW+TS+TK +1K
G = PV gl N 4 oK
G;z _ BW—}—BCO—}—BK/—{—BK
. . oh Kk, L. . . B 1.
J++ — ,.Yz <]§hW +J§hco +j§hK + §j§hK> —F <35W +]fco +j£K + 5351() +1737Z
Jz_z_ = _622

1 i 1
GI = ¢ <T!ZV + T+ T8 +§TK> +7° <BW+BC°+BK + §BK>
) . B 1. . . . ;1
—pu (JZBWHfCOHfK +§JZBK> —3<C‘Z <J§hW+J§h°°+J§hK + 58

éz_z = b

>> —179%¢

(3.249)

The total derivative terms in J+T and Gt are improvement terms which ensure that the

correct algebra relations are satisfied. Note that for y = 0 § G* is the BRST charge
comes in after gauging worldsheet diffeomorphisms and the fermionic symmetry.

These currents satisfy the following algebra®:

Jii (w)

J3JEE (w) ~ £2 —

8The relations were checked using the OPE package [36]. See also Appendix D.
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T (2) T (w)

J3(2)J3(w)

Gt (2)G™ (w)

—17 Jg(’w)
(z —w)? * zZ—w
—34
(z —w)?
34 Jg(w) 3J3(w)
(z —w)3 (z—w)2+z—w
_@Jr(w)
_G:-(w)
-G~ (w)
~G~(w)
L GEw)
LG w)
Gtw)  0GH(w)
(z —w)? z—w
2G~(w) G~ (w)
(z —w)? z—w
2JFE(w) 0T (w)
(z — w)? z—w
—34 J3(w) T (w)
(z —w)3 (z—w)2+z—w
34 —J3(w) =T (w)
(z —w)3 (z—w)2+z—w

All the other OPEs are regular. Now we make some comments:

(3.250)

e The currents J** and J3 form an SU(2) subalgebra. Thus, we have an N = 4 super-
conformal algebra of the “small” type [42]°.

e The algebra (3.250) is a twisted N = 4 superconformal algebra because the SU(2)
triplet has spin (0, 1,2) instead of spin 1.

o (T,J5,GT,G7) and (T, Js, GT, G’*) are N = 2 multiplets. Both are topological multi-
plets since the anomalies in T'J3 and J3J3 have opposite signs.

e G and G, which correspond to the BRST currents in our model, are nilpotent and

anticommute.

9 Apart from the small type there is a large superconformal algebra based on su(2) ® su(2) @ u(1), a middle
type based on su(2) @ u(1l) @ uw(1l) & u(l) @ u(l), an asymmetric one based on su(2) ® u(1) ® u(l) and a

non-reductive type [43].
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3.7 Worldsheet Covariant Formulation of the Superstring

In this section we will implement worldsheet diffeomorphism invariance into our action by
gauging the symmetry corresponding to the energy momentum tensor via the Noether pro-
cedure. Gauge fixing then yields the ghost pair (b..,c?). Since we want to maintain a model
with vanishing central charge we also need the second pair (3,,,~7%). This is the motivation
to gauge the fermionic symmetry that corresponds to B,,.

The calculations turn out to be very complicated, so our starting point will be a toy model
with the following action:

1., - 1 . .
Siv = / — 502" Dy, + 5690’”"633’,; + BemOE™ (3.251)

This is the simplest form of an action that is invariant under global diffeomorphisms and the
fermionic symmetry. The diffeomorphism transformations are given by:

Spx™ = Foxr™ + Fox™
Spa™ = F9x™ 4 o™
SrEM = FOE™ 4 FOE™
0rBom = O0Bam + Z0Bum + O Bom + O Bom. (3.252)

Here c is still a commuting parameter.
The transformations of the elementary fields under the fermionic symmetry read:

1
dpz™ = 5725?
1
.
1
opE" = 57 (amm+axmh), (3.253)

with anticommuting parameter ~.

The first observation we make is that we cannot gauge both symmetries in one step. The
reason for that is the non—closure of the algebra. We compute the commutator of dx and dp
on all the fields:

. 1
[0p,dr]™ = dp (czamm + czaxm) — O <§’yzﬁ§“>
12 zZam 127zmlzzm1z2m
= 3¢ oy By + ¢ oy By — 27 oc* Bl — 37 oc* 1 (3.254)
For [6p, 67)x™" we get the same expression with an overall minus sign. Thus, the combination
[68,67](x™ 4+ 2™") is 0. The first three terms look like a B-transformation of z, the last one,

however, is not a B—transformation since the fermionic symmetry transformations do not
contain a Gz,.

[(53, 5T]§m = (53 (c38§m + 02557”) - 5T (%fyz(@xm + a%,mh))

= (V' — 7 0c+ Oy (9z™ + dx™) — *OF (Dx™ + Dz™) (3.255)
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Finally, [05,07]B.m = 0. Thus, to gauge both symmetries one has to proceed as follows:

e Gauge diffeomorphisms via the Noether procedure in order to obtain a worldsheet co-
variant action.

e Find a covariant form of the fermionic symmetry transformations under which the new
action is invariant and gauge the covariantized fermionic symmetry.

3.7.1 Gauging Diffeomorphisms

We expect the complete covariant action of the heterotic string to be of the following form!©:

1
S = / V=9 = 50" Iy — i T (07™0,0) + P dyya V,0°
1
+ 50" TG, + e T, (0" 0,0") + P dy V0%
AP Bum Vg™ + PP wua VA + PRV Xa
1 1
+5 PP BNV + S PPV (3.256)

The IIII- term has the same structure as the dxdxz—term of the toy model action. All the
WZNW ghost terms transform like 30¢ of the toy model under diffeomorphisms. Since
V—ge™ o €™ the e"—terms in (3.256) directly translate into the flat case and do now
have to be covariantized using the Noether procedure. Thus, it is sufficient to gauge the toy
model action using the Noether procedure and check in addition that b.,0c* translates into
$PHPA YAV, P,

From now on we use the convention that Greek letters from the beginning of the alphabet are
target space spinor indices and Greek letters from the middle of the alphabet are covariant

worldsheet indices.

Worldsheet Diffeomorphism Invariance of the Toy Model

We start with the action (3.251) and compute its variation under local diffeomorphisms
(3.252):

0S5y = /8cZTzz + 0c*Tsz + 07 B, (3.257)
where
1 m 1 mh h m
1= ma 15 mh 3,.h aem
Tz = —5835 Orm + 533& 0y, + Bzm ¢ (3.258)

Now we introduce gauge connections which we call pz* = p and ji,” = ji because we will show
that they can be identified with the Beltrami differentials (see Appendix C.1). We add the
following term to the action:

S = = [T (3.259)

O Throughout this section we will neglect, for simplicity, fields and ghosts that come in through coset gauging.
A generalization to the case where these fields are included is straight forward.
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We get 515803’ + 505;0y = 0 if we define:
Sops® = Oc* S.01,° = Oc” (3.260)

Next we compute 515J{0y. A lengthy but simple calculation yields:
59 = / (=011 — 2p0c + d(pc) + d(uc)) (—%meaxm + %axmham’;n + 5Zma§m>

- (=6uji — 200 + D(5d) + Djic)) (—%&cmaxm + 309l ¢ ﬁzm8§m>

—2 (dep + Ocpn) (—%8$m5$m + %8xmh(§x},§1>

—p0OE (BzmOE™ + B:mOE™) — e (BzmOE™ + BomOE™)

=~ [ G 0l0) ~ ) + 2000) T..
+ (6101 — O(fic) — O(jae) + 20¢) Tz
+p0e(Toz + Ts) + i0c(Tez + Tkz), (3.261)

where we used the following abbreviations!!:

1 - 1 - _
T.: = —502"0mm + 583:7”}‘(9:621 + BomOE™ (3.262)
1= 1=
T,, = —§8xmaxm + §8xmh(9xfn + BomOE™, (3.263)
and ¢ = ¢, ¢ = ¢. From this we obtain the variations for x4 and ji:

dip = 9(uc) + 9(ue) — 2udc
Sip = 9(jic) + d(jie) — 20 (3.264)

The remaining terms can be compensated by adding the following term to the action:
Sy = / pi (Tez + Tz2) (3.265)

With that we have achieved &S} + 855> = 0. The next order is d355> + 3257% + 61 55> +
5OS§0y = 0. We find:

595 = / 20cpiTs, + 20¢uiTss (3.266)

Now there are two ways to proceed:
1. We cancel 6,55 with 6,57 by defining;

Sopt = 20cqufi dofi = 20¢upi (3.267)

1 Although it is quite intuitive and practical to use this notation it may be a little misleading since for the
flat case T.: =T, = 0.
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With that we get 525{03, + 5155037 = 0. We get an additional term in the action at order

4 again:
5255037 = /28c,uu2 (Tez + Ts2) + 20ep” i(Tez + Ts), (3.268)
which can be compensated by 5OSZOy where:
S = - / 120 (Tez + Ts2) (3.269)
2. Introduce an S5,
S o= - / W2 iT, + i pT sz, (3.270)
such that
5155 + 6055y = — / OeuT,, + OcpiTss. (3.271)

These terms can be compensated by a .57 if we define:

Sop = —0eu? (3.272)
Sofi = —Ocpi? (3.273)

The second choice leads directly to the Beltrami parameterization of the covariant action
(3.256), as we will show now. The matter part of the toy model action after three steps of
the Noether procedure reads:

1 _ L _
S;Ziged » = T3 /&’cm&rm — pox" 0y, — RO Xy, + 21T Xy,
— 12 ROT " Oy — Pt 0™ Oz + . . . (3.274)

For the Beltrami parameterization of the covariant action for the free boson we get, using

(C.17) and (C.18):
ST = —% / V—=99" 0ux" 0y,
= — / (1_71%&) (14 pp)0z™ 0z, — pdz™ 0z, — 1O O,
= — / 0x™ 0z, — pOT™ 0%y, — AOT " O ry + PO ™ Oy
— 12RO ™ Oy — pdx™ Oz + O ((,uﬂ)Q) , (3.275)

where we used ﬁ =1+ a2+ 22+ .... These results agree up to a factor 2. This factor can
be explained as follows: For gauging via the Noether procedure we started with an action in
light cone coordinates. The covariant action uses the coordinates (¢, o). In our conventions
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these coordinates are related by a factor 2.
For the ghost action we get from the Noether procedure:

St = [ BenE™ — B — e D" 4+ 0 OE” + e O™
— P Bem O™ — i B O™ + .. (3.276)
Comparing this with the covariant form using (C.19),
s = [ Vg

= / 1 _2 — (Bzmégm - Mﬁzmafm — ﬂﬁgmégm + Mﬂﬁzm5§m)
it

= 2 / Bzméém — WUBm O™ — ﬂﬁimggm + Nﬂﬁzmggm
HPBm O™ + i Bzm 0™ + O ((1i)?) (3.277)

we find that these results agree.

Worldsheet Diffeomorphism Invariance of the Quartet Terms

We examine the term

1
gauwart — / SV=gP" Pb Ve (3.278)
of the covariant action. Decomposition in terms of the Beltramis yields:
1 2 - ~ -
5\/—gP“”P}‘pb:MV,,cp = A= 0)? <b'zz(90/z — ub,,0c% + b, 0% — 2l ;0c'*
N R e
— b0 4 ppPb;0¢% + 20 b, - 0¢*
—{—,u2ﬂ2b’5580’2) + ..., (3.279)
where ... stands for connection terms coming from the the covariant derivative which is, in

contrast to the previous cases, not equal to the ordinary partial derivative.
Now we go to the other end of our problem and gauge diffeomorphisms of the action

sguart - — / b, c* (3.280)

Local diffeomorphism variations of the fields are given by (we called the transformation pa-
rameters ¢ = € and € = £ to avoid confusion with the ghosts from the topological quartets.):

01, = 0N, + 0,y + 0,y

”w
ot = o, " —d,etd (3.281)
In particular we get:
Sib,, = edbl,, + b, + 20eb.,, + 202V ;
§1d* = e0d* +&0c* — 9zd* — dzc* (3.282)
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Using this we get for the variation of the action:
S S = / (£0V,,c* + €0V, + 20eb,, + 20el.,;) O + V.0 (ed* + £0c'* — ded” — Dec'?)
= / e (O, + 2V,,0c* + AV, .c*) + 208V, ,0c* (3.283)

There are some unexpected issues about this result.

e The term after Oc should yield the corresponding component of the energy-momentum

tensor T},. There is, however, an additional on—shell contribution 9b.,,c%.

e The 2b._0c* term of T, does not appear in (3.279), instead there is —ub’,dc’*+ub’, 0.
These terms are equivalent by partial integration up to terms with derivatives on the
Beltramis. These expressions correspond to contributions from the connection terms
coming from the covariant derivatives.

The first step in the Noether procedure can be performed in the standard way. We introduce
Beltramis p and g with dopu = O and dpiz = 02. Adding

S = — / 1 (O, % + 2V,,0¢% + OV, %) + 2p b, ;0c* (3.284)

to Sy we obtain §1Sy + §pS1 = 0.

We will skip the second step of the Noether procedure since it turns out to be very tedious.

What one can see quickly is that the term 2udzb.;0c¢”* coming from &;(2b.:0c/%) can be

compensated by adding a term fi2bL.0¢* to the action. This is consistent with the ?-term
n (3.279).

3.7.2 Gauging the Fermionic Symmetry

The fermionic symmetry transformations under which the complete action (3.237) (without
(byz, %, B.2,77) which we want to get out of this calculation) is invariant can be computed
by commuting the OPEs of all fields with the complete B—current (3.239):

Y ; Zﬁm— ‘ V¥ (k™ 0)—1—4720’2(/127”/42)
ST = SO0 B) — iy 5y 00) + 20 (¢ (rr )
0060¢ = ;8(714)
Sdea = — 20 wsa) = 7 (o )alTZ + 76" (106
20 (¢ (7 R alBen) — 3771700 (3.285)
sz = —%vzﬁ’“riwz(mm@hﬂ —V (5" Ez)
ST = 20y A7) + i (5™ 00%) + 10 (1 (1™5)
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1

500°" = —50(v°K2)
Ii 4 m. - 2 QM
5d?a = 58(72‘*&&) + 77 (Ymkz)alLZ " — i ('Ymaeh)a
] 1
—|—§(9 (V* (V"2 )aBm) — 5730'2(77”89}‘)&(/@2%%/@2) (3.286)

For the transformation of II?* one has to replace d — 0 in SII7.

m 1 z m mh 1 z 1z m h 1 z 1z m
o = 57 (T2 ) + 27 (k™ (90— 00") ) + 2777 (k™ 52)
a _z z «a ah
N = 2y (aa + 09 )
_ 1 z h .z lz/.m h 1 z Iz m h
5on - _5'7 <dza +dza> +ye (7 "fz)oz <Hzm - Hzm> - 5'7 c ﬁzm (7 (36 — 00 )>a
i z.la m
A Bem (") (3.287)
0Bem = 0K = 0wz = 0 (3.288)
5Clz — ,yz
1
5b/zz = _28'7Z ;z - ’Yzaﬁgz + 572FZZZ
_ znl Az A _z m _ h 1 z m _17h
= 20y Bz — 86;;2 2ﬂzm (Kz’)/ (89 00 )) + 47 (”Z'Y ’fz) <Hzm Hzm)
* = —~20c* + 0yFc*
1 ]

Now we have to find the covariant form of these transformations. We could use our intuition
and guess the covariant form of the transformations above as we did for the action, but in this
case there is more than one way to write them in a covariant form. The best way to get the
transformations is to use the Noether theorem backwards. This method to obtain symmetry
transformation from a given conserved current was briefly mentioned in section 3.3:

518y = 5%5& £ - / 2y"V* B, (3.290)
where S is given by (3.256).
For this purpose we compute the equations of motion for all the fields. Then we take the right
hand side of the above equation and manipulate it until we get an expression proportional to
the equations of motion. Comparing the coefficients then yields the correct transformations.
In order to perform this inverse Noether method we need the covariant form of the current
B,.. Fortunately it turns out that there is a unique way to write down this current in its
covariant form:

1 i . . i
B, = —gPAHPPV(HAm +10%,,,) 85" + gPAﬂPpl,(zdm +idy, ) KG — gpkﬂpf;(vwa + VA0 M)W 0
1 1 1
—ZP/\HPPVP"Tﬁﬁ\pV(,c’T - gP)‘ﬂPPVPWc'TVUﬁ;p — ZPA“PpVb’/\p
1 1
_ TGPAﬂPPVPUTc;FJAp _ TGPAuPpVPOT'Y;—CI)JAp
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Fong = ~ifom(mxy™ (V0 = Vp0")) + £ (567™3) (T — 115,
Porr = %Bam(ﬂxvmﬂp) (3.291)
Now we compute the equations of motion. We have the following field content:

pA = (xm,aa, Qs ©™ 0T L €™ By A Wpaes Xeus Ky 7, ;M,w,ﬁw (3.292)

Note that we used the field d,, instead of the elementary field p,,. This can be done since
these fields yield equivalent equations of motion. The advantage is that the d—transformations
have a simpler form. The variation of the action with respect to those fields reads:

550 550 h
S = P, 220 _pry,I
ox™ VM Sxmh VM vm
450  prrm 0 pHry T p pv
5904 = =2 [ (’Ymvl/ )Oé —1 vu v (’Ym )oz - vudua
550 . vTm . v m v
59oh = 2iP" Huh(vaueh)a +iP* V1L h(’Vmah)a + P vvdZa
550 (550 h
= —P"V,0° = P"V,0% (3.293)
dd e sdh,,
950 350 3S
. = —P"ViBum = —P"'Vywua — = —P"'V,kua
5&m VB 3 Vowy, Sy Vokp
650 550 (SSO
= PV, = PPV, Y = P"V,xa (3.294
T g o YV, - Voxe  (3.294)
550 1 U oA ’ 550 1 U\ o
Sap = —§Pﬂ vaVbM 50 = _§pu PPBM
550 1 A ’ 550 1 A ,
= —=—PMP*V,c? —— = —=—PHPrV AP 3.295
ob, 2 P e 2 p Vv ( )

At first we compute the transformations of the WZNW ghosts. For this purpose we have
to collect all the terms in B, that contain antighosts. The identity (C.9) was used in the
following calculations:

o 5™ — [ 2VVI By, =
1 .
= - /fyy |: - ZPpMPAy(H)\m + H})ﬁm)vuﬁ;)n + %P)\;LPPMPO—TC;VMﬁO'm (’f)\fym(ape - 8pah))

—=PP ”VP”%V“ﬂm(meffp)]

16
) .
- / PpuV“ﬁpmv”[ ZPAV(HT + II7h) 4 %PUVPATCQ_(I{XVm(aUH — 9,0M))
+116PUVP”7;(KW’%(,)] (3.296)
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o GAY: —[29VVFB,,|, =

_ / o [ _ i'pﬁtpf;(aw 4 aAeah)}

- — / PPN e [ - % PA AV (VA0 + vkaah)] (3.297)
o OXa: —[29'VIB,,| =

o 4 1 Z oT m
- _ / P VM ES [— pry(dpa +d,) + ng;P ¢ Bom (Y™ (8,0 — 0,0™)0)

1 1
PP oM ~ ) = PP (70| (3208)

Next we evaluate the transformations for the quartet ghosts.

o 0 —[29VVFB|, =
1
= — / ny[— §PAMPPVV“b&p (3.299)

o 5y —f ZWVV“BW|6, =

1
- 2 / 7 [ = P PPN Vol — PP P P73 VIV o,

—%P)‘MPPVP"TV”C;VUB’AP — %P)‘MP”UP"TC'TV“VUﬂS\p}
= _% / P, pPrN B, [ — PV, + %PJTVU(’YVCQ_)}
+P, PTTVRE, [ — PV, Bh,) + %Ppn”vaﬁgp} (3.300)
The expression in the last line belongs to §b/,. It enters this calculation because we

used partial integration to get the second equality. There is another difficulty in this
calculation. Curvature terms arise since V#V, ¢, = V,VFd 4+ [VF,V,|d. = V,VFc +

Ryt and V“VUﬁS\p = VJV“ﬂS\p—{—R)\Waﬁ%p—l—RpWUﬁ&n but these terms cancel. One
can check this using R“w\p = —%euye)\p, which holds in two dimensions, and (C.9).

o 0V — [ 2’)/”V“BW|C, =
_ Y prporgue | — prv s Lpo v g 4+ Lvpe g
) W Cr| =47 o (v ﬁ)\p) + 9 v oﬁ)\p + Z’}/ vioip
1 1
= _5 /PAMPJTVHCQ- |: - PPVVO(PYVﬁg\p) + §Ppy7yv053\p

Z’ Z v m
—prﬂyﬁom (H,\’Ym(apa - 8p‘9h)) + gppﬂ (Ko™ Ex) (Hpm — H}plm):|

(3.301)
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o 00 : -/ QVVV“BWL, =

1
= /71/ |:§P>\MPPVPUTV“7;—(I>U)\p:|

| .
= 3 / PAPTTVHy, [%P”V'Y”(Hw’”ﬂp)] (3.302)

Finally we come to the elementary fields. We start with 66%") and collect all the terms that
(h),

are proportional to djq:
- / wiptpf;v“(z’dm +idR, ) Ky
1 4 1 4
— / —P)VFdy, (ZPPVW m;“) + Pyvrdy, <—ZPPV7 ng> (3.303)

From this we get the correct transformations for %) but the prefactor that should be
proportional to the equations of motion is incomplete. The missing terms are given by:

dSp v o - DUV TTM - DY m 1 o
(57& + PH vydm> 60% = (=2iP"IL (ym0,0)a — iP*™ YV 1 (Yn0)a) (ZP”WA/@O

= %P # PO (K Vi) + iP“”P”wAWHT(ﬂme)
(3.304)

We add and subtract those terms. This repairs the equation for 66%") but the new terms will
contribute to 2" and 5dg2.

Next we consider 62" where we collect the terms proportional to P* VMHT(h). One of the
additional terms is included in the first line of the following equation:

v i 5 i
/PM VI <_ZPP)\7>\(’€p'Ym‘9)> - Pt VMHth <ZPP)\'7)\("€p7m0h)>
1 )
+ 3 PAPAY V(W + T3) 0" + P P P ¢ (1507 0) V¥ (T — T17,,)

% Z v 1 v Z v
= / PHY,II [ — P (5 3mb) + 1P B + 12 PP c;mw’"m)]

i 1 i
PRI | P ) = PR B+ G PP ™)
5 P (V8 m Va0 + V0"V 20") B
1
—gg“pPAl,P”*y”c/T(nU’ymnA) (Vu07mV pb — V0",V ,0™) (3.305)

The last terms had to be added in order to make the transformations complete. Finally we

get for 5,%), collecting the terms proportional to —P*'V,0% and subtracting the terms we

added to complete the other transformations:
Z’ vV Z 174
/ —5 P PP I (Kpym V0) — 5P PP (b ym V,0")
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) 1
P (SR T 00a ) = PPV (PP ™) Y )

7

1
FPT0 (=3P T ) + PRS0 (PP ™) Y6

+ PP (VA0 + VY07 — %PA P2y PTTA By Ay ™ (VY ,0 — VIV ,0M)

1
- —PAPPUTWPC/T(/@UVm/{A) (YmVu)a

] 1
/—P“”V,,Ha |: - §PPA’7AHZL(7m’{p)a - §Pp)\'7>\(7mv,u9)aﬁ;n 8

) )
_pruvu(’yywpa) + gP)‘VPUTVM (Pchg—Bam('Ym"f)\)a):|

1
PP ()™ 3) (I V"o

v { i
+PHY, 60" [ipﬂﬂknglh(ymﬁp)a + 5P (V" )alB
i i
+1Pf’yvﬂ(y“wpa) + gpAypaTv“ (Wyc;ﬂom(ymm\)a)}
(3.306)

Now we summarize our results for the covariantized fermionic symmetry transformations:

ox™ = —le ”(/fp'ymé?)—i— Pp By + 6Pp PO (koY Kp)
oI = ——wa (kpy™V 9)+ Lpe V(v ”ﬁp)+ PP PV, (7 (KoY ™))
00" = ZPP sl
1
0dyn = ——Pp YL (Ymbp)a — §PPV7”(7mVﬂ9)aﬂ;n — gPp Py (key™kp) (Y V 18
—ZPPVVM(’y”wW) + gpf;PWvM (V- Bom (V"5 p)a) (3.307)
. 1 .
sz = iPﬂﬁ”(/{,ﬁmHh) - ZPPV'YVBLH + 1—26PPVP(’T Y (key™Ep)
) 1
51'[th = %P”V'y”(/ﬁp’ymvuﬁh) — ZPP'/V (v "B,") + Pp PV ( (/ﬁgfymnp))
50°h = —lpp
5dﬁa = _Pp 'Vynmh('ym“p) + PV’V ('va Hh)aﬁp 8PpuPJT’VVC/T(“UVm“p(Wmvueh)a
—i—ZPpVVM(’y”wpa) + gPPVPUTVM (V€ Bom (Y™ Ep)a) (3.308)
SEM  — lp)\ V(T Hhm iPpP)\TI// m 9 — ah PpP)\T / m
& = P I HTIT) 4+ S PP (™ (V0 =V, ))+16 V(K™ k)
XY = =2 PhAY (V0% = V0
1 )
Na = —ZPpywy(dpa + dZa) + gPpl,PUTwl'c'Tﬂom (ym(vpe — Vpﬁh))a
i ) i
_gppuPUT'Y c,r('ym’fa)a(npm - ngm) - gppuPUT'Y Ve Bom (Y™ Kpa (3.309)
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66/11 — ,yl/

ha = —PAYo(0"Bh) + 5 PAA Vb, — £ Po" Bom (5™ (V0 — V1)
—i—éPPV'y”(ﬂ(,fym/s)\)(Hpm - Hzm)

Y = PNV, + S PTV,()

0Bor = éP’)ﬂ”ﬂom(mwm@) (3.310)

In a lengthy calculation one can show that B,,, is still nilpotent, i.e. that the fermionic varia-
tion of the B—current is 0. This makes the Noether procedure very simple since it terminates
after the first step. So far, the variation of the action under the fermionic transformation is:

0S5y = /QVHWVB"V (3.311)
We add the following term to the action:
S = /—QAM”B“V (3.312)

The new action is invariant if we define:

oA Y

uoo= V) (3.313)

No further steps are needed. Thus, the complete gauged action is given by:
1
S = /\/—g — 59“”H;TH,,m — eIl (09™V,0) + P d0 V1,0,

1
+ 50" T, + e T, (0" ™V, 0") — PR dy, V. 0;
+P“Vﬁumvugm + Puywuavu)\a + PP«VHZ‘VVXG

1 1
+§P‘“’PApBLAV,,7’p + 5PWPApb;nyc’P —24,"B", (3.314)

3.7.3 WZNW BRST Symmetry

Having gauged diffeomorphisms and the fermionic symmetry the new gauged action is no
longer invariant under BRST transformations. As we will demonstrate now, BRST invari-
ance can be reestablished by introducing a BRST transformation of the metric. Due to the
complexity of the calculations we only consider the toy model which we introduced above.
The gauged action is given by:

1 » 1 v v v
S;Ziged = /\/__9 [_igu V2™V xm, + 59“ V" a4 PP Bum V6" — 24,°B,
(3.315)
with
1
Bpl/ - _gpuypkpﬁllm (v)\mm + v)\xmh> . (3316)
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Note that we do not need a topological quartet for this model since it already has an N = 2
superconformal algebra. The covariant form of the BRST transformations looks as follows:

se™ = "
SCEmh — gm
& =0
Sﬁ,um = <v,uxm - v,uﬁﬂfyln) (3.317)

The BRST variation of B, then reads:

1 A 1 1
sB,, = ZP(“VP ; <—§v(“xmvx)xm + 5 Virn Vna™ + ﬂ(“mvk)y”) (3.318)
This expression looks similar to the energy—momentum tensor which reads:

1 65

/_g 5907'
_ 1 SHSY nz 1 m 1 mh h m
= 5 (2 c0r — Yor g ) - §VHCC Vo + §vu$ Vo, + ﬁ,umvué

TO”T =

1 1
7 PAS B (Vaa™ + vAmmh)> +3 (2900& ~ g(,TgAp> PP AP By (Vaz™ + Vya™)
(3.319)
For this calculation we made use of the following relations:
1 yng 1 yng
=g = 5V=99"00w = —5vV=99u0g
v - 1
gt = V9w _ ——Ggr0g°T e
(—9) 2
1
OPHY = 50977 (20507 — gore™)
74 74 1 174 74
0 (V=gP") = 6(V=99") = 5V=909"" (20507 = Gorg"") (3.320)

To cancel the term that comes from the BRST variation of A,” pr we thus define a BRST
variation of the metric. The BRST variation of the action is then given by:

1
SSpged = S+ / V=g <§Tup 59"" —25A,B," + 24,0 sB,,”) (3.321)
0

In contrast to T}, which has non-vanishing components 77, and Tz; in conformally flat
coordinates, sB,, only has a non-vanishing zz-component. Hence, we expect part of the
BRST variation of B,” to coincide with %PWPPT. With P?" g, P7, = 0 the following relations
hold:

PP, (20407 — gorg™) = 2PW PV,
1 1
PP, <2gOH€AT—gOT€AR> = —5RhP, (3.322)
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If we define
gT 1 g T
sg = —§P "PTAYL (3.323)
we find after a lengthy calculation:

1
S 4 = / V=g | PP, (54,7 = 074,47 ) Bum (Vo™ + Vaa™) | (3.324)
From this we can read off:
sAL = 0 (3.325)
Thus, we have reimplemented BRST symmetry in the gauged action.

3.7.4 Gauge Fixing

Now we perform the gauge fixing of diffeomorphism invariance and the fermionic symmetry.
After integrating out all Lagrange multiplier fields we expect a second BRST operator of the
following form:

1 1
QV = %CZ <Tzz + §thgp> + 72 (Bzz + 5322?) (3326)

In order to make the new BRST operator anticommute with the WZNW BRST operator we
expect:

QR — Q+ f{ b22v* (3.327)

We add a gauge fixing term to the gauged action, fixing the metric to the flat light cone
metric and all other gauge fields to zero.

S = S tov [V (e ) £ 2 39
We define the new BRST variations as follows:

SV Guv = VuCu + Ve, —2Agu
— sy gt = —VH — VY + 20gM

1 v
o sy\—g = 5\/—99“ svguw = V—9(Vuc —2X)
sv (V—=9bw) = V=97

o sybu = Au — (Vact —2\)by,

Sy (\/ _ggVA/Buy) Y/ _ggVAQNV
o v B = Qo+ (200060 — Gor67) <v(acr) _ )\gOT) B
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_ 1 ~
sy A= AN+ ZP“O,P)\T <VT7" - )\A“> + "V A + VA" AP — Vit Ay

(3.329)

(yH, S\MV) and (c#,\) are now commuting and anticommuting ghosts, respectively. With that

we get for the gauge fixed action:

Sgf’ = Spuuged t / V=9 [AW(QW = GM) + 209" AV 4 26 <v(ucy) B Ag“”)

~ 1 -
+2gy)\ﬁ;w <)\)\M + ZPMUP)\T <VT’YU - )\)\M) + CHVHAAM + V)\CKAHM - V,@CMA)\K> ]

(3.330)
Next we integrate out the Lagrange multipliers, using the following variations:
1) 1
— = B, — —P* P¥
6ATU 0 /8 4 o T/B,UJ/
1) < 1 ~
M= =P TPENC
5( Ppﬁ) A 4 A oM
1)
— Al =0
08
1)
SAVH : QW’ = _BHV + Vi (ﬂw/cli) - ﬂu)\v)\cu + ﬂmxvucli
)
I\ : buvg =0
1) 1
A= =V,
O 2 e
o g = g 1701
A 2\1 0
1)
Sgi Ny = =T — TSP (3.331)
Inserting these results back into (3.330) we end up with the following expression:
1 1
Stoy = /\/__g[ - §guyvuxmvuxm + §gMVVMxthVx21 + Puyﬁﬂmaufm
+b,.0¢ + bzz0¢" + (3..07* (3.332)

Finally we compute the additional term in the WZNW BRST operator @ by demanding that
the new BRST variation and the WZNW variation anticommute. Using

12
sAM

sgh

v

0

1
—5 P PLAT (3.333)

we compute the WZNW BRST variation of the homotopy (with respect to sy ) of the gauge
fixing term in (3.330). (St soanged 1S already s-invariant.)

s <x/—gbuu(g“” — ") + 2y =99 B A" )
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4 ~ UV oT 14 1 4 ~ UV
= V=g sbu(g" —3g") — V—gbu sg <5f2 )~ 590r(g" = 3" ))
+v—g SQUT (255)65—\) - gm—gy)\) B,LWA)\ﬂ + 2y _ggl/)\ Sﬂ;wAXu
v AUV 1 a T
= V=g SbMV(gM - gM ) + 5 \% _gbO"TP )\P MA)\H
—V/=gPPT AP A By + 2¢/=gg" sBu A\ (3.334)

In the last step we made use of P“)‘P”A = 0. For the two BRST transformations to anticom-
mute this expression has to vanish. This can be achieved by defining the following WZNW
BRST variations of the antighosts:

sby = 0
1 o DT 1 o DT A
B = —ZbJTP P = §P W PTLAL g (3.335)
After integrating out the Lagrange multipliers (A, * = 0) we get the transformation
$Bzz = —baz (3.336)

which is implemented by adding a term b,,vy* to the WZNW BRST operator:

QR — Q+ f{ b22v* (3.337)
The new BRST transformations are now given by:
sy b, = —T,,— thgp
sybzz = —Tz— T;‘;p
sy B.. = —B..— BP (3.338)

with

TP = 2b,,0¢" + Ob,,c* + Ob,.c” + 2[3,,07° + 08227 + 0B.27°
;gp = 2b22562 + 5()5262 + abggcz

ngp = _2Bzzacz - aﬁzzcz - gﬁzzcz (3.339)

T,., T5z and B,, are the currents coming from the WZNW model. These transformations
correspond to the following BRST charge:

1 1
Qv = }[ ¢ (Tzz + §T;§P> + ~7 <BZZ + §ngp> (3.340)
From our results for the toy model we conclude that the gauge fixing procedure works anal-
ogously for the heterotic superstring and yields the results we already anticipated in section
3.5.4. Note that this computation of TL2P, ngp and B yields also terms that vanish on—shell
which are not present in the expressions given in 3.5.4.
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3.7.5 Worldsheet Covariant Formulation of the Type II Superstring
For the type II superstring the covariant form of the action reads:
1
S = /\/—g PY PPt — PM P 11 — PHIL,, P+ §P“”H“mﬂf,” + Lwz
vV 14 14 1 vV
=P P P+ PRPL T 4 PRUTTL, P — o PRI T — Ly
+P" AoV 0% + P d 6V, 0% — P dh 00" — Pl L,0%"
+P" Bum V€™ + P wua VX + PP EGV L X
+PR B,V EM 4 Pﬂ”wudv XY + P RSV X e
1 174 174
+5 PP BV + 5 L p b Vi d”
1o or o o i ) .
+5 PP BAVAT + S PPV E (3.341)
where

Lwz = —ighIT ((aymvya)—(éymvyé))—aW(eymvue)(éymvyé). (3.342)

Knowing the fermionic symmetry transformations for the heterotic case and the II and P-
transformations for the flat case it is easy to guess the transformations for type II:

51'[;7 = —%Ppl/y” (ﬂp’ymv,ﬂ)—i—%lwyv (”67”) PP PV, ( (/sgfymﬂp))

3P4 (5™ 0u8) + 1PV (3 B)) + 1 PP (3 (on ™)

P = —%P@,P(’Mfy” (kpY" Vo) + éPpVP(’MV(, (’y”ﬁ;”) + 3—PP poTpA WV (’y”c’ (/sgfymﬂp))
—EPPVPUH% (mmvaé> + éPPVPU (A”ﬁp ) n PP PPV (37, (ko™ Rp))
56% = EPP VRS
Sus =~ PRA B mitp)a — 5 PAA GVl — P PR (™) (V)
POV Bpa) + S PPV (3 B (0 )a) (3.343)
5H;Th = %PpVVV ("ip’)’mvueh) — EPPVV ( Vﬂm) + 16Pp PV, ( (/fg’ymnp))

45 POAY (A" Tu8Y) = TPV, (V) + 1 PPV (378, (Ror™R))

) 1
5P;”h = %PpVP(’Mfy” (/fp’ymvgeh) — gPPVPU ( Vﬂm) + 32Pp P pA WV ('y c, (ngfymnp))
S ’ 1.
+iP’LP";ﬁ” <f%p7mV09h> -3V <A”ﬂp ) + P 6 P7TPA N (378 (R ™))
. 1_ R
09 = — PLAVRG
sty = LPAA P (iy)a + PO A (Va0 — 2P BTAYE (7 ) (1 V0
,uo?_Qu’YM'YmpaQV'Y'Ymu aPp gl YV Cr\ReY Bp)\TmVul )a
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Z'* AU A Z" DOT VAl A o3
+ 5 PV @) + S PPN W (376 Bom (V" p)a) (3.344)

4
oM = ipAyﬁ”(P)(n + Py 4 éppl,P)‘Tﬁ”é/T(/%Awm(Vpé - Vpéh)) + 6Pp PRV (Ray™F )
B = LAY, - V0
e = _ippﬁ(dpﬁdg&) ;P’) P By (7"(V 0 — V,0M))
=P PR 6 R )al P = Ph) = £P% P75 a0 (3315
5 = A
on = ~ PRV (B + 5PAA Vol — SPLA o ()™ (V6 — V,87)

+%PP W(ﬁ;ﬂm@)(Pm ~ Pl
5,3//1/ — _PO'TAVVO_é/ + PUTV (AVA/)

53?;)\ = gPprV ﬁom(’{)\w ’{p) (3346)

A% is the transformation parameter for the right-moving sector. The fields and ghosts of
the left—-moving sector transform as in the heterotic case apart from the fact that one has to
replace II,,,, with P,,,.

For the type II case we now have two B—currents corresponding to the left— and right—moving

sector:
) : :
B = —g PA,PA (P + Ply) 85 + <P, P (idsa + i3 )i — <P, PP (VA0% + Va6 Jwp
——PA PP B\ Voc, — gPA PP PN o3, — —PA Phb,
A A
—1—6P Pf, P77 Fyy, — 1—6P Pf, P77 D),
Buy = —= P PO (P + PR+ LPA PP (idyg +idl )33 — L PX PP (V20% + V509700
puro 8 Am m 3 1a)a 1yg )R 3 v A A Woa
——PA P, P73 NV 5, — gPA PP PoTE N, — —P’\ P,
16PA PPP7TE Fyy, — —6PA PfP7TALD,y, (3.347)

In a lengthy calculation it can be shown that these currents are nilpotent under the fermionic
transformations. As a second consistency check we verified the invariance of the action under
the transformation, picking out the terms that transform into II,, and P,,. A tedious
calculation, involving partial integration, the Fierz identity and various identities for the
P showed that left— and right—moving sector completely decouple (as in the flat case) and
that the correct currents are produced. Thus, gauging and gauge fixing can be performed as
in the heterotic case. Calling (3.341) Sy we can perform the Noether procedure as usual:

6Sy = / 2V,7" B", + 2V 4" B*, (3.348)
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We introduce gauge connections A4,” and fluy and extend the action by
S; = / —24,"B", —2A Y B", (3.349)
where
§0A,) = V" S0A,” = V4" (3.350)

The next step would be gauge fixing and reimplementation of the WZNW BRST invariance.
We expect that the procedure is analogous to the the toy—model case but some difficulties
may arise from the fact that the BRST variation of the composite B—field yields the energy—
momentum tensor only on—shell.
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Chapter 4

Summary and Outlook

In this diploma thesis on the covariant quantization of the superstring the following results
were found:

We gave a WZNW formulation of the type II superstring using the Noether procedure to
gauge the free field action given by Siegel. With that we generalized the WZNW formulation
for the heterotic superstring, which was found by van Nieuwenhuizen and collaborators, to
type II. This was possible by introducing auxiliary fields which separate the left— and right—
moving sector off-shell. Gauging the symmetries of the free action forced us to introduce a
new set of auxiliary fields which led to a formulation of the superstring as a gauged WZNW
model.

In order to turn the Kazama algebra into a twisted N = 2 superconformal algebra a topo-
logical quartet has to be introduced. We pointed out that this quartet cannot be used to
implement manifest worldsheet covariance. For this purpose two more pairs of ghosts have
to be introduced. This was done explicitly, using a covariantized form of the Noether pro-
cedure, by gauging diffeomorphisms and the fermionic symmetry of our model. Due to the
complexity of these calculations some of the computations, in particular gauge fixing, have
been performed for a toy model only.

Some progress was made concerning the definition of the cohomology. One of the most dif-
ficult problems of this model for the covariant quantization of the superstring without pure
spinor constraints is that the BRST operator has trivial cohomology. This is due to the fact
that, apart from the constraint that relates the free field theory to the GS string, all the other
conserved currents are set to 0 as well. Grassi and van Nieuwenhuizen suggested a method to
solve this problem by introducing a second BRST operator which undoes the gauging of the
other currents. Physical states are defined to lie in the relative cohomology of the two BRST
operators. We generalized this method, which was only worked out for simple Lie algebras
before, for an arbitrary set of constraints that generate a first class system and specialized
it for the superstring. We expected to find a BRST operator which consists of the BRST
operator of Berkovits’ pure spinor formalism plus an expression which is exact with respect to
the second BRST operator. Unfortunately we obtained a different result which we could not
improve by deforming the BRST operator but later we found out that we can nevertheless
get the desired physical spectrum.

There are many open problems, the most difficult of which is probably the definition of
physical states. It is not yet clear if the definition of the physical states via a relative coho-
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mology works for the superstring if we implement worldsheet diffeomorphism invariance. It
would be interesting to work out an idea by van Nieuwenhuizen et al. that involves bosoniza-
tion and a similarity transformation. It would also be interesting to further investigate our
ansétze concerning the deformation of the BRST charges. A further problem are the h—fields
of the gauged WZNW model which should decouple from the theory for physical states. Van
Nieuwenhuizen and collaborators suggested an analogue of the Siegel gauge, demanding that
the zero mode of the composite B—field, corresponding to the fermionic symmetry of the
WZNW model, acting on physical states yields 0. No examples were computed so far to see
if this really works.

Another problem related to the cohomology is the computation of correlation functions. Due
to the huge amount of fields and ghosts in this model we have not been able to give a proper
definition of the correlation function, neither at tree level nor at higher genus.

Concerning the implementation of world sheet diffeomorphism invariance for the type II su-
perstring there are still some calculations missing. For type II the BRST variation of the
B-field yields the energy—momentum tensor only on—shell. One may need to check how this
affects the WZNW invariance of the gauged action and the gauge fixing procedure.

Since one of the most important motivations for the covariant quantization of the superstring
are string theories in Ramond—Ramond backgrounds a goal is to couple this theory to a curved
background.
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Appendix A

Conventions

Our conventions are quite complementary to those of the standard string theory references.
In particular, we use the NE—convention for superspace rather than the more common NW-
convention. Since this thesis is based mostly on the work of van Nieuwenhuizen and collabo-
rators it seemed practical and less confusing to adopt their conventions.

A.1 General Definitions

The worldsheet metric has signature (—,+). We define light cone coordinates by:

(01 — O’O) ot = (01 + O'O)

N | —
DN | =

0 =0_ = 01— 0 =0, =01+ (Al)

After Wick-rotation to Euclidean space and introduction of complex coordinates we have

with 00 — —io?:

(01 — 2'02)

DO =

(01 + 2'02) z =

DO =

z =

0 =0, = 01 —idy 0 = 0; = 01 +1i0s (AQ)
We define the conformal map from the closed string worldsheet to the complex plane as
S = 6—2@'2 _ e—ial—I—aQ‘ (A3)
We define chiral projection operators P*” and P* [2]:
P = g g
P = g 4 (A4)

with the properties P** A, B, = A.B: and P“”AMB,, = A;B,. For further properties of these
operators we refer to Appendix C. In Minkowski space we have:

ynz
6/’“/ = € 601 g 1 = —610 (AS)
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In Euclidean space we define:

et = — 2 =1 = - (A.6)

The action in Minkowski space is:

1
2wl

/ d’ov/=g L, (A7)

with d?0 = do%do!. For the Euclidean action we get an extra minus from replacing the
Minkowski metric by the Euclidean metric:

1
SE = —5 / d%o\/g LF, (A.8)

where d?c = do'do?. £ and £F formally look the same, one only has to use the corresponding
expressions for the e—tensor and the metric.
Switching to complex coordinates the measure transforms as follows:

1 . .
d’2 = dedz =  (do’ +ido?) (do! —ido?) = Zdo®do! = Zd% (A.9)
The numerical values of the e—tensor in complex/light cone coordinates are:
. 1
e = 5 = et €2 =2 = e_4 (A.10)

Whenever the constant o/ is not written down explicitly it is set to o/ = 2.

In explicit calculations it is not necessary to specify whether we are in Euclidean or in
Minkowski space. S = [ L is valid for both cases and the prefactors and measure part
can be viewed as part of the [-sign.

A.2 Superspace Conventions

As mentioned above we use Southwest—Northeast (NE) conventions for capital indices, where
M = (m,a):

AyBM = (—-)MBM 4y, (A.11)
It is useful to define two Kronecker deltas:
o = My = ()MNa M, (A12)

where 5AN4 is numerically equal to the usual Kronecker delta. To see the necessity of this
definition, take the metric and its graded inverse:

HupHYN = 6N = (—)Ms)y
() PHMPHpy = My = o) (A.13)

For small Latin and Greek indices we are not as strict with the NE conventions. In particular
we have:

=60 =0 (A.14)
The graded commutator is always denoted with squared brackets:
[A,B] = AB — (-)'®BA (A.15)
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A.3 Gamma Matrices and Spinors in 10 dimensions

This section mostly follows the arguments in [4].
At first we construct the I—matrices in D = (9,1) by starting with the Pauli matrices,

() -0 () e

and working our way up to ten dimensions.
Now we define the well-known y—matrices in D = (3,1):

X AP R =197, (A.17)

where k = {1,2,3}. Here 72,7*,~° are real and symmetric whereas v!,v3 are imaginary and
antisymmetric 4 X 4-matrices.

The next step in the ladder is D = (7,0) where we construct 7 symmetric purely imaginary
8 x 8-matrices \:

No= (Yot ertfertyelYelrteler,feolert) (A.18)
Now we go to D = (8,0) and construct 8 real block off-diagonal 16 x 16-matrices o*:
o = {Neorh1er'} (A.19)

In D = (8,0) we have a real block diagonal 16 x 16 chirality matrix y which is the product of
all o* and which obeys xT = x and x? = 1. With that we can finally construct the ten real
D = (9,1) 32 x 32 Dirac matrices I'":

" = {1®(ir*),c* o', x 07"}, (A.20)

where m runs from 0 to 9. The chirality matrix in D = (9,1) is Ty =I?...T? = 1 @ 73,
The charge conjugation matrix C, which satisfies CI'"™ = —I'"™7TC, is given by C = I'?. We
consider spinors W1 = (A1, (g) with spinor indices A¢ and ¢ RA Then the I'-matrices have
the following index structure:

(o, V) e (8
F#:<l 0> o = ( ' <g‘0]1>

-1 1 ’
' 0 N 1 ) 0
where 0" = {1,0#*,x} and 6" = {—1, 0", x}, the matrices co” and ¢’ are numerically equal

to 1 and —1, respectively. The form of I' implies that the A* are chiral and the ¢ ;5 are
antichiral.

(A.21)

In practical calculations we need the matrices CT"™!. Matrix multiplication yields:

m (5-m)o¢ﬁ 0 . _ 'y(TB 0
o ‘( 0 —<am>6d> ‘( 0 wn)ﬁ“) (4.22)

!One considers the expressions W™ ™ ¥ where ™™ are antisymmetrized products of the I'-
matrices, which transform as tensors under Lorentz transformations. We have ¥ = ¥TT° = ¢7(C.
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In our calculations we will only use the real symmetric 16 x 16 matrices YoB = Oap and
'yﬁ‘f = —o™% Now we explain why the dots can be omitted.
The Lorentz generators expressed in terms of the I'-matrices are given by:

L mafgn _
2 0 50(%0"5“/ -—men

Since this expression is block diagonal we find that the chiral spinors A* and the antichiral ¢ 3
form separate representations for SO(9,1). These representations are inequivalent because

o™ and 6™ are equal except for m = 0 where 0 = 1 and 6° = —1 and there is no matrix
S satisfying So* = —otS and Sy = —x5 at the same time. It is easy to see that this
is true: Assume that we found an S such that So# = —o*S. Then y = o'...0® implies

Sx = (=)8xS = xS. This proves that we really have two inequivalent representations of
0(9, 1), which we denote by 16 and 16'.

In D = (9,1) one cannot raise or lower spinor indices with the charge conjugation ma-
trix because it is off -diagonal. Thus, we are free to define spinors k. and n® which trans-
form under Lorentz transformations such that k,A* and n®y4 remain invariant. If we de-
note the generators of A\ by (v*,+*) with k,I = 1,...,8 those for the y4 are given by
(—AFbT —FT) = (yk —~4k). (This follows from the form of the charge conjugation matrix.)
Using the conditions for Lorentz invariance we imposed above we find that s, has (7%, —+*)
and 7% has (v*!,4*). Thus, k, and x4 and A* and n® have the same transformation properties
under Lorentz transformations. This is why we can omit the dots without causing confusion.
We conclude that chiral spinors are given by A% and antichiral ones are given by xq.

Finally we give two important identities for the twenty real symmetric 16 x 16 matrices ’yglﬁ
maf.

U

and

VY Ay = =2 (A.24)
’Ym(aﬁ’}/:;;& = 0 (A25)

In principle, both identities can be verified using the general form of the Fierz identity [46]
_ _ v on L _ _
(@A) (XTPr) = (=) XTI (@D T ) (T T 49), (A.26)
2b/2 &

but since these calculations can turn out to be very tedious these identities will not be verified
here. In fact, it is straight forward to prove the first relation directly by expressing the 4™ in
terms of the ¢ and ¢"™ and checking the relation component—wise using the Clifford algebra.

83



Appendix B

Fields and Ghosts

Since we are dealing with a large number of fields and ghosts we collect all the objects and
their properties in the following tables.

Field | Grassmann | Reality | Conf. Conjugate | Grassmann | Reality Conf. Central
Parity Weight || Momentum Parity Weight || Charge
zm(h) 0 real 0 H,(J,i,)b 0 real 1 1 x 10
goh) 1 herm. 0 p%) 1 antiherm. 1 —2x 16
dé’}} 1 antiherm. 1
For the type II string the following definitions hold:
7 = gua™ — iy 0,0 — ify™ 0,0 (B.1)
1 14 A
dua = Pua— ("), <z'8uxm + 597m8u9 + 597m8u9> (B.2)
. . 1 1. .
dua = DPua — (yme)d (z’@“xm + Eﬁwm@ﬂ + 597’”(%9) (B.3)

The OPEs for the elementary fields ™, 8¢ and p,, and the corresponding h-fields are given

by:

0% (2) 02y, (W)

pza(z)ﬁﬁﬁ(w) ~ ——

~

ozl

m

Pia(2)007" (w)  ~

(2)0ztw ~

For practical calculations we mostly use the supersymmetric objects Il,,,, 30¢ and d,,. These

expressions can be grouped into “currents”! Jy; = (1L, idq, 00%) and J ]}\2 =—(

In condensed notation the relevant OPEs are:

_JKfKMN _ HMN

JM(Z)JN(?U)

Z—w

(z —w)?

!These objects are the conserved currents of the gauge symmetry described in section 3.3.
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JIh(fKMN_F Hun

h h
B.
T )~ PR S (B.5)
The only non-vanishing structure constants are:
Flap = 2ivas = fia
The metric H sy is:
N 0 0
Hun = 0 0 i (B.7)
0 —iog O
We can use its graded inverse
nmn 0 0
HMN 0 0 —idg |, (B.8)
0 i0h 0
to pull indices: JY = JyHNM = (1™, i06%, d.,).
Unpacking equations (B.5) yields the following operator algebra:
. . Vopem(w) . . Vo m’ (w)
idzo(2)id.p(w) ~ —21‘“‘327 idl (2)id" s (w) ~ —2@%
06" Bh
i (2) Lo (w)  ~  —27mef idh ()0 (w)  ~ _gdm a0
z—w z—w (B.9)
n n
Lon(en(w) ~ —7 s L, (M) ~ s
. A3 ;50
. 3 i0a . h h 100
zdm(z)aﬂ (’U)) ~ —m zdm(z)aeﬁ (w) ~ m

Analogous OPEs hold for the right moving sector. One simply has to replace the fields by their
hatted counterparts and worldsheet indices and derivatives by the antiholomorphic expres-
sions. Metric and structure constants are numerically equal to those of the left moving sector.

Now we turn to the ghost fields of our model. The signs in the following table are chosen
such that,
Opy

b (2)cN (w) ~ po—— (B.10)

2In the following equation there appear underlined indices. They indicate that the indices are in the wrong
position as compared to the capital Latin indices, e.g. M is an upper index but o € M is downstairs. We will
try to avoid this notation in order not to overload our formulas.
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which is consistent with our convention ¢(z)p(w) ~ —1/(z —w) where ¢ is a field and p is its
conjugate momentum.

Ghost | Grass. | Reality | Conf. | ng, || Antighost | Grass. | Reality | Conf. | ng, || Central
Parity Weight Parity Weight Charge
—&m 1 herm. 0 1 Bam 1 antih. 1 -1 || —2x10
¢ 0 real 0 1 Wea 0 real 1 -1 2 x 16
Xo 0 real 0 1 KY 0 real 1 -1 2x16
—gm 1 herm. 0 1 o 1 antih. 1 -1 | -2x10
X5, 0 real 0 1 K 0 real 1 -1 | 2x16
™ 0 herm 0 0 Tom 0 antih. 1 0 1x 10
— ¥ 1 real 0 0 —ime 1 real 1 0 || —2x16
—c* 1 herm. -1 1 v, 1 herm. 2 -1 —26
~' 0 herm. -1 2 - 0 antih. 2 -2 26
—c* 1 herm. -1 1 b, 1 herm. 2 -1 —26
v? 0 herm. -1 2 Bz 0 antih. 2 -2 26
Note that we included the fields (¢™, 7. ) and (pq,7$) into this table although they are

ghost number 0 fields with the “correct” statistics. However, considering the way these fields
are introduced into our model, it seems more natural to place them among the ghosts.
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Appendix C

Identities in 2 Dimensions

In two dimensions we have the following identities that involve the e—tensor:

e = —ghtg 4 g"hgP (C.1)
cape™l = &)
Tleapelps.pm %emuzg&)\QT}‘l)‘QW“"‘", (C.3)

where THt--Fn is an arbitrary tensor of rank n.
We define the chiral projection operators [2]:

P = g
P = g g = prR (C.4)
Using (C.2) it is easy to show that they indeed satisfy the properties of projection operators:

PPV = opw (C.5)
PPy, = 0 (C.6)

The projector also satisfies the following useful identities:

pAuprie = g pie (C.7)
prvpNe — A pre (C.8)
plvple — ¢ (C.9)

In the last equation the squared brackets refer to antisymmetrization with respect to p and
A. The first two identities can be combined to P* P\ = PV pie,

e Equation (C.7) can be verified by inserting the definition of P*” and using (C.1):

guvP/\p _ pMvpwe guvg/\p _ gw/g\p _ g/\(vgu)p + g/\(vgu)p + gk(vgu)p — Avewp

(1) —ghveM 4 g/\(vgu)p + gx\(vgu)p

Now we observe that —gHe™ 4 ¢*el? is antisymmetric under the exchange of A and
w which suggests to use (C.3):

_ g 4 Avane %&.A(uga 5 (~g™eP 4 e
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—5€ Fg 55—56 Fg 5

— e QV)p

This completes the proof of the identity (C.7).
e To prove (C.8)we use (C.3):
1

P,u[lxp)\}p _ §€VAEOTP;LTPUp
1
= 581/)\ (EO"TgMT - EO”TEMT) PP

1 1
= e (& ) P = AP P

— VA pwur

e Since I could not think of an elegant proof for the identity (C.9) so I chose the direct
way and checked it component—wise. Using (A.5) we can write P as a matrix:

P g L
P = <go1+ 1 gn' - ) (C.10)
V=g

Most components of (C.9) vanish trivially, a non—trivial one is for example

1
P[HPO}O — P11P00_P01P10 — gllgOO_ ((901)2+§> — 0’ (Cll)

00 11 _

where we used g = det(g,,) = 1/det(g"") = g™g (g"1)%.

C.1 Beltrami Differentials

Consider the following parameterization of the vielbeine:

e = dofe +do’e;” = (do” +do”pu;) e’

z

¢ = dofe +do’e,” = (do”p,” +do®)e” (C.12)

ps* and fi,* are called the Beltrami differentials. Using the above equation they can be
expressed in terms of the vielbeine:

@
N

T e_; i’ = e_; (C.13)
Thus, we can write the vielbein as follows:
a ezz ﬂzzeég
= Z .14
eu < quzezz 622 (C )
Its determinant is given by:
dete = ee(l—pun), (C.15)



where we set e = e,%, € = e;°, u = pu;°, i = ji,°. Now we can express the metric in terms of

the vielbeine!:
T
. a b e ue 01 e [e
Jpo = Cu GabCy = <,ue e ><1 0><ue e>

_ 20 1+pp
_ 66<1+,uﬂ ; > (C.16)

The determinant of the metric is:
2 _\2 N2
detg = —dete® = —(ee)” (1 — pp) (C.17)

The inverse of the metric is given by:

1 —2p 1+ pp
W= — C.18
g ee(l — pp)? < IL+pn  2p (C.18)

For the chiral projectors expressed in terms of the Beltrami differentials we get:

= i (ot )t e (o)
= i ) o

Pulling one index with g, we find:

Pt = #< b ’“‘_) (C.20)

0 1 ) instead of

!Note that there is a small inconsistency in our conventions. Here we use gap = ( 10

0 2 . . .
Jab = ( 2 0 ) of our conventions. In our calculations this does not matter because the factor always cancels

in \/gg"".

89



Appendix D

Mathematica File

The OPEs for the N = 2 and N = 4 algebra were computed with Mathematica using the
OPE package by Chris Thielemans [36]. The file with the definitions of the fields and currents
looks as follows:

Declaration of the Fields

Bosoni c[Im[_]1;
Fermonic[d[_1, de[_]11;
Bosoni c[mh[_]11;

Ferm oni c[dh[_], deh[_11;
Fermionic[B[_1, §[_11;
Bosoni c[x[_1,
Bosoni c[w[_]1,

x[_]

nic AL_]
Fermonic[B1l[_]1, &€
[

e

Bosoni c[x1[_1, x1
Bosoni c[wbos[_],
Fermonic[nfer[_], o
Ferm oni c[bl, cl];
Bosoni c[bet 1, gaml];
Ferm oni c[b2, c27;
Bosoni ¢ [bet 2, gan?];

Dummies

Def i neDunmy [i ];
Def i neDunmy [u];
di nensi on[i ] = 10;
di mensi on[u] = 16;
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Basic OPEs

OPE[II[m_ ], O[n_]1]: =MkeOPE[{-Delta[m n] One, 0}1;

OPE[d[a_], do[B_]1: = MakeOPE[{- Del ta[a, B] One, 0}1;

OPE[d[a_], d[B_]] :=NewDunmmi es [MakeOPE[{2 & ¥ [i [1]] [a] [B] I[i [11]1}1];
OPE[m[m_], d[a_]1] := NewDurmmi es [MakeOPE[{-2 & y[m] [a] [#[1]]1 dO[u[1]1]1}]1];

OPE[th[m_], th[n_]]: = MakeOPE[{Delta[m n] One, 0}1;

OPE[dh[a_], deh[B_]1] : = MakeOPE[{Del ta[a, B] One, 0}1;

OPE[dh[a_], dh[B_]] : = Newbunmi es [MakeOPE[{2 4 y[i [1]][a] [B] mh[i [1]11}]1];
OPE[nh[m ], dh[a_1]1:= NewDunmm es[MakeOPE[{-2 4 y[mM] [a] [u[1]] deh[u[111}1];

OPE[B[M_], &[n_1]:=MakeOPE[{-Delta[m n] One}];
OPE[x[a_]1, x[B_11:=MkeCOPE[{Deltala, B] One}];
OPE[w[a_], A[B_]1]:=MakeOPE[{Del ta[a, B] One}];

OPE[B1[m_ ], &€1[n_]1]1: = MakeOPE[{-Delta[m n] One}];
OPE[x1[a_]1, x1[B_]1]:=MakeOPE[{Delta[a, B] One}];

ODE[nbos[m] <pbos[n 11 : = MakeOPE[{Del ta[m n] One}];
OPE[nfer [a_], ofer [B_]1]:=MakeOPE[{-Del ta[a, B] One}];

OPE[b1, c1] : = MakeOPE[{- One}];
OPE[bet 1, ganl] : = MakeOPE[{ One}1;
OPE[b2, c2] : = MakeCPE[{- One}];
OPE[bet 2, ganR] : = MakeOPE[{ One}];

Energy Momentum Tensor

Twzw : = NewDumni es [
-1/2NO[m[i [11], m[i [1]1]1+1/2NO[nh[i [1]], mh[i [11]] +NO[d[p[1]], de[u[1]]] -
NO[dh [u[1]], doh[u[1]1]]1 + NO[B[i [1]1], Derivative[1l][&[i [1]1]1] +
NO[w([u[11], Derivative[l] [A[u[1]]1]] + NO[x[u[1]], Derivative[l] [x[u[1]111]1;

Tco : = NewDunmi es [NO[B1[i [1]], Derivative[l][&L[i [1]111] +
NO[k1[u[1l]], Derivative[l][x1[u[1]]1]1] + NO[nbos[i [1]], Derivative[l][ebos[i [1]]1]1] +
NO[~f er [u[1]], Derivative[l][efer [u[1]1]1]1]1];

Tkl :=2NO[betl, Derivative[l][ganl]] + NO[Derivative[l][betl], ganl] +
2 NO[b1, Derivative[l][c1l]] + NO[Derivative[l][bl], c1];

Tk2 : =2 NO[bet 2, Derivative[l][ganR]] + NO[Deri vati ve[l] [bet 2], gan?] +
2 NO[b2, Derivative[l][c2]] +NO[Derivative[l][b2], c2];

F— and Phi—currents

F:=NewDummi es[-a y[i [1]][p[1]][k[2]] NO[B[i [1]], x([u[1]], d6[u[2]]] +
Ay [i [1]]1[u[1]][1[2]] NO[B[i [1]], x[u[1]], deh[u[2]]] +
/2 y[i [11][p[1]][m[2]] NO[x[p[1]], x[u[2]], T[i [1]1] -
/2 [i [111[p[1]][K[2]] NO[x[u[1]1], x[u[2]], mh[i [1]]1]1;

= NewDummi es [4 /2y [i [11]1[p[11]1[p[2]]1 NOIB[i [11], x[u[1]], x[u[2]111];
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B—current

Bwzw: = NewDunmi es [-1 /2 NO[I[i [111, B[i [1]11] -1/2NO[mh[i [11], BLi [1]]1] +
2 /2NO[2d[u[1]], x[u[1]]] +4/2NO[2dh[u[1]], x[u[1]]] -
i/2NO[de[u[1]], w[u[1]1]1] - 2/2NO[deh([u[1]], w[u[1]]]];

Bco : = NewDunmmi es [
NO[BL[i [1]1], Derivative[l][ebos[i [111]] + NO[x1[u[1]], Derivative[l][efer [u[1]1]111];

Bkl:=-2NO[bet1l, Derivative[l][cl]] -NO[cl, Derivative[l][betl]] -b1;
Bnil :=-1/2NO[cl, F] -1/2NO[ganl, &];

Bk2 : = -2 NO[bet 2, Derivative[l][c2]] -NO[c2, Derivative[l][bet2]] -pb2;

BRST - current

Jwzw: = NewDurmmi es [-NO[I[i [111, £[i [1]1]1] +NO[mh[i [1]]1, &[i [11]]
NO[& d[u[1]], A[u[1]]] +NO[4dh[u[1]], A[u[1]]] -NO[dO[u[1]], x[u[1]
NO[deh [u[11], x[u[1]1]1] +ay[i [1]1][p[1]][w[2]] NO[B[i [1]], A[u[1]]
29[ [11]1[m[11][m[2]] NO[x[p[1]], A[u[2]], &I [11111;

Jco : = NewDunmmi es [-NO[nbos [i [1]], &€1[i [1]1]1] -NO[nfer [u[1]1], x1[u[l]111];
Jk1:=NO[bl, gaml];

+

11
v ALu[211] +

Jk2: = NO[b2, gan?];
Jv:=NO[c2, Twzw+ 1/2Tk2] + NO[gan2, Bwzw+Bnil + 1/2Bk2];
Jvco : =NO[c2, Tco] + NO[gan®, Bco];

Ghost Current

jwzw: = Newbummi es [NO[B[i [1]], &[i [1]]] + NO[w[u[1]], A[p[1]]] + NO[x[u[1]], x[u[1]]11];
jco:=NewDunmi es [NO[BL[i [1]], &€1[i [1]11] + NO[x1[u[1]], x1[m[1]1]]];

j k1:=NO[bl, cl1] +2 NO[bet 1, ganl];

j k2 :=NO[b2, c2] +2 NO[bet 2, gan?];
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