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Kurzfassung

Das Hauptthema dieser Doktorarbeit sind D–branes in topologischer Stringtheorie. Topol-
ogische Stringtheorie beschreibt einen Untersektor der vollen Stringtheorie, der sich auf die
Nullmoden der physikalischen Felder beschränkt. Man erhält eine solche Theorie durch den so
genannten topologischen Twist, welcher, aus dem Blickwinkel der Weltflächenwirkung, einer
mit der Theorie verträglichen Redefinition der Spins der Felder entspricht. Der topologische
Twist kann auf zwei Arten durchgeführt werden, woraus zwei unterschiedliche und a priori
unabhängige Theorien resultieren, die als A– und B–Modell bezeichnet werden.
Für offene Strings kann man Randbedingungen definieren, welche mit dem topologischen
Twist konsistent sind. Diese werden als A– bzw. B–branes bezeichnet.
Vor Kurzem wurde eine neue Beschreibung von topologischen D–branes im B–Modell, welches
durch ein Landau–Ginzburg Modell realisiert werden kann, gefunden. Solche Landau–Ginzburg
Theorien sind durch ein Superpotential charakterisiert und B–branes werden durch Matrix-
faktorisierungen dieses Superpotentials beschrieben. Diese Doktorarbeit beschäftigt sich mit
den Eigenschaften und Anwendungen dieses Formalismus. Eine der Problemstellungen be-
fasst sich mit der Berechnung des effektiven Superpotentials Weff . Dieses Objekt ist von
phänomenologischem Interesse, da man es als vierdimensionales Superpotential einer N = 1
supersymmetrischen Calabi–Yau Kompaktifizierung interpretieren kann. Es wird gezeigt,
wie man diese Größe für minimale Modelle berechnen kann. Diese Modelle sind nützliche
Spielzeugmodelle für Stringkompaktifizierungen. Als eines der Hauptresultate dieser Dok-
torarbeit zeigen wir, dass es möglich ist Weff zu berechnen, indem man die allgemeinsten
nicht–lineare Deformationen von Matrixfaktorisierungen berechnet. Ein bemerkenswertes Re-
sultat in der Stringtheorie besagt, dass A-Modell und B–Modell durch eine Dualität miteinan-
der verbunden sind, die sogenannte Mirrorsymmetrie. Diese besagt, dass das A–Modell auf
einer bestimmten Calabi–Yau Mannigfalitgkeit äquivalent ist zum B–Modell auf der Mirror–
Calabi–Yau.
Mirrorsymmetrie kann erweitert werden um auch offene Strings zu beschreiben. Diese Du-
alität ist bis jetzt noch nicht ausreichend verstanden, insbesondere für kompakte Calabi–Yau
Mannigfalitgkeiten. In dieser Doktorarbeit werden wir uns ausserdem mit Mirrorsymmetrie
für offene Strings für die einfachste kompakte Calabi–Yau befassen, für den Torus. Unter der
Verwendung von Matrixfaktorisierungen werden Dreipunktfunktionen im B–Modell berechnet
und es wird gezeigt, dass diese mit den entsprechenden Größen im A–Modell übereinstimmen.
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Abstract

The main focus of this thesis are D–branes in topological string theory.
Topological string theory describes a subsector of the full string theory, that only captures
the zero–modes of the physical fields. It can be obtained by an operation called topological
twist, which is, at the level of the worldsheet action, a consistent redefinition of the spins
of the fields. The topological twist can be done in two ways. This leads to two different, a
priori independent, models, called the A–model and the B–model. If we consider open string
theory, there are boundary conditions which are consistent with the topological twist. These
boundary conditions are called A–type and B–type D–branes, respectively.
Recently, a new description of D–branes in the topological B–model has been found. The
B–model can be realized in terms of a Landau–Ginzburg theory, which is characterized by a
superpotential. B–type D–branes are described by matrix factorizations of this superpotential.
This thesis is devoted to exploring the properties and applications of this formalism.
One of the central challenges of this thesis is the calculation of the effective superpotential
Weff . This quantity is of phenomenological interest since it has an interpretation as a four–
dimensional space–time superpotential in N = 1 supersymmetric string compactifications.
We show how to calculate it for the minimal models, a subclass of Landau–Ginzburg theories,
which serve as useful toy models for string compactifications. One of the main results of this
thesis is that Weff can be obtained by calculating the most general, non–linear deformation
of a matrix factorization.
A remarkable result in string theory states that the A–model and the B–model are related by
a duality known as mirror symmetry. The statement is that the A–model on a Calabi–Yau
manifold is equivalent to the B–model on the mirror Calabi–Yau.
Mirror symmetry can be extended to open strings. Open string mirror symmetry is by now
poorly understood, in particular for compact Calabi–Yau spaces. In this thesis we will verify
open string mirror symmetry for the simplest compact Calabi–Yau, the torus. Using matrix
factorization techniques we calculate three–point correlators in the B–model and show that
they match with the correlators we compute in the A–model.
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Chapter 1

Introduction

1.1 Motivation

String theory has been a challenge to theoretical physicists for over thirty years. Originally
introduced in the late sixties to describe hadronic resonances, it was soon realized that string
theory could be a possible candidate for a ’theory of everything’. This is due to the fact that
the physical spectrum of closed string theory contains a massless spin 2 excitation, which has
a natural interpretation as a graviton. It is also possible to realize gauge theories in string
theory, which can be achieved, for instance, by taking into account the open string sector.
This lead string theorists to the insight that string theory could be a theory which not only
is a consistent theory of quantum gravity but also unifies the fundamental interactions at
the string scale. The initial enthusiasm subsided when physicist recognized the conceptual
complexity of this theory, but was rekindled again by the ’string revolutions’ which revealed
new exciting and unexpected aspects of string theory. String theory is often accused of being
a field in mathematics rather than a physical theory because experimentally testable predic-
tions of physical phenomena are difficult to find. Phenomena like gravitational waves and
supersymmetry, which may be measured in the near future at gravitational experiments like
LIGO or LISA or at the LHC, respectively, may point towards string theory but they do
not imply that string theory is the theory of nature. Despite this criticism string theory has
proven to be a consistent theory in the most amazing ways and has by no means been falsified.
By now there exists no other candidate for a theory of everything, which is better understood
and easier to handle than string theory.

Let us now point out some characteristic features of string theory, which make it difficult
to relate it to the ’real world’ but also imply some intriguing fundamental concepts which
may be realized in nature.
First, we should mention that supersymmetry is crucial for a string theory to be consistent.
Since we, obviously, do not live in a supersymmetric world, supersymmetry has to be broken.
Phenomenology implies that one should have at most N = 1 supersymmetry at the string
scale, which is then completely broken at low energies. The mechanisms which break super-
symmetry may go to work well below the string scale at energies which are sufficiently low to
be measured at the LHC. This implies that string theories with N = 1 supersymmetry are
by far the most promising candidates for realistic models.
Another characteristic property of string theory is that, perturbatively, it can only be consis-
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tently defined in ten dimensions. From a string theory point of view, our four–dimensional
space time is an effective low–energy realization of this ten–dimensional theory. So what hap-
pens to the other dimensions? The standard picture is that, unlike four–dimensional space–
time, the extra dimensions are small and compact and have therefore not been observed. The
structure of the internal dimensions affects the observables in the four–dimensional theory.
The most prominent candidates for these compact manifolds are the Calabi–Yau manifolds
and generalizations thereof. A Calabi–Yau manifold is a Ricci flat Kähler manifold, where
the Kähler property is implied by supersymmetry and the Ricci flatness constraint comes
from the requirement that the theory compactified on the Calabi–Yau is consistent at the
quantum level. Unfortunately, there are millions of possible candidates for Calabi–Yau com-
pactifications, all leading to different string vacua. There immediately arises the question
which Calabi–Yau manifold is the right one to describe our world. This problem has come
into focus recently with the introduction of flux compactifications, which yield a vast number
of vacua which are actually quite similar. This is known as the string landscape. It suggests
that our universe may be a (possibly metastable) point in the landscape of string vacua which
might as well have been realized in a slightly different way. In order to shed light on this issue,
statistical methods paired with anthropic1 and ’entropic’ considerations have been applied to
study the structure of the landscape.
At the beginnings of string theory it was hoped that there is a unique string theory which
yields a unique vacuum which contains our universe. As we have just seen the hope to find a
unique vacuum out of string theory in a straight forward manner has been thoroughly shat-
tered. But also string theory itself is not unique, at least not in the way it was expected in the
beginning. String theory in ten dimensions comes in five incarnations: Type I string theory
is an open/closed string theory of unoriented strings. The heterotic string is a string theory
which has fermions only in the left–moving sector. It can be realized with two gauge groups,
E8 × E8 and SO(32). The E8 × E8 heterotic string was the first string theory for which
N = 1 supersymmetric theories in four dimensions could be realized. The heterotic string
has received new attention lately when it was found that one can obtain the Standard Model
from the E8 × E8 theory. There are two string theories which have N = 2 supersymmetry,
the type IIA and the type IIB string. Furthermore, at the non–perturbative level, there is
M–theory in eleven dimensions and F–theory in twelve dimensions.
The existence of so many different string theories may look like a drawback concerning the
search of a unique theory of nature but actually one of the most fascinating aspects of string
theory comes to rescue. It turns out that all these theories are related by certain dualities.
The existence and consistency of these dualities may be viewed as one of the most convincing
arguments in favor of string theory. We can make a distinction between two types of duali-
ties: there are the strong/weak coupling dualities which relate the perturbative sector of one
theory to the strong–coupling regime of the dual theory. The second type are dualities which
relate the perturbative sectors of two theories, where one of the two is, in some sense, easier
to handle than the other one.
One of the most prominent examples of a strong/weak duality is the AdS/CFT correspon-
dence. This is a gauge–gravity duality, which relates a gravity theory with matter, i.e. a
closed string theory, in a certain space–time, to a supersymmetric gauge theory without grav-
ity at the boundary of this space–time. One of the current achievements in this field is that it

1Such considerations and the lack of physical predictions have brought string theory the criticism of being
some kind of religion. See [1] for a reaction to this.
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provides analytic methods to investigate the strong coupling regimes of gauge theories. Quite
recently, string theory methods have been used to calculate the properties of quark–gluon
plasma. It is quite amusing that after more than twenty years, string theory has found back
to its roots, being, once again, successful in describing phenomena in QCD. At the moment
it looks like this is a promising field in physics where string theory may actually be able to
make predictions that could be tested in the near future.
An impressive example of a string duality which relates the perturbative sectors of two string
theories is mirror symmetry. Mirror symmetry identifies the type IIA string compactified on
a Calabi–Yau manifold with type IIB string theory compactified on a different Calabi–Yau,
which is the ’mirror’ of the first manifold. Mirror symmetry for closed strings is very well
understood, but looking only at the closed string sector poses two problems: As we have
mentioned before, type II compactifications have N = 2 supersymmetry, whereas the phe-
nomenologically relevant models only have N = 1 supersymmetry. Furthermore, if we only
consider closed strings, the theory we describe is a pure theory of gravity. If we want to realize
gauge theories in type II string theories, we also have to include the open string sector. This
brings us close to the topic of this thesis.

If one wants to consider open string theory, it is necessary to specify boundary conditions at
the ends of the string. There are two types of boundary conditions: those where the ends of
the open string move freely (Neumann conditions) and those where the string ends are fixed
(Dirichlet conditions). Dirichlet boundary conditions have been ignored in string theory for
a long time since there were no suitable objects in the theory for the open string to end on.
In 1995 such objects were found by Polchinski. It was shown that open strings can end on
D–branes. These are non–perturbative, dynamical, extended objects – they are solitons in
string theory. D–branes explicitly break Lorentz invariance. This makes them look unphysical
at first sight, but we can only be sure that Lorentz invariance is unbroken in four dimensions,
this may however not be the case in the compact dimension. Thus, we can safely introduce
D–branes into our string theory as long as we choose Neumann boundary conditions in the
four–dimensional space–time.
An open string cannot move in the directions normal to the D–brane but it can move freely on
the worldvolume of the D–brane. Therefore the open string has additional degrees of freedom
as compared to the closed string. These degrees of freedom happen to be gauge degrees of
freedom. Thus, we can realize gauge theories on the worldvolumes of D–branes. In certain
limits, we can picture D–branes as infinitely extended planes. If we consider N coincident
D–branes this gives rise to a U(N) gauge theory.
There are even more benefits of D–branes. Since they break translation invariance, D–branes
also break supersymmetry2. Generic D–brane configurations will break supersymmetry com-
pletely, but there is a particular kind of D–branes, the BPS branes, which actually preserve
half of the supersymmetry. Thus, D–branes provide a means to break the the N = 2 super-
symmetry of type II string theories down to N = 1.

It is of central interest to study D–branes and mirror symmetry in type II string compacti-
fications but it turns out to be a very difficult task in many cases. So we have to find some
simplifications. This leads us to the topological string. Topological string theory describes

2One can see this from the supersymmetry algebra {Q,Q} ∼ P , where Q is the supersymmetry generator
and P generates the translations.

3



a subsector of the physical string theory. In principle, topological string theories are exactly
solvable theories. They only deal with a subsector of the observables of the full string theory.
This sector captures the topological properties of the theory. One can obtain a topological
theory out of an N = 2 supersymmetric theory by an operation on the N = 2 algebra, called
the topological twist. The topological twist can be performed in two different ways, which
leads to two a priori different theories. These are usually referred to as the A–model and the
B–model.
The A–model and the B–model are related by mirror symmetry. The B–model is in this
case the ’easy’ theory, where ’easy’ means in particular that it does not receive any quantum
corrections. The A–model, on the contrary, obtains instanton corrections and this makes it
hard to calculate correlation functions in this model. By mirror symmetry, we can however
calculate the A–model quantities by considering the B–model on the mirror Calabi–Yau.
One benefit of topological string theory is that the moduli dependence of the theories simpli-
fies a lot. On a generic Calabi–Yau compactification all the physical quantities will depend
on the moduli of the Calabi–Yau. The moduli are parameters, which can be divided into two
classes: roughly speaking, the Kähler moduli determine the size of the Calabi–Yau whereas
the the complex structure moduli parameterize its shape. It turns out that the A–model only
depends on the Kähler moduli whereas the B–model only depends on the complex structure
moduli.
We have already mentioned that topological string theory only describes a subsector of the
full theory. It is thus natural to ask which physical quantities, if any, the topological string
computes. It can be shown that topological string theory computes certain terms in the action
of the four–dimensional effective theory one obtains by compactifying type II string theory
on a Calabi–Yau. In the closed string case the relevant quantity is the free energy of the
topological string. In the effective action this quantity enters as the coefficient of the term
responsible for the gravitational correction to the scattering of graviphotons. Quite recently,
it was found that the topological string also counts the microstates of extremal black holes.
This fascinating result indicates that string theory gives a microscopic description of black
hole entropy, as one would expect from a good theory of quantum gravity.
It is possible to introduce D–branes in topological string theory. In N = 1 compactifications
with open strings the topological string computes the superpotential of the N = 1 theory in
four dimensions. This quantity will be of particular interest in this thesis. Mirror symmetry
also works for open topological strings. Open string mirror symmetry is called homological
mirror symmetry and is by now not sufficiently well understood. In this thesis we will discuss
homological mirror symmetry for a toy model.

The main focus of this thesis will be on D–branes in B–type topological string theories.
As we will discuss in the following chapter the topological B–model can be realized in terms
of a supersymmetric Landau–Ginzburg model. Such models are characterized by a Landau–
Ginzburg superpotential. D–branes in such a theory are characterized by matrix factorizations
on this superpotential. The aim of this thesis is to investigate this rather new description of
D–branes.
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1.2 Summary and Outline

Let us now give the general plan of this thesis. In chapter 2 we review some aspects of topo-
logical strings and D–branes. In chapter 3 we focus on B–type topological Landau–Ginzburg
models with boundaries. We show that D–branes in these models are realized in terms of
matrix factorizations of the Landau–Ginzburg superpotential and discuss their properties.
Chapter 4 is devoted to the effective superpotential. In particular we will be concerned with
two interpretations of the effective superpotential, namely as the generating function of open
string disk amplitudes and as the quantity which encodes the obstructions to deformations of
D–branes. These two distinct interpretations lead to two methods for calculating the effective
superpotential. We test these methods in chapter 5 for a special class of models, the minimal
models. These models serve as toy models for Calabi–Yau compactifications. Chapter 6 is de-
voted to the simplest Calabi–Yau, the torus T 2. We discuss D–branes in the A–model and the
B–model and verify homological mirror symmetry by comparing three–point functions, which
we compute independently in both models. In chapter 7 we point out some open problems.
Furthermore we give additional results and details on certain calculations in three appendices.

The results which have been obtained during the production of this thesis have been published
in [2, 3].
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Chapter 2

Topological Strings and D–branes

In this chapter we review some aspects of topological strings and D–branes. The intention
is to explain some of the general background which is useful for understanding D–branes in
topological Landau–Ginzburg models. We also want to show how Landau–Ginzburg models
appear in the setup of topological string theory and mirror symmetry. The contents of this
chapter can be summarized in the following picture:

Sigma Model with CY-target

Derived Category of Coherent Sheaves

Category of Matrix Factorizations

Landau-Ginzburg Model

A-Model
only Kähler Moduli

A-Branes

Fukaya Category

only Complex Structure Moduli

B-Branes

B-Model

Position in Kähler Moduli Space

Mirror Symmetry

r ≫ 0

r ≪ 0

Figure 2.1: Matrix factorizations in the ’big picture’ of Topological String Theory.

Here we only drew the details on the B–model, which will be our focus.
In section 2.1 we discuss N = 2 supersymmetric theories without boundary and review the
basics of topological string theory. We point out that the topological B–model can be realized
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in two ways, depending on the position in Kähler moduli space. Section 2.2 is devoted to
D–banes. We summarize the properties of D–branes in the A–model and the B–model and
their description in terms of categories.
There are many good books and review articles which discuss the subjects we cover here.
An exhaustive discussion of mirror symmetry and the mathematical and physical background
necessary to understand it is given in [4]. A classic review article on string theory and Calabi–
Yau manifolds is [5]. Two recent reviews on topological string theory are [6, 7]. The very
basic facts on D–branes can be found in Polchinski’s books [8, 9]. D–branes in the context of
categories are reviewed e. g. in [10, 11].

2.1 Aspects of N = 2 Theories

In this section we summarize some aspects of N = 2 supersymmetric theories, which will be
relevant for this thesis. We start by discussing the N = 2 superconformal algebra and the
ring of chiral primary fields [12]. As examples for the concrete realization of these theories
we discuss the non–linear sigma model and the Landau–Ginzburg model. We go on to review
how one can obtain topological field theories from non–linear sigma models, following [13].
We define the A–model and the B–model, which are related by mirror symmetry. Finally we
discuss the Calabi–Yau/Landau–Ginzburg correspondence, summarizing the results of [14].
In this paper is shown that the non–linear sigma model and the Landau–Ginzburg model can
be viewed as ’phases’ of a supersymmetric gauge theory. These phases correspond to different
points in Kähler moduli space. This implies that the B–model, which is independent of the
Kähler moduli, has two equivalent realizations in terms of a non–linear sigma model and a
Landau–Ginzburg theory.

2.1.1 N = 2 Superconformal Theories

An N = 2 superconformal algebra is generated by an energy–momentum tensor T (z), two
supercharges G±(z) of conformal charge 3

2 and a U(1) R–current J(z). The algebra is deter-
mined by the following operator products:

T (z)T (w) ∼
c
2

(z −w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w

T (z)G±(w) ∼
3
2G

±(w)

(z −w)2
+
∂wG

±(w)

z − w

T (z)J(w) ∼ J(w)

(z −w)2
+
∂wJ(w)

z − w

G+(z)G−(w) ∼
2c
3

(z −w)3
+

2J(w)

(z − w)2
+

2T (w) + ∂wJ(w)

z − w

J(z)G±(w) ∼ ±G
±(w)

z − w
J(z)J(w) ∼

c
3

(z −w)2
(2.1)
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Here c is the central charge of the theory. These operators have a mode expansion:

T (z) =
∑

n

Lnz
−n−2 J(z) =

∑

n

Jnz
−n−1 G±(z) =

∑

n

G±
n±az

−(n±a)− 3
2 (2.2)

The parameter a, 0 ≤ a ≤ 1 controls the boundary conditions of the fermions: for integral a,
we are in the Ramond sector, half–integral values of a imply periodic boundary conditions,
corresponding to the Neveu–Schwarz sector.
One particular property of N = 2 superconformal theories is the existence of the chiral ring of
primary fields [12]. A chiral primary field φ is defined as a field whose operator product with
G+ does not contain any singular terms. We can associate a state |φ〉 to φ. A (anti–)chiral
primary state is then defined by the condition:

G+
− 1

2

|φ〉 = 0 G−
1
2

|φ〉 = 0 (2.3)

The second equation defines the antichiral primary. The superconformal algebra tells us that

{G−
1
2

, G+
− 1

2

} = 2L0 − J0. (2.4)

For a chiral primary field φ we have:

〈φ|{G−
1
2

, G+
− 1

2

}|φ〉 = 〈φ|2L0 − J0|φ〉 = 〈φ|2hφ − qφ|φ〉 = 0, (2.5)

where we introduced the conformal weight hφ and the R–charge qφ. Thus, chiral primary
fields satisfy hφ =

qφ
2 . Using (G+

− 1
2

)† = G−
1
2

, we can write

〈φ|{G−
1
2

, G+
− 1

2

}|φ〉 =
∣∣G−

1
2

|φ〉
∣∣2 +

∣∣G+
− 1

2

|φ〉
∣∣2, (2.6)

which is positive definite. Thus, for any state |ψ〉 we have hψ ≥ qψ
2 .

We now consider the operator product between two chiral primary fields φ and χ:

φ(z)χ(w) =
∑

i

(z − w)hψi−hφ−hχψi(w) (2.7)

Note that R–charges add up in the operator product so that one has qψi = qφ + qχ. The
relation to the conformal weights then implies that hψi ≥ hφ + hχ. This entails that there
are no singular terms in the operator product (2.7). So, taking the limit z → w, the operator
product is non–zero only if ψ is a chiral primary field. Thus, the chiral primary fields form a
closed, non–singular ring under the operator product. This is called the chiral ring.
We make one further observation. The N = 2 algebra implies:

{G−
3
2

, G+
− 3

2

} = 2L0 − 3J0 +
2

3
c (2.8)

From this it follows that the conformal weights of chiral primary fields are bounded from
above by c

6 . We thus reach the conclusion that there is only a finite number of chiral primary
fields.
An analogous discussion can be made for antichiral states. In N = (2, 2) superconformal
theories we can have chiral and anti–chiral primaries in the holomorphic and the antiholo-
morphic sector, yielding four different chiral rings, where two are complex conjugate of the
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other two. We denote them by (c, c), (c, a), (a, c) and (a, a).

Models with N = 2 superconformal symmetry can be realized in various ways. We will
now discuss the non–linear sigma models and the supersymmetric Landau–Ginzburg models.
A non–linear sigma model in two dimensions governs maps φ : Σ → X from a worldsheet
Σ to a target manifold X. In general, X is a Riemannian manifold. N = 2 supersymmetry
constrains it to be Kähler. We define coordinates z, z̄ on Σ and φi on X. φ can be described
locally by φi(z, z̄). The action has the following form:

S =2t

∫

Σ
d2z

(
gīi(∂zφ

i∂z̄φ
ī + ∂z̄φ

i∂zφ
ī) + iψī−Dzψ

i
−gīi + iψī+Dz̄ψ

i
+gīi +Rīijj̄ψ

i
+ψ

ī
+ψ

j
−ψ

j̄
−

)

(2.9)

Here t is a coupling constant which will become important when we consider topological
amplitudes, gij̄ = ∂i∂j̄K(φ, φ̄) is the Kähler metric and Rīijj̄ is the curvature constructed

from the connection Γijk = gik̄∂jgkk̄. It is also possible to turn on a B–field Bij̄, which we
will set to 0 here. The covariant derivative is defined as follows:

Dz̄ψ
i
+ =

∂

∂z̄
ψi+ +

∂φj

∂z̄
Γijkψ

k
+ (2.10)

Let K, K̄ be the (anti–)canonical bundles in Σ, then the fermions are sections of the following
bundles:

ψi+ ∈ Γ(K
1
2 ⊗ φ∗(T 1,0X)) ψī+ ∈ Γ(K

1
2 ⊗ φ∗(T 0,1X))

ψi− ∈ Γ(K̄
1
2 ⊗ φ∗(T 1,0X)) ψī− ∈ Γ(K̄

1
2 ⊗ φ∗(T 0,1X)) (2.11)

Assigning charges Q±, Q̄± to the supersymmetry generators, the supersymmetry transforma-
tion laws defined by δ = ǫ+Q− − ǫ−Q+ − ǭ+Q̄− + ǭ−Q̄+ are:

δφi = ǫ−ψ
i
+ − ǫ+ψi− δψī = −ǭ−ψī+ + ǭ+ψ

ī
−

δψi+ = −iǭ−∂zφi + ǫ+ψ
j
−Γijmψ

m
+ δψī+ = iǫ−∂zφ

ī − ǭ+ψj̄−Γī
j̄m̄
ψm̄+

δψi− = iǭ+∂z̄φ
i − ǫ−ψj+Γijmψ

m
− δψī− = −iǫ−∂z̄φī + ǭ−ψ

j̄
+Γī

j̄m̄
ψm̄+

(2.12)

The parameters ǫ−, ǭ− are sections of K
1
2 and ǫ+, ǭ+ are sections of K̄

1
2 . Note that the action

of the non–linear sigma model cannot be globally defined on a worldsheet for genus g 6= 1.
At genus g = 1 the canonical budle is trivial and thus the fermions are scalars which can be
globally defined. For any other genus this is not the case.
A second important example of an N = 2 supersymmetric theory is the Landau–Ginzburg
model:

SΣ =

∫

Σ
d2xd4θK(Φ, Φ̄) +

∫

Σ
d2xd2θW (Φ) + c.c., (2.13)

where K is the Kähler potential and W is the holomorphic superpotential. Φ is a chiral
superfield. A Landau–Ginzburg model is entirely characterized by its superpotential. The
model itself is not a conformal field theory but it is believed to flow to a unique conformal
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fixed point in the infrared. The chiral ring R is isomorphic to the Jacobi ring [12], i.e. given
a superpotential W (Φi) we have:

R =
C[Φi]

(∂jW (Φi))
(2.14)

These models will be of central interest in this thesis. We will give an exhaustive discussion
of the supersymmetry variations and boundary conditions in section 3.2.

2.1.2 The Topological Twist and Mirror Symmetry

In this section we discuss how to get a topological field theory out of an N = 2 superconformal
theory. A topological field theory is characterized by the requirement that correlators of
physical operators are independent of the metric gij of the manifold the theory lives on.
Physical states are defined by the cohomology of a fermionic nilpotent operator Q, the BRST
operator. Topological field theories can be classified according to the form of their actions [15]:
A topological field theory of Schwarz type is of the form SS = {Q,V } where V may also depend
on the metric. A topological field theory of Witten type has an action SW = Sc + {Q,V },
where Sc is independent of the metric. Topological field theories have the crucial propoerty
that the energy–momentum tensor Tab is Q–exact:

Tab = {Q,Bab} (2.15)

Restricting to the topological sector means that we restrict to a subsector of the physical
theory. In particular, we will discuss that the topological theory localizes on the zero–modes
of the physical fields and thus gives information about the vacuum sector of the full theory.
There are two ways to get a topological field theory out of an N = 2 superconformal field
theory, the corresponding models are called the A–model and the B–model1. A remarkable
property is that these two models are related by mirror symmetry.

Twisting the N = 2 Algebra

At the level of the superconformal algebra, we can get the algebra of the topological theory
by an operation called the topological twist, which is defined as follows:

T (z)→ T (z)± 1

2
∂J(z)

J(z)→ ±J(z) (2.16)

1Actually, there is another possibility which yields the half–twisted models [13].
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With these redefinitions the algebra becomes:

T (z)T (w) ∼ 2T (w)

(z − w)2
+
∂wT (w)

z − w

T (z)G(w) ∼ 2G(w)

(z − w)2
+
∂wG(w)

z − w

T (z)Q(w) ∼ Q(w)

(z − w)2
+
∂wQ(w)

z − w

T (z)J(w) ∼ − ĉ

(z − w)3
+

J(w)

(z − w)2
+
∂wJ(w)

z − w

Q(z)G(w) ∼ ĉ

(z − w)3
+

J(w)

(z − w)2
+
T (w)

z − w

J(z)G(w) ∼ −G(w)

z − w
J(z)Q(w) ∼ Q(w)

z − w
J(z)J(w) ∼ ĉ

(z − w)2
(2.17)

Instead of the supersymmetry generators G± we have introduced two new quantities:

G(z) =
∑

n

Gnz
n−2 Q(z) =

∑

n

Qnz
n−1 (2.18)

G(z) has conformal weight 2 and Q(z) has weight 1. This implies that
∫
Q is a scalar and

can be defined globally on worldsheets of arbitrary genus. Furthermore Q is fermionic and
thus has the right properties to define the BRST operator of the topological field theory. We
observe that the conformal anomaly in the operator product of the energy momentum tensor
with itself has vanished. An important consequence is that the dimension in which a topo-
logical string theory can be consistently defined is not constrained to the critical dimension
D = 10. In the topological theory the U(1) R–current J(z) becomes anomalous. It has an
anomalous background charge ĉ, which is related to the central charge of the untwisted theory
by ĉ = c

3 .
Given an N = (2, 2) superconformal algebra we can make two distinct choices for the topo-
logical twist. Performing the twist (2.16) with the same sign for the left–moving and the
right–moving sector it is called an A–twist. Choosing different signs in the two sectors is
called a B–twist. The corresponding topological field theories are the A–model and the B–
model.
We observe that the twisted N = (2, 2) superconformal algebra remains invariant under the
following Z2 transformation:

J(z)→ J(z) J̄(z̄)→ −J̄(z̄) (2.19)

This exchanges the A–model and the B–model. This is the definition of mirror symmetry at
the level of the algebra.
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The A–model

We now discuss the A–twist and its consequences for the non–linear sigma model. In order
to obtain the A–model we redefine the spins of the fields in the following way

ψi+ ≡ χi ∈ Γ(φ∗(T 1,0X)) ψī− ≡ χī ∈ Γ(φ∗(T 0,1X))

ψī+ ≡ ψīz ∈ Γ(φ∗(K ⊗ T 0,1X)) ψi− ≡ ψiz̄ ∈ Γ(φ∗(K ⊗ T 1,0X)) (2.20)

The fermionic fields thus combine into a scalar χ ∈ Φ∗(TX) and a holomorphic and an
antiholomorphic one–form. The action written in terms of the newly defined quantities looks
as follows:

S = 2t

∫

Σ
d2z

(
gīi(∂zφ

i∂z̄φ
ī + ∂z̄φ

i∂zφ
ī) + iψīz∂z̄χ

igīi + iψiz̄∂zχ
īgīi −Rīijj̄ψiz̄ψīzχjχj̄

)
(2.21)

Now we set ǫ+ = ǭ− = 0 and ǫ− = ǭ+ = −ǫ, where ǫ is a constant. Then we have δ =
ǫ(Q+ + Q̄−). This A–type supersymmetry is now a scalar symmetry and can be defined on
arbitrary worldsheets. We define the BRST operator

QA = Q+ + Q̄−, (2.22)

which acts on fields via the anticommutator. The fields transform as follows under this
symmetry:

δφi = ǫχi δφī = ǫχī

δχi = 0 δχī = 0

δψīz = −iǫ∂zφī + ǫχj̄Γī
j̄m̄
ψm̄z δψiz̄ = −iǫ∂z̄φi + ǫχjΓijmψ

m
z̄

(2.23)

The crucial observation is that the action can be written as follows2:

S = it

∫

Σ
d2z{Q,V }+ t

∫

Σ
φ∗(K), (2.24)

where

V = gij̄

(
ψīz∂z̄φ

j + ∂zφ
īψjz̄

)
(2.25)

and
∫

Σ
φ∗(J) =

∫

Σ
d2z

(
∂zφ

i∂z̄φ
j̄gij̄ − ∂z̄φi∂zφj̄gij̄

)
. (2.26)

This is the integral of the pullback of the Kähler form J = −igij̄dzidzj̄ . It only depends
on the cohomology class of J and the homotopy class of the map φ and is thus a purely
topological quantity. If H2(X,Z) = Z, then

∫

Σ
φ∗(J) = 2πn, (2.27)

given a proper normalization of the periods of J ; n will be identified as the instanton number.
If we had a non–vanishing B–field we would have to replace J by the complexified Kähler

2This holds modulo the equations of motion.
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form ω = B + iJ , where B = 1
2Bij̄dφ

idφj̄ .
We now discuss the local physical operators of this theory, which are functions of φ and χ
only. Considering an n–form W = Wi1...indφ

i1 . . . dφin on X we can define a local operator:

OW (P ) = Wi1...inχ
i1 . . . χin(P ), (2.28)

where P is a point on the worldsheet. One can then show that:

{Q,OW } = −OdW (2.29)

Thus, the BRST cohomology of the A–model is isomorphic to the deRham cohomology on
X. We can calculate correlators of these physical states, using the path integral:

〈
∏

a

Oa〉 = e−2πnt

∫
DφDχDψe−it{Q,

R

V }
∏

a

Oa (2.30)

Apart from the factor we pulled out, the path integral is independent of t since differentia-
tion of the correlator with respect to t brings down irrelevant factors of the form {Q, . . .}.
Restricting to genus 0, we can therefore compute the path integral in the limit of large Re t,
which corresponds to the weak coupling limit of the theory. The path integral thus localizes
on the zero modes of the action and the action is minimized by holomorphic maps of Σ of
genus 0 to X:

∂z̄φ
i = ∂zφ

ī = 0 (2.31)

Since the action is topological there exist topologically non–trivial maps, called worldsheet
instantons. They are classified by n in (2.27). This implies that the path integral reduces
to an integral over the moduli space M0,n of holomorphic maps of degree n. Furthermore
note that the path integral is independent of the complex structure of Σ and X and depends
only on the cohomology classes of the Kähler form. This is because the complex structure
dependence only appears in Q–exact terms in the path integral.

The B–model

We now describe the B–twisted non–linear sigma model. We have the following definitions:

ψī± ∈ Γ(φ∗(T 0,1X))

ψi+ ∈ Γ(K ⊗ φ∗(T 1,0X))

ψi− ∈ Γ(K̄ ⊗ φ∗(T 1,0X)) (2.32)

It is convenient to make the following field redefinitions:

ηī = ψī+ + ψī−

θi = gīi(ψ
ī
+ − ψī−) (2.33)

Furthermore, we combine ψi± into a one–form ρ ∈ Φ∗(T 1,0X), where ψi+ ≡ ρiz and ψi− ≡ ρiz̄.
The action in terms of the new fields looks as follows:

S = t

∫

Σ
d2z

(
gīi(∂zφ

i∂z̄φ
ī + ∂z̄φ

i∂zφ
ī) + iηī

(
Dzρ

i
z̄ +Dz̄ρ

i
z

)
gīi + iθi

(
Dz̄ρ

i
z −Dzρ

i
z̄

)
+Rīijj̄ρ

i
zρ
j
z̄η
īθkg

kj̄
)

(2.34)

13



Now we set ǫ+ = ǫ− = 0 and ǭ− = −ǭ+ = ǫ. Thus we get δ = ǫ(Q̄++Q̄−). As in the A–model,
this B–type supersymmetry can be globally defined on every worldsheet. The BRST operator
for the B–model is:

QB = Q̄+ + Q̄− (2.35)

The supersymmetry variations of the B–model look as follows:

δφi = 0

δφ̄ī = −ǫηī

δηī = δθi = 0

δρi = −iǫ dφi (2.36)

The action can be rewritten as in the following way:

S = it

∫
{Q,V }+ tW, (2.37)

where

V = gij̄

(
ρiz∂z̄φ

j̄ + ρiz̄∂zφ
j̄
)

(2.38)

and

W =

∫

Σ

(
−θiDρi −

i

2
Rīijj̄ρ

i ∧ ρjηīθkgkj̄
)
. (2.39)

In the expression for W , D is the exterior derivative on the worldsheet. The theory is a
topological theory in the sense that it is independent of the complex structure of Σ and the
Kähler metric on X: W is entirely independent of the complex structure, since it is written
in terms of forms. Under a change of the Kähler metric of X the Lagrangian is invariant up
to terms of the form {Q, . . .} in the action [13].
Next, we discuss the local observables of the B–model. We consider (0, p)–forms V in X with
values in ∧qT 1,0X:

V = dz̄ ī1 . . . dz̄ īpV
j1...jq

ī1...̄ip
ψj1 . . . ψjq (2.40)

With that we can define the following operator:

OV = ηī1 . . . ηīpV
j1...jq

ī1...̄ip
ψj1 . . . ψjq (2.41)

It can be shown that:

{Q,OV } = −O∂̄V (2.42)

This implies that the BRST cohomology of the B–model can be related to Dolbeault coho-
mology on X.
We can now go on to compute correlation function with insertions of these operators. We
observe that the path–integral is independent of the coupling t. Under a change of t the
term {Q,V } changes by a Q–exact expression. The t–factor in front of W can be removed
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by a field redefinition θ → θ/t. This yields a polynomial dependence of t in the correlation
functions. Thus, there are no instanton contributions in the B–model; B–model calculations
are classical.
As in the A–model we can compute the path integral in the weak coupling limit. One finds
that the path integral localizes on constant maps Φ : Σ→ X:

∂zφ
i = ∂z̄φ

i = 0 (2.43)

Quantizing the B–model one finds an anomaly. There is an anomaly cancellation condition
which requires the vanishing of the first Chern class: c1(X) = 0. Thus, for the B–model to
be consistent, X has to be Calabi–Yau. The A–model, on the other hand, makes sense for
arbitrary Kähler manifolds.

Mirror symmetry relates the A–model and the B–model in the following way: We have seen
that the A–model only depends on the Kähler moduli whereas the B–model depends on the
complex structure moduli of the Calabi–Yau target. On a Calabi–Yau manifold X the dimen-
sion of the Kähler moduli space is encoded in the Hodge number h1,1 of the manifold. The
dimension of the complex structure moduli space is given by h1,2. Since, in general, h1,1 and
h2,1 are different for a Calabi–Yau, the Calabi–Yau in the A–model has to be different from
the one in the B–model. The remarkable statement of mirror symmetry is that the A–model
on a Calabi–Yau X is equivalent to the B–model on the mirror Calabi–Yau X∗. As compared
to X, the Hodge numbers of X∗ are exchanged. The mirror map gives an explicit isomor-
phism between the complex structure moduli on X∗ and the Kähler moduli on X. Mirror
symmetry provides an important tool for explicit calculations. Remember that the A–model
receives quantum corrections, while the B–model does not. We can use mirror symmetry to
calculate quantum–corrected amplitudes in the A–model by making a classical calculation in
the B–model and then applying the mirror map.

So far, we have only discussed topological field theories. In order to obtain a string theory
we have to couple the theory to gravity. This means that we have to gauge diffeomorphism
invariance. This can be done by the Noether procedure, which yields the Beltrami differ-
entials µ. These couple, in the topological string, to the G(z). At the level of correlation
functions, coupling to gravity amounts to integrating the amplitudes over the moduli space
of the Riemann surfaces. At genus g with g > 1 we can define a free energy Fg as follows:

Fg =

∫

Mg

〈
3g−3∏

k=1

(

∫
Gµk)(

∫
Ḡµ̄k)

〉
(2.44)

Since we will only focus on tree level amplitudes in this thesis, we will not discuss higher
genus amplitudes here.

Note that mirror symmetry extends to the full string theory. There, the statement is that
the type IIA string theory compactified on a certain Calabi–Yau manifold is equivalent to the
type IIB string compactified on the mirror Calabi–Yau.

2.1.3 Phases of N = 2 Theories

We now briefly discuss the Landau–Ginzburg/Calabi–Yau correspondence [14], which identi-
fies the non–linear sigma model with Calabi–Yau target and a Landau–Ginzburg model with
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a certain superpotential as two ’phases’ of a supersymmetric gauge theory, the linear sigma
model. The order parameter which is relevant for the phase transition parameterizes the size
of the Calabi–Yau.
The linear sigma model is a quite general N = 2 supersymmetric abelian gauge theory in two
dimensions. The action contains the following terms:

S = Skin + SW + Sgauge + SFI,θ (2.45)

The first term is the kinetic energy of the chiral superfields, the second term is the superpo-
tential interaction, the third term is the kinetic energy of the gauge fields and the last term
includes the Fayet–Iliopoulos term and the term with the theta angle. We can write these
expressions in terms of superfields. The kinetic term is:

Skin =

∫
d2xd4 θΦ̄eV Φ, (2.46)

where Φ is the chiral superfield and V is the vector superfield. The superpotential term is:

SW =

∫
d2xd2 θW + c.c (2.47)

The gauge kinetic term looks as follows:

Sgauge = − 1

4e2

∫
d2xd4 θΣ̄Σ, (2.48)

where e is the gauge coupling and Σ is the twisted chiral superfield, satisfying D̄+Σ = D−Σ =
0. The last term in the action can be written as follows:

SFI,θ =
it

2
√

2

∫
d2xdθ+dθ̄−Σ + c.c, (2.49)

where

t = ir +
θ

2π
. (2.50)

The parameter r is the Fayet–Iliopoulos parameter and θ is the theta angle.
We now consider a theory with n chiral superfields Si of charge 1 and one field P of charge
−n. We denote the bosonic components of Si and P with si and P , respectively. We choose
the superpotential to be

W = P ·G(S1, . . . , Sn), (2.51)

where G is a homogeneous polynomial of degree n. W is a quasihomogeneous polynomial.
We demand that the equations

∂G

∂S1
= . . . =

∂G

∂Sn
(2.52)

have no common roots except at Si = 0. This ensures that the hypersurface X in CPn−1

defined by the equation G = 0 is smooth. In order to probe the low–energy physics of this
theory we have to minimize the bosonic superpotential, which looks as follows:

U = |G(si)|2 + |p|2
∑

i

∂G

∂si

2

+ 2|σ|2
(
∑

i

|si|2 + n2|p|2
)
, (2.53)
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where

D = −e2
(
∑

i

s̄isi − np̄p− r
)
. (2.54)

We first consider the case where r ≫ 0. Minimizing the D–term implies that not all si can
vanish, which entails that not all ∂G

∂si
vanish. We are thus forced to set p = 0. From this, it

follows that |σ| = 0 and G = 0. The vanishing of the D–term then implies:

∑

i

s̄isi = r (2.55)

In order to identify the ground state we also have to take into account the U(1) gauge
symmetry:

(s1, . . . , sn) ∼ (eiϕs1, . . . , e
iϕsn) (2.56)

This implies that the si live in CPn−1. We conclude that the space of classical vacua is iso-
morphic to the hypersurface X ⊂ CPn−1, defined by G = 0. A smooth hypersurface of degree
n in CPn−1 is Calabi–Yau. The size of the Calabi–Yau is governed by the parameter r, which
can be identified with the Kähler parameter determining the radius of the Calabi–Yau. Thus,
at large radius, the low energy theory is described by a σ–model with Calabi–Yau target.
Now we consider the case r ≪ 0. The vanishing of D requires that P 6= 0. Given the

condition (2.52), this implies that all si = 0. Then it follows that |p| =
√

−r
n . So, up to

gauge transformation the theory has a unique classical vacuum. We can expand around this
vacuum and find that the si are massless for n ≥ 3. Integrating out the massive field p
by setting it to its vacuum expectation value we get an effective superpotential for the si,
which is W̃ =

√−rG(si). The prefactor can be absorbed into the definition of the si. The
theory is governed by the superpotential W̃ , which has a degenerate critical point at the
origin. We thus have obtained a Landau–Ginzburg theory in the limit r ≪ 0. In our case
we obtain a Landau–Ginzburg orbifold: the vacuum expectation value of p breaks the U(1)
gauge group down to a Zn subgroup, which acts as si → ωsi, where ω is an n–th root of unity.

To conclude, we have found that the low energy limit of the linear sigma model is described
by a Calabi–Yau sigma model at large radius, in the non-geometric regime (r ≪ 0) it is
realized as a Landau–Ginzburg model. The two regions are separated by a singularity at
r = 0. One can view these two models as phases of the linear sigma model, which undergoes
a phase transition at r = 0. One can smoothly interpolate between those phases by varying
the parameter t in (2.50) [14].
The above discussion has an interesting implication on the topological string. We have ar-
gued before, that the topological B–model is independent of the Kähler moduli. It is thus
insensitive to the variations of the size of the Calabi–Yau governed by r. This entails that
the topological observables of the B–model are the same for the Landau–Ginzburg and the
Calabi–Yau description. There are thus two equivalent ways to realize the B–model, which
correspond to the large and small radius regimes in Kähler moduli space.
We can generalize this discussion in many ways, in particular it also holds for curves in
weighted projective space, hypersurfaces in toric varieties and complete intersections of hy-
persurfaces. These cases may yield a more complicated phase structure than we found here.
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2.2 D–branes

A D–brane is a boundary condition. D–branes are objects where an open string can end.
Open strings live on worldsheets, which are Riemann surfaces with boundaries. As a toy
example, consider a bosonic sigma model which maps from a cylinder Σ = S1 ×R to R:

S =

∫

Σ
d2x∂µφ∂

µφ (2.57)

Computing δS = 0 one gets the following boundary contribution:

δφ∂⊥φ|∂Σ = 0, (2.58)

where ∂⊥ is the derivative in the direction normal to the boundary.
There are two possibilities to satisfy this condition. The Neumann (N) boundary condition
implies that the ends of the string move freely:

∂⊥φ|∂Σ = 0 (2.59)

The Dirichlet (D) boundary conditions entail that the ends of the string are fixed on a subspace
of the target space:

δφ|∂Σ = 0 (2.60)

In general, a Dp–brane is defined as a p–dimensional spatial subspace of the target space
where the end of an open string is confined to. One thus has Neumann boundary conditions
in p directions and Dirichlet boundary conditions in the remaining spatial directions.
Dirichlet boundary conditions break Lorentz invariance. In supersymmetric theories this
causes supersymmetry breaking. A generic D–brane configuration breaks supersymmetry
completely. We will be interested in D–branes which only partly break supersymmetry, in
particular we want to break N = 2 supersymmetry down to N = 1.
At the level of conformal field theory a boundary is introduced as follows. Given one boundary
component, we can make a conformal transformation to map the worldsheet into the upper
half–plane and its boundary to z = z̄. The left– and rightmoving currents have to match
at the boundary. For N = (2, 2) superconformal theories, one has two possibilities to define
boundary conditions which break half of the supersymmetry. These are called A–type and
B–type boundary conditions [16]. A–branes are specified by the following conditions on the
superconformal currents at z = z̄:

T (z) = T̄ (z̄) G+(z) = ±Ḡ−(z̄) G−(z) = ±Ḡ+(z̄) J(z) = −J̄(z̄) (2.61)

The B–type boundary conditions are defined as follows:

T (z) = T̄ (z̄) G+(z) = ±Ḡ+(z̄) G−(z) = ±Ḡ−(z̄) J(z) = J̄(z̄) (2.62)

The mode expansions of these boundary conditions determine the Ishibashi states on the
boundary. A general boundary state can be expanded in terms of Isibashi states. A–type and
B–type boundary conditions are related via the mirror map. Boundary conformal field theory
has been an active area of research and has lead to a lot of insight on D–branes. In this thesis
we will look at D–branes from a different angle, so we refrain from giving a detailed review
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of boundary conformal field theory.
Although we will consider D–branes mostly from a worldsheet perspective, let us briefly
mention some target space aspects [9]. It can be shown that D–branes satisfying these con-
ditions are BPS states of the supersymmetric theory. The world–volumes of p–branes couple
to (p + 1)–form Ramond–Ramond potentials Cp+1. D–branes carry conserved charges, the
Ramond–Ramond charges. The potentials can be integrated over the world–volumes of the
branes:

∫
Cp+1 (2.63)

These potentials are sources for gauge field strengths. In analogy with electromagnetism, a
Dp–brane and a (6− p)–brane are electric and magnetic sources for the same field strength3.
For example, the free field equations and Bianchi identity for a two–form field strength,
d ∗ F2 = dF2 = 0, are symmetric between F2 and (∗F )8, and can be written in terms of a
1–form and a 7–form potential:

F2 = dC1 d ∧ ∗dC1 = 0

∗F2 = (∗F )8 = dC7 d ∧ ∗dC7 = 0 (2.64)

An electric source is a D0–brane for C1 or a D6–brane for C7. A magnetic source is a D6–
brane for C1 or a D0–brane for C7. The electric, respectively magnetic, charges are the
Ramond–Ramond charges.

2.2.1 Topological D–branes

We now turn to D–branes in the topological string. We will discuss boundary conditions
in the non–linear sigma model and thus restrict ourselves to the large radius limit. B–type
D–branes in Landau–Ginzburg models, which are realized as matrix factorizations of the
Landau–Ginzburg superpotential, will be discussed in the following chapters of this thesis.
In line with standard conventions for the topological string, when speaking of a Dp–brane
we only take into account boundaries in the Calabi–Yau X, thus neglecting the three spatial
directions of R1,3. Topological D–branes on a Calabi–Yau threefold are thus D0–D6–branes
in these conventions. Our discussion will follow [11].
Boundary conditions in topological string theory must be compatible with the topological
twist. In particular, this implies that branes in the A–model must preserve A–type super-
symmetry (2.22) and branes in the B–model must preserve B–type supersymmetry (2.35).
Which objects do these boundary conditions define? Let us write the bosonic part of the
action (2.9) in a more condensed notation:

Sbos = t

∫

Σ
d2zgIJ(φ)∂zφ

I∂z̄φ
J (2.65)

Here I, J denote real coordinates and gIJ incorporates the Kähler metric and the B–field.
The boundary conditions connect the left– and the rightmoving sector. We can write this as
follows:

∂zφ
I = RIJ(φ)∂z̄φ

J

ψI+ = RIJ(φ)ψJ− (2.66)

3We consider superstring theory and therefore a 10–dimensional target space.
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The matrix R is orthogonal with respect to the metric. Eigenvectors with eigenvalue −1 give
Dirichlet boundary conditions. If we picture a D–brane as a submanifold L of the Calabi–Yau
X, these vectors span the directions normal to L. Eigenvectors associated to eigenvalues +1
of R are associated to directions tangent to the D–brane.

A–branes

Now we turn to the A–model. The boundary conditions which are consistent with the A–twist
are:

ψi+ = Rij̄ψ
j̄
−

ψī+ = Rījψ
j
−

Rij = Rīj̄ = 0 (2.67)

Now we choose a vector v tangent to the D–brane, i.e. with eigenvalue +1. Now consider the
complex structure J with

Jmn = iδmn Jm̄n̄ = −iδm̄n̄ (2.68)

The vector Jv has eigenvalue −1 with respect to R, the vector J2v = −v is again in the
tangent direction. Thus J exchanges the directions tangent and normal to the D–brane L. In
order for this to make sense, L must be of middle dimension, which means of real dimension 3,
if X is a Calabi–Yau threefold. Now consider two vectors v and w, tangent to L. The vector
w is orthogonal to Jv with respect to the metric. The Kähler form on X can be written as
ω = 1

2gLMJ
M
N dφLdφN . The previous arguments imply that the Kähler form restricted to L

is zero. A manifold with such properties is called a Lagrangian submanifold.
Worldsheets with boundary lead to additional degrees of freedom. In the A–model we can
include these extra gauge degrees of freedom into the action by defining a one–form A on X.
The additional term in the action looks as follows:

S∂Σ = t

∫

∂Σ
Φ∗(A) (2.69)

A is a gauge connection and we define F = dA. In order to maintain BRST invariance we
must have F = 0. Thus A has to be a flat connection. Upon quantization one encounters
an anomaly. The associated anomaly cancellation condition is related to the vanishing of the
Maslov class:

ξ∗ : π1(L)→ π1(S
1) ∼= Z (2.70)

The Maslov class is 0 if the fundamental group of L vanishes: π1(L) = 0. We thus can make
the following statement:

An A–type D–brane wraps a Lagrangian submanifold L, which has the properties:

ω|L = 0

F = 0

trivial Maslov class (2.71)
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B–branes

We now investigate boundary conditions in the B–model. We consider the non–linear sigma
model, the present discussion is valid in the large radius limit.
The following boundary conditions on the fermions are compatible with the B–twist:

ψi+ = Rijψ
j
−

ψī+ = Rīj̄ψ
j̄
−

Rij̄ = Rīj = 0 (2.72)

In the B–model, the complex structure thus preserves the tangent and normal directions of
the D–brane. Therefore we can make the statement:

A B–type D–brane wraps holomorphic cycles in X.

A B–brane can thus be a D0–, D2–, D4– or D6–brane. Having branes of different dimensions
is troublesome. In order to see the problem we first discuss a D6–brane, i.e. a brane which fills
X. Taking into account the additional boundary degrees of freedom we introduce a bundle
E → X over the D–brane. Similar to the A–model case the condition of BRST invariance
of the action implies that the curvature F of the bundle is a two–form of type (1, 1). Thus
E → X is a holomorphic bundle. What about the other branes, which correspond to true
subspaces of X? The notion of a vector bundle over a submanifold is not well–defined. The
correct mathematical framework to address this issue turns out to be sheaves. A B–brane at
the large radius limit can be described as a coherent sheaf. We will say some more about this
in the following section.
Finally, let us briefly mention that in order to define a physical D–brane, a topological D–
brane has to satisfy additional stability conditions. In particular, A–branes have to wrap
special Lagrangian submanifolds, which imposes the constraint that ReeiθΩ|L = 0, where Ω
is the holomorphic threeform (if we consider a Calabi–Yau threefold) and θ is an arbitrary
phase. For B–branes the sheaves have to be stable in order to be physical. The information
on stability is not encoded in the topological sector. Details on this issue can be found for
example in [11].

2.2.2 Mathematical Description

D–branes naturally fit into the mathematical framework of categories. Categories are a very
abstract concept and one may ask how this can be of use to a physicist. It turns out that cat-
egories are the suitable framework to describe systems of multiple D–branes and phenomena
like tachyon condensation, which cannot be captured by other approaches, that are, in some
sense, more ’physical’. It turns out that matrix factorizations realize all these concepts in a
very explicit way. We will discuss the details in chapter 3, in this section we only intend to
discuss the basic setup. We will closely follow [11] and [10].
Let us start with the definition of a category:

Definition. A category C consists of a class obj(C) of objects, a set HomC(A,B) of mor-
phisms for every ordered pair (A,B) of objects, an identity morphism idA ∈ HomC(A,A), and
a composition function

HomC(A,B)×HomC(B,C)→ HomC(A,C), (2.73)
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for every ordered triplet (A,B,C) of objects. If f ∈ Hom(A,B), g ∈ Hom(B,C), the compo-
sition is denoted gf . The above data is subject to two axioms:

1. Associativity axiom: (hg)f = h(gf) for f ∈ HomC(A,B), g ∈ HomC(B,C) and h ∈
HomC(C,D).

2. Unit axiom: idBf = f = f idA for f ∈ HomC(A,B).

We can now make the following identification:

D–branes are objects in a category, open string states are morphisms.

How this category is realized depends on the model under consideration.

A–branes

A–type D–branes on a Calabi–Yau are objects in the Fukaya category Fuk(X).
We will (unfortunately) not have to say much about this category since only a few examples
are known. This is related to the fact that it is in general quite difficult to identify Lagrangian
submanifolds. One simple example where this is possible is the torus T 2, where the D1–branes
are just lines winding around the torus. The Fukaya category for the torus was defined in
[17]. We will discuss the torus in detail in chapter 6.
The Fukaya category is defined in terms of symplectic geometry which reflects the indepen-
dence of the complex structure. Fukaya’s category is endowed with an A∞–structure. An
A∞–algebra is a non–associative algebra. We will give more details on this in the following
chapters.

B–branes

We have already mentioned in the previous section that B–branes at the large radius limit are
related to sheaves. The precise statement is that B–type D–branes on a Calabi–Yau X are
objects in the derived category of coherent sheaves D(X). This category is defined in terms
of algebraic geometry and is independent of the Kähler structure. In contrast to the Fukaya
category, the derived category of coherent sheaves is quite well–understood. We will now
summarize the essential definitions related to this category, putting emphasis on the material
we will need later on. We refer to [10, 11] for the details.
We start by giving the definition of a sheaf. This is done in two steps:

Definition. A presheaf F on X consists of the following data:

• For every open set U ⊂ X we associate an abelian group F (U).

• If V ⊂ U are open sets there is a ’restriction’ homomorphism ρUV : F (U)→ F (V ).

The following conditions have to be satisfied:

1. F (∅) = 0.

2. ρUU is the identity map.

3. If W ⊂ V ⊂ U then ρUW = ρVWρUV .
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If σ ∈F (U) we denote the restriction ρUV (σ) by σ|V .

Definition. A sheaf F on X is a presheaf satisfying the conditions:

1. If U, V ⊂ X and σ ∈ F (U), τ ∈ F (V ) such that σU∩V = τU∩V , then there exists
ν ∈ F (U ∪ V ) such that ν|U = σ and ν|V = τ .

2. If σ ∈ F (U ∩ V ) and σU = σV = 0, then σ = 0.

Our first goal is to explain the notion of a coherent sheaf. If F (U) is the group of
holomorphic functions over U , we can define a sheaf of holomorphic functions OX , called the
structure sheaf. Note that the holomorphic functions are not only a group but they also define
a ring. This motivates the following definition:

Definition. Let R be a ring with a multiplicative identity 1. An R–module is an abelian
group M with an R–action given by a mapping R×M →M such that

1. r(x+ y) = rx+ ry

2. (r + s)x = rx+ sx

3. (rs)x = r(sx)

4. 1x = x

for any r, s ∈ R and x, y ∈M .

Roughly speaking, a module is the algebraic generalization of the notion of a vector space.
This allows us to define a sheaf of OX–modules. This can be done because holomorphic
functions over U have a ring structure under multiplication. A sheaf E is a sheaf of OX–
modules if E (U) is an OX(U)–module for any open U ∈ X. A free OX–module of rank n is
given by:

O
⊕n
X = OX ⊕ . . .⊕ OX︸ ︷︷ ︸

n

(2.74)

A sheaf E is called locally free of rank n if there is an open covering {Uα} of X such that
E (Uα) ∼= OX(Uα)⊕n. There is a one–to–one correspondence between locally free sheaves of
rank n and sections of holomorphic vector bundles of rank n.
Locally free sheaves are thus the algebraic way of describing holomorphic vector bundles.
However, a B–brane is more than a locally free sheaf. What we must consider instead are
coherent sheaves. We refrain from giving the technical definition, which can be found in the
reviews cited above. Coherent sheaves form a category. As compared to locally free sheaves,
the category of coherent sheaves contains sheaves whose ranks may not be globally defined.
In particular the category includes the skyscraper sheaf OP . OP is defined such that OP (U) is
the trivial group if U does not contain P . If it does we have OP (U) = C. It can be associated
to a vector bundle which has fiber C over the origin and trivial fiber elsewhere. Such objects
describe D0–branes on the Calabi–Yau X. D–branes can be viewed as objects in the category
of coherent sheaves. In the following we will continue working with locally free sheaves. The
results given below can then be generalized to coherent sheaves.
Before we define the derived category, we turn to open string states. As we discussed earlier,
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the physical states in the B–model are related to the cohomology of the operator QB . It is
possible to extend the notion of cohomology to categories of sheaves. We refer to the litera-
ture for the details and just state the result [11]:

An open string from the B–brane associated to the locally free sheaf E to another B–brane
associated to the locally–free sheaf F is given by an element of the group Extq(E ,F ).

The groups Ext can be related to the sheaf cohomology group Hq:

Hq(X,H om(E ,F )) = Extq(E ,F ) (2.75)

Here, H om(E ,F ) is a locally free sheaf, which can be obtained in the following way. The
locally free sheaves E ,F are related to holomorphic sections of bundles E,F . The sheaf
H om(E ,F ) is then associated to Hom(E,F ). The crucial point is now that one can relate
the sheaf cohomology group Hq to Dolbeault cohomology:

H0,q(X,Hom(E,F)) = Hq(X,H om(E ,F )) (2.76)

So we have succeeded in expressing the cohomology relevant for the B–model in terms of the
mathematical language of categories and sheaves. But we are not quite done yet. It turns
out that we have to refine the category in order to take into account all the B–branes. Given
a locally free sheaf E , we can define a collection of D–branes as follows:

E =
⊕

n∈ZE
n, (2.77)

where n is the ’ghost number’ of the B–brane. For matrix factorizations this grading will
reduce to a Z2–grading. We can define morphisms dn : E n → E n+1, where:

dn ∈ Ext0(E n,E n+1) = Hom(E n,E n+1) (2.78)

These morphisms satisfy4:

dn+1dn = 0 (2.79)

This defines a complex E •:

. . .
dn−1- E

n dn- E
n+1 dn+1 - . . .

Complexes are quite common in algebraic geometry, so let us give some details at this point.
Complexes can be defined for modules, sheaves, groups, etc. Let us denote these objects by
An. If one has maps φn : An → An+1, which satisfy the property that φn+1 ◦ φn = 0, this
defines a complex:

. . .
φn−1- An

φn- An+1
φn+1- . . .

4We will meet this again in the next chapter, when we discuss Laundau–Ginzburg models, where this will
be related to the matrix factorization condition.
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The image of any map in this diagram is a subset of the kernel of the subsequent map. We
obtain an exact sequence when the image of every map is the same as the kernel of the next
map and not just a subset. A special case is a short exact sequence:

0 - A φ1 - B φ2 - C - 0

This means that φ1 is injective, φ2 is surjective and the image of φ1 is the kernel of φ2. Note
that coherent sheaves have a nice description in terms of complexes. For a coherent sheaf F

there exists a complex

0 −→ E
n −→ E

n−1 −→ . . . −→ E
1 −→ E

0 −→ F −→ 0, (2.80)

called free resolution where the Ei are locally free sheaves.

Returning to B–branes, one can show that the spectrum of open string states related to
B–branes defined by the complexes E •,F • is computed by Extn(E •,F •), where n goes from
0 to dimX. It can furthermore be shown that all this structure can be cast into a category, the
derived category of locally free sheaves. It turns out it is possible to extend this to coherent
sheaves, so that we finally end up with the statement we made at the beginning that, at the
large radius limit, the category of B–branes is the derived category of coherent sheaves.

Homological Mirror Symmetry

The homological mirror symmetry conjecture is due to Kontsevich [18]. It states the equiva-
lence between the Fukaya category and the derived category of coherent sheaves:

Fuk(X) ∼= D(X∗), (2.81)

where X and X∗ denote two Calabi–Yaus which are mirror to each other.
By now only a few explicit examples for homological mirror symmetry are known. Homological
mirror symmetry on the torus will be discussed in chapter 6.
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Chapter 3

Boundary Landau–Ginzburg

Models and Matrix Factorizations

3.1 Introduction

In this chapter we introduce D–branes in B–type topological Landau–Ginzburg models. Such
D–branes have a description in terms of matrix factorizations of the Landau–Ginzburg su-
perpotential. The idea goes back to an unpublished proposal by Kontsevich who suggested
an equivalence of the category of coherent sheaves and the category of matrix factorizations.
This equivalence was later proven by Orlov [19] based upon previous work by Eisenbud [20].
A physics derivation was first given in [21] and later rederived in [22, 23, 24]. Matrix factor-
izations provide a solution to the “Warner problem” [25].
Matrix factorizations give a description of D–branes in the non–geometric regime of Kähler
moduli space. In this regime, quantum effects become important and many examples imply
that matrix factorizations give a powerful tool for understanding these effects. At the large
radius point, B–type D–branes are described by coherent sheaves and Orlov’s proof of Kont-
sevich’s proposal makes contact between these two descriptions. In the physics literature the
connection between matrix factorizations and coherent sheaves has been discussed in [26].
In physics, the relation between the geometric description of Calabi–Yau compactifications
at large radius and the non–geometric description in terms of Landau–Ginzburg models is
realized as a phase transition in linear sigma models [14]. This should provide a suitable
framework to prove Kontsevich’s proposal in physics language and to establish an explicit
mapping between matrix factorizations and coherent sheaves. First steps in this direction
were made in [27] and an exhaustive discussion is on the way [28].
The description of D–branes in terms of categories of matrix factorizations has several ad-
vantages as compared to other approaches, such as K–theory and boundary conformal field
theory. The Ramond-Ramond charges of D–branes are encoded in K–theory [29]. Matrix
factorization contain the information about RR–charges [30] but, in contrast to K–theory,
categories are also sensitive to the positions of D–branes. This is also reflected in the category
of matrix–factorizations, which is defined in the non–geometric regime of Kähler moduli space.
Such data is crucial if one wants to understand deformations of the D–brane moduli space
and tachyon condensation. An alternative description of D–branes is in rational conformal
field theories. These theories are well–understood and provide a reference point for compar-
ing the properties of matrix factorizations with known results [31, 32, 33, 34, 35, 36, 37]. A
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description of D–branes in terms of boundary conformal field theory is only possible at the
Gepner point, which is the point in moduli space where the Landau–Ginzburg model is a
tensor product of A–type minimal models. Deformations away from the Gepner point are
not captured by the CFT description, whereas this can be easily realized in terms of matrix
factorizations. The most important benefit of matrix factorizations, at least from a physics
point of view, is that they give an application–oriented realization of the abstract concepts
of categories and sheaves which are essential for homological mirror symmetry but hard to
access for explicit calculations.
There are, however, some drawbacks of the description of D–branes in terms of matrix factor-
izations. The most obvious technical problem is that there is no one–to–one correspondence
between a matrix factorization and a certain D–brane. In general, many matrix factorizations
describe the same D–brane. This gives rise to a classification problem, which, so far, has only
been solved for the simplest cases [38]. The problem of the classification of matrix factor-
izations has two aspects: One problem to find all inequivalent matrix factorizations, where
inequivalent means that the matrix factorizations cannot be related to each other by certain
transformations. The second problem is to find a ’minimal set’ of matrix factorizations from
which one can obtain all the others by tachyon condensation processes. This amounts to find-
ing a matrix factorization description of D–branes that generate the lattice of RR–charges.
This problem was solved for the elliptic curve in [39, 40, 3]. Due to the redundancies that
come with matrix factorization, one can easily get lost if one is not aware of the mathematical
background. The mathematical literature on this subject is vast and often hard to access for
physicists. A further problem is that one cannot say much about the stability of the D–brane
given by a matrix factorization. This is a conceptual problem due to the topological nature
of these D–branes. B–type D–branes are insensitive to deformations in the Kähler moduli
space but the stability of a D–brane depends crucially on the Kähler moduli in the sense that
at different points in Kähler moduli space different D–brane configurations are stable. See
e.g. [11] for a review. Nevertheless, it is possible to extract some information on the stability
of D–branes from matrix factorization. A proposal was made in [30] where the notion of
R–stability was introduced.

Over the years, research on matrix factorizations has brought a lot of insight into this subject
and a considerable amount of literature has accumulated. Apart from the papers already
mentioned here, further publications are [41, 42, 43, 44, 45, 46, 47, 48, 2, 49, 50, 51]. There
are also two reviews available: [52, 53]. In this chapter we collect the relevant facts about
matrix factorizations, summarizing the most important results of the papers mentioned here.
In section 3.2 we review the physics derivation of the matrix factorization condition. Section
3.3 states the most important properties from a physics point of view and section 3.4 makes
contact with the mathematical side of the subject. In section 3.5 we give a short account of
possible constructions of matrix factorizations and discuss some aspects of their relation to
boundary conformal field theory. Finally, in section 3.6 we mention some further applications
of matrix factorizations.

3.2 The Boundary Landau Ginzburg Model

In this section we summarize how matrix factorizations are related to boundary conditions in
topological B–type Landau–Ginzburg models. We will mostly follow [22].
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Consider an (untwisted) Landau–Ginzburg model:

SΣ =

∫

Σ
d2xd4θK(Φ, Φ̄) +

∫

Σ
d2xd2θW (Φ) + c.c., (3.1)

whereK is the Kähler potential andW is the superpotential. Φ is a superfield with component
expansion

Φ(y±, θ±) = φ(y±) + θ+ψ+(y±) + θ−ψ−(y±) + θ+θ−F (y±), (3.2)

where y± = x± − iθ±θ̄± and x± = x0 ± x1. We define the supercharges

Q± =
∂

∂θ±
+ iθ̄±

∂

∂x±
Q̄± = − ∂

∂θ̄±
− iθ± ∂

∂x±
, (3.3)

and the corresponding covariant derivatives

D± =
∂

∂θ±
− iθ̄± ∂

∂x±
D̄± = − ∂

∂θ̄±
+ iθ±

∂

∂x±
. (3.4)

Then Φ is a chiral superfield: D̄±Φ = 0. Similarly, Φ̄ is antichiral. The supersymmetry
variations of the fields with respect to δ = ǫ+Q− − ǫ−Q+ − ǭ+Q̄− + ǭ−Q̄+ are:

δφ = ǫ+ψ− − ǫ−ψ+ δφ̄ = −ǭ+ψ̄− + ǭ−ψ̄+

δψ+ = 2iǭ−∂+φ+ ǫ+F δψ̄+ = −2iǫ−∂+φ̄+ ǭ+F̄
δψ− = −2iǭ+∂−φ+ ǫ−F δψ̄− = 2iǫ+∂−φ̄+ ǭ−F̄

(3.5)

F is an auxiliary field which satisfies the algebraic equation of motion F = −1
2W̄

′(φ̄). Making
use of this equation, the component form of the action looks as follows:

SΣ =

∫

Σ
d2x

{
−∂µφ̄∂µφ+

i

2
ψ̄−(

↔
∂0 +

↔
∂1)ψ− +

i

2
ψ̄+(

↔
∂0 −

↔
∂1)ψ+ −

1

4
|W ′|2 − 1

2
W ′′ψ+ψ− −

1

2
W̄ ′′ψ̄−ψ̄+

}

(3.6)

Here we chose K = Φ̄Φ.
We now introduce boundary conditions, that break the supersymmetry down to N = 1. Since
we are interested in the topological B–model we impose B–type boundary conditions which
are compatible with the twist. B–type supersymmetry preserves the supercharge

Q = Q̄+ + Q̄− with ǭ− = −ǭ+ = ǫ (3.7)

The explicit form of B–model supercharges is:

Q̄ =
∂

∂θ0
+ iθ̄0 ∂

∂x0
Q = − ∂

∂θ̄0
− iθ0 ∂

∂x0
, (3.8)

where θ0 = 1
2(θ− + θ+) and θ̄0 = 1

2(θ̄− + θ̄+). Defining η = ψ− + ψ+ and θ = ψ− − ψ+, the
B–type supersymmetry transformations read:

δφ = ǫη δφ̄ = −ǭη̄
δη = −2iǭ∂0φ δη̄ = 2iǫ∂0φ̄
δθ = 2iǭ∂1φ+ ǫW̄ ′(φ̄) δθ̄ = −2iǫ∂1φ̄+ ǭW ′(φ),

(3.9)
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where δ = ǫQ̄− ǭQ.
For W = 0, one gets a supersymmetric Lagrangian by adding a boundary term

S∂Σ =
i

4

∫

∂Σ
dx0

{
θ̄η − η̄θ

}π

0

(3.10)

With W 6= 0 one gets a non–vanishing boundary contribution, the ’Warner term’ [25]:

δ(Sσ + S∂Σ) =
i

2

∫

∂Σ
dx0

{
ǫη̄W̄ ′ + ǭηW ′

}π

0

(3.11)

So, without further modifications, supersymmetry cannot be preserved. This is known as the
’Warner problem’. In [21] this problem was solved by introducing matrix factorizations, as
we will now show.
In order to cancel this term one has to introduce additional fermionic degrees of freedom on
the boundary:

Π(y0, θ0, θ̄0) = π(y0) + θ0l(y0)− θ̄0
[
E(φ) + θ0η(y0)E′(φ)

]
(3.12)

Note that this boundary fermion is not chiral but satisfies DΠ = E(Φ′), where Φ′ = φ(y0) +
θ0η(y0). The boundary degrees of freedom account for the following additional terms for the
action:

S̃∂Σ = −1

2

∫

∂Σ
dx0d2θΠ̄Π

π

0

− i

2

∫

∂Σ
dx0dθΠJ(Φ)|θ̄=0

π

0

+ c.c. (3.13)

We can integrate out l by substituting the algebraic equations of motion l = −iJ̄(φ̄). Then
the component form of the boundary action reads:

S̃∂Σ =

∫

∂Σ
dx0

{
iπ̄∂0π −

1

2
J̄J +

1

2
ĒE +

i

2
πηJ ′ +

i

2
π̄η̄J̄ ′ − 1

2
π̄ηE′ +

1

2
πη̄Ē′

}π

0

(3.14)

The boundary fermion has the following supersymmetry transformations:

δπ = −iǫJ̄(φ̄)− ǭE(φ)

δπ̄ = iǭJ(φ) − ǫĒ(φ̄) (3.15)

Due to the non–chirality of Π S̃∂Σ is not supersymmetry invariant:

δS̃∂Σ = − i
2

∫

∂Σ
dx0

{
ǫη̄(ĒJ̄)′ + ǭη(EJ)′

}π

0

(3.16)

Combining this with (3.11), we can get a supersymmetric action if we impose the condition
[21]:

W = E · J (3.17)

Here one could add an integration constant, which we set to 0.
We managed to construct a supersymmetric action, but this symmetry is not globally defined.
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Under the B–twist, we can replace the variation δ by a scalar fermionic BRST operator Q.
The transformation rules become:

Qφ = 0 Qφ̄ = η̄
Qη = 2i∂0φ Qη̄ = 0
Qθ = −2i∂1φ Qθ̄ = −W ′(φ)

(3.18)

We still have not imposed any boundary conditions on the system. B–type boundary condi-
tions allow for D0– and D2–branes. For D0–branes, i.e. Dirichlet boundary conditions, the
boundary fermion π decouples. For D2–branes, i.e. for Neumann boundary conditions, π
does not decouple and one gets:

Qπ = E(φ) Qπ̄ = −iJ(φ) (3.19)

So, every factorization (3.17) defines a boundary condition. It is not yet clear, why the
boundary potentials E and J should be matrices. This arises if we canonically quantize the
the boundary fermion π by imposing the anticommutation relations:

{π, π̄} = 1 {π, π} = {π̄, π̄} = 0 (3.20)

If W = W (x1, . . . , xN ) then this Clifford algebra has a 2N–dimensional representation and
we can write for the boundary BRST operator Q:

Q = Eπ̄ − iJπ (3.21)

It satisfies the matrix factorization condition

Q2 = −iEJ = −iW (3.22)

It turns out that one does not capture all the possible D–branes by restricting to matrix
factorizations of rank 2N . The condition can be extended to matrices with arbitrary rank
[23]. A D–brane is then characterized by the rank 2r matrix Q and an involution σ, satisfying
σ2 = 12r×2r, implying a Z2–grading:

Q2 = W · 12r×2r Qσ + σQ = 0 (3.23)

Choosing a diagonal representation

σ =

( 1r×r 0
0 −1r×r ) , (3.24)

we can write Q as a block off–diagonal matrix:

Q =

(
0 E
J 0

)
, (3.25)

where the boundary potentials E and J are r × r–matrices.

3.3 Matrix Factorizations from a Physics Point of View

This section contains a collection of facts about matrix factorizations. For derivations and
proofs we refer to the original literature. Here we discuss the properties of matrix factoriza-
tions in physics terms. The mathematical aspects will be discussed in section 3.4.
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3.3.1 Branes and Antibranes

Given a D–brane with label A and a matrix factorization W = EAJA with

QA =

(
0 EA

JA 0

)
, (3.26)

its antibrane is characterized by a matrix factorizations where E and J are exchanged:

Q̄A = −
(

0 JA

EA 0

)
. (3.27)

3.3.2 The Open String Vacuum

The open string vacuum is described by the trivial factorization:

Qvac =

(
0 1
W 0

)
(3.28)

This matrix factorization describes a situation where there are no D–branes at all and conse-
quently no open string states. (3.28) is not the only description of the open string vacuum.
Tensor products and the “antibrane” of Qvac also describe the open string vacuum.
Constant entries in matrix factorizations usually imply that one can make transformations
such that at least a block in the matrix has the form (3.28), which entails that the matrix
factorization contains a trivial piece. A matrix factorization which does not contain constant
entries is called reduced [30].

3.3.3 Equivalent Matrix Factorizations

Matrix factorizations (EA, JA) and (EB , JB) are called equivalent if they are related by a
similarity transformation

EB = U1E
AU−1

2 JB = U2J
AU−1

1 , (3.29)

where U1, U2 are invertible1 matrices with polynomial entries. Thus, if one can transform one
matrix factorization into another by elementary row– and column manipulations, these two
matrix factorizations describe the same D–brane.

3.3.4 R–Charge

In [46, 30] a prescription was given how to associate to a matrix factorization a matrix R,
which encodes the U(1) R–charges. Assuming that the superpotential W (xi), i = 1, . . . ,N is
a quasi–homogeneous polynomial, we assign R–charges to the xi such that W has R–charge
2:

W (eiλqixi) = e2iλW (xi) ∀λ ∈ R (3.30)

This defines the R–charge of the bulk theory as the U(1)–action on the space of polynomials
with respect to which W is equivariant. The action closes for λ = πH, where the smallest

1This means that they are invertible over the polynomials.
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integer such that Hqi ∈ 2Z for all i.
The U(1)–action can be extended to the boundary. To every matrix factorization QA we can
associate an ’R–matrix’ RA such that

EQA + [RA, QA] = QA, (3.31)

where

E =
∑

i

qixi
∂

∂xi
(3.32)

is the Euler derivative. The matrix R is unambiguously defined if we demand that it is
diagonal, traceless and has constant entries.

3.3.5 Orbifolds

In the context of matrix factorizations orbifolds were first discussed in [43, 46], an explicit
construction of the representation of the orbifold group on matrix factorization was given in
[30].
If W (xi) is homogeneous of degree H, i.e. if we can assign weights wi to the xi such that∑N

i=1wi = H we can impose the action of the orbifold group Γ = ZH . It is generated by
the action xi → e2iπwi/Hxi ≡ eiπqixi. We can extend the orbifold action to the boundary
by associating to every matrix factorization QA a matrix γA which is defined through the
condition:

γAQA(ωixi)(γ
A)−1 = QA(xi) (3.33)

γA has an explicit expression in terms of the involution σ and the R–matrix:

γA = σeiπR
A

e−iπϕ, (3.34)

where the phase ϕ is fixed by the condition (γA)H = 1. For each matrix factorization of W
there are thus H ZH–equivariant factorizations.

3.3.6 Orientifolds

Orientifolds were discussed in [49, 50] in the context of matrix factorizations. A B–type
orientifold projection is defined as:

P = τΩ, (3.35)

where Ω is worldsheet parity and τ acts on target space variables. For Landau–Ginzburg
models τ acts such that it reverses the sign of the superpotential:

W (τxi) = −W (xi) (3.36)

Under orientation reversal on the worldsheet matrix factorizations transform into their graded
transpose:

QA(xi)→ −QA(τxi)
T (3.37)
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For matrices the graded transpose (. . .)T is defined as follows. Given a Z2 graded matrix

A =

(
a b
c d

)
, (3.38)

where the block matrix a maps even states to even states, d maps odd to odd and b, c map
between even and odd states, the graded transpose of A is

AT =

(
aT −cT
bT dT

)
, (3.39)

where aT , . . . are the transposes of the matrices. It can be shown that the so defined action
satisfies all the properties of an orientifold action and is compatible with R–charge, Z2–
grading and the orbifold projection.
In order to be able to define parity invariant configurations we define an operator U with the
following properties [49]:

UσTU−1 = σ

U(−τ∗QT )U−1 = Q, (3.40)

If we want the brane to be orbifold invariant in addition we introduce a character χ : Γ→ C∗

and impose the following condition:

U(χ(γ−1)T )U−1 = γ (3.41)

3.3.7 Open String States

To every matrix factorization QA we can assign a Z2–graded differential DA which acts on
an open string state Ψ as the graded commutator with QA:

DAΨ = QAΨ− (−1)|Ψ|ΨQA. (3.42)

where |Ψ| is the Z2–degree of Ψ.
Physical open string states which begin and end on the same brane A are defined by the
cohomology of DA:

H(DA) =
Ker(DA)

Im(DA)
= Heven(DA)⊕Hodd(DA) (3.43)

“Even” states with Z2–charge 0 will be referred to as bosons and are usually2 denoted by
φ. If we choose the block matrix representation (3.26) for QA the even states correspond to
block–diagonal matrices. “Odd” states have |Ψ| = 1 and are referred to as fermions and are
denoted by ψ. They can be represented as block–offdiagonal matrices.
So far, we have only considered open string states which begin and end on the same brane.
In order to describe boundary changing operators we pick two matrix factorizations QA and
QB which define a graded differential DAB which acts on boundary changing states ΨAB as
follows:

DABΨAB = QAΨAB − (−1)|Ψ
AB |ΨABQB (3.44)

2We will stick to these conventions as long as there are no bulk fields which are by standard conventions
also denoted by φ.
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The boundary changing spectrum is then defined by the cohomology of DAB . Setting A = B,
we recover the definitions for the boundary preserving sector.
The R–charge qΨAB of an open string state ΨAB is defined by

EΨAB +RAΨAB −ΨABRB = qΨABΨAB. (3.45)

An open string state is orbifold invariant if

γAΨAB(ωixi)(γ
B)−1 = ΨAB(xi) (3.46)

Under the orientifold action, open string states transform into their graded transpose:

ΨAB(xi)→ ΨAB(τxi)
T . (3.47)

For parity invariant D–branes, which are characterized by the action of the operator U of
(3.40), open string states transform as:

ΨAB(xi)→ UAΨAB(τxi)
T (UB)−1. (3.48)

Note that the states are not invariant under the orientifold action. The action also extends
to orbifold invariant states [49].

3.3.8 Tachyon Condensation

Open string states induce tachyon condensation. In the context of matrix factorizations
tachyon condensation is described as follows. Consider two matrix factorizations QA and QB

and an open string state T stretching between the branes A and B. Then we can define a
matrix

QC =

(
QA T
0 QB

)
, (3.49)

which defines a bound state of QA and QB . Using the physical state condition (3.44) for T ,
one finds that QC satisfies the matrix factorization condition (QC)2 = W · 1.
Note that this is not a dynamical process, which would require a string field theory description.
In the context of the topological string we have no dynamical means to turn on the tachyon
T : without T we have two branes QA and QB, for non–zero T the D–brane configuration is
given by the bound state.

3.3.9 Residue Formula for Correlators

For the bulk theory there exists a residue formula which computes correlators in topological
Landau–Ginzburg theories [54]. Since we are mostly interested in tree–level correlators, we
only give the three–point function on the sphere which is defined as follows:

〈φiφjφk〉 =
1

(2πi)N

∮
dNx

φiφjφk
∂1W . . . ∂NW

, (3.50)

where the φi are bulk fields and the contour goes around W = 0.
This formula can be used to calculate the three–point correlators explicitly. On the sphere,
we cannot calculate correlators with a higher number of insertions this way because these

34



insertions have to be integrated descendants3.
In [41], a generalization of (3.50) for topological Landau–Ginzburg models with boundary
was proposed. A derivation using localization techniques was given in [24]. It computes disk
correlators with three boundary insertions or one boundary and one bulk insertion. The
bulk–boundary correlator is given by

〈φiΨAA
a 〉 =

1

(2πi)N

∮
dNx

φiSTr
(
(∂QA)∧NΨAA

a

)

∂1W . . . ∂NW
, (3.51)

and similarly, for the case of three boundary insertions, we have:

〈ΨAB
a ΨBC

b ΨCA
c 〉 =

1

(2πi)N

∮
dNx

STr
(
(∂QA)∧NΨAB

a ΨBC
b ΨCA

c

)

∂1W . . . ∂NW
, (3.52)

where STr denotes the supertrace and (∂QA)∧N is the antisymmetrized derivative of QA:

(∂QA)∧N =
1

N !

∑

σ∈Sn

(−1)|σ|∂σ(1)Q
A · . . . · ∂σ(N)Q

A, (3.53)

with σ being an element of the permutation group Sn. The residues defined above are non–zero
if and only if the integrand is proportional to the HessianH = det∂i∂jW of the superpotential.
We can use (3.52) to define a topological metric on the boundary fields:

ωab = 〈ΨAB
a ΨBA

b 〉 ≡ 〈1ΨAB
a ΨBA

b 〉 (3.54)

3.3.10 RR–Charges

A prescription to compute RR–charges was given in [30]. The RR–charge is defined as the
correlation function on the disk with the RR–groundstate inserted in the bulk. The bulk
RR–ground states were computed in [55]. We consider models with integer central charge
ĉ =

∑
i(1 − qi) and orbifold group ZH . B–branes couple to Ramond–Ramond ground states

with opposite left– and right–moving R–charge: qL = −qR. In order to find these states,
we consider the l–th twisted sector with respect to the orbifold action. We can divide the
fields xi into fields {xui } which have R–charges lqi ∈ 2Z and fields {xti} with lqi 6= 2Z. The
important observation is that the ground states with qL = quL+ qtL = −qR = quR+ qtR from the
l–th twisted sector are the neutral ground states of the effective potential Wl(x

u
i ) obtained

by setting the fields with lqi 6= 2Z to 0. A basis of these ground states is given by:

|l;α〉 : φαl =

rl∏

i=1

(xui )
αi , (3.55)

where rl is the number of fields with lqi ∈ 2Z and α ranges over a basis of the subspace
of the chiral ring C[xui ]/∂Wl with R–charge quL = quR =

∑
lqi∈2Z αi qi2 = ĉu

2 , where ĉu =∑
lqi∈2Z(1 − qi). With these definitions, the RR–charge for a matrix factorization QA is

determined by the following disk correlator:

ch(QA)|l;α〉 = 〈l;α|Q〉

=
1

rl!

∮
φαl Str

(
γl(∂Ql)

∧rl
)

∂1Wl . . . ∂rlWl
, (3.56)

where γl is the generator of the orbifold group for the l–th twisted sector.

3See section 4.3 for a discussion.
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3.3.11 GSO Projections

In the bulk theory, a Landau–Ginzburg model with superpotential W (xi) is equivalent to a
Landau–Ginzburg model with a superpotential W (xi, z) = W (xi) − z2, where a quadratic
term in a new variable is added. Here, “equivalent” means, that adding a quadratic term
does not change the chiral ring and consequently the physical spectrum remains unchanged4.
This situation changes when one adds a boundary. Given a matrix factorization W (xi)1 =
E(xi)J(xi) of W (xi) the most obvious matrix factorization of W (xi, z) is:

W (xi, z)1 =

(
E(xi) z
−z J(xi)

)(
J(xi) −z
z E(xi)

)
(3.57)

These two models have different boundary spectra. It was shown in [32] that these two
models correspond to two different GSO projections (type 0A/B) in the conformal field theory
description. The result generalizes to superpotentials with more than one variable.

3.4 Matrix Factorizations from a Mathematics Point of View

B–type D–branes are objects in the derived category of coherent sheaves, which is equivalent
to the category of matrix factorizations. Open string states stretching between two D–branes
correspond to morphisms between these objects. Open strings which begin and end on the
same brane correspond to endomorphisms.
In this section we give the basic properties of these categories and relate them to the physics
terminology introduced in the previous section.

3.4.1 The Category of Matrix Factorizations

The construction of the category of matrix factorizations of W (xi), which we will denote by
MF (W ) goes back to Kontsevich [56]. The objects of these categories are triples (M,σ,Q),
where M is a free R = C[x1, . . . , xN ]–module with Z2–grading σ and an odd endomorphism
Q satisfying Q2 = W1. Decomposing M into homogeneous components M = M− ⊕M+ of
rank r, one can write Q in the usual block off–diagonal form with the boundary potentials E
and J :

Q =

(
0 E
J 0

)
(3.58)

Here E ∈ Hom(M−,M+) and J ∈ Hom(M+,M−) have an interpretation as morphisms. This
can be pictured by the following diagram:

M =
(
M−

E
-

�

J
M+

)
(3.59)

This can be given a physical interpretation [21, 46, 24, 53]. M+ and M− describe a brane
anti–brane pair and J and E can be interpreted a tachyon field configuration, which forces
the two branes to condense into the brane M .
The transformations (3.29) are then automorphisms of M . MF (W ) is a differential graded
category with differentialD defined in (3.44), which acts on the morphism space HomR(MA,MB),
defined by the cohomology of this differential.

4Of course, adding a variable does change the geometric interpretation which relates the Landau–Ginzburg
superpotential W via the LG/CY–correspondence to a hypersurface in projective space defined by W=0.
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3.4.2 Triangulated Categories

The category of matrix factorization is triangulated. Triangulated categories have additional
structure which reflect important physical properties of D–branes. See for instance [11] for a
review.
One important property is the existence of a shift functor [1], which reverses the Z2–grading:
[1] : σ → −σ. In the physical description the shift functor relates branes and antibranes:

Q[1] =

(
0 E
J 0

)
[1] =

(
0 −J
−E 0

)
(3.60)

In particular, the existence of the shift functor implies that a fermionic/bosonic state stretch-
ing between a brane A and a brane B is equivalent to a bosonic/fermionic state stretching
between Ā and B or A and B̄, where Ā, B̄ denote the respective antibranes.
The second characteristic of a triangulated category is the existence of distinguished triangles.
One particular triangle is:

QC

QA

T
-

�

QB

�

(3.61)

The statement is, that for every morphism T going from the object QA to the object QB

there exist QC and the morphisms from QB to QC and from QC to QA.
The dashed arrow in (3.61) corresponds to a map to QB [1]. The triangle can also be written
as the following exact sequence:

QB - QC - QA
T

- QB [1] (3.62)

We can associate a matrix factorization to the triangle (3.61):

QC =

(
QA T
0 QB

)
(3.63)

This construction, which is known as the cone construction, provides the mathematical setup
for tachyon condensation. QC is called the mapping cone. In physics language the diagram
(3.61) means the following: Given an open string state T between branes A and B, there
exists a bound state C of the branes A and B, which is formed by tachyon condensation of
T .

3.4.3 Serre Duality

Serre duality gives an equivalence relation between cohomologies:

H∗(DAB) = H∗+N (DBA), (3.64)

where DAB is the differential (3.44) and N is the number of variables in the superpotential
W . Thus, to every open string state going from brane A to brane B, we can associate a Serre
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dual state going from B to A. If W has an odd number of variables bosons pair up with
fermions or vice versa. If W has an even number of variables bosons pair up with bosons and
fermions with fermions.
Serre duality ensures that the boundary metric (3.54) is non–degenerate.

3.4.4 Knörrer Periodicity

In section 3.3.11 we saw that adding a quadratic term to the superpotential W (xi) we get a
different theory on the boundary. If one adds two more variables toW (xi) with W̄ (xi, z1, z2) =
W (xi)+z

2
1 +z2

2 or W̃ (xi, z1, z2) = W (x)+z1z2 one obtains theories which are equivalent to the
theory with W (x). The mathematical structure behind this is an equivalence of categories,
called Knörrer periodicity [57]. The statement is that the category MF (W ) is equivalent to
MF (W̃ ) or MF (W̄ ). Given a matrix factorization (E(xi), J(xi)) of W (xi), one can easily
construct a matrix factorization of W (xi, z1, z2):

W (xi, z1, z2) =

(
E(xi) z1
−z2 J(xi)

)(
J(xi) −z1
z2 E(xi)

)
(3.65)

In [49] it was shown that in the context of orientifolds Knörrer periodicity doubles, i.e. that
one has to add quadratic terms in four variables in order to get an equivalence of categories.

3.4.5 Refining the Category of Matrix Factorizations

In order to incorporate the additional information of R–charges, orbifolds and orientifolds into
the category theoretic description, the category of matrix factorizations has to be extended.

Including R–charges promotes the Z2–graded category MF (W ) to a Z–graded category [30],
with Z–graded matrix factorizations, which were denoted MFR(W ) in [58], where an exhaus-
tive discussion of the category from the mathematics point of view is given. The Z–grading
is generated by the Euler vector field (3.32).
In order to include the orbifold action, we introduce a triangulated differential graded category
MFΓ(W ), where Γ is the orbifold group. Its objects are defined by the data

(M,σ,Q, γ), (3.66)

where γ is the representation (3.34) of the orbifold group. Its morphisms satisfy (3.46).
Including the orientifold action, we can define a category MF ǫ

P
[49] (see also [50]) with

objects:

(M,σ,Q,U), (3.67)

where U was defined in (3.40). It is a map U : M∗ →M , where M∗ is the dual of M . (. . .)T

is the graded transpose defined in (3.39) and τ as defined in section 3.3.6. P defines a parity
functor P : MF (W )→MF (W ) with action:

(M,σ,Q)→ (M∗, σT ,−τ∗QT )

ΨAB ∈ Hom(MA,MB)→ τ∗(ΨAB)T ∈ Hom(M∗
B ,M

∗
A), (3.68)

where τ∗Q(xi) ≡ Q(τxi).
Given two objects labeled by A and B in MF ǫ

P
, the parity transformation of open string states
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is given by a map P : Hom(MA,MB) → Hom(MB ,MA) defined by (3.48). The category is
parameterized by a sign ǫ which arises from the condition that P acts as a projector.
Finally, we can define a category MF±c

Pχ
which incorporates orientifolds and orbifolds. Its

objects are:

(M,σ,Q, γ, U), (3.69)

subject to the conditions (3.40), (3.41). The function c is a phase which parameterizes the
category [49]. The functor Pχ acts as

Pχ :(M,σ,Q, γ)→ (M∗, σT ,−τ∗QT , χ(ρ−1)T ). (3.70)

3.4.6 Maximal Cohen–Macaulay Modules

A different construction of matrix factorization is given in the context of maximal Cohen–
Macaulay modules over local rings of hypersurface singularities. This description will become
important in the deformation theory construction of the effective superpotential which we
will discuss in section 4.2. The discussion here is mostly taken from [30]. The ring which is
relevant for us is given by R̃m = Rm/W where Rm = C[[x1, . . . , xN ]] is the ring of formal
power series and m = (x1, . . . , xN ) is the maximal ideal.
We now consider a matrix factorization (E, J) of W and the Rm–module M = Coker(E).
The Rm–free resolution of M is given by the short exact sequence5:

0 � M � F �
E

G � 0, (3.71)

where F ∼= G ∼= (Rm)r are rank r free modules. M descends to an R̃m–module with infinite
free resolution

0 � M � F̃ �
E

G̃ �
J

F̃ �
E

G̃ � · · · ,
(3.72)

where F̃ ∼= G̃ ∼= (R̃m)r. The characteristic property of this sequence is that it becomes
periodic after the first step. M is called a maximal Cohen–Macaulay module over R̃m. The
maximal Cohen–Macaulay modules form a category MCM(W ) and a theorem of Eisenbud
[20] states that the objects of this category are given by matrix factorizations.
In the mathematics literature matrix factorizations are usually seen as free resolutions of
maximal Cohen–Macaulay modules. A standard reference is [60]. This description turns
out to be particularly useful if one wants to extract bundle data from matrix factorizations
[61, 40].

3.5 Construction of Matrix Factorizations

In this section we present some basic constructions of matrix factorizations.

5We write the sequence from right to left in accord with the conventions of [59], which will be our main
reference in section 4.2
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3.5.1 Tensor Product Branes

The simplest matrix factorizations are given by the factorization of the minimal models of
type Ak−2, k ≥ 3 which have the superpotential W = xk. This has an obvious factorization:

W = EJ E = xr J = xk−r Q =

(
0 xr

xk−r 0

)
r = 1, . . . k − 1 (3.73)

These matrix factorizations were discussed in [22, 47]. They were identified with certain
boundary states in conformal field theory. It was also shown that all the matrix factorizations
of the A–minimal models are given by direct sums of these one–dimensional factorizations.

In [43], a construction was given to calculate matrix factorizations for tensor products of
A–type minimal models. Let us consider the simplest example of the tensor product of two
minimal models with superpotential

W (x1, x2) = W (x1) +W (x2) = E1(x1)J1(x1) + E2(x2)J2(x2). (3.74)

We can now construct a matrix factorization W (x1, x2) = E(x1, x2)J(x1, x2) with:

E(x1, x2) =

(
E1(x1) E2(x2)
J2(x2) −J1(x1)

)
J(x1, x2) =

(
J1(x1) E2(x2)
J2(x2) −E1(x1),

)
(3.75)

where Ei(xi), Ji(xi) are of type (3.73). This is easily generalized to tensor products of n
minimal models. Consider a superpotential

W (x1, . . . , xn) = W1(x1, . . . , xm) +W2(xm+1, . . . , xn), (3.76)

and let (E1(x1, . . . , xm), J1(x1, . . . , xm)) and (E2(xm+1, . . . , xn), J2(xm+1, . . . , xn)) be tensor
product matrix factorizations of W1 and W2, respectively. Then we can construct a factor-
ization (E, J) of W , where:

E =

(
E1 ⊗ 1 1⊗ E21⊗ J2 −J1 ⊗ 1 ) J =

(
J1 ⊗ 1 1⊗ E21⊗ J2 −E1 ⊗ 1, ) (3.77)

This type of matrix factorizations could be identified with the Recknagel–Schomerus branes
in the corresponding Gepner model [43, 31, 33]. The Recknagel–Schomerus branes are those
branes in boundary conformal field theory, which preserve the different N = 2 superconformal
algebras of the minimal model components separately [62].
Given a superpotential W (x1, . . . , xn), which is a homogeneous polynomial of degree H there
is an obvious way to factorize W which yields a tensor product brane:

W =
n∑

i=1

wi
H
xi
∂W

∂xi
, (3.78)

where the wi are the homogeneous weights of the xi. This factorization also exists if one turns
on deformations of W .
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3.5.2 Permutation Branes

A further standard construction of matrix factorizations was discussed in [31, 33]. They arise
for superpotentials of the form

W = xk1 + xk2 (3.79)

Apart from factorizing each minimal model component individually, we can also factorize W
as follows:

W =

k−1∏

m=0

(x1 − ηmx2), (3.80)

where

ηm = e−πi
2m+1
k m = 0, . . . , k − 1 (3.81)

are the k–th roots of −1. We can then define a rank one matrix factorization W = EJ of the
superpotential (3.78) with

E =
∏

m∈I

(x1 − ηmx2) J =
∏

n∈D\I

(x1 − ηnx2), (3.82)

where D = {0, . . . , k − 1} and I is a subset of D. In [31, 33] a subset of these branes was
identified with the permutation branes [63]. In Gepner models, these branes preserve the
different N = 2 superconformal algebras up to permutation.

3.5.3 Generalized Permutation Branes

In [64, 35] a further type of rank one matrix factorizations was introduced. Consider the
following superpotential:

W = xk11 + xk22 = xdr11 + xdr22 , (3.83)

where d = gcd(k1, k2) and d ≥ 2. The superpotential can be factorized in the following way:

W =
d−1∏

m=0

(xr11 − ηmxr22 ), (3.84)

where ηm are the d–th roots of −1. This gives rise to new matrix factorizations. A subset
of these which correspond to generalized permutation branes whose conformal field theory
description was given in [35].

In [64] it was shown that the three constructions given above account for all the RR–charges
in Gepner models which are tensor products of A–type minimal models. One can construct
more general D–branes as tensor products of (generalized) permutation branes with tensor
product branes. Such branes are called transposition branes.
Note that the mapping between matrix factorizations and boundary states does, unfortu-
nately, not lead to a complete classification of matrix factorizations because there are matrix
factorizations which can not be given an interpretation in terms of boundary states.
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3.5.4 Cone Construction

As we have already mentioned before, it is possible to obtain a new matrix factorization from
two given ones via tachyon condensation as was shown in (3.49).

3.6 Further Applications of Matrix Factorizations

In this section we want to account for some further interesting applications of matrix factor-
izations in physics which will not be discussed in detail in this thesis.
One interesting application is concerned with the resolution of singularities. Such problems
were discussed in [65, 66]. A hypersurface singularity is defined as a polynomial of the form

f = x2
1 + g(x2, . . . , xn) = 0 (3.85)

Via the McKay correspondence [67] one can associate to each resolution of the singularity a
maximal Cohen–Macaulay module, which can be described in terms of matrix factorizations of
(3.85). In [66] this formulation was used to describe flop transitions. [65] discusses resolutions
of singularities using matrix factorizations in the context of the correspondence between
matrix models to Calabi–Yau compactifications.
Another application is in the context of knot theory. In [68, 69] a relation between knot
homology and matrix factorizations was established, which was discussed from a physics
point of view in [70], where Landau–Ginzburg superpotentials associated to knot homology
were investigated.
Recently, matrix factorizations proved to be useful in connection with moduli stabilization
with fluxes in non–geometric backgrounds [71].
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Chapter 4

The Effective Superpotential

This chapter is devoted to the effective superpotential Weff , which plays a central role in
N = 1 string compactifications. The effective superpotential can be interpreted as an effective
four–dimensional space time superpotential for a string theory compactified on a Calabi–Yau
manifold. This is one of the examples where the topological string computes important physi-
cal quantities. Unfortunately, the formalism we are working with is at present not sufficiently
well–understood to be applied to a full fledged Calabi–Yau compactification. In this chapter
we will thus focus on two interpretations of the effective superpotential, which also make sense
for the toy models we are considering here.
We will start the discussion with an introductory section which deals with the various in-
terpretations of Weff . In section 4.2 we explain how the effective superpotential can be
calculated by means of deformation theory. In section 4.3 we show how to compute Weff by
solving consistency conditions for open topological strings. In this chapter we only introduce
the relevant techniques, their applications in concrete examples will be relegated to chapter
5.

4.1 Interpretation of the Effective Superpotential

4.1.1 Obstructions to Deformations

A very interesting aspect of the effective superpotential is that it encodes the obstructions
to deformations of D–branes. This can be derived in a string field theory context [72]. In
general, deformations of D–branes will be obstructed and these obstructions are encoded in
the critical locus of the effective superpotential. The effective superpotential will in general
depend on boundary deformation parameters ui and bulk deformation parameters ti, which
are the moduli of the theory. The critical locus is defined as follows:

∂Weff (ui, ti)

∂ui
= fi(ui, ti) = 0 (4.1)

Note that we only take derivatives of Weff with respect to the boundary moduli ui and treat
the bulk deformations as background fields [22, 47].
In [47] it was shown that the critical locus of the effective superpotential coincides with the
factorization locus of a matrix factorization. In general, one cannot expect the matrix factor-
ization Q(xi) = E(xi)J(xi) to be satisfied in the presence of bulk and boundary deformations.
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∂Weff

∂ui
= fi(ui, ti) = 0

Figure 4.1: The critical locus in the moduli space of a single D–brane.

But along the critical locus one indeed has:

W (xi; ti) · 1 = E(xi;ui, ti)J(xi;ui, ti), (4.2)

with deformed matrices E(xi;ui, ti), J(xi;ui, ti). The above relation also implies that ui and
ti cannot be independent.
Since the matrix factorization condition is directly related to N = 1 supersymmetry (see
section 3.2), one can deduce that, along the factorization locus and hence along the critical
locus, N = 1 supersymmetry is preserved, whereas it is broken at every other point in param-
eter space. For a single D–brane one can illustrate this as shown in fig. 4.1. Only along the
line where fi(ui, ti) = 0 a deformed matrix factorization exists and N = 1 supersymmetry is
preserved. If one considers a system of multiple D–branes the critical line can have various
branches corresponding to different tachyon condensates [47].

Now the question arises, whether it is possible to calculate the effective superpotential by
computing the most general, and generically non–linear, deformations of a matrix factoriza-
tion. The answer is yes, but it turns out that one has to employ the powerful, rather abstract,
mathematical concept of deformation theory in order to solve this problem. The idea is to
extract the critical locus by iteratively calculating the deformations of a matrix factoriza-
tion and their obstructions, which can (under certain conditions) be integrated to give Weff .
The reason why one has to use this complicated mathematical framework instead of methods
which are more physically motivated is twofold: Firstly, when computing deformations of D–
branes, one moves away from the critical point. This is why CFT methods will not be of use
in this approach to the problem. A second complication is that applying deformation theory
methods forces one to use operators which map on the full off–shell Hilbert space. In N = 1
compactificaltion the unphysical Hilbert space does not decouple, which leads to significant
complications as compared to N = 2 theories. In particular this implies that we can no longer
consider on–shell techniques like in the closed string case. This problem has been addressed
in [45, 53] in the context of matrix factorizations. We will now briefly summarize these results.

The dynamics of off–shell open string modes in B–type topological theories is governed by
the holomorphic Chern–Simons action, which defines a cubic string field theory [73]. On a
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Calabi–Yau threefold X, the action looks as follows:

SCS =

∫

X
ΩXTr

(
1

2
aQa+

1

3
a3

)
, (4.3)

with fields a, BRST operator Q and the holomorphic three–form ΩX . The off–shell Hilbert
space H has a Hodge decomposition with respect to Q:

H = Hphys ⊕Hexact ⊕Hunphys
= H ⊕ Im(Q)⊕ Im(Q†), (4.4)

where H is the physical Hilbert space defined by the cohomology of Q and Q† is the hermitian
conjugate of Q. We can now define an expansion of the off–shell fields a:

a = Ψ + Ψ̃, (4.5)

where Ψ ∈ H and Ψ̃ ∈ Im(Q) ⊕ Im(Q†). We furthermore impose a Siegel–type gauge fixing
condition: Q†Ψ̃ = 0. It has been shown in [72] that the effective superpotential is given by
the following expression:

Weff =
∞∑

n=2

(−1)n(n+1)/2

n+ 1
〈Ψ,mn(Ψ

⊗n)〉, (4.6)

where the inner product is defined as 〈ΨΦ〉 =
∫
X Tr(ΨΦ). The ’higher products’ mn : H⊗n →

H are subject to the constraints

∞∑

n=1

(−1)n(n+1)/2mn(Ψ
⊗n) = 0. (4.7)

The mn define a cyclic A∞ structure with cyclicity condition

〈Ψan+1 ,mn(Ψa1 , . . . ,Ψan)〉 = (−1)n(ã1+1)〈Ψa1 ,mn(Ψa2 , . . . ,Ψan+1)〉, (4.8)

where ã denotes the ’suspended grade’ of Ψa, see section 4.3. The mn satisfy an A∞–algebra:

m∑

k+l=m+1
j=0,...,k−1

(−1)ã1+...ãjmk(Ψa1 . . .Ψaj ,ml(Ψaj+1...Ψaj+l
),Ψaj+l+1

. . .Ψam) = 0 (4.9)

Equation (4.7) describes the critical locus of the effective superpotential. In deformation
theory, these equations are generalized Maurer–Cartan equations. In the string field theory
context these are the equations of motion. Note that the sums in (4.6) and (4.7) generically
contain infinitely many terms, which makes them hard to compute. In some simple cases,
namely the minimal models to be discussed in chapter 5, these expressions are actually poly-
nomial.
The calculations of the effective superpotential thus boils down to determining the higher
products mn. Formally, this can be done as follows (see for instance [74, 75]): Define a restric-
tion Q|ImQ† : Im(Q†)→ Im(Q). It is invertible and its inverse is denoted byQ−1. Furthermore
we define a projector π from the full Hilbert space to the exact states: π : H → Im(Q). Us-
ing these expressions one can also define a projector U into the unphysical Hilbert space:
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U = Q−1π : H → Im(Q†). Then one defines multilinear maps λn : H⊗n → H which act on
the fields ai that live in the full Hilbert space:

λ2(a1, a2) =a1 · a2

...

λn(a1, . . . , an) =(−1)n−1 [Uλn−1(a1, . . . , an−1)] · an − (−1)nã1a1 · [Uλn−1(a2, . . . , an)]

−
∑

k,l≥2

k+l=n

(−1)k+(l−1)(ã1+...+ãn) [Uλk(a1, . . . , ak)] · [Uλl(ak+1 . . . , an)] (4.10)

The λn can be related to the mn via a projector which maps to the physical Hilbert space:
Π : H → H, Π = 1− [Q,U ], where [·, ·] is a graded commutator. The mn are then defined as
follows:

m1 = 0 mn = Πλn (4.11)

How can this construction be related to the deformation of matrix factorizations? A general
deformation of a matrix factorization Q is given by:

Qdef = Q+

∞∑

n=1

Qn. (4.12)

At linear order the deformations are given by the fermionic open string states: Q1 = uaΨa.
In general this will spoil the factorization condition:

Q2
def −W = u2[Ψ,Ψ] ≡ λ2(Ψ,Ψ) (4.13)

As long as λ2(Ψ,Ψ) is exact, one can cancel the term at the next order by adding

Q2 = −Uλ2(Ψ,Ψ) (4.14)

If λ2(Ψ,Ψ) gives a physical state, the contribution cannot be cancelled by adding a term to
Q and thus the deformation is obstructed. These obstructions are encoded in the equations

∑
mn(Ψ

⊗n) =
∑

Πλn(Ψ
⊗n) = 0. (4.15)

In general the Qn are given by [53]:

Qn = −Uλn(Ψ⊗n). (4.16)

This construction is rather formal because the explicit form of the operators U and Π is in
general not known. Luckily, one does not need the explicit form of these operators in order
to calculate the effective superpotential. All one needs to know is how they act on certain
states. In [45, 27] the above constructions were used to calculate the effective superpotential
for a certain D–brane configuration on the quintic.
In section 4.2 we will describe an algorithm which recursively computes the Qn andmn [76, 59]
and is equivalent to the methods used in [45, 27].
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4.1.2 Generating Function for Disk Amplitudes

The effective superpotential is defined as the generating functional of open string disk am-
plitudes. In [72] this was derived in a string field theory context as already mentioned in
section 4.1.1. It was shown that the higher products mn appearing in (4.6) are related to
the tree–level diagrams and the relations (4.10) encode how an amplitude decomposes into
amplitudes with a lower number of insertions.
The idea is now to calculate Weff by explicitly calculating the values of the open string disk
amplitudes via consistency constraints. This was discussed in [77, 44].
In closed topological string theories, the analogue of the effective superpotential is the WDVV
potential F(t) which is the generating function of the genus zero amplitudes. All the correla-
tors can be obtained as derivatives with respect to the bulk parameters ti. F(t) is constrained
by the WDVV equations, which arise form the crossing–symmetry of the four–point correlator
[78]:

∂i∂k∂mFηmn∂n∂j∂lF = ∂i∂j∂mFηmn∂n∂k∂lF , (4.17)

where ηmn = C0mn is the topological metric, Cijk are the three–point functions and ∂i = ∂
∂ti

.
The integrability of the closed string amplitudes is linked to the fact that the correlators are
completely symmetric with respect to their insertions, and to the existence of flat coordinates
which are determined by N = 2 special geometry. For open strings the situation is much more
complicated. In particular, it is not possible to integrate the correlators with respect to the
boundary deformation parameters because the disk correlators are only cyclically symmetric
with respect to boundary insertions, but they are still integrable with respect to the bulk
parameters. In general, one also lacks flat coordinates on the boundary moduli space.
Consider an amplitude with m boundary insertions and n bulk insertions. We can write this
as

Ba0...am;i0...in = ∂i0 . . . ∂inFa0,...,am |t=0, (4.18)

where Fa1...am are the disk amplitudes. One can define a formal generating function of these
amplitudes [44]:

Ŵ =
∑

m≥1

1

m
ŝam . . . ŝa0Fa0,...,am(t̂), (4.19)

where Fa1,...,am(t̂) is viewed as a formal power series and the ŝa are non–commuting pa-
rameters. We have also introduced formal parameters t̂, associated to the bulk parame-
ters. This object does not have a physical interpretation, but it can be evaluated over the
super–commuting variables sa = {ua, va}, where the ua are commuting and the va are anti–
commuting. We define:

Weff (s; t) :=
∑

m≥1

1

m
sam . . . sa0Fa0...am(t) (4.20)

The parameters sa can then be given a physical interpretation as deformations parameters
related to odd/even boundary insertions1. Now define a supersymmetrized combination of

1The parameters ui are related to the fermionic boundary insertions, the anti–commuting vi are related to
the even boundary insertions.
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the amplitudes:

Aa0...am := (m− 1)!F(a0 ,...,am) :=
1

m

∑

σ∈Sm

η(σ; a0, . . . , am)Faσ(0)...aσ(m)
, (4.21)

where σ is a permutation and η is the sign one obtains from permuting the variables sa. Then
one can write:

Weff (s; t) =
∑

m≥1

1

m
sam . . . sa1Aa1...am(t) (4.22)

One can now get the Aa1...am as partial derivatives ∂a ≡ ∂
∂sa

of the effective superpotential:

Aa0...am = ∂a0 . . . ∂amWeff (s; t)|s=0 (4.23)

Thus, in contrast to the closed string case, the derivative of the effective superpotential does
not yield the amplitudes but only their symmetrized combinations. The amplitudes therefore
contain more information than the effective superpotential.
In order to calculate Weff in this approach, one has to find a way to calculate the values
of all the correlators by solving generalized consistency constraints analogous to those in the
closed string case. Such consistency constraints were derived in [44] and will be discussed in
section 4.3. The constraints are more complicated than (4.17) due to the cyclic structure of
the boundary insertions and because a larger number of sewing constraints has to be satisfied
by correlators with bulk and boundary insertions. In particular, [44] gives a field theory
derivation of the A∞–relations (4.9). There are two further sets of constraints given in [44],
the bulk–boundary crossing constraint and the Cardy–condition, where they were successfully
tested for the A–minimal models. In [79, 2, 36] it was pointed out that they will have to be
modified for more complicated models.
Note that such consistency constraints can also be derived for higher genus amplitudes [48].
They are called ’quantum–A∞ relations’.

4.2 Construction of the Effective Superpotential via Deforma-

tion Theory

In this section we present what is probably the most sophisticated, but from a physics point
of view also the most abstract way to calculate the effective superpotential. The algorithm
is called the ’method of computing formal moduli’ and was introduced in [76, 59, 80] based
upon [81, 82]. It was extended in [83]. The method uses general concepts of deformation
theories with the following specifications:

• It computes the versal deformations of modules and is thus tailored for matrix factor-
izations.

• The method considers deformations of D–branes with fermionic open string states, which
are related to commuting deformation parameters ui. In order to include deformations
with bosonic states, one would have to find a non–commutative extension of the for-
malism. For the case of minimal models, which will be our focus, one does not loose
information by neglecting bosonic deformations because Weff is independent of the
associated non–commuting deformation parameters [44].
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X
1 step

2 steps

3 steps

4 steps

Figure 4.2: Exploring the shape of a dark room as an analogy for deformation theory.

• Bulk deformations are not included in the formalism. For a single D–brane, this means

in particular that the equations for the critical locus fi(ui) =
∂Weff

∂ui
= 0 only have the

trivial solution ui = 0. This means this is only a formal deformation. This changes if one
considers systems of multiple D–branes [47] or if one turns on bulk moduli. It was shown
in [2] and will be reviewed in section 5 that bulk–deformations can be incorporated into
the formalism.

In the following subsection we attempt to give some intuition for the abstract concepts of
deformation theory. Then we move on to describe the mathematical construction underlying
the algorithm. In section 4.2.3 we summarize the results of the mathematical construction
which are relevant for the application of the algorithm.

4.2.1 An Intuitive Picture

A nice way to think about deformation theory is the analogy of trying to explore the shape
of a dark room as depicted in fig. 4.2.
The procedure is as follows: In order to investigate the room in the most efficient way, one

first takes one step in every possible direction, say, left, right, forward backwards. In the
mathematical formalism, the directions are encoded, at linear level, in terms of the fermionic
cohomology elements. At higher orders, which is related to taking more steps in the room,
this is governed by higher products in the cohomology, the so–called Massey products. The
allowed steps correspond to the possible deformations and are thus encoded in the Qn in
(4.12).
Hitting a wall of the room corresponds to encountering an obstruction of the deformation.
One has to make sure to exclude this obstructed direction when increasing the number of
steps. In the mathematical formalism these obstructions are encoded in the relations (4.16).
There may however be some subtleties: the room to explore could have some hidden areas,
like the top right corner in fig. 4.2. In order to find this hidden corner one has to find
a way to navigate around the obstacle one finds after the first step. Also this is encoded
in the formalism as information about obstructions at lower order enters in higher order
computations.
Note that fig. 4.2 implies that after a certain number of steps one cannot move any further

49



because one has reached the end of the room in all possible directions. In the deformation
theory formalism this would mean that the sums in (4.12) and (4.16) only contain finitely many
terms. This is true for the minimal models, which have only massive deformations, where
the algorithm really terminates after a finite number of steps. For theories with marginal
deformations, there are in general infinitely many terms (unless one makes a clever choice for
the input of the algorithm [27]). One should thus regard the room as infinitely large.

4.2.2 Mathematical Construction

In this section we summarize the mathematical construction of the ’method of computing for-
mal moduli’, which allows us to calculate deformations of matrix factorizations. We closely
follow [76, 59], further literature on the deformation theory of modules and related subjects
can be found in [80, 83] and [84, 85, 86, 87]. We will summarize the essential steps of the
algorithm in section 4.2.3.

We start by defining the deformation of a module. We denote by A a k–algebra, where
k is a field. Furthermore, E is an A–module2. We denote by ℓ the category of local Artinian3

k–algebras with residue field k. For an object S in ℓ we can then define an infinitesimal
deformation functor DefE(S) taking values in the category of sets:

DefE(S) =

{
(E, θ)|E is an A⊗k S module, flat over S, and E ⊗S k

θ∼= E

}
/ ∼= (4.24)

Then there is a theorem due to Schlessinger [89], which states that there exists a hull ĤE of
DefE, termed local formal moduli of E, which is a complete local k–algebra together with
a smooth morphism Mor(ĤE,−) → DefE such that Mor(ĤE, k[x]/x

2) → Def(k[x]/x2) is a
bijection.
We now have to construct the hull ĤE . We start by fixing a free resolution L• of E as an
A–module. In our case this amounts to choosing a matrix factorization. One can define a
differential

di : Li → Li−1. (4.25)

We set

Homp
A(L•, L•) =

∏

m≥p

Hom(Lm, Lm−p), (4.26)

and then dp : Homp
A(L•, L•)→ Homp+1

A (L., L.) is defined by:

dp
(
{αpi }i≥p

)
=
{
di ◦ αpi−1 − (−1)pαpi ◦ di−p

}
(4.27)

Hom.
A is a graded differential associative A–algebra, where the multiplication is the compo-

sition of Hom•
A(L•, L•). For matrix factorizations, (4.27) is just the (component version of

2In this section we adopt the notation of [59], which differs slightly from the notation we used in section
3.4.

3An Artinian ring is a ring which satisfies a ’descending chain relation on ideals’. These are rings whose
underlying sets are finite or finite–dimensional vector spaces over fields [88]. The ring R̃m defined in section
3.4.6 is precisely what we are working with here.
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the) physical state condition (3.44).
An important result states that that there is a natural isomorphism between Ext–groups and
cohomology:

ExtiA(E,E) ∼= H i(Hom•
A(L•, L•)), i ≥ 0 (4.28)

In [59] the following theorem is proven:

Theorem. Given an object S in ℓ assume there exists a lifting {L• ⊗k S, di(S)} of the complex
{L•, di} of the free resolution L• of E. This means that there exists a commutative diagram
of the form

0 � ES � L0 ⊗ S �
d1(S)

L1 ⊗ S �
d2(S)

L2 ⊗ S �
d3(S) · · ·

0 � E � L0

?

�
d1

L1

?

�
d2

L2

?

�
d3 · · ·

(4.29)

where for every i the composition di+1(S) ◦ di(S) = 0 and di(S) is A ⊗k S–linear. Then
{L• ⊗k S, di(S)} is an A⊗k S–free resolution of ES and ES is a lifting of E to S.

In the context of matrix factorizations, which corresponds to the special case where the
complexes above are periodic, i.e. if E is a maximal Cohen–Macaulay module. This means
that, if a deformation is possible, one can construct a deformed matrix factorization for which
the factorization condition holds. The rest of this section will be devoted to the explicit
construction of this lifting.
At first we have to define what an obstruction is. The following theorem relates obstructions
to elements of Ext2(E,E), which is for matrix factorizations related to the even cohomology
elements via (4.28).

Theorem. Let π : R → S be a small morphism in ℓ, where a small morphism satisfies
mR · kerπ = 0, mR being the maximal ideal. Then let ES ∈ DefE(S) correspond to the lifting
{L• ⊗ S, di(S)} of L•. Then there is a uniquely defined obstruction

o(ES , π) ∈ Ext2A(E,E) ⊗k I (4.30)

given in terms of the 2–cocycle o ∈ Hom•
A ⊗k I such that o(ES , π) = 0 if and only if ES may

be lifted to R. Here I = kerπ. Moreover, if o(ES , π) = 0, then the set of liftings of ES to R
is a principal homogeneous space4 over Ext1A(E,E).

The linear, infinitesimal deformations are given by the odd cohomology elements, related
to Ext1:

Ext1A(E,E) ∼= DefE(k[x]/x2) ∼= DefE(k[ε]) (4.31)

The next step is the proof of a structure theorem due to Laudal [81, 82]. This proof is
constructive and yields an algorithm to calculate explicitly the deformations of modules. The
theorem states the following:

4A principal homogeneous space for a group G is a set X for which G acts freely and transitively [90].
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Theorem. There exists a morphism of complete local k–algebras

o : T 2 = Symk

(
Ext2(E,E)∗

)
ˆ→ T 1 = Symk

(
Ext1(E,E)∗

)
ˆ (4.32)

(where Sym is the symmetric power and the ∗ denotes the dual of the group) such that ĤE
∼=

T 1⊗T 2 k. Theˆin the above equation indicates that we consider the completion of the algebra5.
Furthermore, for any small morphism π : R→ S in the diagram

Ext2(E,E)∗ ⊆ mT 2 ⊆ T 2 o
- T 1 φ̄

- R

Ĥ

?
φ

- S

π

?

(4.33)

the obstruction for lifting Eφ ∈ DefE(S) to R is given by the restriction of o◦φ̄ to Ext2(E,E)∗.

The conclusion to draw from this rather abstract theorem is that the hull ĤE is isomorphic
to the quotient ring

ĤE
∼= k[u1, . . . , ud]/(f1, . . . , fr), (4.34)

where d = dim(Ext1(E,E)) and r ≤ dim(Ext2(E,E)). The vanishing relations fi actually
determine the critical locus of Weff and their coefficients can be constructed from matric
Massey products6.

In order to explicitly construct this quotient ring we choose bases {x1, . . . , xd} for Ext1A(E,E)∗,
and {y1, . . . , yr} for Ext2A(E,E)∗ and the corresponding dual bases {x∗1, . . . , x∗d}, {y∗1 , . . . , y∗r},
which are the fermionic and bosonic open string states in the physical description.
A lemma due to Nakayama states that7

Ĥ/m2 ∼= k[u1, . . . , ud]/m
2, (4.35)

where m = (u1, . . . , ud). We now start a stepwise construction by setting

S1 = k[u1, . . . , ud]/m
2 ≡ k[u]/m2 R2 = k[u]/m3 (4.36)

We let Eφ1 ∈ DefE(S1) correspond to φ1 : Ĥ → Ĥ/m2, φ1(xi) = ui – thus, this construction
associates a deformation parameter ui to every odd cohomology element. Then, if a ⊆ R2 is
a least ideal such that Eφ1 can be lifted to R2/a = S2 then R2/a ∼= Ĥ/m3.
Now consider the following diagram

R2 = k[u]/m3

Ĥ
φ1
- S1 = k[u]/m2

π′2

?

(4.37)

5This means that we go from ordinary power series to formal power series.
6A Massey product is a higher operation in cohomology, generalizing the cup product between cohomology

elements.
7In the following we will skip the subscript E in ĤE.
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Note that these diagrams are intermediate steps in the diagram (4.33). These constructions
implicitly implement the actions of the operators U and Π of section 4.1.1.
Now pick a monomial basis for S1 of the form {u~n}~n∈B̄1

, B̄1 = {~n ∈ Nd : |~n| ≤ 1}, where

|~n| = ∑d
i=1 ni and u~n =

∏d
i=1 u

ni
i . We furthermore choose a basis {u~n}~n∈B′

2
, B′

2 = {~n ∈ Nd :
|~n| = 2} for ker π′2. Then the obstructions are:

o(Eφ1 , π
′
2) ∈ Ext2A(E,E) ⊗k kerπ′2 =

∑

~n∈B′
2

a~n ⊗ u~n =

r∑

i=1

y∗i ⊗ f2
i (u). (4.38)

Here we have the following definitions: φ1 is called a defining system for the Massey products

〈x∗;~n〉 = a~n, ~n ∈ B′
2. (4.39)

How these Massey products can be calculated explicitly will be shown at the end of this
section. The f2

i (the 2 indicates the order in u) are defined as follows:

f2
i (u) =

∑

~n∈B′
2

yi(〈x∗;~n〉)u~n (4.40)

Thus, whenever a Massey product is non–zero in the cohomology, i.e. if it is proportional to
an even cohomology element, the proportionality constant determines the coefficient in the
vanishing relations fi whereas the powers in the ui are defined by the basis vectors ~n.
This implies that

Ĥ/m3 ∼= R2/(f
2
1 , . . . , f

2
r ) = k[u]/(m3 + (f2

1 , . . . , f
2
r )) = S2. (4.41)

In order to lift Eφ2 to S2 we consider the following diagram:

R3 = k[u]/(m4 +m(f2
1 , . . . , f

2
r ))

Ĥ
φ2 - S2

π′3

?

S1

π2

?-

(4.42)

The lift of Eφ1 to S2 is done by the composition κ, which does nothing but impose the relation
defining the obstruction to vanish at the given order: o(Eφ1) = κo(Eφ2 , π

′
2) =

∑
y∗i ⊗f2

i (u) =

0. This implies that φ2 : Ĥ → S2 can be constructed.
Now pick a monomial basis {u~n}~n∈B2

for kerπ2 = m2/(m3+(f2
1 , . . . , f

2
2 )) and set B̄2 = B̄1∪B2.

Then B̄2 is a basis for S2, which implies that for every ~n with |~n| ≤ 2 there is a unique relation8

in S2:

u~n =
∑

~m∈B̄2

β~n,~mu
~m (4.43)

8The vector ~m in the following equations is not to be confused with the maximal ideal m!
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Furthermore, o(Eφ1 , π2) = 0 implies for ~m ∈ B̄2 that

β~m =
∑

~n∈B′
2

β~n,~m〈x∗;~n〉 = 0. (4.44)

This finishes the discussion at order 2. Since at this order non–trivial relations fi appear, we
also have to consider the next order before performing the induction step to prove Laudal’s
structure theorem.

At order 3, one has

kerπ′3 = (f2
1 , . . . , f

2
r )/m(f2

1 , . . . , f
2
r )⊕m3/(m4 +m3 ∩m(f2

1 , . . . , f
2
r )) = a⊕ I3 (4.45)

Now we pick a basis {u~n}~n∈B′
3

for I3, where on may choose ~n ∈ B′
3 such that u~n = uku

~m for

some ~m ∈ B2 and one of the u–parameters9, and we set B̄′
3 = B̄2∪B′

3. Then for every ~n with
|~n| ≤ 3 there is a unique relation in R3:

u~n =
∑

~m∈B̄′
3

β′~n,~mu
~m +

∑

j

β′~n,jf
2
j (4.46)

The second term means that one gets additional contributions from the relations fi, where
the index j indicates something which is not in B̄′

3. In the analogy of the dark room, given
in the previous section, this amounts to going around the barrier in the upper right corner of
fig. 4.2.
The obstruction is then:

o(Eφ2 , π
′
3) =

∑
y∗j ⊗ f2

j +
∑

~n∈B′
3

an ⊗ u~n =
∑

y∗j ⊗ f3
j , (4.47)

where we call any map φ2 a defining system for the Massey products

〈x∗;~n〉 = a~n, ~n ∈ B′
3. (4.48)

We can then write:

f3
j =

∑

~n∈B′
2

yj〈x∗;~n〉u~n +
∑

~n∈B′
3

yj〈x∗;~n〉u~n. (4.49)

Now we have:

Ĥ/m4 = S3 = R3/(f
3
1 , . . . , f

3
r ) = k[u]/(m4 + (f3

1 , . . . , f
3
r )) (4.50)

Next, we pick a monomial basis {u~n}~n∈B3
for ker π3, where π3 : S3 → S2, such that B3 ⊆ B′

3

and we set B̄3 = B̄2 ∪B3. Then, there exists a unique relation in S3 for every ~n with |~n| ≤ 3:

u~n =
∑

~m∈B̄3

β~n,~mu
~m (4.51)

9Thus, we just add unit vectors to the vectors defining B2.
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As before o(Eφ2 , π3) = 0 implies the relations

β~m =

3∑

l=2

∑

~n∈B′
l

β~n,~m〈x∗;~n〉 = 0 (4.52)

Now that we have captured all the essential structure, we can continue by induction. For
any k ≥ 1, assume that we have found S2+k = k[u]/(m2+k+1 + (f2+k

1 , . . . , f2+k
r )) such that

Ĥ/m2+k+1 ∼= S2+k. Consider the diagram

R2+k+1 = k[u]/(m2+k+2 +m(f2+k
1 , . . . , f2+k

r ))

Ĥ
φ2+k - S2+k = k[u]/(m2+k+1 + (f2+k

1 , . . . , f2+k
r ))

π′2+k+1

?

S1

. . .

?

. . .

-

(4.53)

Here the [. . .] stand for the intermediate steps. Now write

kerπ′2+k+1 = (f2+k
1 , . . . , f2+k

r )/m(f2+k
1 , . . . , f2+k

r )⊕m2+k+1/(m2+k+2 +m2+k+1 ∩m(f2+k
1 , . . . , f2+k

r ))

= a⊕ I2+k+1 (4.54)

Pick a monomial basis for I2+k+1 of the form {u~n}~n∈B′
2+k+1

, where one may assume that for

~n ∈ B′
2+k+1, one has u~n = uku

~m for some m ∈ B2+k. Then put B̄2+k+1 = B̄2+k ∪ B′
2+k+1.

For every ~n with |~n| ≤ 2 + k + 1 there is a unique relation

u~n =
∑

~m∈B̄′
2+k+1

β′~n,~mu
~m +

∑

j

β′~n,jf
2+k
j (4.55)

The obstructions are:

o(Eφ2+k
, π′2+k+1) =

∑

j

y∗j ⊗ f2+k
j +

∑

~n∈B′
2+k+1

a~n ⊗ u~n =
∑

j

y∗j ⊗ f2+k+1
j (4.56)

Any map φ2+k is called a defining system for the Massey products

〈x∗;~n〉 = an, ~n ∈ B′
2+k+1 (4.57)

Then we have

f2+k+1
j =

2+k+1∑

l=0

∑

~n∈B′
2+l

yj〈x∗;~n〉u~n (4.58)

One has

Ĥ/m2+k+2 ∼= S2+k+1 = k[u]/(m2+k+2 + (f2+k+2
1 , . . . , f2+k+1

r )). (4.59)

55



Set π2+k+1 : S2+k+1 → S2+k and pick a monomial basis {u~n}~n∈B2+k+1
for kerπ2+k+1 such that

B2+k+1 ⊆ B′
2+k+1 and furthermore set B̄2+k+1 = B̄2+k ∪ B2+k+1. Then there is a unique

relation for all ~n with |~n| ≤ 2 + k + 1:

u~n =
∑

~m∈B̄2+k+1

β~n,~mu
~m, (4.60)

and due to o(Eφ2+k
, π2+k+1) = 0 we have:

β~m =

2+k+1∑

l=2

∑

~n∈B′
l

β~n,~m〈x∗;~n〉 = 0. (4.61)

By induction, this proves

Ĥ ∼= limkS2+k = k[[u]]/(f̄1, . . . , f̄r), (4.62)

where f̄j = limk f
2+k
j . This proves Laudal’s theorem, when one sets o(yj) = f̄j in (4.33).

Note that this is a formal expression and k will in general become infinite. However, for the
special case of the minimal models the f̄j are polynomial expressions, see chapter 5.

We still miss one piece in order to be able to calculate Ĥ explicitly. We have yet to find out how
one can calculate the Massey products. These can be obtained from the lifting of the operator
d to d(S) and the conditions (4.61) and (4.62). At linear order one has S1 = k[u1, . . . , ud]/m

2

and one can pick a monomial basis {u~m}~m∈B̄1
. Then let E1 ∈ DefE(S1) and set:

α~0 = di α~ei = x∗j,i ∈ Hom1
A(L•, L•), (4.63)

where the ~ei are the canonical basis vectors of Rd. From the construction of Ĥ it follows that
E1 is represented by the lifting {L• ⊗k S1, d(S1)} of {L•, d}, where

d(S1)i|L1⊗1 =
∑

~m∈B̄1

α~m ⊗ u~m (4.64)

This means that we have deformed our matrix factorization with the odd cohomology elements
at linear order. Up to order u1 the new differential satisfies the matrix factorization condition
but there are terms remaining at order u2, which may be cancelled by adding further terms to
the differential, unless they are in the even cohomology, i.e. they correspond to obstructions.
What we have to do in this case has been explained above. The α~m are identified as the
defining system of Massey products. Taking into account the obstructions we end up with
the following proposition [76, 59]:

Proposition. Given a defining system {α~m} for the k–th Massey products 〈x∗;~n〉 with ~n ∈
B′

2+k then 〈x∗;~n〉 is represented by

y(~n) =
∑

|~m|≤2+k

∑

~m1+~m2=~m

~mi∈B2+k−1

β′~m,~nα~m1
◦ α~m2

(4.65)
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One can then compute explicitly the polynomials

f2+k
j =

k∑

l=0

∑

~n∈B′
2+k−1

yj (〈x∗;~n〉) u~n, j = 1, . . . , r, (4.66)

which induce the identities (4.61) and (4.62), such that for every ~m ∈ B2+k we pick an
α~m ∈ Hom1

A(L•, L•) such that

d α~m = −β~m = −
∑

~n∈B′
2+k

β~n,~my(~n). (4.67)

Then the family {α~m}~m∈B̄2+k
is a defining system for the Massey products 〈x∗;~n〉 with ~n ∈

B′
2+k+1.

The deformed differential is then:

d(S) =
∑

m∈B̄

α~mu
~m, B̄ =

⋃

i

B̄i. (4.68)

Equation (4.67) calculates the deformations of the matrix factorization at higher order. It
follows directly from requiring that (4.62) is satisfied which in turn is linked to the condition
that o = 0. Note that the choice of α~m is not unique, which is related to the fact that Weff

and the underlying A∞–structure are defined only up to field redefinitions.
We now have all the ingredients to calculate the Ĥ ∼= k[[u]]/(f̄1, . . . , f̄r) order by order for
matrix factorizations. However, the formalism does not guarantee that (homogeneous linear
combinations of) the f̄i can be integrated to give Weff . The arguments of [47] imply that
this is possible and we give explicit examples for minimal models in chapter 5.

4.2.3 Summary and Algorithm

Let us now summarize the general idea and the essential results of the mathematical construc-
tion of [76, 59], discussed in the previous section. Here, we will focus on matrix factorizations.
Consider a matrix factorization Q with Q2 = W and calculate the open string spectrum:

ψi ∈ Hodd φi ∈ Heven dimHeven = dimHodd = N (4.69)

We now want to calculate the most general non–linear deformation of this matrix factorization,
taking into account only deformation with odd states. We make the following ansatz:

Qdef = Q+
∑

~m∈B̄

α~mu
~m (4.70)

Here, ~m is a multi index: u~m = um1
1 um2

2 . . . umNN and we define |~m| = ∑N
i=1mi. B̄ describes

the allowed set of vectors ~m. u1, . . . , uN are deformation parameters associated to ψ1, . . . , ψn
and α~m are matrices to be determined. At the order |~m| = 1 (linear deformations) they are
given by the odd cohomology elements:

α(1,0,...,0) = ψ1 α(0,1,...,0) = ψ2 . . . α(0,...,0,1) = ψN (4.71)
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Now we impose the matrix factorization condition on Qdef :

Q2
def

!
= W · 1+

N∑

i=1

f ′i(u)φi (4.72)

∼ Q2 +
∑

~m

[Q,α~m]u~m +
∑

~m1+~m2=~m

α~m1
α~m2︸ ︷︷ ︸

y(~m)

u~m (4.73)

Note that imposing Q2
def = W · 1 does not work and we must employ the more general

condition in (4.72). Obviously, the matrix factorization condition only holds if we demand
that f ′i(u) = 0. The relations f ′i(u) are equivalent to the vanishing relations fi(u) of the
polynomial ring of deformations k[ui]/(fi(ui)). At the same time these relations determine
the critical locus of the effective superpotential.
In the second line of the above equation we naively inserted the ansatz (4.70). y(~m) is called
’matric Massey product’ [76, 59]. Equation (4.73) is actually only correct up to order |~m| = 2.
At higher orders the definition of the Massey products gets modified due to the presence of the
fi(u), as we will show below. The ’method of computing formal moduli’ of [76, 59] provides
an algorithm to calculate the fi(u) and the α~m explicitly for all orders in ~m.
Let us first look at the lowest orders, where (4.73) is correct. At linear order |~m| = 1 in the
deformation parameters, the second term in (4.73) is zero, since the α~m are the fermionic
cohomology elements and the second term becomes the physical state condition. The first
Massey product y(~m) appears at order |~m| = 2. We can calculate this product explicitly,
since all the α~m at order |~m| = 1 are known. In the analogy introduced in section 4.2.1,
calculating these products amounts to making steps in the dark room. y(~m) can take the
following values:

• y(~m) /∈ Heven. In this case we can find an αm with |~m| = 2 such that

[Q,α~m] ≡ β~m = −y(~m). (4.74)

Thus, the second and the third term in (4.73) cancel at order |~m| = 2 and we produced
new α~m’s and thus can calculate Massey products at higher order. In the dark room
analogy the corresponding situation is that we have made a step in a certain direction
and have not hit an obstacle, which implies that we can make further steps in this
direction.

• y(~m) ∈ Heven, i.e. y(~m) = c φk, where c is some number. Clearly, this cannot be
cancelled by a term [Q,α~m] since the φi are by definition not exact. Thus, we have
encountered an obstruction. This amounts to hitting a wall in the dark–room analogy
and we have to make sure that we do not take further steps in this direction. The
obstructions are encoded in the polynomial fk(u) associated to φk in the following way:

fk = cu~m (4.75)

We can now continue this algorithm at higher orders in |~m|. There, however, some subtleties
arise due to the presence of the fi(u). They impose relations among the ~m, which have to
be incorporated into the algorithm. One has to introduce various bases for allowed vectors
~m. Furthermore the definition of the higher order Massey products has to be modified as
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compared to the naive definition of (4.73). The deformation theory construction of [76, 59]
yields the following results:
For a vector ~n ∈ B′

i+1, i > 0 (B′
i+1 to be defined momentarily) the Massey product y(~n) is

given by:

y(~n) ≡ 〈ψ;~n〉 =
∑

|~m|≤i+1

∑

~m1+~m2=~m

~mi∈Bi

β′~m,~nα~m1
◦ α~m2

, (4.76)

where the composition ’◦’ is the matrix product. The coefficients β′~m,~n can be determined
from the unique relation

u~n =
∑

~m∈B̄′
i+1

β′~n,~mu
~m +

∑

j

β′~n,jfj (4.77)

for each ~n ∈ NN with |~n| ≤ i + 1. If the Massey product is y(~n) = c · φk then we get a
contribution to the k–th polynomial fk(u):

f i+1
j = f ij +

∑

~n∈B′
i+1

c · u~n, (4.78)

where the exponent gives the order in u.
If the Massey product y(~n) does not yield an even cohomology element then we can find a
matrix α~m for each vector ~m in a basis B such that:

[Q,α~m] = −
i+1−2∑

l=0

β~m = −
i+1−2∑

l=0

∑

~n∈B′
2+l

β~n,~my(~n), (4.79)

where the coefficients β~n,~m are given by the unique relation

u~n =
∑

~m∈B̄i+1

β~n,~mu
~m (4.80)

The various bases B, B̄, B′, B̄′ are defined recursively. One starts by setting B̄1 = {~n ∈NN | |~n| ≤ 1} and B = {~n ∈ NN | |~n| = 1}. For i > 1 B′
i+1 is then defined as a ba-

sis for mi+1/(mi+2 + mi+1 ∩ m(f1, . . . , fN )), where m = (u1, . . . , uN ) defines the max-
imal ideal. The elements {u~n}~n∈B′

i+1
can be chosen such that u~n = uk · u~m for some

~m ∈ BB̄i and uk ∈ {u1, . . . uN}. One defines B̄′
i+1 = B̄i ∪ B′

i+1. Finally, Bi+1 is a ba-

sis for (mi+1 + (f i1, . . . , f
i
N ))/(mi+2 + (f i+1

1 , . . . , f i+1
N )) such that Bi+1 ⊆ B′

i+1. We set
B̄i+1 = B̄i ∪Bi+1.

With these definitions it is now possible to calculate the critical locus fi(u) of the effec-
tive superpotential along with the deformed matrix factorization Qdef . The algorithm, which
we will refer to as the ’Massey product algorithm’, looks as follows [59]:

• Choose a matrix factorization Q and calculate the open string spectrum, where ψi ∈
Hodd and φi ∈ Heven, where i = 1, . . . ,N .

• Set α~ei = ψi, where ~ei are the canonical basis vectors of RN . Furthermore associate a
deformation parameter uk to every ψk.
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• For each i ≥ 0 perform the following steps:

– Calculate the bases B′
i+1 and B̄′

i+1.

– Determine the coefficients β′~m,~n from the relations (4.77).

– Calculate the Massey products y(~n) defined in (4.76).

– Determine f i+1
j using (4.78).

– Pick bases Bi+1 and B̄i+1.

– Calculate the coefficients β~m,~n from the relations (4.80).

– Pick suitable α~m according to (4.79).

• If the algorithm terminates at a given order, integrate (homogeneous linear combinations
of) the fi in order to obtain Weff .

• Calculate the deformed matrix factorization:

Qdef = Q+
∑

~m∈B

α~mu
~m, ~m ∈

⋃

i

Bi (4.81)

We conclude this section with a few comments. First, note that fi = 0 corresponds to (4.15)
and (4.81) is (4.12). Thus, we have indeed succeeded in finding a way to explicitly calculate
the formal expressions introduced in section 4.1.1, without explicitly knowing the operators
U and Π.
Furthermore note that the choice of α~m is ambiguous. Taking different α~m also results in
different fi. The effective superpotentials obtained from this different choices are related
via field redefinitions of the ui, where field redefinition means in this case that every uk
can be replaced by a homogeneous polynomial in terms of the ui. This freedom reflects the
reparameterization freedom one has in the underlying A∞ structure.
For matrix factorizations in general Landau–Ginzburg models we cannot expect that the
algorithm terminates due to the presence of marginal deformations. For the minimal models
the algorithm terminates at a given order and the fi(u) are homogeneous polynomials which
can be integrated to give Weff .
Furthermore note that some of the fi(u) may remain zero throughout the calculation. The
deformed polynomial ring of deformations is then defined as k[u1, . . . , uN ]/(f1, . . . , fr), where
r ≤ N .
A detailed discussion of examples can be found in [76, 59, 2] and in chapter 5.

4.3 The Effective Superpotential from Consistency Constraints

In this section we discuss the consistency constraints for open topological strings which were
derived in [44].

60



4.3.1 Topological Amplitudes and Selection Rules

Let us first define a disk amplitude with an arbitrary number of bulk and boundary inser-
tions10:

Ba0...am;i1...in : = (−1)ã1+...ãm−1

〈
ψa0ψa1P

∫
ψ(1)
a2 . . .

∫
ψ(1)
am−1

ψam

∫
φ

(2)
i1
. . .

∫
φ

(2)
in

〉

= −
〈
φi1ψa0P

∫
ψ(1)
a1 . . .

∫
ψ(1)
am

∫
φ

(2)
i2
. . .

∫
φ

(2)
in

〉
, (4.82)

where
∫
φ

(2)
i ≡

∫
φ

(1,1)
i =

∫

D2

[G, [Ḡ, φi]]dz dz̄ (4.83)

are the bulk descendants, with D2 the disk and G the twisted fermionic current, and
∫
ψ(1)
a =

∫ τr

τl

[G,ψa]dτ (4.84)

are the boundary descendants, where the integral runs, from a suitably chosen position τl
to the left of the operator to a position τr to its right, along the boundary of the disk.
The boundary integrals in (4.82) have to be path ordered, and P denotes the path ordering
operator. Furthermore one can fix the positions of three boundary insertions or one bulk and
one boundary insertion due to the PSL(2,R)–invariance of the disk. We also introduced a
suspended grade ã of the boundary fields ψa:

ã := |ψa|+ 1, (4.85)

where |ψa| is the Z2–degree of the boundary field. The grading of the correlators is thus
determined by the grades of the descendents rather than the fields themselves.
The equality of the two correlators given in (4.82) can be derived from Ward identities [44].
Similar to the closed string case, we can introduce a topological metric on the boundary:

ωab = 〈ψaψb〉 = (−1)ãB0ab = (−1)ω̃(−1)ãb̃ωba, (4.86)

where the “0” stands for the insertion of the unit operator. It can be used to raise and lower
indices:

Ba
a1...am := ωabBba1...am . (4.87)

The correlators (4.82) are cyclic in the boundary insertions:

Ba0...am;i1...im = (−1)ãm(ã0+...+ãm−1)Bama0...am−1;i1...im (4.88)

Furthermore they are symmetric under permutations of the bulk indices.
It turns out to be convenient to define

Ba0a1 = Ba0 = Bi = 0. (4.89)

A correlator (4.82) satisfies the following selection rules, generalizing the selection rules for
correlators on the sphere [78]:

10For the sake of readability we denote here bosonic and fermionic operators by ψ and bulk operators by φ
in contrast to previous conventions.
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• R–Charge selection rule.
Due to the anomalous U(1)–current, we have a non–vanishing background charge, which
has to be saturated by the correlator. The R–charges of the integrated insertions are:

qIψ = qψ − 1

qIφ = qφ − 2 (4.90)

• The correlators must have the same suspended degree as the boundary metric:

Ba0a1...am;i1...in = 0 unless ã0 + . . . ãm = ω̃ (4.91)

• Insertions of the unit operator are only allowed if there are no integrated insertions.

B0a1...am;i1...in = 0 for m ≥ 3 or n ≥ 1 (4.92)

Since the amplitudes are completely symmetric with respect to the bulk insertions we can
introduce generating functions for the bulk perturbations which satisfy the following property:

Ba0...am;i1...in = ∂i1 . . . ∂inFa0...am(t)|t=0 (4.93)

For m ≥ 2 the generating functions are given by:

Fa0...am = (−1)ã1+...+ãm−1〈ψa0ψa1P
∫
ψ(1)
a2 . . .

∫
ψ(1)
am−1

ψame
P

p tp
R

φ
(2)
p 〉

= (−1)ã1+...+ãm−1

∞∑

N0...Nhc−1=0

hc−1∏

p=0

t
Np
p

Np!
〈ψa0ψa1P

∫
ψ(1)
a2 . . .

∫
ψ(1)
am−1

ψam

[∫
φ(2)
p

]Np
〉

(4.94)

For m = 0 and m = 1 we define Fa(t) and Fab(t) through:

∂iFa(t) = −〈φiψae
P

p tp
R

φ
(2)
p 〉 (4.95)

∂iFab(t) = −〈φiψaP
∫
ψ

(1)
b e

P

p tp
R

φ
(2)
p 〉 (4.96)

4.3.2 A∞–relations

The A∞–relations can be derived from the Ward identity of the BRST operator Q:

〈[Q,Ba0...am;i1...im ]〉 = 0 (4.97)

The condition infers a series of algebraic constraints which encode how an amplitude with a
certain number of insertions factorizes into amplitudes with less insertions. This factorization
is due to contact terms which arise when boundary insertions approach each other. A contact
term arises whenever Q hits an operator G of an integrated insertion. Fig. 4.3 gives a
schematic picture of what happens. In terms of the generating functions Fa0...am the A∞–
constraints look as follows [44]:

m∑

k,j=0

k≤j

(−1)ã1+...ãkFa0a1...akcaj+1...am(t)Fcak+1...aj
(t) = 0, (4.98)
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Figure 4.3: A∞–relations arising from the Ward identity of the BRST operator Q.

where the indices are raised and lowered with the topological metric (4.86). In terms of the
correlators Ba0...am;i0...in this is:

∑

I⊆I0,n

m∑

k,j=0

k≤j

(−1)ã1+...ãkBa0
a1...akcaj+1...am;I0;n\I

Bc
ak+1...aj ;I

= 0, (4.99)

where Ip,q = {ip, ip+1, . . . , iq}. This is called a weak A∞ algebra. Without bulk insertions the
equations reduce to:

∑

k,l=2

k−m+2<l≤k

(−1)ã1+...+ãl−2Ba0
...al−2cak+1am

Bc
al−1...ak

= 0 m ≥ 2 (4.100)

This structure is called a minimal A∞–algebra.
There is a direct relation between (4.100) and the relations (4.9) in terms of the higher
products mn defined in section 4.1.1. These products are related to the amplitudes via [44]:

mn(ψa1 . . . ψam) = Ba0
a1...amψa0 (4.101)

A generalization for amplitudes with bulk insertions is also possible [44].
Note that these relations are valid for both boundary preserving and boundary changing
insertions. In the boundary changing sector one introduces additional indices for every
boundary insertion, which label the boundary: ψABa . Only ’cyclically closed’ correlators
〈ψA1A2

a1 ψA2A3
a2 . . . ψAmA1

am 〉 are well–defined.

4.3.3 Bulk–Boundary Crossing Constraint and the Cardy Condition

The A∞–relations alone do not uniquely determine the values of the correlators. There are
two more constraints which can be derived for disk amplitudes.
The bulk–boundary crossing constraint encodes the factorization of an amplitude when bulk
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operators approach each other or a bulk operator approaches the boundary. It is a general-
ization of the bulk–boundary crossing constraint of topological field theory [91]. It looks as
follows:

∂i∂j∂kFηkl∂lFa0...am = (4.102)

=
∑

0≤m1≤...m4≤m

(−1)ãm1+...+ãm3Fa0...am1 bam2+1...am3 cam4+1...am∂iFbam1+1...am2
∂jFcam3+1...am4

Here, F(t) is the bulk WDVV potential and ηkl is the inverse of the topological bulk metric
ηkl = 〈φ0φkφl〉. 11

In [2], we found a discrepancy between the effective superpotential calculated using the bulk–
boundary crossing constraint and the results obtained from deformation theory methods. We
will discuss this in detail in chapter 5. In [36] it was shown explicitly for the E6 minimal
model that this constraint yields wrong values for certain amplitudes. This implies that the
constraint as given in (4.102) only works for the A–minimal models.

The minimal models of the A–series satisfy an additional constraint, the Cardy Condition
[44]:

∂iFa0...anηij∂jFb0...bm = (4.103)

=
∑

0≤n1≤n2≤n

0≤m1≤m2≤m

(−1)(c̃1+ã0)(c̃2+b̃0)+c̃1+c̃2ωc1d1ωc2d2Fa0...an1d1bm1+1...m2c2an2+1...anFb0...bm1c1an1+1...an2d2bm2+1...bm

This is the generalization of the Cardy condition of topological field theory, which is derived
from the factorization of the cylinder amplitude into an open or a closed string channel. This
constraint is not topological in the sense that it is not independent of the metric. This is why
one cannot expect it to hold for topological correlators. However, it turns out [44, 2] that it can
be imposed on the A–minimal models. In combination with the other constraints (4.98) and
(4.102) it uniquely determines the values of all the correlators. The fact that this is possible
also reflects the non–topological nature of the Cardy condition: in the topological theory
we expect that the amplitudes are fixed only up to field redefinitions or “A∞–morphisms”
and that, in contrast to N = 2 theories, we need to specify the Kähler potential in order to
completely fix the values of the amplitudes.

4.3.4 A recipe for calculating Weff using Consistency Constraints

To conclude our discussion of consistency constraints we list the necessary steps to calculate
the effective superpotential by solving these constraints, focusing on matrix factorizations and
B–type topological Landau–Ginzburg models. Concrete examples will be given in chapter 5
and appendix B.2. Furthermore, in appendix A we will describe how the following recipe can
be implemented in Mathematica. To calculate Weff one proceeds as follows:

11Note that only those equations are consistent where the operator product defining cijk = ∂i∂j∂kF(t),
φi(t)φj(t) = ckijφk(t) mod dW , does not contain any exact terms.
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• Pick a matrix factorization and calculate the open string spectrum. Furthermore deter-
mine the R–charges of the states.

• Calculate the topological metric, the boundary three–point function and the bulk–
boundary two–point function using the Kapustin formula (3.51),(3.52).

• Determine which are the allowed correlators by applying the R–charge selection rule
and (4.91), (4.92).

• If bulk deformations are turned on, calculate the topological bulk metric and the WDVV
potential F(t).

• Set up the constraint equations (4.98), (4.102) and (4.103), using the correlators without
integrated insertions as input, and solve for the remaining correlators.

• Sum up the correlators as described in (4.22) and (4.21). For the A–minimal models
the result does not contain any free parameters.
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Chapter 5

D–Branes in Topological Minimal

Models

This chapter is devoted to the calculation of the effective superpotential by applying the
methods described in chapter 4 for explicit examples. We will focus on the Landau–Ginzburg
formulation of topological minimal models. These models do not describe realistic Calabi–
Yau compactifications and are thus not of direct phenomenological interest. Nevertheless the
minimal models are valuable as toy models, since they have many features of full–fledged
Calabi–Yau compactifications but avoid many technical difficulties. In particular, minimal
models do not have any marginal deformations, which entails the we can work in a purely
algebraic setup, thus avoiding the difficulties arising due to moduli. One can build more inter-
esting models for string compactifications out of minimal models by tensoring and orbifolding
them, which gives rise to the well–known, and well–understood, Gepner models. Studying
matrix factorizations in minimal models may thus provide useful information on Calabi–Yau
compactifications and may help to get a better understanding of various aspects of matrix
factorizations.
In section 5.1 we discuss the Landau–Ginzburg description of topological minimal models.
Section 5.2 deals with the simplest non–trivial case, the A3 minimal model. Although min-
imal models of type A have been discussed already in the matrix factorization literature
[22, 44, 47] we will go through this example in great detail since it will enable us to describe
the methods to calculate the effective superpotential in a most explicit way. In section 5.3 we
discuss the E6 minimal model which is just slightly more complicated than the models of type
A. The aim is to test if the methods described in chapter 4 also work for more general cases.
A surprising result is that the consistency constraints discussed in section 4.3 only work for
minimal models of type A. In particular, the Cardy constraint (4.103) yields inconsistent
equations. We find that the deformation theory methods we discussed in section 4.2 can be
applied for all types of minimal models. Using these methods we are able to compute Weff

for many examples. We state these results in section 5.5. These results actually pass a non–
trivial check because it turns out that the effective superpotentials of the minimal models are
in fact the Landau–Ginzburg superpotentials of certain Kazama–Suzuki type coset models,
which were discussed in [92, 93, 94, 95].

This chapter summarizes the results of [2].
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5.1 Minimal Models

Minimal models are exactly solvable conformal field theories. They are particularly simple
since they only have massive, i.e. relevant, deformations. This means that these models do not
have “true” moduli. Topological minimal models have a Landau–Ginzburg description. The
corresponding superpotential can be classified in terms of the simply–laced Lie groups. This
is known as the ADE classification, see e.g. [96] for some background. The superpotentials
are given by the following polynomials:

Ak : W = xk+2

Dk : W = xk−1 + xy2 − z2

E6 : W = x3 + y4 − z2

E7 : W = x3 + xy3 − z2

E8 : W = x3 + y5 − z2 (5.1)

The background charge for these models can be expressed in terms of the dual Coxeter number
k:

ĉ =
k − 2

k
(5.2)

Obviously, this is always smaller than 1. The bulk theory of these models was discussed
in [78]. Computing the chiral rings of these models, immediately shows that there are no
marginal deformations, i.e. there are no ring elements which have the same R–charge as the
superpotential itself. In particular, this means that, given the superpotential has charge 2, the
R–charges of the bulk fields are smaller than 2 and the R–charges of the boundary fields are
smaller than 1. By (4.90) this implies that all integrated insertions have negative R–charge.
As a consequence there is a maximal number of insertions a correlator can have. From this
it follows that the effective superpotential is a polynomial.
We can actually relate the degree of Weff to the dual Coxeter number of the Lie group
associated to the minimal model. This is done as follows. By the selection rules, the allowed
correlators must have an R–charge which is equal to the background charge ĉ. We can now
determine the correlator with the maximal number of insertions. This disk correlator will
have three unintegrated insertions of the boundary field with the highest charge ĉ, we will
call it Ψĉ, and a certain number of integrated operators, which have negative charge. To get
the maximum number of insertions one must use only insertions of

∫
Ψĉ, which has charge

ĉ − 1, which is the least negative. From the charge selection rule we can now calculate the
the number x of integrated insertions of this top element:

3 · ĉ+ x · (ĉ− 1)
!
= ĉ (5.3)

This yields x = 2ĉ
1−ĉ . Now take into account that for the minimal models the background

charge is related to the Coxeter number k via (5.2). Inserting this, we find that the number
of integrated insertions of the top–element is k− 2. Adding the three unintegrated operators,
one finds that the top–correlator is a k + 1–point function. Looking more closely, one also
finds that the selection rule for the Z2–charge is satisfied and that this correlator will not
vanish and contribute to the superpotential. The deformation parameter u associated to Ψĉ
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has weight one and we will get a term uk+1
1 in the superpotential. Since the effective super-

potential is a homogeneous polynomial, we conclude:

The effective superpotentials for the ADE minimal models always have degree k + 1, where k
is the Coxeter number.

The first step in calculation Weff is to find the matrix factorizations of the Landau–Ginzburg
superpotential. The classification of matrix factorizations is in general an unsolved problem.
For the minimal models, however, this problem has been solved some time ago. In [38] the
authors give an algorithm to explicitly calculate all the inequivalent matrix factorizations of
the superpotentials (5.1). It turns out that there is one matrix factorization for every node
in the Dynkin diagram of the associated Lie group. A list of these matrix factorizations can
be found for instance in [60, 58].

5.2 The A3 Minimal Model – A Toy Example

A simple non–trivial minimal model is of type A at level k = 3. The superpotential is1:

W =
x5

5
(5.4)

The associated Lie group has Coxeter number 5, the U(1) background charge is ĉ = 3
5 .

The field x has R–charge 2
5 . The closed string spectrum is determined by the chiral ring C[x]

∂W ,
which is generated by the monomials {1, x, x2, x3}.

5.2.1 Matrix Factorizations and Open String Spectrum

As we already mentioned in section 3.5.1 all the matrix factorizations of a superpotential
W = xn are generated by rank one factorizations W = EJ = xrxn−r for r = 1, . . . , n− 1. In
our case this yields four matrix factorizations which split into two brane–antibrane pairs. We
choose, for definiteness, the following matrix factorization:

Q =

(
0 x2

x3

5 0

)
(5.5)

We can calculate the R–matrix by solving (3.31), which yields:

R =

(
1
10 0
0 − 1

10

)
(5.6)

The open string states are determined by the cohomology of Q. There are two bosons φi and
two fermions ψi:

φ
(0)
1 =

(
1 0
0 1

)
φ

( 2
5
)

2 =

(
x 0
0 x

)
(5.7)

ψ
( 1
5
)

1 =

(
0 1
−x

5 0

)
ψ

( 3
5
)

2 =

(
0 x

−x2

5 0

)
(5.8)

The superscripts are the R–charges of the states.

1The factor 1
5

is convention.
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5.2.2 The Effective Superpotential via Deformation Theory

We now compute the effective superpotential for this model by applying the Massey product
algorithm we have discussed in section 4.2. At the linear level, we assign matrices α~ei to every
fermionic cohomology element:

α(1,0) = ψ1 α(0,1) = ψ2, (5.9)

where we have defined a basis B1 with elements in ~m ∈ N2:

|~m| = 1 : B1 = {(1, 0), (0, 1)} (5.10)

The first Massey products arise at order |~m| = 2, where we define the basis B2:

|~m| = 2 : B2 = {(2, 0), (1, 1), (0, 2)} (5.11)

Thus, there are three Massey products at order 2:

y(2, 0) = α(1,0) · α(1,0) = −1

5
φ2

y(0, 2) = α(0,1) · α(0,1) = −1

5

(
x3 0
0 x3

)

y(1, 1) = α(1,0) · α(0,1) + α(0,1) · α(1,0) = −2

5

(
x2 0
0 x2

)
(5.12)

The first product, y(2, 0) is proportional to a bosonic open string state. Since this cannot be
cancelled at higher order, this is an obstruction and contributes to the vanishing relations fi:

fi : f
(2)
1 = 0 f

(2)
2 = −1

5
u2

2 (5.13)

Here we have associated deformation parameters u2 and u1 to ψ1 and ψ2, respectively. The
indices of the parameters ui correspond to their homogeneous weights, which is related as
follows to the R–charge of the states:

wui =
1

2
k(1− qψi), (5.14)

where the Coxeter number k = 5, in the case at hand. Note that with this labelling we
have2 u~m = um1

2 um2
1 . The last two Massey products in (5.12) are not proportional to bosonic

cohomology elements and can thus be canceled by introducing new α~m at order 2, which
satisfy {Q,α} = −y: One possible choice is:

α(1,1) =
2

5

(
0 0
1 0

)
α(0,2) =

1

5

(
0 0
x 0

)
(5.15)

At order 3, we introduce a basis B3:

|~m| = 3 : B3 = {(1, 2), (0, 3),
�

��(2, 1),
�

��(3, 0)} (5.16)

2This may seem unnatural at the moment but regarding the effective superpotential it is the natural choice.
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We must not use the vectors (2, 1) and (3, 0) in B3 because we have to take into account the

relation f
(2)
2 at this order, which reduces the basis. So, there are only two Massey products

to compute:

y(1, 2) = α(1,0) · α(0,2) + α(0,2) · α(1,0) + α(1,1) · α(0,1) + α(0,1) · α(1,1) =
3

5
φ2

y(0, 3) = α(0,1) · α(0,2) + α(0,2) · α(0,1) =
1

5

(
x2 0
0 x2

)
(5.17)

The first product contributes to the vanishing relations, which now read:

fi : f
(3)
1 = 0 f

(3)
2 = −1

5
u2

2 +
3

5
u2u

2
1 (5.18)

We get one new matrix α(0,3):

α(0,3) =
1

5

(
0 0
1 0

)
(5.19)

At order 4, the basis is given by:

|~m| = 4 : B4 = {(1, 3), (0, 4)} (5.20)

The two Massey products are:

y(1, 3) =α(1,1) · α(0,2) + α(0,2) · α(1,1) +

from f2: u2
1u2=3u1u3

2︷ ︸︸ ︷
3(α(1,1)α(1,0) + α(1,0) · α(1,1))

+ α(1,0) · α(0,3) + α(0,3) · α(1,0) = φ1

y(0, 4) = α(0,3) · α(0,1) + α(0,1) · α(0,3) + α(0,2) · α(0,2) = −1

5
φ2 (5.21)

In y(1, 3) we also get a contribution from the vector (2, 1), which is not an element of the

basis B̄ =
⋃
iBi due to the relation f

(3)
2 in (5.18). Both of these products contribute to the

vanishing relations, there are no new α–matrices.

fi : f
(4)
1 = u2u

3
1 f

(4)
2 = −1

5
u2

2 +
3

5
u2u

2
1 −

1

5
u4

1 (5.22)

At order 5 the basis only contains one element because we now have a contribution to f1,
which has to be taken into account:

|~m| = 5 B5 = {
�

��(1, 4), (0, 5)} (5.23)

The only Massey product at this order is:

y(0, 5) = α(0,2) · α(0,3) + α(0,3) · α(0,2) − (α(1,1) · α(1,0) + α(1,0) · α(1,1)) = −2

5
φ1 (5.24)

The term in parentheses again arises due to the vanishing relations. These look as follows at
the order 5:

fi : f
(5)
1 = u2u

3
1 −

2

5
u5

1 f
(5)
2 = −1

5
u2

2 +
3

5
u2u

2
1 −

1

5
u4

1 (5.25)

70



At order 6, we have:

|~m| = 6 : B6 = {(0, 6)} (5.26)

The Massey product is:

y(0, 6) = α(0,3) · α(0,3) +
2

5

(
α(1,1) · α(0,3) + α(0,3) · α(1,1)

)
= 0 (5.27)

Thus, there are no non–vanishing Massey products at order 6. Given the matrices αi at our
disposal it is not possible to define any Massey products at higher orders. Thus, the algorithm
terminates at order 6.
We can now write down the deformed matrix factorization:

Qdef = Q+
∑

~m

α~mu
~m = Q+ α(1,0)u2 + α(0,1)u1 + α(1,1)u2u1 + α(0,2)u

2
1 + α(0,3)u

3
1

=

(
0 x2 + u2 + u1x

x3

5 − 1
5u2x+ 2

5u1x
2 + 2

5u2u1 + 1
5u

2
1x−

u3
2
5 0

)
(5.28)

One easily checks that this satisfies the matrix factorization condition (4.72). The critical

locus of Weff is defined by the vanishing relations fi ≡ f
(5)
i in (5.25). One can read off that

f1 is a homogeneous polynomial of degree 5 and that f2 is homogeneous of degree 4. From
the arguments presented in section 5.1 we know that Weff is homogeneous of degree 6. This
would imply that we could obtain the effective superpotential by integrating f1 with respect
to u1 and f2 with respect to u2. It is, however, not that simple. What one has to do is to
integrate homogeneous linear combinations of the fi. We therefore define:

r1 =

∫
du2 c1 f2 r2 =

∫
du1 c2 f1 + c3 u1 f2, (5.29)

where c1, . . . , c3 are parameters, two of which can be determined by solving the integrability
condition ∂u1∂u2r1 = ∂u1∂u2r2. This determines Weff up to an overall numerical constant.
Giving this constant a particular value, the result is:

Weff =
1

30
u6

1 +
3

10
u2

1u
2
2 −

1

5
u4

1u2 −
1

15
u3

2 (5.30)

Integrating the polynomials f ′i which arise in Q2
def = W1+ f ′iφi yields an equivalent super-

potential. In this example we have:

f ′1 =
2

5
u1u

2
2 −

1

5
u3

1u2 f ′2 = −1

5
u2

2 +
3

5
u2u

2
1 −

1

5
u4

1 (5.31)

Note that the choice of α–matrices is not unique. A different choice entails a different deformed
Q–operator and different vanishing relations, which also lead to a different expression for the
effective superpotential. These superpotentials are equivalent up to field redefinitions. In
general, one has a lot of freedom in choosing the α–matrices, but our example is so simple
that there is actually only one more choice. The second set of possible α~m is:

α̃(1,0) = ψ1 α̃(0,1) = ψ2 (5.32)

71



α̃(1,1) =
2

5

(
0 0
1 0

)
α̃(0,2) =

(
0 1
0 0

)
α̃(0,3) =

1

5

(
0 0
1 0

)
(5.33)

The vanishing relations are:

f̃1 = u2u
3
1 +

3

5
u5

1 f̃2 = −1

5
u2

2 +
1

5
u2u

2
1 +

1

5
u5

1 (5.34)

This can be integrated to give the following effective superpotential:

W̃eff =
1

15
u6

1 +
1

10
u2

1u
2
2 +

1

5
u4

1u2 −
1

15
u3

2 (5.35)

One gets from (5.30) to (5.35) by the following non–linear field redefinition:

u1 −→ u1 u2 −→ u2 + u2
1 (5.36)

5.2.3 Massey Products and Bulk Deformations

We now show how to calculate the effective superpotential with bulk deformations by extend-
ing the Massey product algorithm.
The most generic deformed Landau–Ginzburg superpotential for the A3–model looks as fol-
lows:

W (x; s) =
x5

5
+ s5 + s4x+ s3x

2 + s2x
3, (5.37)

where s2, . . . , s5 are dimensionful deformation parameters, whose indices indicate their ho-
mogeneous weights.
Given a deformed matrix factorization Qdef (x;u) we can now include bulk deformations by
making the following ansatz:

Qdef (x;u; s) = Qdef (x;u) +
∑

~m

ᾱ~ms
~m (5.38)

We then demand that this squares to the deformed Landau–Ginzburg potential:

Qdef (x;u; s)
2 !

= W (x; s) + f̄1φ1 + f̄2φ2 (5.39)

Starting with Q2
def (x;u) = W (x)+f ′1φ1+f ′2φ2, one sees that those terms in the bulk deformed

Landau–Ginzburg potential (5.37), that are proportional to φi1 can be produced by adding
terms to f ′i , which yields the f̄i at leading order in the si. All the other terms of W (x; s) can
only be built by constructing matrices ᾱ~m corresponding to the deformations of Qdef (x;u) at
linear order in s. This is the starting point of an algorithm which is analogous to the Massey
product algorithm for the boundary deformations.
We now consider the A3–example. Our starting point is (5.28). In (5.37) the terms propor-
tional to s5 and s4 lie in the even cohomology of the boundary and enter into the definition
of the vanishing relations f̄i. The other terms must be produced by the ᾱ~m at order |~m| = 1.
We thus have to find α–matrices such that:

{Qdef (x;u), ᾱ(1,0)} = x2 · 1 modHeven

{Qdef (x;u), ᾱ(0,1)} = x3 · 1 modHeven (5.40)
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A convenient choice is:

ᾱ(1,0) =

(
0 0
1 0

)
ᾱ(1,0) =

(
0 0

x− u1 0

)
(5.41)

Now we got to order |~m| = 2. It turns out that all the Massey products at this order are 0.
So, the algorithm terminates after the first step. The bulk–deformed matrix factorization is:

Qdef (x; s;u) = Qdef (x;u) + s3ᾱ(1,0) + s2ᾱ(0,1)

=

(
0 x2 + u2 + u1x

x3

5 − 1
5u2x+ 2

5u1x
2 + 2

5u2u1 + 1
5u

2
1x−

u3
2
5 + s3 + s2(x− u2) 0

)

(5.42)

Squaring this matrix and subtracting W (x; s) one can read off the vanishing relations f̄i:

f̄1 =
2

5
u1u

2
2 −

1

5
u3

1u2 − s5 + s3u2 − s2u1u2

f̄2 = −1

5
u2

2 +
3

5
u2u

2
1 −

1

5
u4

1 − s4 + s2u2 + s3u1 − s2u2
1 (5.43)

Integrating these polynomials, one gets:

Weff (u; s) =
1

30
u6

1 +
3

10
u2

1u
2
2 −

1

5
u4

1u2 −
1

15
u3

2 + s2

(
u2

2

2
− u2

1u2 +
u4

1

4

)

+ s3

(
u1u2 −

u3
1

3

)
+ s4

(
u2

1

2
− u2

)
− s5u1 (5.44)

Setting the bulk parameters si to 0 we recover (5.30).

5.2.4 The Effective Superpotential via Consistency Constraints

In [44] the effective superpotential was calculated for the A3 minimal model by solving the
consistency constraints discussed in section 4.3. The constraint equations have a unique
solution, which reads:

Weff (u; t) =− 1

30
u6

1 −
3

10
u2

1u
2
2 −

1

5
u4

1u2 −
1

15
u3

2 + t2

(
u2

2

2
+ u2

1u2 +
u4

1

4

)

+ t3

(
u1u2

u3
1

3

)
+ (t4 − t22)

(
u2

1

2
+ u2

)
+ (t5 − t2t3)u1 (5.45)

The result is given in terms of the ’flat’ coordinates ti. These define the special coordinate
system where the bulk correlators are given as partial derivatives of the WDVV potential
F(t) with respect to the ti. They are related to the generic deformation parameters si by the
following transformations [78]:

s2 −→ −t2 s3 −→ −t3 s4 −→ −t4 + t22 s5 −→ −t5 + t2t3 (5.46)

Upon a field redefinition u1 → −u1, u2 → −u2 (5.45) and (5.44) are identified.

We give further results of effective superpotentials for the minimal models of type A in
appendix B.2
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5.3 The E6 Minimal Model

In this section we discuss the calculation of the effective superpotential for the E6 minimal
model. The Landau–Ginzburg superpotential is:

W = x3 + y4 + εz2, (5.47)

where ε = ±1. Introducing this parameter is just for convenience since we can always choose
the matrix factorization to be real. The choice of sign has no influence on the dimensions and
charges of the spectrum or the form of the superpotential.
The Coxeter number k of the E6–model is 12, the background charge is ĉ = 5

6 .
This model is only a slight complication as compared to the minimal models of type A. We
now have three variables instead of one. This brings us closer to Gepner models. Since the E6

model is still a minimal model one could expect that all the methods to calculate the effective
superpotential which work for the minimal models of type A also apply for the E6 case.
However, it turns out to be worthwhile to consider ’yet another example’: The surprising
result we get is that the consistency constraints for the correlators fail for this model.

5.3.1 Matrix Factorizations and Open String Spectrum

Matrix factorizations and cohomology for the E6–model have already been discussed in [58].
There are six matrix factorizations, one for each node in the Dynkin diagram of E6. The
following matrices satisfy W1 = E · J :

E1 = J2 =

(
−y2 −√−εz x

x2 y2 −√−εz

)
E2 = J1 =

(
−y2 +

√−εz x
x2 y2 +

√−εz

)

(5.48)

E3 = J3 =




−√εz 0 x2 y3

0 −√εz y −x
x y3 √

εz 0
y −x2 0 −√εz


 (5.49)

E4 = J5 =




−y2 +
√−ε 0 xy x

−xy y2 +
√−ε x2 0

0 x
√−εz y

x2 −xy y3
√−εz


 (5.50)

E5 = J4 =




−y2 −√−εz 0 xy x
−xy y2 −√−εz x2 0

0 x −√−εz y
x2 −xy y3 −√−εz


 (5.51)

E6 =




−√−εz −y2 xy 0 x2 0
−y2 −√−εz 0 0 0 x
0 0 −√−εz −x 0 y
0 xy −x2 −√−εz y3 0
x 0 0 y −√−εz 0
0 x2 y3 0 xy2 −√−εz




(5.52)

74



J6 =




√−εz −y2 xy 0 x2 0
−y2

√−εz 0 0 0 x
0 0

√−εz −x 0 y
0 xy −x2

√−εz y3 0
x 0 0 y

√−εz 0
0 x2 y3 0 xy2

√−εz




(5.53)

We summarize the data of the boundary preserving spectrum in table 5.1.
We labelled the matrix factorizations by Mi, the second column indicates the ranks of the

Factorization Rank Spectrum bosonic Spectrum fermionic

M1 2 0 6 4 10

M2 2 0 6 4 10

M3 4 0 4 6 10 0 4 6 10

M4 4 0 2 4 62 8 2 42 6 8 10

M5 4 0 2 4 62 8 2 42 6 8 10

M6 6 0 22 43 63 82 10 0 22 43 63 82 10

Table 5.1: Boundary preserving spectrum of the E6 model.

matrices. The last two columns give the even and the odd spectrum. The numbers correspond
to the R–charges, multiplied by the Coxeter number k = 12 of E6, and the exponents give the
multiplicities. Note that there are six possible values of the charges, qψ ∈ {0, 2, 4, 6, 8, 10}.
To fermionic states with these charges we will associate fermionic deformation parameters ui
with weights wui = 1

2(12− qψi) ∈ {6, 5, 4, 3, 2, 1}. We observe that, concerning the spectrum,
there are two types of matrix factorizations. The factorizations M1,M2 and M4,M5 have the
same spectra, respectively. These branes are the antibranes of each other. M3 and M6 belong
to a second class of D–branes. The even spectrum is identical to the odd spectrum, these
branes are “self–dual” — the brane is its own antibrane [42].
We note that the highest charge, which is equal to the background charge, is always in the
fermionic sector, whereas the charge 0 state is always in the bosonic sector. Serre duality is
realized in the following way: For every boson φ there is a fermion ψ such that qφ + qψ = ĉ.

5.3.2 The Effective Superpotential via Deformation Theory

We now go on to calculate Weff for the simplest E6 matrix factorization, M1. Choosing the
parameter ε = 1 in (5.47), we have:

E1 =

(
−y2 − z x
x2 y2 − z

)
J1 =

(
−y2 + z x
x2 y2 + z

)
(5.54)
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The open string spectrum defined by the operator Q =

(
0 E
J 0

)
is easily found:

φ
(0)
1 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 φ

( 1
2
)

2 =




y 0 0 0
0 y 0 0
0 0 y 0
0 0 0 y


 (5.55)

ψ
( 1
3
)

3 =




0 0 0 1
0 0 −x 0
0 1 0 0
−x 0 0 0


 ψ

( 5
6
)

4 =




0 0 0 y
0 0 −xy 0
0 y 0 0
−xy 0 0 0


 (5.56)

We have two fermionic operators which we can use to deform the matrix factorization. We
associate a parameter u1 to ψ4 and u4 to ψ3. Then we set:

α(1,0) = ψ3 α(0,1) = ψ4 B1 = {(1, 0), (0, 1)} (5.57)

The Massey products for order 2 with B2 = {(2, 0), (1, 1), (0, 2)} are:

y(2,0) = α(1,0)α(1,0) = −x1
y(0,2) = α(0,1)α(0,1) = −xy21
y(1,1) = α(1,0)α(0,1) + α(0,1)α(1,0) = −2xy1 (5.58)

None of these products is in the even cohomology and thus we do not get a contribution
to the vanishing relations f1, f2 of the ring of deformations k[u1, u4]/(f1, f2). The matrix
factorization condition is satisfied at order 2 if we choose the following α~m for |~m| = 2:

α(2,0) =




0 0 0 0
0 0 1 0
0 0 0 0
1 0 0 0


 α(1,1) =




0 0 0 0
0 0 2y 0
0 0 0 0
2y 0 0 0


 α(0,2) =




0 0 0 0
0 0 y2 0
0 0 0 0
y2 0 0 0




(5.59)

At order |~m| = 3, the basis is B3 = {(3, 0), (2, 1), (1, 2), (0, 3)}. For the four Massey products
we find:

y(3,0) = α(2,0)α(1,0) + α(1,0)α(2,0) = φ1

y(2,1) = α(2,0)α(0,1) + α(0,1)α(2,0) + α(1,1)α(1,0) + α(1,0)α(1,1) = 3φ2

y(1,2) = α(1,1)α(0,1) + α(0,1)α(1,1) + α(0,2)α(1,0) + α(1,0)α(0,2) = 3y21
y(0,3) = α(0,2)α(0,1) + α(0,1)α(0,2) = y31 (5.60)

y(3,0) and y(2,1) are in the even cohomology and thus yield the following contributions to f1, f2:

f
(3)
1 = u3

4 f
(3)
2 = 3u1u

2
4 (5.61)
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The remaining two Massey products give rise to two new alpha matrices:

α(1,2) =




0 0 3
2 0

0 0 0 −3
2

3
2 0 0 0
0 −3

2 0 0


 α(0,3) =




0 0 y
2 0

0 0 0 −y
2

y
2 0 0 0
0 −y

2 0 0


 (5.62)

The non–zero values of f1, f2 reduce the basis of vectors ~m at order 4:

B4 = {
�

��(4, 0),
�

��(3, 1),
�

��(2, 2), (1, 3), (0, 4)} (5.63)

The procedure continues completely analogous as compared to the A3–case. The algorithm
terminates after 13 steps. We get only one more α–matrix at order |~m| = 6:

α(0,6) =




0 0 1
8 0

0 0 0 −1
8

1
8 0 0 0
0 −1

8 0 0


 (5.64)

The vanishing relations defining the critical locus are:

f1 = u3
4 −

3

4
u4u

8
1 −

5

64
u12

1

f2 = 3u2
4u1 +

3

2
u4u

5
1 +

1

8
u9

1 (5.65)

The deformed matrix factorization is:

Qdef (x;u) = Q+ u4α(1,0) + u1α(0,1) + u2
4α(2,0 + u2

1α(0,2) + u1u4α(1,1) + u4u
2
1α(1,2) + u3

1α(0,3) + u6
1α(0,6)

(5.66)

Explicitly, we have:

Edef (x;u) =

(
−y2 − z + 1

2yu
3
1 + 3

2u4u
2
1 + 1

8u
6
1 x+ u4 + yu1

x2 − xu4 − xyu1 + 2yu4u1 + y2u2
1 + u2

4 y2 − z − 1
2yu

3
1 − 3

2u4u
2
1 − 1

8u
6
1

)

(5.67)

Jdef (x;u) =

( −y2 + z + 1
2yu

3
1 + 3

2u4u
2
1 + 1

8u
6
1 x+ 1

c1
u4 + yu1

x2 − xu4 − xyu1 + yu4u1 + y2u2
1 + u2

4 y2 + z − 1
2yu

3
1 − 3

2u4u
2
1 − 1

8u
6
1

)

(5.68)

The deformed BRST operator satisfies Q2
def = W1+ f ′1φ1 + f ′2φ2, where the polynomials

f ′1 = u3
4 +

9

4
u4

1u
2
4 +

3

8
u8

1u2 +
1

64
u12

1

f ′2 = 3u2
4u1 +

3

2
u4u

5
1 +

1

8
u9

1 (5.69)

are equivalent to (5.65). Integration of (5.65) yields the following expression for the effective
superpotential:

Weff (u) = u3
4u1 +

3

4
u2

4u
5
1 +

1

8
u4u

9
1 +

5

832
u13

1 (5.70)
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The choice of matrices α~m is highly ambiguous. One example for an equivalent deformation
of Q is:

Ẽdef =

(
−y2 − z − 1

2xu
2
1 + u4u

2
1 − 1

8u
6
1 x+ u4 + yu1 − 1

4u
4
1

x2 − xu4 − xyu1 + 2yu4u1 − 1
4yu

5
1 + u2

4 + 3
4u4u

4
1 + 1

8u
8
1 y2 − z + xu2

1 − u4u
2
1 + 1

8u
6
1

)

(5.71)

J̃def =

(
−y2 + z − 1

2xu
2
1 + u4u

2
1 − 1

8u
6
1 x+ yu1 + u4 − 1

4u
4
1

x2 − xu4 − xyu1 + 2yu4u1 − 1
4yu

5
1 + u2

4 + 3
4u4u

3
1 + 1

8u
8
4 y2 + z + 1

2xu
2
1 − u4u

2
1 + 1

8u
6
1

)

(5.72)

Furthermore one finds:

f̃1 = u3
4 −

9

16
u4u

8
1 +

5

64
u12

1

f̃2 = u2
4u1 −

1

16
u9

1 (5.73)

These polynomials can be integrated to give the following effective superpotential:

W̃eff (u) = u3
4u1 −

1

16
u4u

9
1 +

5

832
u13

1 (5.74)

(5.70) and (5.74) are related by the field redefinition

u1 −→ u1 u4 −→ u4 + u4
1 (5.75)

5.3.3 Bulk Deformations and Deformation Theory

We now calculate the effective superpotential with bulk deformations using the extended
Massey product algorithm. The bulk–deformed Landau–Ginzburg superpotential is:

W (x; s) = x3 + y4 − z2 + s12 + s9u+ s8x+ s6y
2 + s5xy + s2xy

2 (5.76)

As in the A3–model we make an ansatz for the bulk–deformed Q–operator, such that:

Q2
def (x;u; s) =

(
Qdef (x;u) +

∑

~m

ᾱ~ms
~m

)2
!
= W (x; s) + f̄1φ1 + f̄2φ2, (5.77)

where we choose (5.66) for the boundary deformed Q–operator.
The terms in (5.76) which are proportional to s9 and s12 lie in the even cohomology and can
be absorbed into f̄1 and f̄2. Thus, for |~m| = 1, we look for block–offdiagonal matrices ᾱ~m
which satisfy:

[Qdef (x;u), ᾱ(1,0,0,0)] = x modHeven

[Qdef (x;u), ᾱ(0,1,0,0)] = y2 modHeven

[Qdef (x;u), ᾱ(0,0,1,0)] = xy modHeven

[Qdef (x;u), ᾱ(0,0,0,1)] = xy2 modHeven (5.78)
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One possible choice is:

ᾱ(1,0,0,0) =




0 0 0 0
0 0 1 0
0 0 0 0
1 0 0 0


 ᾱ(0,1,0,0) =




0 0 −1
2 0

0 0 0 1
2

−1
2 0 0 0

0 1
2 0 0


 ᾱ(0,0,1,0) =




0 0 u1
2 0

0 0 y −u1
2

u1
2 0 0 0
y −u1

2 0 0




(5.79)

ᾱ(0,0,0,1) =




0 0 −x
2 −

u4
1
8 −u2

1
4

u1
2 0 0 0

0 0 1
4xu

2
1 + u2

1u4 +
u6
1
8

x
2 +

u4
1
8

−x
2 −

u4
1
8 −u2

1
4 0 0


 (5.80)

Computing the Massey products at order 2, one finds that there are three products which are
neither in the even cohomology nor 0. This leads to three more ᾱ~m at order |~m| = 2:

ᾱ(0,1,0,1) =




0 0 0 0
0 0 −1

2 0
0 0 0 0
−1

2 0 0 0


 ᾱ(0,0,1,1) =




0 0 0 0
0 0 u1

2 0
0 0 0 0
u1
2 0 0 0


 (5.81)

ᾱ(0,0,0,2) =

(
0 a
a 0

)
a =

(
u2
1
4

1
12

−x
3 + 5

12(yu1 + u4)− u4
1

16 −u2
1
4

)
(5.82)

We get two more ᾱ~m at orders 3 and 4:

ᾱ(0,0,0,3) =




0 0 0 0

0 0
7u2

1
48 0

0 0 0 0
7u2

1
48 0 0 0


 ᾱ(0,0,0,4) =




0 0 0 0
0 0 1

36 0
0 0 0 0
1
36 0 0 0


 (5.83)

The algorithm terminates at order 8. The deformed matrix factorization is:

Qdef (x;u; s) =Qdef (x;u) + s8ᾱ1,0,0,0 + s6ᾱ(0,1,0,0) + s5ᾱ(0,0,1,0) + s2ᾱ(0,0,0,1)

+ s6s2ᾱ(0,1,0,1) + s5s2ᾱ(0,0,1,1) + s22ᾱ0,0,0,2 + s32ᾱ(0,0,0,3) + s42ᾱ(0,0,0,4) (5.84)
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Squaring this matrix, we can read off f̄1, f̄2, which can be integrated to the following effective
superpotential:

Weff (u; s) =u3
4u1 +

3

4
u2

4u
5
1 +

1

8
u4u

9
1 +

5

832
u13

1

+ u1

(
−s12 +

1

4
s26 +

1

12
s22s8 −

1

24
s32s6 +

1

432
s62

)
+ u2

1

(
−1

4
s5s6 +

1

48
s32s5

)

+ u3
1

(
1

12
s25 −

1

12
s2s8 +

1

24
s22s6 +

1

576
s52

)
+ u4

1

(
−1

8
s9 +

1

24
s22s5

)

+ u4

(
−s9 +

1

12
s22s5

)
+ u5

1

(
1

10
s8 −

1

40
s2s6 +

1

96
s42

)

+ u1u4

(
s4 −

1

2
s2s+

1

16
s42

)
+

1

4
u2

1u4s2s5 + u7
1

(
− 3

56
s6 −

1

448
s32

)

+ u3
1u4

(
−1

2
s6 +

1

24
s32

)
+

3

64
u8

1s5 +
1

2
u4

1u4s5 +
1

2
u2

4s5 +
1

64
u9

1s
2
2 +

1

2
u1u

2
4s

2
2

+
3

16
u5

1u4s
2
2 −

1

352
u11

1 s2 +
1

4
u3

1u
2
4s2 (5.85)

5.3.4 Combined Deformation Theory and CFT Constraints

In order to check the correctness of the result (5.85) it would be useful to reproduce it by
different methods. For the A3 minimal model we could show that the results for the effective
superpotential derived by deformation theory methods on the one hand and by solving con-
sistency constraints on the other hand, agreed.
The relevant steps to set up and solve the consistency constraints for open topological strings
were discussed in section 4.3. A convenient approach to set up and solve the equations is to
start with the A∞–relations (4.99) and solve them for the correlators. Since these equations
are not enough to uniquely determine the correlators, one inserts the result into the bulk–
boundary constraint equations (4.102), solves those and inserts the result into the Cardy
condition (4.103), whose solution uniquely determines the correlators.
Performing this procedure for the E6 minimal model it turns out that the Cardy condition is
in contradiction with the other two constraints. By contradiction we mean the following: The
bulk–boundary crossing constraint gives definite values to some correlators, whereas it sets
others to 0. The Cardy–condition now produces equations where a sum of terms is supposed
to be zero and all the values are already known from the other constraints such that the
Cardy equation cannot be satisfied. In some cases the other constraints set all summands but
one to zero and thus the equation cannot be satisfied. In other cases the Cardy equations
are contradictory among themselves, one equation giving a certain value to a correlator and
another one assigning to it a different value. See also appendix B.2 for an explicit example
of the failure of the Cardy condition in the boundary–changing sector of the A–type mini-
mal models. The A∞–relations and the bulk–boundary crossing constraints do not yield any
contradictory equations. So one may assume that they are correct, although we will have to
qualify this assumption.

In order to check the correctness of (5.85), the idea is to combine deformation theory methods
and the consistency constraints and check if the result agrees with the results obtained from
the deformation theory techniques alone. In order to do so, we proceed as follows:
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• If t = 0, respectively si = 0, i.e. without bulk insertions, the bulk–boundary crossing
constraint does not contain any information. This is why we may assume that in
this case the superpotential coming from the A∞–relations and the one coming from
the versal deformation of the Q–operator will agree. We thus start by computing the
superpotentials for t = 0 with either method.

• The superpotential obtained from solving theA∞–relations will contain as undetermined
parameters non–linear expressions in the unknown correlators. Comparing with the
result of the Massey product algorithm one obtains an overdetermined system of non–
linear equations for the correlators which has, at least for the examples we checked, a
unique solution.

• Next we set up the A∞–constraints and the bulk–boundary crossing relations with
t 6= 0 and use the boundary correlators whose values we found by comparison of the two
superpotentials as input for solving the equations. It turns out that this is enough to
uniquely determine all the values of the remaining correlators and the full superpotential
is fixed.

Going through this procedure for examples of the minimal models of the A–series and com-
paring with the results that come from the deformation of the matrix factorization with t 6= 0
we find agreement up to field redefinitions.
Turning to the E6–example we set up and solve the A∞–relations and sums up the correlators.
Explicitly, one finds this effective superpotential:

WA∞

eff (u) =B3334u
3
4u1 +

(
−6B3334B243244 + 12B2

3334B22224

)
u2

4u
5
1

+
(
12B3334B

2
243244 − 48B2

3334B22224B243244 + 32B3
3334B

2
22224

)
u4u

9
1

+
(
8B3334B

3
243244 + 48B2

3334B22224B
2
243244 − 64B3

3334B
2
22224B243244

+
320

13
B4

3334B
3
22224

)
u13

1 (5.86)

The indices of the correlators Ba0...am refer to the indices of the inserted boundary fields
(5.55), (5.56). We have three undetermined correlators B3334, B22224, B243244. The form of
this expression of course depends on how one solves the A∞ relations. Since, without bulk
insertions, there are only the A∞ constraints that determine the superpotential this result
must be equal to (5.70). From this, we get an overdetermined non–linear system of equations
for the unknown correlators, which has the following unique solution:

B3334 = 1 B22224 =
1

16
B243244 = 0 (5.87)

Now one turns on bulk deformations and sets up the full A∞ and bulk–boundary crossing
constraints. Using the data above as input it turns out that one can now uniquely fix all the
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correlators. Summing up the results to a superpotential one finds:

Weff (u; t) =u3
4u1 +

3

4
u2

4u
5
1 +

1

8
u4u

9
1 +

5

832
u13

1

+
1

2
u1

(
t12 −

1

2
t26 −

1

2
t2t

2
5 −

1

2
t22t8 +

1

6
t32t6 +

1

8

(
t26 − t32t6 +

1

4
t62

))

+
1

2

(
u4 +

1

8
u4

1

)(
t9 − t22t5

)

+
1

4

(
u4u

3
1 +

3

28
u7

1

)(
t6 −

1

2
t32

)
(5.88)

This result is given in terms of the flat coordinates ti, which are related to the parameters si
as follows [78, 97]:

s2 −→ −t2 s2 −→ −t5 s6 −→ −t6 +
1

2
t32 s8 −→ −t8 + t2t6 +

1

12
t42

s9 −→ −t9 s12 −→ −t12 +
1

2
t26 −

1

6
t32t6 +

1

2
t22t8 +

1

2
t2t

2
5 (5.89)

Comparing (5.85) and (5.88), one finds that Weff has a much simpler form. It looks like a
reduced version of (5.85). Indeed, when relating the two results by a field redefinition one
has to make a truncation of the bulk fields in addition. The reason for this result is the
bulk–boundary crossing constraint. The A∞–relations alone only give relations between the
correlators, in the present example only two of the amplitudes are set to zero explicitly. By
just looking at the A∞ constraint we would obtain precisely the structure of (5.85). The
bulk–boundary crossing constraint sets many of the correlators, which would be allowed by
the selection rules, to zero and thus truncates many of the terms in the superpotential (5.85).
Since the bulk–boundary–crossing equations are consistent with the A∞–relations this result
suggests that the bulk–boundary crossing equations impose an additional constraint on the
superpotential3. It might be that if one deforms the matrix factorization one only captures the
A∞–structure and that one gets additional constraints from the interaction between bulk and
boundary. This is incorporated in a mathematical structure termed Open Closed Homotopy
Algebra (OCHA) which has recently been introduced in the literature [75].
However, in [36] it was shown explicitly that the result (5.88) for Weff which was determined
by combining deformation theory methods with the constraint equations implies that a certain
correlator is 0 but can be proven to be non–vanishing by CFT methods. This implies that
the bulk–boundary crossing constraint needs to be extended in a way which modifies the
equations such that one can get agreement with the result obtained from the Massey product
method. This may also be possible for the Cardy constraint [98].

5.4 Relation to Kazama–Suzuki Coset Models

In this section we show that the effective superpotentials associated with rank two matrix
factorizations can be related to the Landau–Ginzburg potentials of simply–laced, level one,

3The Mathematica programs discussed in appendix A produce 536 A∞–equations and 195 equations from
the bulk–boundary crossing constraints, for altogether 280 correlators. That this large system of non–linear
equations is actually consistent may justify such a claim.
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hermitian symmetric space (SLOHSS) models [92]4. These Kazama–Suzuki type models are
represented by cosets G/H, where the group G is divided by its maximal subgroup H. We
can associate SLOHSS models to the following cosets:

SU(n+m)

SU(n)× SU(m)× U(1)

SO(2n)

SO(2n − 2)× U(1)

SO(2n)

SU(n)× U(1)

E6

SO(10) × U(1)

E7

E6 × U(1)
(5.90)

Landau–Ginzburg potentials for the deformed SLOHSS models were derived in [95]. They
are obtained by first expressing the Casimirs Vi of the group G, in terms of the Casimirs of
H, which are called xi. Next, we set V (xi) = vi, identifying the Casimirs with deformation
parameters vi of the superpotential. This yields a system of equations, where the xi that
appear linearly can be eliminated. The remaining equations can then be integrated to a
superpotential.
The explicit form for the E6–coset was given in [95]:

W (x, z, w) =x13 − 25

169
x z3 +

5

26
x2 w2

+ z

(
x9 + x7 w1 +

1

3
x5 w2

1 − x4w2 −
1

3
x2 w1w2 +

1

12
x3w3 −

1

6
xw4 +

1

3
w5

)

+
247

165
x11 w1 +

13

15
x9 w2

1 −
39

20
x8w2 +

169

945
x7 w3

1 +
13

105
x7 w3 −

26

15
x6 w1w2

+
13

225
x5w1 w3 −

13

50
x5w4 −

91

180
x4 w2

1 w2 +
13

30
x4 w5 +

13

15
x3w2

2 −
13

90
x3 w1 w4

− 13

120
x2w2 w3 +

13

90
x2w1 w5 −

13

270
xw6 −

13

360
w4

1 w2 +
13

90
w2

1 w5 (5.91)

This superpotential is, up to a (quite complicated) field redefinition precisely the effective
superpotential associated to the 2× 2–factorization of the minimal model in our results. The
ansatz for such a field redefinition looks as follows:

u1 −→ α1x u4 −→ α2z + α3x
4 + α4w

2
1 + α5w1x

2

s2 −→ β15w1 s5 −→ β14w2 s6 −→ β12w3 + β13w
3
1

s8 −→ β9w4 + β10w3w1 + β11w
4
1 s9 −→ β7w5 + β8w2w

2
1

s12 −→ β1w6 + β2w4w
2
1 + β3w

2
3 + β4w3w

3
1 + β5w

2
2w1 + β6w

6
1 (5.92)

Inserting this into (5.88) we can fix all the free parameters αi and βi to match with (5.91),
proving that the two expressions are equivalent.

It seems that only the effective superpotentials associated to 2× 2 matrix factorizations have
a direct connection to the superpotentials coming from SLOHSS models. It is interesting to
ask why and how the matrix factorizations are encoded in these coset models. We now give
a qualitative explanation of how this happens. One way to calculate such superpotentials (at
least in principle) is to eliminate as many variables as possible [95]. Take for instance the

4Quite recently an interesting relation between Kazama–Suzuki superpotentials, matrix factorizations and
knot homology was discovered [68, 69, 70]. See also section 3.6.
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E6–example:

W = x3 + y4 − z2 (+ bulk deformations). (5.93)

The equation W = 0 describes an ALE space, a two complex dimensional surface in C
3. We

now look for lines and quadrics on this surface. Using the ansatz

x = λy + α(λ), (5.94)

where λ is a variable of weight one and α is a homogeneous polynomial of weight four. The
variable z can be eliminated from W :

z =
√
x3 + y4 (+ bulk deformations) (5.95)

In this relation the ansatz for x can be inserted. The equation on z describes a quadric if the
expression under the square root is a perfect square. In this case one gets:

z = y2 + γ1(λ)y + γ2(λ) (5.96)

Lines and quadrics on the surface W = 0 are then given by

A1 = λy + α(λ) = 0

A2 = y2 + γ1(λ)y + γ2(λ) = 0. (5.97)

The Nullstellensatz tells us that this is consistent with W = 0 if W has the form

W = A1B1 +A2B2, (5.98)

for some B1, B2. This is precisely a 2 × 2 matrix factorization of the superpotential! Our
results for the ADE minimal models thus suggest that there is a direct relation between the
coset model Landau–Ginzburg superpotentials and Weff for 2 × 2 matrix factorizations of
the ADE minimal models. The results are therefore consistent with the argument presented
above.
Note in addition that there is no SLOHSS model associated with E8. However, there is also
no rank 2 matrix factorization of the E8 Landau–Ginzburg potential.

5.5 More Results

In this section we list some more results for the superpotentials of the minimal models of
types E6, E7, E8. Due to the technical complexity of these calculations we set all the bulk
parameters to 0. Still, it is not possible to do the deformation theory calculations by hand for
any but the simplest example presented here. To produce the results given in this section, the
computer algebra program Singular [99] was used. Singular provides the library deform.lib

[100] which can handle such calculations.
The input for our E6–example is the following:

LIB”deform.lib”;
int p = printlevel;
printlevel = 1;

84



ring Ro = 0, (x, y, z), dp;
ideal Io = x3 + y4− z2;
matrix Mo[2][2] = −y2− z, x, x2, y2− z;
list L = mod versal(Mo, Io);

This computes the deformations of the module characterized by the matrix factorization.
The result first gives the linear deformations, then indicates the steps in the iteration in the
algorithm of the Massey products. The output is stored in lists and can be accessed as follows:

def Qx = L[2];
setring Qx;
print(Ms);
print(Js);

print(Ms) yields the deformed matrix factorization, print(Js) gives the f–polynomials. All
that is left to do in order to obtain the effective superpotential is to integrate these polyno-
mials.

We start with two more examples for E6. First we consider the the self–dual matrix fac-
torization M3 given in (5.49). We choose ε = −1 in order to have only real entries in the
matrix factorization. The fermionic spectrum can be read off from table (5.1). We associate
to the four fermionic states deformation parameters ui with charges {1, 3, 4, 6}. The Massey
product algorithm yields the ring k[ui]/(fi) with four polynomials fi of degrees {12, 10, 9, 7}:

f1 = −u2
6 + u3

4 − u4
3 − 18u4u

2
3u

2
1 + 7u6u3u

3
1 − 6u2

4u
4
1 − 26u2

3u
6
1 − 9u4u

8
1 − 3u12

1

f2 = 4u3
3u1 + 12u4u3u

3
1 + 8u3u

7
1

f3 = 3u2
4u1 − 6u2

3u
3
1 − u9

1

f4 = −2u6u1 + 4u3u
4
1 (5.99)

These can be integrated to the following effective superpotential:

Weff (u) = −u2
6u1 + u3

4u1 − u4
3u1 − 6u4u

2
3u

3
1 + 4u6u3u

4
1 − 8u2

3u
7
1 − u4u

9
1 −

5

13
u13

1 (5.100)

Our last example for the E6 model is the factorization M4 (5.50), where we set ε = −1. There
are six deformation parameters with charges {1, 2, 3, 4, 4, 6}. We find the following expression
for the superpotential:

Weff =
5

1664
u13
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1

4
u8

1u5 +
3

4
u6

1u2u5 − 2u4
2u5 + 2u2u

2
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3
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2
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4v4
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u4v
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(5.101)
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With (5.70), (5.100) and (5.101) we have actually given the superpotentials of five of the six
branes since a brane yields the same superpotential as its anti–brane. Unfortunately, we were
not able to calculate the effective superpotential for the rank four matrix factorization of the
E6–model, because the calculation exceeds the capabilities of an ordinary PC.
The relation of the superpotentials coming from matrix factorizations of rank greater than
2 to coset models is not quite clear. One can, for instance, try to eliminate the parameters
{u2, u3, v4, u5} by solving ∂W

∂u2
= . . . = ∂W

∂u5
= 0 but this yields non–rational expressions for

some of these variables.

Next, we will give an example for the superpotential of the simplest matrix factorization
for the E7–model. The superpotential for E7 is:

W = x3 + xy3 + z2 (5.102)

The dual Coxeter number of E7 is k = 18.
The simplest matrix factorization is the following self–dual rank 2 factorization:

E = J =

(
z x

x2 + y3 −z

)
(5.103)

The odd spectrum consists of three states with charges {0, 8, 16} to which we associate pa-
rameters ui with charges {1, 5, 9}. The deformed matrix factorizations are given by:

Edef =

(
z + u1y

2 + u5y + u9

y3 + x2 − u2
1xy − 2u1u5x+ u4

1y
2 + 4u3

1u5y − 8u3
1u9 + u6

1x− 2u8
1y + 20u7

1u5 − 11u12
1

x+ u2
1y + 2u1u5 − u6

1

−z + u1y
2 + u5y + u9

)
(5.104)

The polynomials defining the critical locus of the effective superpotential are:

f1 = −u2
9 − 16u4

1u5u9 + 40u8
1u

2
5 + 8u9

1u9 − 42u13
1 u5 + 11u18

1

f2 = −2u5u9 + 8u4
1u

2
5 − 8u5

1u9 + 12u9
1u5 − 9u14

1

f3 = −u2
5 − 2u1u9 + 6u5

1u5 − 3u10
1 (5.105)

These polynomials of degrees 18, 14, 10 are easily integrated to the following effective super-
potential of degree 19:

Weff (u) = −55

19
u19

1 + 12u14
1 u5 − 15u9

1u
2
5 + 5u4

1u
3
5 − 3u10

1 u9 + 6u5
1u5u9 − u2

5u9 − u1u
2
9 (5.106)

This can be related the SLOHSS model associated with the following coset:

E7

E6 × U(1)
(5.107)

[95] gives the following expression for the Landau–Ginzburg potential of this deformed coset
model (we set all the bulk parameters to 0):

W (x, y, z) =
1016644

817887699
x19 +

33326

177147
x14y +

266

6561
x10z +

16850

2187
x9y2 +

80

27
x5yz +

124

9
x4y3 + xz2 +

3

2
y2z

(5.108)
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One obtains this expression from (5.106) by a simple field redefinition.

Finally we also give an example for the E8 model. The Landau–Ginzburg potential for
this model is:

W = x3 + y5 + z2 (5.109)

The dual Coxeter number is k = 30. The simplest matrix factorization has rank 4:

E = J =




z 0 x y
0 z y4 −x2

x2 y −z 0
y4 −x 0 −z


 (5.110)

We have four bosonic and four fermionic states. We associate to the fermionic states de-
formation parameters ui with charges {1, 6, 10, 15}. We get four polynomials with degrees
{30, 25, 21, 16}:

f1 =u2
15 + u3

10 + u5
6 − 30u10u

3
6u

2
1 + 4u15u

2
6u

3
1 + 21u2

10u6u
4
1 + 2u15u10u

5
1 + 140u4

6u
6
1 − 155u10u

2
6u

8
1

− 16u15u6u
9
1 − 3u2

10u
10
1 + 40u3

6u
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1 + 185u10u6u
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1 + 6u15u

15
1 − 359u2

6u
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1 − 45u10u

20
1

+ 215u6u
24
1 − 35u30

1

f2 =5u4
6u1 − 30u10u

2
6u

3
1 + u15u6u

4
1 + 125u3

6u
7
1 − 30u10u6u

9
1 + 10u2

6u
13
1 + 15u10u

15
1

− 117

2
u6u

19
1 + 14u25

1

f3 =− 3u2
10u1 + 10u3

6u
3
1 + 2u15u

6
1 + 25u2

6u
9
1 − 25u6u

15
1 + 6u21

1

f4 =− 2u15u1 − 10u2
6u

4
1 + 10u6u

10
1 − 3u16

1 (5.111)

Integration yields the following superpotential:

Weff =− 11

31
u31

1 + u25
1 u6 − 10u19

1 u
2
6 + 45u13

1 u
3
6 − 55u7

1u
4
6 − u1u

5
6 + 3u21

1 u10 − 15u15
1 u6u10

+ 15u9
1u

2
6u10 + 10u3

1u
3
6u10 − u1u

3
10 − 3u16

1 u15 + 10u10
1 u6u15 − 10u4

1u
2
6u15 − u1u

2
15

+ 4u21
1 u10 − u1u

3
10 − 3u16

1 u15 (5.112)

We cannot relate this result to a coset model, since such models do not exist for E8. This
supports the conjecture that matrix factorizations of rank greater than 2 can not be related
to such coset models and provide a more general structure.
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Chapter 6

The Torus and Homological Mirror

Symmetry

6.1 Introduction

This chapter is concerned with the simplest example of homological mirror symmetry, realized
on the two–dimensional torus. The torus has the usual bulk modulus and also a brane
modulus.
In the A–model, the D1 branes wrapping the torus are just straight lines in the fundamental
domain. The brane modulus is a combination of position shifts of the lines with respect to the
origin and Wilson loops around the circumferences determined by intersecting branes. The
instanton–corrected correlators have a simple geometric interpretation as the areas enclosed by
intersecting branes. The torus is thus an example where the correlators on the A–model side
can actually be calculated by computing these areas and summing them up. In the B–Model
the D1–branes map into D0 and D2 branes. The brane modulus encodes the positions of
the D0–branes. The torus has a description in terms of Landau–Ginzburg orbifolds.. There
are three such models, they describe special points of enhanced symmetry in the Kähler
moduli space. The Z3–orbifold is described by a cubic curve, the Z4–orbifold is realized in
terms of a quartic curve. Furthermore there exists a Z6–orbifold. Explicitly, the associated
Landau–Ginzburg superpotentials take the following form (see e.g. [101]):

WZ3 = x3
1 + x3

2 + x3
3 − a x1x2x3 (6.1)

WZ4 = x4
1 + x4

2 − x2
3 − a x2

1x
2
2 (6.2)

WZ6 = x6
1 + x3

2 − x2
3 − a x1x

4
2. (6.3)

All these curves are special cases of the elliptic curve. The parameter a is related to the
complex structure modulus τ .
A classification of D–branes on the torus is possible. In [102], Atiyah showed that vector
bundles E on the elliptic curve can be classified in terms of three numbers:

(r(E), c1(E), ζ) ≡ (N2,N0, ζ) (6.4)

Here, r(E), c1(E) are the rank and the first Chern class of the vector bundle, which are related
to the number of D2– and D0–branes on the torus. ζ is a number which encodes the location
of the D0–brane. In the physics literature this was discussed in [40].

88



Matrix factorizations on the cubic curve have been classified in [61], This classification was
done at the Gepner point for a = 0. In [46], matrix factorizations on the cubic curve were
computed away from the Gepner point. In particular, it was shown how to include bulk and
boundary moduli into the matrix factorization formalism.
There has been an exhaustive discussion of homological mirror symmetry on the torus in
the math literature [17, 103, 104, 105, 106, 107, 108, 109]. These papers do not use the
matrix factorization language but describe homological mirror symmetry as the equivalence
between the Fukaya category and the derived category of coherent sheaves. Homological mir-
ror symmetry and matrix factorizations on the cubic curve from the physics point of view
was discussed in [39, 40, 79, 51]. In [39] ’long’ and ’short’ branes, which wrap the long an
short diagonals of the fundamental domain of the torus in the A–model were identified with
certain matrix factorizations in the B–model with Landau–Ginzbug potential (6.1). Further-
more the three–point correlators were calculated in the A–model and the B–model and they
were shown to match. In [40] the authors discuss how one can extract bundle data out of
matrix factorizations and it is shown how to construct higher rank matrix factorizations out
of a minimal set via tachyon condensation. The description of branes in terms of matrix
factorizations at different points in moduli space was also discussed in this paper. The paper
[79] discusses how to calculate the effective superpotential for the cubic torus. This calcula-
tion is done by computing correlators in the A–model, since it is at present not known how
to calculate correlators with more than three insertions in the B–model. The correctness of
these correlators is tested by various consistency checks: it was shown that the correlators
satisfy the A∞–relations and the quantum A∞–equations [48]. Their analytical properties,
i.e. where and how the amplitudes degenerate, were also investigated. See also [110] for the
calculation of three–point functions in the A–model. In this paper the Yukawa couplings of
the MSSM were obtained from toroidal compactifications with intersecting D–branes. The
effective superpotential for B–branes was discussed in [111]. In [51] monodromies in Kähler
moduli space were discussed in the context of matrix factorizations, using the torus and the
quintic as examples.

In this chapter we discuss the quartic curve (6.2) in detail. Mirror symmetry for T 2 at
the Z4–symmetric point has been discussed in [112]. The difference to what we will discuss
here is that this paper deals with the torus at the Z4 symmetric point, where a Z4–orbifold
is taken. The mirror is a Landau–Ginzburg model with superpotential W = x4 + y4. We will
discuss mirror symmetry of T 2, where in the A–model the complex structure modulus is set

to e
2πi
4 . In the B–model this corresponds to fixing the Kähler modulus to e

2πi
4 . At this point

in moduli space the B–model has a description in terms of a Landau–Ginzburg orbifold with
superpotential (6.2). The CFT aspects of the quartic torus have been investigated in [37], see
also [34] for a discussion in the context of K3 surfaces.
As compared to the cubic curve, which was treated thoroughly in the literature, the quartic
curve has some novel features. The most obvious one is that the variables of the quartic
superpotential do not have equal weights. This has an influence on the uniformization proce-
dure which relates the moduli dependent parameters of the B–model to those natural in the
A–model. Another difference between the quartic and the cubic torus is that the superpo-
tential contains only terms with even exponents. This implies that there will be a self-dual
matrix factorization, i.e. a brane which is its own antibrane. The existence of self-dual matrix
factorizations then entails that we must include antibranes into the description if we want
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to compute correlators on the quartic torus. Furthermore, selection rules tell us that the
three–point functions for the quartic torus always have insertions of two different kinds of
factorizations, corresponding to the ’long’ and ’short’ branes whereas for the cubic curve all
calculations were done just for the ’long’ branes.

In section 6.2 we discuss the matrix factorizations of the quartic superpotential (6.2) and
we identify the ’long’ and ’short’ branes. Section 6.3 deals with the open string spectrum on
the torus. In section 6.4 we calculate the three–point functions in the B–model. In 6.5 we
discuss an exceptional matrix factorization, which describes a pure D2–brane wrapping the
torus. In section 6.6 we calculate three–point functions in the A–model and verify homologi-
cal mirror symmetry by comparison with the B–model calculation.

This chapter summarizes my contribution to [3].

6.2 Matrix Factorizations

We consider the following three–variable Landau–Ginzburg superpotential for the quartic
torus:

W = x4
1 + x4

2 − x2
3 − ax2

1x
2
2 (6.5)

In order to incorporate moduli in a natural manner we introduce parameters αi1 ≡ α1(ui, τ),
αi2 ≡ α2(ui, τ) and αi3 ≡ α3(ui, τ), which depend on the boundary modulus u of the brane
(we label the brane by an index i) and the complex structure modulus τ of the torus [46, 39].
The matrix factorization condition constrains the αi to lie on the Jacobian of the torus. The
parameters therefore have to satisfy the following relation:

(αi1)
4 + (αi2)

4 − (αi3)
2 − a(αi1)2(αi2)2 = 0 (6.6)

We now give the matrix factorizations which correspond to the long and short branes in the
A–model. It is a priori not obvious to see from the structure of the factorization whether it is
a long brane or a short brane. One way to find out is by computing the RR–charges [30, 40].
We choose a different approach, identifying the branes by their spectra. From the A–model
picture we know that long branes intersect twice in the fundamental domain of the torus,
which implies that we have two states stretching between two long branes. Short branes
intersect only once and we expect one open string state between two short branes. We will
show explicitly in the following section and in the appendix that the matrix factorizations
given below satisfy these properties.

For the brane anti–brane pair of the short branes we find: QS
i =

(
0 ES

i

JS
i 0

)
, where i =

{1, . . . , 4}:

ES
i =



 αi1x1 + αi2x2 αi3x3 +
(αi3)2

αi1α
i
2
x1x2

1
αi1α

i
2
x1x2 − 1

αi3
x3 − 1

αi1
x3

1 +
αi1

(αi2)2
x1x

2
2 − 1

αi2
x3

2 +
αi2

(αi1)2
x2

1x2



 (6.7)

JS
i =




1
αi1
x3

1 −
αi1

(αi2)2
x1x

2
2 + 1

αi2
x3

2 −
αi2

(αi1)2
x2

1x2 αi3x3 +
(αi3)2

αi1α
i
2
x1x2

1
αi1α

i
2
x1x2 − 1

αi3
x3 −αi1x1 − αi2x2



 (6.8)

90



This has the structure of a linear permutation brane. This is in accordance with the case
of the cubic curve [39], where the short branes were also identified with linear permutation
branes.

For the long branes we take the following expression: QL
i =

(
0 EL

i

JL
i 0

)
, where:

EL
i =




αi1
αi2
x2

1 −
αi2
αi1
x2

2
1
αi3
x3 − 1

αi1α
i
2
x1x2

αi3x3 +
(αi3)2

αi1α
i
2
x1x2

αi2
αi1
x2

1 −
αi1
αi2
x2

2



 (6.9)

JL
i =




αi2
αi1
x2

1 −
αi1
αi2
x2

2 − 1
αi3
x3 + 1

αi1α
i
2
x1x2

−αi3x3 − (αi3)2

αi1α
i
2
x1x2

αi1
αi2
x2

1 −
αi2
αi1
x2

2



 (6.10)

These matrix factorizations correspond to Recknagel–Schomerus branes.
Note that, apart from the permutation branes, there is a standard construction for a matrix
factorization. One can factorize the superpotential as follows: W =

∑
i wixi

∂W
∂xi

, where wi are
the homogeneous weights of the xi. In our case this would yield a 4× 4 matrix factorization.
Comparing with the cubic curve, one might expect that a factorization of this kind would
give the long branes. We will argue in section 6.5 why (6.9), (6.10) is the simplest choice for
the long branes.
Since we have a Z4–orbifold action the index i can take the values i ∈ {1, 2, 3, 4}. The
R–matrices are given by:

R1 = diag

(
1

4
,−1

4
,−1

4
,
1

4

)
(6.11)

R2 = diag(0, 0, 0, 0) (6.12)

The orbifold matrices associated to the matrix factorizations above are [30]:

γi1,2 = σeiπR1,2e−iπϕi , (6.13)

where σ =

( 12 0
0 −12

)
and the phase ϕ is determined by the condition γ4 = 1.

6.3 Cohomology

We now calculate the open string spectrum. In order to do so, we make ansätze for the
open string states, which are constrained by the condition of orbifold invariance (3.46). This
confines the R–charges of the states which determines the xi–dependence of the matrix repre-
senting the open string state. The moduli dependent factors have to be evaluated by solving
the physical state condition modulo (6.6).
The boundary changing spectrum is depicted in figure 6.1. Here, only the fermionic states
have been drawn. By Serre duality, the bosonic states run in the opposite direction. The
torus has background charge ĉ = 1 so Serre duality implies that qψ + qφ = 1. The states
mapping between branes of the same type have charge 1/2. This tells us that at a generic
point in moduli space there will be no non–vanishing three–point functions if one considers
only short branes or only long branes. For the open string states between long and short
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L2

L̄2

S2

S̄2

L1 L̄1

S̄1

S1

Figure 6.1: The quiver diagram for the quartic torus.

branes the solid lines represent fermions of charge 1/4 and the dashed lines are fermions of
charge 3/4.
For every brane, there is also a fermionic boundary preserving operator of charge 1, which
corresponds to a marginal boundary deformation. It is given by Ω = ∂uQ, where u is the
boundary modulus. This state will yield a one–point function 〈Ω〉 for each of the long and
short branes.
Furthermore, there exist additional states between a brane and its antibrane if the branes lie
on top of each other. In particular, there will be a boson of charge 1 and a fermion of charge
0. The existence of these states comes from the fact that a boson, resp. fermion, beginning
and ending on the same brane implies the existence of a fermion, resp. boson, stretching
between the brane and its antibrane. In this sense, these states are related to 1 and Ω. We
will not pursue this degenerate case any further in this work.

In the following, we will be interested in computing the non–vanishing three–point func-
tions for the quartic torus. Clearly, only the fermions with charge 1/4 and 1/2 can contribute
to the three–point functions. The possible three–point correlators correspond to oriented tri-
angles in figure 6.1. Note that we did not draw the bosons in this graph. In order to identify
all the three-point functions one has to keep in mind that there is also a bosonic arrow going
in the opposite direction. The quiver in fig. 6.1 has an obvious Z4 symmetry. So, each type
of correlator appears four times.
Let us first show some examples. We cut out a patch of figure 6.1 which contains all the
information about correlators with only fermions. This is shown in figure 6.2. The possible
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S1

L2 L̄1

S̄2

Figure 6.2: Three–point functions on the B–side.

S1

S̄2

L1L̄2

Figure 6.3: Three–point functions on the B–side, including bosons.

correlators are thus:

〈ψS̄2S1
ψS1L2ψL2S̄2

〉, 〈ψL̄1S1
ψS1L2ψL2L̄1

〉, 〈ψL̄1S1
ψS1L2ψ̄L2L̄1

〉. (6.14)

To find correlators with bosonic insertions, we have to swap the directions of some arrows
in the quiver. One has, for instance, a configuration depicted in figure 6.3 where bosons are
represented by dotted lines. Since the labeling of the branes is just convention and since
we cannot tell the difference whether a state goes from brane to brane or from antibrane to
antibrane in the B–model we will label the states in the correlators just with L and S and
not with L1, L̄2, S̄2, etc.
There are two different types of correlators, those with two long branes and one short brane
and those with two short branes and one long brane. In this thesis we will mostly be concerned
with the first type.
There are eight different correlators of type long–long–short:

〈ψLLψLSψSL〉 〈ψ̄LLψLSψSL〉 (6.15)

〈ψLLφLSφSL〉 〈ψ̄LLφLSφSL〉 (6.16)

〈φLLψLSφSL〉 〈φ̄LLψLSφSL〉 (6.17)

〈φLLφLSψSL〉 〈φ̄LLφLSψSL〉 (6.18)
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Furthermore, there are four correlators of type short–short–long:

〈ψSSψLSψSL〉 〈ψSSφLSφSL〉 (6.19)

〈φSSψLSφSL〉 〈φSSφLSψSL〉 (6.20)

Here we used a bar to distinguish between the two states stretching between two long branes.
We collect the explicit results for all the open string states in appendix C.

6.4 Correlators in the B–model

This section is concerned with the calculation of three–point correlators in the B–model.
These can be determined by the residue formula (3.52).
The key difficulty in this computation is to find the correct normalization for the cohomology
elements such that the correlators can be identified with the instanton sums in the A–model.
This is related to finding flat coordinates on the moduli space. For the boundary preserving
operator Ω = ∂uQ the correct normalization can be deduced from the normalization of the
superpotential which has to be scaled by a flattening normalization factor [113, 39]. The
normalization of the boundary changing operators is more difficult to calculate. In [39] it was
argued that the correctly normalized three–point functions have to satisfy the heat equation:

(
∂2

∂u2
− 8πi

∂

∂τ

)
Cijk(u, τ) = 0 (6.21)

This implies that the correlators are theta functions, because these are the solutions to this
equation.
In the following subsections we will calculate the normalization for the boundary preserving
operator Ω and compute the one–point functions. In order to be able to compute three–point
functions, we first uniformize the moduli–dependent parameters αi, i.e. we express them in
terms of the boundary modulus u and the complex structure modulus τ . Then we proceed to
calculating the three–point functions in the B–model, making extensive use of theta function
identities.

6.4.1 The flattening normalization factor

The normalization of the boundary preserving operator Ω = ∂uQ is related to the normal-
ization of the superpotential W via the matrix factorization condition. In [113] it was shown
that it is necessary to change the normalization of the superpotential by a modulus depen-
dent prefactor, W → 1

q(τ)W , in order to have vanishing connection terms in the differential
equations satisfied by the periods. The matrix factorization condition then implies that we
have to redefine Q → q(τ)−

1
2Q. This additional factor is then inherited by Ω. We will now

calculate the flattening normalization factor for the quartic torus, following the steps in [113].
We start by defining the following integrals, which are related to periods of differential forms,
given a superpotential with n variables:

u0 = (−1)λΓ(λ)

∫
q(s)

W λ
dx1 ∧ . . . ∧ dxn (6.22)

94



u(λ)
α = (−1)λ+1Γ(λ+ 1)

∫

γ

φα(xi, s)

W λ+1
dx1 ∧ . . . ∧ dxn (6.23)

Here, q(s) is a function of the moduli and the flattening factor we are looking for. It is given in
generic, non–flat coordinates s. φα(xi, s) is a bulk cohomology element, γ is a homology cycle
and Γ(λ) is the gamma function. It can then be shown [113] that u0 satisfies the following
differential equation:

∂2

∂si∂sj
u0 = Cαiju

(λ+1)
α + Γkij

∂

∂sk
u0, (6.24)

where Cαij are the structure constants of the bulk chiral ring and Γkij is the Gauss–Manin
connection. Going from the generic coordinates si to flat coordinates ti amounts to requiring
that the connection vanishes: Γ ≡ 0. In particular, this condition leads to a differential
equation which determines the flattening factor q(t).
We will now specialize to the quartic torus. Thus,W is given by (6.5) and n = 3. Furthermore,

we set for the modulus of the torus t ≡ τ , as usual. Then we have u0 = (−1)λΓ(λ)
∫ q(τ)
Wλ dx1∧

dx2∧dx3. In the following we will drop the integral measure. Computing the second derivative
of u0 with respect to the modulus, one gets:

∂2u0

∂τ2
=
q′′

q
u0 + (−1)λ+1Γ(λ+ 1)

∫
1

W λ+1

(
2q′

q
+
a′′

a′

)
(−q a′ x2

1x
2
2) + (−1)λ+2Γ(λ+ 2)

∫
q

W λ+2
(a′)2x4

1x
4
2

(6.25)

Next, we partially integrate the third term, applying the following identities:

(4− a2)x4
1x

4
2 = x1x

3
2

(
x2∂x1W +

1

2
ax1∂x2W

)

x2∂x2W = x2

(
4x3

2 − 2ax2
1x2

)
(6.26)

The vanishing of the connection corresponds to the vanishing of the terms proportional to
1

Wλ+1 . This leads to a differential equation for q(τ) in terms of a(τ):

(−1)λ+1Γ(λ+ 1)

∫
1

W λ+1

(
2q′

q
+
a′′

a′
+

2aa′

4− a2

)
(−q a′ x2

1x
2
2)

!
= 0 (6.27)

This is easily integrated to give the following result for q(τ):

q(τ) =

(
4− a(τ)2
a′(τ)

) 1
2

(6.28)

From this, one also gets another useful identity:

η6(τ) =
(−1)

7
4

2π
3
2

1

q2(τ)
=

(−1)
7
4

2π
3
2

a′(τ)

4− a2(τ)
(6.29)
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6.4.2 The correlators 〈ΩS〉 and 〈ΩL〉
As argued above, the correctly normalized correlators look as follows [39],

〈ΩS/L〉 = q(τ)

∫
str
(

1
3!(dQ

S/L)∧3∂uQ
S/L
)

∂1W∂2W∂3W
=

∫
f(u, τ)H(x)

∂1W∂2W∂3W
= f(u, τ), (6.30)

where H(x) = 1
12det∂i∂jW is the Hessian. Going to the patch α2(u, τ) = 1 and using the

relation coming from the vanishing of the u–derivative of (6.6) in the selected patch,

0 = ∂u
(
α1(u, τ)

4 + 1− α3(u, τ)
2 − a α1(u, τ)

2
)
, (6.31)

one finds that the two correlators take the same value:

〈ΩS〉 = 〈ΩL〉 = f(u, τ) = q(τ)
1

2

∂uα3(u, τ)

2α1(u, τ)3 − a(τ)α1(u, τ)
(6.32)

One can show that 〈ΩS/L〉 = 1 is satisfied if u is a flat coordinate on the Jacobian [39]. On
the torus, the holomorphic one–form looks as follows:

η = q(τ)

∫

C

ω

W
, where ω =

3∑

i=1

(−1)ixidx1 ∧ d̂xi ∧ dx3, (6.33)

and C is a contour winding around the hypersurface W = 0. In our local patch, where W =
W (α1, 1, α3), we have ω = −dα1 ∧ dα3. We can solve this contour integral using the residue
theorem:

∫
C

dW
W = 1. This is due to the fact that W is zero along the torus, which implies

that 1
W has a first order pole on the hypersurface. From the relation dW =

∑3
i=1

∂W
∂αi

dαi|α2=1

we obtain:

dα1 =
dW − ∂W

∂α3
dα3

∂W
∂α1

(6.34)

Inserting this into (6.33) and using the residue formula, we get:

η = q(τ)
dα3

∂α1W (α1, 1, α3)
=
q(τ)

2

dα3

2α1(u, τ)3 − aα1(u, τ)
(6.35)

The solution of f(u, τ) = 1 is thus given by:

u =

∫ α3

∞
η, (6.36)

which shows that this is a flat coordinate on the Jacobian.

6.4.3 Uniformization of the αi

We now give the explicit expression for the functions αi(u, τ) in terms of the boundary
modulus u and the complex structure modulus τ . For the torus this amounts to computing
the mirror map, i.e. we express the coordinates of the B–model in terms of flat coordinates
which are the natural variables in the A–model. In the case of the torus these are the complex
structure parameter τ , which will be identified with the Kähler parameter on the mirror, and
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the brane positions ui which will be identified with shift– and Wilson line moduli in the A–
model.
The αi will be expressed by theta functions which give a basis of global sections of line bundles
on the torus. The theta functions with characteristics are defined as follows1:

Θ

[
c1
c2

]
(u, τ) =

∑

m∈Z

q(m+c1)2/2e2πi(u+c2)(m+c1), (6.37)

where q = e2πiτ . According to [17], the n functions θ[ an , 0](nu, nτ) with a ∈ Z/nZ are the
global sections of degree n line bundles Ln. For n = 2, the following relation holds:

Θ4

[
0
0

]
(0, 2τ) + Θ4

[
1
2
0

]
(0, 2τ) − aΘ2

[
0
0

]
(0, 2τ)Θ2

[
1
2
0

]
(0, 2τ) = 0, (6.38)

where a can be found, for instance, in [114, 101, 115]. The a–parameter defines a map
a : H+/Γ(2)→ CP

1 from the fundamental region of the modular group Γ(2) (H+ denotes the
upper half plane) to the Riemann sphere, given by CP

1. In terms of the modular invariant
j(τ) = 1

q + 744 + . . . it is given by the following expression [115]:

j(τ) =
16(a2 + 12)3

(a2 − 4)2
(6.39)

Here, one has to be careful to choose the correct branch of the solution for a.
Clearly, the relation (6.38) is not what we are looking for, because if we identify α1 =
Θ[0, 0](0, 2τ) and α2 = Θ[1/2, 0](0, 2τ), the relation is α4

1 + α4
2 − aα2

1α
2
2 = 0 instead of (6.6).

This is the relation for the two–variable version of the quartic superpotential. One sees that
(6.38) is only satisfied at a single point, u = 0, in the brane moduli space.

For the three–variable quartic torus we need to uniformize the αi to satisfy (6.6). The correct
basis of theta functions is given by the Jacobi theta functions:

Θ1(u, τ) ≡ Θ

[
1
2
1
2

]
(u, τ) Θ2(u, τ) ≡ Θ

[
1
2
0

]
(u, τ)

Θ3(u, τ) ≡ Θ

[
0
0

]
(u, τ) Θ4(u, τ) ≡ Θ

[
0
1
2

]
(u, τ) (6.40)

It turns out that the correct solution looks as follows:

α1(u, τ) = Θ1(2u, 2τ) α2(u, τ) = Θ4(2u, 2τ)

α3(u, τ) =
Θ2

4(2τ)

Θ2(2τ)Θ3(2τ)
Θ2(2u, 2τ)Θ3(2u, 2τ), (6.41)

where we define Θi(τ) ≡ Θi(0, τ).
Furthermore we write the parameter a as:

a =
Θ4

2(2τ) + Θ4
3(2τ)

Θ2
2(2τ)Θ

2
3(2τ)

(6.42)

1We have collected the relevant definitions and identities in appendix C.2.
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One can check that this expression also satisfies (6.39).
We can now show that with these definitions (6.6) is satisfied. The most elegant way is to
prove this analytically, using the following quadratic identities for the theta functions (see for
example [116]):

Θ2
3(u, τ)Θ

2
4(τ) = Θ2

4(u, τ)Θ
2
3(τ)−Θ2

1(u, τ)Θ
2
2(τ)

Θ2
2(u, τ)Θ

2
4(τ) = Θ2

4(u, τ)Θ
2
2(τ)−Θ2

1(u, τ)Θ
2
3(τ) (6.43)

Note that for the quartic curve the uniformization is slightly more complicated than for the
cubic curve. This is due to the fact that not all the variables have the same weight. As a
consequence, α3(u, τ), which has twice the weight of α1(u, τ) and α2(u, τ), has to be expressed
as a composite of theta functions. It is to be expected that this is always the case whenever
a quadratic term is added to the superpotential.

6.4.4 Three–point correlators

We now calculate the correlators (6.15)-(6.18) using the Kapustin formula (3.52). Plugging
the states into the residue formula, the actual value of the correlator will be multiplied by a
rational function of the αi which can be absorbed into the normalization of the states. Since
this task is quite complicated we will simplify the problem stepwise:

• Simplify the open string states using theta function identities.

• Insert these simplified states into (3.52) and make use of more identities for theta func-
tions to identify the correlators.

Performing these steps, we will be able to extract the values of the correlators without knowing
the exact normalization. In general, one needs to know the precise normalization in order to
make the results comparable to the A–model. Without further input it cannot be determined.
Our approach is to pull out factors α1/2(ui+uj+uk, τ) from every contribution to the Hessian,
which are expected to be the correct values for the correlators. We then verify that the results
are correct by comparing with the results coming from the mirror calculation. We will now
give a more detailed description of the steps mentioned above.

Simplification of the open string states

The open string states given above are quite complicated matrices whose entries contain sums
of quotients of the αi. We can use the uniformization in terms of theta functions to simplify
these expressions. In particular, we can apply theta function identities such that the αi–
expressions give only one quotient instead of sums and we can pull out common factors which
we may throw away, since the correlators are only defined up to factors in the αi. For the
correlators it is thus possible to reduce the number of terms by a factor of 8. For this we made
use of the addition formulas for the theta functions (see for instance [117]). We collected the
most important ones in the appendix. For the simplification of the states we used (C.34),
(C.35).

The Correlators

By plugging the simplified open string states into (3.52) and making further manipulations
with theta function identities, we can pull out a factor in all terms in the supertrace which
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contribute to the Hessian. In that case we need to apply the most general identities for our
theta functions. In particular, we make extensive use of (C.39).

Here we compute the correlators which involve two long branes and one short brane. Applying
the theta function identities, one sees that one term on the rhs of (C.39) always vanishes2,
leaving us with a term of the form Θ(1/4)(u1 + u2 + u3, τ) and some factors coming from the
bad normalization of the states. Thus, up to the normalization factor, we find the following
results for the correlators:

〈ψLL(u1, u2)ψLS(u2, u3)ψSL(u3, u1)〉 ∼ Θ1(2(u1 + u2 − u3), 2τ)

〈ψ̄LL(u1, u2)ψLS(u2, u3)ψSL(u3, u1)〉 ∼ Θ4(2(u1 + u2 − u3), 2τ) (6.44)

〈ψLL(u1, u2)φLS(u2, u3)φSL(u3, u1)〉 ∼ Θ1(2(u1 + u2 + u3), 2τ)

〈ψ̄LL(u1, u2)φLS(u2, u3)φSL(u3, u1)〉 ∼ Θ4(2(u1 + u2 + u3), 2τ) (6.45)

〈φLL(u1, u2)ψLS(u2, u3)φSL(u3, u1)〉 ∼ Θ1(2(u1 − u2 + u3), 2τ)

〈φ̄LL(u1, u2)ψLS(u2, u3)φSL(u3, u1)〉 ∼ Θ4(2(u1 − u2 + u3), 2τ) (6.46)

〈φLL(u1, u2)φLS(u2, u3)ψSL(u3, u1)〉 ∼ Θ1(2(u1 − u2 − u3), 2τ)

〈φ̄LL(u1, u2)φLS(u2, u3)ψSL(u3, u1)〉 ∼ Θ4(2(u1 − u2 − u3), 2τ) (6.47)

The correlators always come in pairs. One correlator vanishes for ui = 0, the other one does
not. In the A–model these correlators correspond to the two triangles that can be enclosed
by two long branes and one short brane in the fundamental domain of the torus. Furthermore
note that the pairs of correlators differ only by the relative signs of the ui. The reason is
that a fermion stretching between brane A and brane B corresponds to a boson stretching
between A and the antibrane B̄. Branes have opposite orientation as compared to antibranes
in the A–model picture which amounts to a relative sign change in the ui.
The calculation of the correlators involving two short branes and one long brane is more
involved and seems to require the knowledge of the exact normalization of the states. We
thus refrain from computing these here.

6.5 The “exceptional” D2 Brane

As promised, we will now give an explanation why the matrix factorization (6.9), (6.10)
gives a more convenient description for the long branes than the “canonical” factorization

W =
∑

i wixi
∂W
∂xi

. This construction yields a 4 × 4 matrix factorization Qi =

(
0 Ei
Ji 0

)

2This comes from Θ1(0, τ ) = 0.
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with:3

Ei =




αi1x1 αi2x2 αi3x3 +
(αi3)2

αi1α
i
2
x1x2 0

1
αi2
x3

2 −
αi2

(αi1)2
x2

1x2 − 1
αi1
x3

1 +
αi1

(αi2)2
x1x

2
2 0 αi3x3 +

(αi3)2

αi1α
i
2
x1x2

1
αi3
x3 − 1

αi1α
i
2
x1x2 0 1

αi1
x3

1 −
αi1

(αi2)2
x1x

2
2 αi2x2

0 1
αi3
x3 − 1

αi1α
i
2
x1x2

1
αi2
x3

2 −
αi2

(αi1)2
x2

1x2 −αi1x1




(6.48)

Ji =




1
αi1
x3

1 −
αi1

(αi2)2
x1x

2
2 αi2x2 −αi3x3 − (αi3)2

αi1α
i
2
x1x2 0

1
αi2
x3

2 −
αi2

(αi1)2
x2

1x2 −αi1x1 0 −αi3x3 − (αi3)2

αi1α
i
2
x1x2

− 1
αi3
x3 + 1

αi1α
i
2
x1x2 0 αi1x1 αi2x2

0 − 1
αi3
x3 + 1

αi1α
i
2
x1x2

1
αi2
x3

2 −
αi2

(αi1)2
x2

1x2 − 1
αi1
x3

1 +
αi1

(αi2)2
x1x

2
2




(6.49)

A straightforward calculation shows that this matrix factorization, together with the factor-
ization (6.7), (6.8) for the short branes, yields the same spectrum as depicted in figure 6.1.
Thus, this factorization also represents the long branes. However, there is a catch: Let us
compute the correlator 〈Ω〉 of the marginal boundary preserving operator Ω = ∂uQ. In order
to do this, we insert it into the residue formula for the three–point function (3.52), which for
this case looks as follows:

〈Ω〉 =

∫
str
(

1
3!(dQ)∧3∂uQ

)

∂1W∂2W∂3W
(6.50)

In order to give something non–vanishing, the supertrace should be proportional to the Hes-
sian. Inserting into this formula, one finds that the supertrace is identically 0.
We interpret this as follows: Since Ω is the derivative of Q with respect to the boundary
modulus the vanishing of this correlator implies that the boundary modulus for this matrix
factorization has a fixed value. Such matrix factorizations have already been discussed in
[46, 40]. They are interpreted as a single rigid D2 brane wrapping the torus.
Although these special points in moduli space are an interesting issue, we do not want to re-
strict ourselves to a specific value of the boundary modulus but rather find the most general
expression for the long branes. The discussion in [46, 40] implies that we have to add a pair
of D0D0 branes to the system. Then one of the branes can move freely on the torus, while
its antibrane remains fixed and thus we have restored the boundary modulus as the relative
distance between the D0–brane and the D0–brane. The results of [46, 40] tell us that this
can be done perturbing this matrix with the marginal boundary fermion, which will yield a
reducible matrix factorization.
In order to find an expression for this operator (which is not ∂uQ but an equivalent descrip-
tion) we go to the Gepner point. There, the Landau–Ginzburg description of the torus is a
tensor product of two A2 minimal models and one (trivial) A2 piece: A2(x1)⊗A2(x2)⊗A0(x3).

3Note that this factorization does not come exactly from W =
P

i qixi
∂W
∂xi

. There is an additional term
proportional to x1x2 in the entries with x3. Altering the structure in this way does not change the properties
of this factorization but it has the effect that the αi–dependent prefactors are just quotients of the αi and not
rational functions. This simplifies the calculations tremendously.
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Our matrix factorization has the following form at the Gepner point (see also: [112]): Qgep =(
0 Egep
Jgep 0

)
:

Egep =




x1 x2 x3 0
x3

2 −x3
1 0 x3

x3 0 x3
1 x2

0 x3 x3
2 −x1


 Jgep =




x3
1 x2 −x3 0
x3

2 −x1 0 −x3

−x3 0 x1 x2

0 −x3 x3
2 −x3

3


 (6.51)

There is a unique fermionic state of weight 1, which is the tensor product of the highest
weight fermions of the two A3 minimal models. We identify this state with the state Ω:

Ωgep =

(
0 Ω

(0)
gep

Ω
(1)
gep 0

)
, where

Ω(0)
gep =




0 0 0 1
0 0 −x2

1x
2
2 0

0 x2
1 0 0

−x2
2 0 0 0


 Ω(1)

gep




0 0 0 x2
1

0 0 −x2
2 0

0 1 0 0
−x2

1x
2
2 0 0 0


 ; (6.52)

Perturbing (6.51) with this state and turning the moduli back on we find the following re-

ducible matrix factorization: Qredi =

(
0 Eredi

Jredi 0

)
, where

Eredi =




x1 (αi2)
2x2

1
α1

3
x3 +

(
− 1
αi1α

i
2

+
(αi2)3

αi1(αi3)2

)
x1x2

αi1
αi2

(αi2)
2x3

2 +
(
− (αi2)4

(αi1)2
+

(αi3)2

(αi1)2

)
x2

1x2 −(αi3)
2x3

1 −αi1
αi2
x2

1x
2
2 αi3x3

1
αi3
x3

αi1
αi2
x2

1
1

(αi3)2
x3

1
1

(αi2)2
x2

−αi1
αi2
x2

2 µ1 µ2 −x1



,

(6.53)

where µ1 = αi3x3 +
(
− (αi2)3

αi1
+

(αi3)2

αi1α
i
2

)
x1x2 and µ2 = 1

(αi2)2
x3

2 +
(

1
(αi1)2

− (αi2)4

(αi1)2(αi3)2

)
x2

1x2.

Jredi =




x3
1

1
(αi2)2

−α1
3x3

αi1
αi2
x2

1

µ2 − 1
(α1

3)3
x1 −αi1

α1
2

− 1
α1

3
x3 −

(
− 1
αi1α

i
2

+
(αi2)3

αi1(αi3)2

)
x1x2

µ1
αi1
αi2

(αi3)
2x1 (αi2)

2x2

−αi1
αi2
x2

1x
2
2 − 1

αi3
x3 (αi2)

2x3
2 +

(
− (αi2)4

(αi1)2
+

(αi3)2

(αi1)2

)
x2

1x2 −x3
1




(6.54)

These manipulations leave the spectrum unchanged, except for the condition 〈Ω〉 6= 0. This
matrix factorization is clearly reducible, since it contains two terms which are independent of
x1, x2. Thus, we can make row– and column manipulations to transform this factorization into
a lower–dimensional one. A few steps of elementary operations yield the following simple result

for Eredi (analogous steps lead to a corresponding expression for Jredi ): Eredi =

(
0 Ai
Bi 0

)
,
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where

Ai =



 0
αi1
αi2

αi2
αi1

(
x4

1 + x4
2 − x2

3 + x2
1x

2
2

(
− (αi1)2

(αi2)2
− (αi2)2

(αi1)2
+

(αi3)2

(αi1)2(αi2)2

))
0



 (6.55)

Bi =




1
α1

3
x3 − 1

αi1α
i
2
x1x2

αi1
αi2
x2

1 −
αi2
αi1
x2

2

αi2
αi1
x2

1 −
αi1
αi2
x2

2 αi3x3 +
(αi3)2

αi1α
i
2
x1x2



 (6.56)

Thus, the canonical 4×4 matrix factorization for the long branes at a generic point in moduli
space is isomorphic to the given 2× 2 factorization (6.9), (6.10).

6.6 The A–Model and Homological Mirror Symmetry

In this section we identify the correlators (6.44)–(6.47) of the B–model with instanton sums
in the A–model. On T 2 the instantons have a simple geometrical interpretation: they are
the areas enclosed by the D1–branes winding around the torus. The open string states are at
the intersection points of the branes. Even and odd cohomology elements are identified with
the angles enclosed by two intersecting branes. We choose the convention that the state is
fermionic if the angle is oriented in the counter–clockwise direction. For bosonic states the
angle is enclosed in clockwise direction.
In the A–model a three–point correlator on the disk is defined as follows (see for example
[111]):

Cijk(τ, αa, βa) =
∞∑

n=−∞

e2πiτA
(n)
ijk

(βa)e2πiW
(n)
ijk

(αa), (6.57)

where the sum is over all lattice shifts. Here τ is the Kähler modulus and corresponds to the
complex structure modulus in the B–model. The complex structure modulus is fixed to the

value e
2πi
4 , which makes the fundamental domain of the torus a square with side length 1.

A
(n)
ijk(βa) in (6.57) denotes the area of the instanton depending on shift moduli βa of the

branes. The areas are weighted by the total area of the fundamental domain, so that the

exponent in (6.57) is dimensionless. The phases W
(n)
ijk (αa) are Wilson line contributions.

They are obtained by integrating the flat connection along the circumference of the instanton
[111]. The connection is parameterized by the modulus αa associated to the brane with index
a. The lengths are weighted by the length of the brane in the fundamental domain.
We start with calculating the correlators (6.44) which have three fermionic insertions. We
label the ’long’ and ’short’ D1–branes as depicted in figure 6.4.
In order to calculate the three–point functions of interest we have to pick two ’long’ branes

and one ’short’ brane. For the three–fermion correlator we choose L̄1, L2 and S1. In the
B–model this corresponds to the triangles depicted in figure 6.2. With these conventions the
correlators 〈ψL2L̄1

ψL̄1S1
ψS1L2〉 and 〈ψ̄L2L̄1

ψL̄1S1
ψS1L2〉 look as shown in figure 6.5. In order to

obtain the areas and circumferences of these triangles we have to calculate their side lengths
in terms of the shift parameters βa. We start by calculating the correlator 〈ψL2L̄1

ψL̄1S1
ψS1L2〉
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L1L2

L̄1 L̄2

S2

S1S̄1

S̄2

Figure 6.4: ’Long’ and ’short’ branes in the A–model.

L2 L̄1

S1
β1

2

β2 β3

β1
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β2 β3

L2

S1

L̄1

ψL̄1S1
ψS1L2

ψS1L2
ψL̄1S1

ψL2L̄1

ψ̄L2L̄1

0
1

1 1

0
1

Figure 6.5: The correlators 〈ψL2L̄1
ψL̄1S1

ψS1L2〉 and 〈ψ̄L2L̄1
ψL̄1S1

ψS1L2〉 in the A–model.
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on the lefthand side in figure 6.5. Choosing the origin as indicated in the picture, one gets:

ashortL2L̄1S1
=

1√
2
(−1 + β)

along
L2L̄1S1

= −1 + β, (6.58)

where β = −β1 +β2 +β3. Taking into account lattice shifts of the long branes, whose distance
is
√

2, we get:

a
(n),short

L2L̄1S1
=
√

2

(
n+

1

2
+
β

2

)

a
(n),long

L2L̄1S1
= (n+ β), (6.59)

The area of the instanton, normalized by the area 1 of the fundamental domain, is just
A = 1

2 (ashort)2:

A
(n)

L2L̄1S1
=

(
n+

1

2
+
β

2

)2

(6.60)

In order to calculate the Wilson line contribution, we assign moduli α1, α2 and α3 to the
branes L1, L2 and S1, respectively. We furthermore assign negative values of these parameters
to the antibranes. Scaling down the side lengths by

√
2 along the diagonal branes and by 1

along the ’short’ brane, we get the following contribution for the phase:

W
(n)

L2L̄1S1
=

(
n+

1

2
+
β

2

)
α+

(
β

2
+

1

2

)
α3, (6.61)

where α = −α1 + α2 + α3. We are now ready to compute the three–point function CL2L̄1S1
:

CL2L̄1S1
=

∞∑

n=−∞

e2πiτ(n+ 1
2
+β

2 )
2

e2πi(n+ 1
2
+β

2 )e2πi(
β
2
+ 1

2)α3

= e2πiτ
β2

4 e2πi
βα
2 e2πi(

β
2
+ 1

2)α3

∞∑

n=−∞

e2πiτ(n+ 1
2)

2

e2πi(βτ+α)(n+ 1
2)

= C ·∆L2L̄1S1
(6.62)

Here C is a non–holomorphic factor which is due to a holomorphic anomaly [111]. This factor
has to be dropped when computing the effective superpotential, which is a purely holomorphic
quantity. In the following we will omit this factor, since it is not necessary for the comparison
with the B–model quantities.
Recently there has been considerable progress in understanding the holomorphic anomaly for
the open string case. As was shown in [118] for the closed string, the holomorphic anomaly can
be used to determine higher genus amplitudes because the holomorphic anomaly equations
are recursion relations for these amplitudes. In [119] such equations were found for open
topological strings on non–compact Calabi–Yaus. In [120] holomorphic anomaly equations
for compact Calabi–Yaus have been found.
Now we perform the mirror map in order to make contact with the B–model results. We
define:

τ ≡ τ 2u ≡ (βτ + α) (6.63)
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The first identity tells us that the Kähler modulus of the A–model becomes the complex
structure modulus in the B–model. The second identity states that the brane modulus u in
the B–model corresponds to a combination of shift and Wilson line moduli in the A–model.
Using these definitions and setting q = e2πiτ we get:

∆L2L̄1S1
=

∞∑

n=−∞

q(n+ 1
2)

2

e2πi(n+ 1
2)2u

= Θ2(2u, 2τ) (6.64)

In the last line we used the definitions (6.37), (6.40) for the theta functions.
Before comparing to the B–model we also calculate the second correlator with three fermionic
insertions, 〈ψ̄L2L̄1

ψL̄1S1
ψS1L2〉 on the right hand side of figure 6.5. In order to see that the

area drawn there is a triangle, one simply draws the picture on the covering space of the
torus. Calculating the side lengths, one finds:

ā
(n),short

L2L̄1S1
=
√

2

(
n+

β

2

)

ā
(n),long

L2L̄1S1
= (n+ β) (6.65)

Summing up the instanton contributions and dropping the non–holomorphic factor, one finds:

∆̄L2L̄1S1
=

∞∑

n=−∞

qn
2
e2πi 2un = Θ3(2u, 2τ) (6.66)

In order to find agreement with the B–model results we use the following identity for theta
functions:

Θ2(u, τ) = −Θ1(u+
1

2
, τ)

Θ3(u, τ) = Θ4(u+
1

2
, τ) (6.67)

In the A–model, such a shift corresponds to a shift of the origin. Implementing these shifts and
setting u ≡ u1 + u2 − u3, the correlators (6.64), (6.66) are precisely the B–model correlators
(6.44)4. Actually, the parameters ui in the B–model are related as follows to the Wilson line
moduli αi in the A–model:

u1 ←→ α2 u2 ←→ α1 u3 ←→ −α3 (6.68)

Now we discuss the remaining correlators we calculated in the B–model. These have one
fermionic and two bosonic insertions. Since a fermion stretching between branes A and B
is equivalent to a boson going from A to the antibrane B̄ we may obtain the correlators
involving bosons from those with only fermionic insertions in the following way. If we start
with a correlator with three fermionic insertions, we get a correlator with two bosons and one
fermion, if we replace one of the three branes by its antibrane. Starting with the correlator

4We cannot determine the overall sign since we do not know the precise normalization of the B–model
correlators.
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〈ψL2L̄1
ψL̄1S1

ψS1L2〉, which corresponds to the smaller triangle in figure 6.5, we can obtain
from this the correlators

〈ψL2L̄1
φL̄1S̄1

φS̄1L2
〉 〈φL̄2L̄11ψL̄1S1

φS1L̄2
〉 〈φL2L1φL1S1ψS1L2〉 (6.69)

by exchanging branes with antibranes. The corresponding configurations in the A–model are
shown in figure 6.6. Similar pictures can be drawn for the correlators with the second open
string state ψ̄LL, which stretches between two long branes.
The correlators including bosons seem to correspond to unoriented triangles enclosed by the
three branes. On the torus, however these correspond to triangles with a definite orientation.
In order to see this, remember that the open string states correspond to angles between two
branes and have a certain orientation. The states are indicated by wavy lines in the picture.
In order to see the correlators we have to follow the lines and take a turn to another line if
there is an open string state between two branes. The angle corresponding to the state must
be enclosed by the path. For the correlators including bosons one sees that the path leaves
the fundamental domain at one point, and enters on the other side, by the periodicity on
the lattice. Thus, for these correlators, one brane winds once around the torus before coming
back to close the triangle, which is then oriented. The area of such a triangle is the area of the
triangle corresponding to ther fermionic correlator plus the area of the full torus. Since we
sum over all lattice shifts this this does not change the area part of the instanton sum. What
does change is the contribution to the Wilson lines since we associate negative connection
parameters to the antibranes. Computing the correlators we find:

∆L2L̄1S̄1
=

∞∑

n=−∞

q(n+ 1
2)

2

e2πi(n+ 1
2)(βτ+(−α1+α2−α3) = Θ2(2ua, 2τ)

∆̄L2L̄1S̄1
=

∞∑

n=−∞

qn
2
e2πin(βτ+(−α1+α2−α3)) = Θ3(2ua, 2τ)

∆L̄2L̄1S1
=

∞∑

n=−∞

q(n+ 1
2)

2

e2πi(n+ 1
2)(βτ+(−α1−α2+α3)) = Θ2(2ub, 2τ)

∆̄L̄2L̄1S1
=

∞∑

n=−∞

qn
2
e2πin(βτ+(−α1−α2+α3)) = Θ3(2ub, 2τ)

∆L2L1S1 =
∞∑

n=−∞

q(n+ 1
2)

2

e2πi(n+ 1
2)(βτ+(α1+α2+α3)) = Θ2(2uc, 2τ)

∆̄L2L1S1 =
∞∑

n=−∞

qn
2
e2πin(βτ+(α1+α2+α3)) = Θ3(2ub, 2τ) (6.70)

The definitions of ua, ub, uc can be read off from the sums. Using the correspondence (6.68)
and (6.67) we find agreement with (6.45)–(6.47), thus verifying homological mirror symmetry.
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Figure 6.6: The correlators 〈ψL2L̄1
ψL̄1S1

ψS1L2〉, 〈ψL2L̄1
φL̄1S̄1

φS̄1L2
〉, 〈φL̄2L̄11ψL̄1S1

φS1L̄2
〉 and

〈φL2L1φL1S1ψS1L2〉 in the A–model.
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Chapter 7

Outlook

In this thesis we discussed B–type D–branes in Landau–Ginzburg models which are realized
in terms matrix factorizations of the Landau–Ginzburg superpotential. Since this subject is
still relatively new, there are many open issues which call for a better understanding.
One central point is to find methods to compute the effective superpotential for examples
which are more complicated than minimal models. One possibility would be to generalize
the Massey product algorithm we discussed in chapter 4. The formalism would have to be
extended in various ways. One issue is to generalize the formalism to handle systems of mul-
tiple D–branes. Such a generalization seems possible [85]. In the B–model we have do deal
with Landau–Ginzburg orbifolds, so one has to find out if the Massey product algorithm is
compatible with the orbifold action. Results in the mathematics literature imply that the
odds are good concerning the generalization to orbifolds [83]. A probably more challenging
problem is to include deformations of bosonic states into the Massey product formalism. This
would lead to a noncommutative structure in the space of deformations. Finally one has to
find a way to include moduli into the algorithm.
A different approach to obtain the effective superpotential would be to compute all the disk
amplitudes. This may be done by extending the consistency constraints for open topological
strings. Although this task is an interesting challenge, it is questionable if this approach is
really applicable for complicated examples since the number of equations increases rapidly
with the number of possible insertions of a correlator.
In [79] the effective superpotential on the torus was computed by calculating all the n–point
functions on the disk in the A–model. On the torus the A–model calculation is easy due to
the simple geometric structure of the A–branes and the instantons on the torus. For more
complicated Calabi–Yau manifolds is seems unlikely that one can calculate these amplitudes
in the A–model. The way out would by to calculate these amplitudes in the B–model and
then use homological mirror symmetry to obtain the instanton–corrected amplitudes in the
A–model. This leads us to a large field of open problems in connection with homological
mirror symmetry. Open string mirror symmetry is quite well understood for non–compact
Calabi–Yaus but almost nothing is known for the compact case. See [121] for recent results
on the quintic.
A rather urgent problem in the context of homological mirror symmetry is that there are
by now no methods known how to calculate disk amplitudes with more than three opera-
tor insertions in the B–model, not to mention higher genus amplitudes for compact Calabi–
Yaus. Recently, open string amplitudes in the B–model have been computed for non–compact
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Calabi–Yaus using matrix model techniques [122]. In the closed string theory these ampli-
tudes can be obtained by solving certain differential equations, but in the open string case no
such differential equations are known.
A further issue is to find the mirror map for the open string case. It is not known how to con-
struct this map in general. In the closed string case this is related to finding flat coordinates
on the moduli space which is in turn linked to N = 2 special geometry and the Picard–Fuchs
differential equations. There exists a notion of N = 1 special geometry (see e.g. [123, 124]),
but the construction has only been explicitly realized for non–compact Calabi–Yau spaces
with ’toric’ D–branes.
Many of the open problems we have discussed so far are not directly related to matrix factor-
izations, although the beauty of this formalism makes it hard to believe that matrix factor-
izations will not play a role in understanding at least some of these problems. There are also
many things to do in order to get a better understanding of D–branes characterized by matrix
factorizations. For all but the simplest cases the classification of matrix factorizations is an
unresolved issue. A related problem is how to make contact between the non–geometric B–
branes at the Landau–Ginzburg point and the B–branes at the large radius point [26, 27, 28].
Most of the discussions in this thesis were concerned with B–branes. These are relatively well
understood due to their description in terms of matrix factorizations or coherent sheaves.
Compared to the well–founded, although not complete, knowledge on B–branes, almost noth-
ing is known about the A–branes. Finding out more about A–branes is a challenging task.
What is even more interesting is mirror symmetry in this context, that is, given a B–brane,
how does one obtain the mirror A–brane? So far, this problem has been solved only for a few
examples like the torus.
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Appendix A

Implementing the Consistency

Conditions in Mathematica

We now describe how to implement the consistency constraints for open topological strings
which were discussed in section 4.3. We refrain from giving the full code but give a short
description of the various routines and discuss how they can be implemented. We will label
the most important programs with a (∗).

A.1 Input Data and Bookkeeping

We need to know the following data as input for the programs.

• One or more matrix factorizations of a Landau–Ginzburg superpotential and the open
string spectrum.

• R–charges and suspended Z2 degree of all the open string states and of the integrated
insertions.

• If bulk insertions are included, we need the chiral ring and the R–charges of its elements
as well as the three–point correlators in the bulk.

• The parameters which specify the model: dimensions of bulk and boundary cohomology,
background charge, the dual Coxeter number, the suspended grade of the boundary
metric.

The basic input data is stored conveniently in three lists:

states =
{
{1, qbos1 , sbrane, ebrane, bos1}, . . . , {0, qfer1 , sbrane, ebrane, fer1}, . . .
. . . , {0, qbulk1 , 0, 0, bulk1}, . . .

}

statesint =
{
{1, qbos1 − 1, sbrane, ebrane}, . . . , {0, qfer1 − 1, sbrane, ebrane}, . . .
. . . , {0, qbulk1 − 2, 0, 0}, . . .

}

brst ={Q1, . . . , Qn} (A.1)

We thus have two lists containing the data of the states and the integrated insertions. We
choose the conventions that we list first the even boundary states, then the odd ones and in
the end the bulk states. Each state is characterized by its suspended grade, its R–charge q,
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the brane sbrane where, the open string starts and the brane ebrane, where it ends, and, for
unintegrated insertions, the value.
We now describe some useful routines for bookkeeping:

A.1.1 degree

Purpose: Return the Z2–grade of a state.
Input: An (integrated) state, i.e. states(int)[[1]].
Output: The value of the Z2–grade.

A.1.2 charge

Purpose: Return the R–charge of a state.
Input: An (integrated) state, i.e. states(int)[[2]].
Output: The value of the R–charge.

A.1.3 sbrane

Purpose: Return the starting brane of a state.
Input: An (integrated) state, i.e. states(int)[[3]].
Output: The label of the brane where the open string state begins.

A.1.4 ebrane

Purpose: Return the end brane of a state.
Input: An (integrated) state, i.e. states(int)[[4]].
Output: The label of the brane where the open string state ends.

A.1.5 val

Purpose: Return the value of a state.
Input: An unintegrated state, i.e. states[[5]].
Output: The cohomology element.

A.1.6 pickall∗

Purpose: Return the value or the cyclic representative of a correlators Ba0,...,am;i0,...,in .
Input: pickall[states,target,{a0, . . . , am}, {i0, . . . , in}], where target is the list con-
taining the information about the correlator.
Output: The value of the correlator or the cyclic representative formatted as b[{a0, . . . , am}, {i0, . . . , in}].
Implementation: We have various cases depending in the input:

• Two boundary insertions and no bulk insertion. This is the boundary metric, the value
is known. Go through the list on metrics, if nothing is found, permute the indices and
include the appropriate sign (4.86). Return the value, or 0 if there is no match.

• Three boundary insertions and no bulk insertion. This is the boundary three–point
function, whose value is known. Try out all cyclic permutations permutations and put
the correct sign (4.88). Return the value, or 0 if there is no match.
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• One boundary and one bulk insertion. This is the bulk–boundary two–point function
whose value is known. Return the value is the indices match, otherwise return 0.

• All other cases. First check if the bulk indices match. Then go through the cyclic
permutations of the boundary indices, taking into account the sign (4.88). If the indices
match, return the variable for the cyclic representative multiplied with the appropriate
sign which was picked up by the cyclic permutations. Return 0 if there is no match.

A.1.7 pickF

Purpose: Return the value or the cyclic representative of a correlators Fa0,...,am .
Input: pickF[states,target,{a0, . . . , am}], where target is the list containing the infor-
mation on the correlator.
Output: The value of the correlator stored target in terms of its cyclic representative.
Implementation: Like pickall but simpler because we need not take care of the bulk
indices. This function may be included into pickall.

A.1.8 pickbulk

Purpose: Return the value of a bulk correlator.
Input: A list of bulk correlators whose values are known and a set of indices specifying the
correlator.
Output: The value of the correlator.

A.2 Selection Rules and Correlators

Given a matrix factorization and a set of open string states we can calculate all the correlators
without integrated insertions, using Kapustin’s residue formula. Furthermore we have to find
out which correlators with integrated insertions are allowed by the selection rules.

A.2.1 str

Purpose: Compute the supertrace of a matrix.
Input: A quadratic matrix.
Output: The value of the supertrace.

A.2.2 samecharge

Purpose: Format the R–charges of the states.
Input: The list of unintegrated states.
Output: A list whose length is the Coxeter number k, where at th i–th position there is a
list of labels of the states with R–charge i/k. This is minimal–model specific.

A.2.3 corr2pt

Purpose: Compute the boundary metric ωab using the Kapustin formula (3.52).
Input: The list of unintegrated states and the matrix factorizations.
Output: A list with elements {{a, b}, val}, where val is the value of the correlator.
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Implementation: We use str and the fact that the integrand has to be proportional to the
Hessian H = det(∂i∂jW ) in order to give something non–zero. Only the non–vanishing ωab
with a ≤ b are stored. The rest is taken care of by pickall.

A.2.4 bdry2ptinverse

Purpose: Calculate the inverse ωab of the boundary metric.
Input: The data for open string states and the output of corr2pt.
Output: The inverse of the boundary metric in the format of corr2pt.

A.2.5 corr3pt

Purpose: Calculate the values of the cyclic representatives of the boundary three–point
correlator Babc using the Kapustin formula (3.52).
Input: The data for open string states and the matrix factorizations.
Output: A list with elements {{a, b, c}, val}, where val is the value of the correlator.
Implementation: The routine performs the following steps:

• Find the cyclic representatives for a ≤ b ≤ c. In order to do this we use the ListNecklaces
function of the Mathematica package DiscreteMath‘Combinatorica‘. This function
works as follows:

ListNecklaces[3, {1, 2, 3}, Cyclic] ⇒ {{1, 2, 3}, {1, 3, 2}} (A.2)

This function is very fast and efficient and uses the properties of the cyclic group.

• Calculate the residue and write the result into a list if the value of the integral is
non–zero.

A.2.6 bulkbdry2pt

Purpose: Calculate the bulk–boundary two–point functions Ba;i using the Kapustin formula
(3.52).
Input: The data for open string states and the matrix factorizations.
Output: A list with elements {{a, i}, val}, giving the data of non–vanishing correlators.

A.2.7 bulk2pt

Purpose: Calculate the inverse of the topological bulk metric ηij using the formula of Vafa
(3.50).
Input: The Landau–Ginzburg superpotential and a list containing the elements of the the
bulk chiral ring.
Output: A list with elements of the form {{i, j}, val}, where val is the value of the correlator
and i ≤ j.

A.2.8 findindices∗

Purpose: Recursive procedure to build up a correlator which is allowed by the selection
rules.
Input: findindices[q, ind, rlist, flag], where q gives the current background charge1

1To be precise, it is the R–charge minus the background charge. So, an allowed correlator has q = 0.
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of the correlator, ind is a list of labels of the current insertions, rlist is the output of
samecharge and flag is 0 for the standard correlators with three unintegrated boundary
insertions and 1 for the special cases of one unintegrated boundary insertion and one un-
integrated bulk insertion. The starting point is a list of unintegrated insertions and the
background charge q to cancel. The procedure calls itself, adding an integrated insertion at
every step.
Output: A list with elements {{a0, . . . , am}, {i0, . . . , in}} giving the indices of a correlator
which is allowed by the selection rules and where a0 ≤ a1 ≤ . . . ≤ am and i0 ≤ i1 ≤ . . . ≤ im.
Implementation: The following steps have to be implemented:

• If q ≤ 0, we have inserted an integrated insertion whose charge was too big. The function
is stopped.

• If q = 0, the charge selection rule is satisfied. Check if the correlator has the same
suspended grade as the boundary metric. Format the output and stop the recursion.

• If q > 0, one must insert more integrated insertions. Go through the list which encodes
the R–charges of the integrated insertions, which is provided by samecharge. Check
that the candidate insertion is not the unit operator and make sure that the indices are
in ascending order. Let the function call itself with q being reduced by the R–charge of
the inserted state and ind with the label of the inserted state added.

A.2.9 bulkbdryins

Purpose: Produce a list of the cyclic representatives of the allowed n–point correlators with
bulk and boundary insertions, which have three unintegrated boundary insertions.
Input: The data of the cohomology elements, the integrated insertions and the output of
samecharge.
Output: A list with elements of the form {{a0, . . . , am}, {i0, . . . , in}} representing a corre-
lator Ba0...am;i0...in with at least three boundary insertions. The list contains only the cyclic
representatives.
Implementation: The procedure performs the following steps:

• Go through the combinations of three unintegrated boundary insertions and calculate
the value q by which the R–charges of the insertions overshoot the background charge.
Make sure the there are no insertions of the unit operator.

• Call findindices for the given three boundary insertions and with the charge q and
flag=0.

• Go through the list produced by findindices and generate the cyclic representatives
for every element by using ListNecklaces.

• In case of multiple branes, check if the start– and end–branes of neighboring insertions
match.

• Format the output.
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A.2.10 special

Purpose: Produce a list of all allowed correlations with integrated insertions which only
have one or two boundary insertions and at least one bulk insertion.
Input: The data of the cohomology elements and the integrated insertions and the output
of samecharge.
Output: A list with elements of the form {{a0, . . . , am}, {i0, . . . , in}} representing a correla-
tor Ba0...am;i0...in .
Implementation: The procedure is completely analogous to bulkbdryind. The only differ-
ence is that we call findindices with one unintegrated boundary and one unintegrated bulk
insertion and set flag=1.

A.2.11 generateF

Purpose: Generate a list of all allowed correlators Fa0...am as defined in (4.94) and determine
their values, which may still depend on the unknown correlators Ba0...am;i0...in .
Input: generateF[states, bb2pt, bdry3pt, spec, npt], where states is the data of the unin-
tegrated cohomology, bb2pt is the output of bulkbdry2pt, bdry3pt is the output of corr3pt,
spec is the output of special and npt is the output of bulkbdryins.
Output: A list with elements {{a0, . . . , am}, val} specifying Fa0...am and its value.
Implementation: The routine performs the following steps:

• Join the lists of various types of correlators into a list of all possible sets a0, . . . , am.

• Produce datasets of the form {{bdry}, {{bulk1}, {bulk2}, . . .}}, which collect the in-
dices of correlators which have identical boundary insertions but different bulk inser-
tions.

• For every dataset, go through the different bulk insertions and use pickall to get the
coefficients of the t–monomials and multiply these with the appropriate powers in the
ti.

• Sum up the monomials for every data set, which gives the value of Fa0...am .

• Format the output.

A.3 Implementing the Constraint Equations

We now come to the central task which is implementing the three sets of constraint equations:
the A∞–relations (4.99), the bulk–boundary crossing constraints (4.102) and the Cardy con-
dition (4.103). We need to use some tricks to set up these equations. The näıve approach
would be to set up the structure of each equation at every order and then use the pickall

function to insert for the values. The problem is that the routines will be much too slow.
For higher numbers of insertions an A∞–equation may easily have a hundred summands or
more but only a handful are actually non–zero. The most efficient approach is to calculate
all possible summands and assign them to the proper equations. This is the approach we will
pursue here.
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A.3.1 allcorr

Purpose: Give a list of all possible index sets for the n–point function, including those which
belong to the same cyclic class and group the list into sublists which contain the index lists
for a given number of boundary insertions.
Input: The bulk–boundary two–point functions, the list of ’special’ correlators, the bound-
ary three–point functions, the list of n–point correlators from bulkbdryins.
Output: A nested list: {{{{a0}, {i0}}, {{a1}, {i1, i2}}, . . .}, {{{a1, a2}, {}}, {{a2, a1}, {}}, . . .}, . . .}.

A.3.2 allF

Purpose: Give a list of all possible index sets for the Fa0,...,am , including those which belong
to the same cyclic class and group the list into sublists which contain the index lists for a
given number of boundary insertions.
Input: The output of generateF.
Output: A list of lists whose entries are the possible indices a0, . . . , am of Fa0,...,am for a
given m without taking care of the cyclicity.

A.3.3 allbulk3pt

Purpose: Give a list of all possible indices for the bulk threepoint functions cijk.
Input: A list of the bulk three–point functions with elements of the form {{i, j, k}, val},
where i ≤ j ≤ k.
Output: A list of indices of bulk threepoint functions with unordered indices.

Actually, the existence of these three routines render the efforts, only to store the minimum
necessary amount of information by considering cyclic representatives rather obsolete. Intro-
ducing these lists, however, speeds up some parts of the procedures to set up the constraint
equations.

A.3.4 eqfinder∗

Purpose: Find all A∞–equations,

∑

I⊆I0,n

m∑

k,j=0

k≤j

(−1)ã1+...ãkBa0
a1...akcaj+1...am;I0;n\I

Bc
ak+1...aj ;I

= 0, (A.3)

for a given m and n.
Input: eqfinder[m, n, corrs, invmet, states], where corrs is the output of allcorr and
invmet is the inverse of the boundary metric.
Output: A list with elements

{{
{a0, . . . , am}, {i0, . . . , in}

}
,
{{
{a1, . . . , ak}, {{a0, . . . , ak, c, aj+1, . . . , am}, {I0;n\I}},

, {c, d}, {{d, ak+1, . . . , aj}, {I}}
}
, . . .

}}
, (A.4)

where the first list identifies the equation and the second list gives the information on the
summands, which are specified by lists which determine the sign, the position of the metric
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insertion, and the index sets of the correlators.
Implementation: The program goes through the following steps:

• Go through all the elements of corrs which have less than m+ 2 boundary insertions
and check if the number of bulk insertions does not exceed the number n, the bulk
indices determine the index set I0;n\I.

• Go through all the positions c of metric and split the index set into a0, . . . , ak and
aj+1, . . . , am.

• Calculate the number of boundary and bulk insertions for the second correlator of the
summand and go through the elements of the corresponding sublist of corrs.

• Check if the first index of the correlator, d, together with the index c of the first
correlators gives a non–vanishing element of the boundary metric. If this is so, collect
the index sets {d, ak+1, . . . , aj} and {I}.

• Format the equation identifier {{a0, . . . , am}, {i0, . . . , in}} and check if it already exists
in the list of equations. If no, generate a new element and append the data of the
summand. If yes, append the information on the summand to the equation data.

A.3.5 ainfty

Purpose: Set up the A∞ relations for every m and n where there are non–vanishing terms.
Input: The data of the unintegrated states, the inverse of the boundary metric, the bulk–
boundary two–point functions, the ’special’ correlators, the boundary three–point functions,
the information on the cyclic representatives of the n–point correlators and the output of
allcorr.
Output: A list of all A∞ relations in terms of the cyclic representatives of the unknown
correlators with redundancies removed.
Implementation:

• Determine the maximal m and n for which the A∞–relations yield equations with non–
zero summands.

• Go through all possible values of m and n and call eqfinder.

• For every equation, determine the value of the summands using pickall and sum up
the terms.

• Check the equation or minus the equation is already in the list2 of equations and append
it if it is not.

A.3.6 crosseqfinder∗

Purpose: Find all bulk–boundary crossing constraint equations

∂i∂j∂kF(t)ηkl∂lFa0...am(t) = (A.5)

2This can happen since pickall returns the correlators in terms of cyclic representatives and different
equations may give, up to signs, the same conditions on the cyclic representatives.
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=
∑

0≤m1≤...m4≤m

(−1)ãm+1+...+ãm3Fa0...am1 bam2+1...am3cam4+1...am∂i(t)Fbam1+1...am2
(t)∂jFcam3+1...am4

,

for a given m.
Input: crosseqfinder[m, flist, allf, bulkmet, bdrymet, bulk3pt, allbulk, states], where
flist is the output of generateF, allf is produced by allF. The further arguments of
the function are the inverse of the bulk metric, the inverse of the boundary metric, the
bulk three–point functions in ordered and complete form, where the list only contains those
elements where the OPE φiφj = c k

ij φk does not contain exact terms3, and the states.
Output: A list with elements {{identifier}, {{lhs}, {rhs}}}, where

identifier ={a0, . . . , am, i, j}
lhs =

{
{{k, l}, val}, . . .

}

rhs =
{{
{{a0, . . . , am}, {am1+1, . . . , am2}, {am2+1, . . . , am3}, {am3+1, am4}, {am4+1, . . . , am}

{b, c, b′, c′}}, val
}
, . . .

}
, (A.6)

where val is the value of the correlator, obtained by using the function pickF.
Implementation: The program performs the following steps:

• First consider the lefthand side of the equations:

– Check if the output of allF contains entries for a given m.

– Search the list allbulk for possible values of i, j, k and determine the index l of
the metric.

– Use pickall to calculate the partial derivative of Fa0...am and compute the value
of the lefthand side.

– If the value is non–zero, format the dataset and add the information to the result,
i.e. produce a new entry of the equation identifier does not exist, or append the
information of the summand to an existing lhs.

• For the righthand side of the equation we have to do the following:

– Start off with determining the last two factors of the summand because the deriva-
tives with respect to the bulk parameters might vanish4 and one can then avoid to
produce the first factor.

– Go through all terms in allf which have less than m + 1 boundary insertions
and check if any of the possible t–derivatives is non–zero. This determines a valid
second factor in a summand. Get the metric factor b′.

– Given a non–vanishing second factor, go through possible candidates of the third
factor in allf. Check if any t–derivative is non–zero. If this is the case we have
found a pair {i, j} and have to check whether the associated bulk OPE does not
contain exact terms. Get the metric factor c′.

3Such a list can be generated easily by computing the triple derivatives of the WDVV potential [78, 97].
For the minimal models of type A the requirement that there are no exact pieces in the OPE translates into
a simple condition of the indices. For the E6 it is easiest to sort the list by hand.

4The majority of the Fa0...am is just a correlator with only boundary insertions.
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– Calculate how many boundary insertions the first factor of the summand has and
go through the possible candidates in allf. Go through the possible positions of
b and c and check if ωb,b

′ 6= 0 and ωcc
′ 6= 0.

– If one gets a non–vanishing summand, format the equation identifier and the equa-
tion data and calculate the value of the summand using pickF. Append the in-
formation of the summand to the correct equation or generate a new entry in the
output list.

A.3.7 sumup

Purpose: Assemble the bulk–boundary crossing equations.
Input: sumup[states, flist, allf, bulkmet, bdrymet, bulk3pt, allbulk], where the argu-
ments are the same as for crosseqfinder.
Output: A list of bulk–boundary crossing equations with redundancies removed.
Implementation:

• Determine the maximal m for which the bulk–boundary crossing constraints can yield
non–trivial information.

• Call crosseqfinder for every m.

• Go through the equations and sum up its components.

• Get the constraints on the correlators Ba0...am;i0...in by extracting the coefficients of the
ti using the Mathematica function CoefficientList.

• Add the equation to the output, if it is not already in the list.

A.3.8 cardyeqfinder∗

Purpose: Set up the Cardy equations

∂iFa0...anηij∂jFb0...bm = (A.7)

=
∑

0≤n1≤n2≤n

0≤m1≤m2≤m

(−1)(c̃1+ã0)(c̃2+b̃0)+c̃1+c̃2ωc1d1ωc2d2Fa0...an1d1bm1+1...m2c2an2+1...anFb0...bm1c1an1+1...an2d2bm2+1...bm

for a fixed m and n.
Input: cardyeqfinder[n, m, flist, allf, bulkmet, bdrymet, flag], where the arguments 2–6
are as for crosseqfinder and flag = 0 gives the full set of Cardy equations and flag = 1

truncates the equations which are in the boundary changing sector.
Output: A list with elements {{identifier}, {{lhs}, {rhs}}}, where5

identifier ={a1, . . . , an, b0, . . . , bm}
lhs =

{
{{i, j}, val}, . . .

}

rhs =
{{
{{a0, . . . , an1}, {an1+1, . . . an2}, {an2+1, . . . , an}, {b0, . . . , am1}, {bm1+1, . . . bm2},

, {bm2+1, . . . , bm}, {c1, d1, c2, d2}}, val
}
, . . .

}
(A.8)

Implementation:

5We need not put the ai and bi into separate lists in identifier because n and m are fixed.
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• For the lefthand side we have to perform the following steps:

– Go through the elements of allf which have n + 1 entries and check if any t–
derivative is non–vanishing.

– Store the indices a0, . . . , an, determine the index i and determine for which j the
bulk metric is non–zero.

– Go through the elements of allf which have m + 1 entries and check if the tj–
derivative is non–vanishing.

– If flag=1 check of the summand only contains insertions of states in the boundary
preserving sector.

– Format the data of the summand and append it if the identifier already exists or
otherwise generate a new entry for the equation.

• For the righthand side, the program does the following:

– Go through all the elements in allf which have less than m+n+2 and more than
2 entries.

– Go through all the possible positions of d1 and c2 and separate the index sets of
the first factor.

– Calculate how many insertions the second factor of the summand has end go
through the corresponding entries in allf. Loop through the possible positions of
c1 and d2 and check if ωc1d1 6= 0 and ωc2d2 6= 0.

– Format the index sets, check if the correlator preserves the boundary, if flag=1
and compute its value using pickF.

– Format the data of the summand and add it to the result.

A.3.9 sumup2

Purpose: Assemble the Cardy equations.
Input: sumup2[flist, allf, bulkmet, bdrymet, flag], where the arguments are the same as
for cardyeqfinder.
Output: A list of all Cardy equations with redundancies removed, where the equations are
in the boundary preserving sector if flag=1.
Implementation: Analogous to sumup.

A.4 Solving the Equations and Calculation of the Effective

Superpotential

Having set up the constraint equations, we now have to solve them. Since the equations
are non–linear and the algorithms described above are efficient enough to work for examples
which yield up to 5000 equations, one can in general not simply use Mathematica’s Solve

routine without manipulating the equations first. The programs described below help to
simplify the equations in such a way that they become tractable for Solve. For the most
complex examples which could be tackled with these programs it was however still necessary
to perform some steps manually in order to obtain the solution. Having found a solution to
the constraint equations it is then quite easy to sum up the correlators to get the effective
superpotential.
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A.4.1 reduce

Purpose: Insert solutions into equations, remove the variables which have been solved for
and update the solutions.
Input: {reduce[eqs, vars, sols]}, where eqs are the equations, vars are the unknown vari-
ables and sols are the solutions.
Output: A list {{eqs′}, {vars′}, {sols′}} with solutions inserted, redundancies and elimi-
nated variables removed.
Implementation:

• Insert sols into eqs and vars.

• Remove the zeroes and redundancies in eqs.

• Remove the variables which have been eliminated.

A.4.2 findzero

Purpose: Recursive procedure to identify the equations which are of the form (nBa0...am;i0...in)
α =

0, for α = 1, 2 and insert their solution.
Input: A list {{eqs}, {vars}, {sols}}.
Output: A list {{eqs′}, {vars′}, {sols′}}.
Implementation:

• Identify the equations which set a certain variable to 0.

• Insert the solution and remove redundancies and zeroes from the new equations, remove
the eliminated variables and append the solution to {sols}.

• Call the program again with the new values.

• Break the recursion if the number of unknowns has not reduced as compared to the
previous step.

A.4.3 findlin

Purpose: Find and solve the equations which have entries linear in the variables.
Input: A list {{eqs}, {vars}, {sols}} and a variable flag.
Output: A list {{eqs′}, {vars′}, {sols′}}.
Implementation:

• If flag = 0, find equations of the form c1Ba0...am;i0...in + c2Bb0...bk;j0...jl = 0, where c1, c2
are constants.

• If flag = 1 find equations which have at least one linear term at at most three sum-
mands.

• Solve these equations with respect to the linear variables and reduce the system using
reduce.
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A.4.4 solveAinf

Purpose: Solve the A∞–relations.
Input: solveAinf[eqs, spec, npt], where eqs is the output of ainf, spec is the output of
special and npt is the output of bulkbdryins.
Output: The complete result or a reduced set of equations.
Implementation: The program performs the following steps:

• Build a list {{eqs}, {vars}, {sols}} for equations, unknowns and solutions.

• Call findzero, then findlin with flag = 0 and finally findlin with flag = 1.

• If there are less than 15 equations left, try Solve and return the result, otherwise return
the remaining equations for solving them by hand.

A.4.5 crossolve

Purpose: Solve the bulk–boundary crossing constraints using the solution of the A∞–
relations. It can also be used to solve the Cardy equation if the solutions of the other
constraint equations are known.
Input: The result of the previous equations, the equations to solve, the output of special
and the output of bulkbdryins.
Output: The solution of the equations.
Implementation:

• Construct a list of all unknowns and insert the known solutions. Filter out the variables
which are still undetermined.

• Insert the solution into the equations and remove redundancies.

• Try to solve the equations using Solve and join the new solutions with the known
solutions.

A.4.6 superpotential

Purpose: Sum up the correlators to obtain Weff , using

Aa0,...am := (m− 1)!F(a0 ,...,am) :=
1

m

∑

σ∈Sm

η(σ; a1, . . . , am)Faσ(1)...aσ(m)

Weff (s; t) =
∑

m≥1

1

m
sam . . . sa0Aa0...am(t) (A.9)

Input: superpotential[states, flist, result], where flist if the output of generateF
and result is the solution of the constraint equations.
Output: The effective superpotential.
Implementation:

• Generate a list fres by inserting result into flist.

• Go through fres and compute the permutations of the given index set {a0, . . . , am}
using the Mathematica function Permutations.
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• Get the value of the corresponding Fa0...am for every permutation using pickF with
target fres and sum up the terms to obtain Aa0,...am .

• Determine the s–factors and multiply with the value of Aa0,...am .

• Sum up the terms and return Weff .
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Appendix B

Further Results for Minimal Models

In this appendix we give some additional results on the E6 minimal models and on effective
superpotentials of type A minimal models, which were obtained by solving the consistency
constraints for open topological strings.

B.1 The “other” E6–model

There is also a two–variable description for the E6 minimal model:

W = x3 + y4 (B.1)

For completeness we list all the matrix factorizations and give the complete spectrum. From
the point of view of conformal field theory these two incarnations of the E6–model correspond
to two different GSO projections [42, 32, 31].

The model has the following matrix factorizations:

E1 = J2 =

(
x y
y3 −x2

)
E2 = J1 =

(
x2 y
y3 −x

)
(B.2)

E3 =

(
x y2

y2 −x2

)
J3 =

(
x2 y2

y2 −x

)
(B.3)

E4 = J5 =




x y 0
0 x y
y2 0 x



 E5 = J4 =




x2 −xy y2

y3 x2 −xy
−xy2 y3 x2



 (B.4)

E6 =




x y2 0 0
y2 −x2 0 0
0 −xy x2 y2

y 0 y2 −x


 J6 =




x2 y2 0 0
y2 −x 0 0
0 −y x y2

xy 0 y2 −x2


 (B.5)

Now we give the full open string spectrum of this model, including the boundary changing
sector. We label the branes by M1, . . . ,M6. The numbers in the following tables are the
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M1 M2 M3 M4 M5 M6

M1 0 10 4 6 3 7 1 3 5 5 7 9 2 4 6 8

M2 4 6 0 10 3 7 5 7 9 1 3 5 2 4 6 8

M3 3 7 3 7 0 4 6 10 2 4 6 8 2 4 6 8 1 3 52 7 9

M4 5 7 9 1 3 5 2 4 6 8 0 2 4 6 8 10 2 42 62 8 1 32 52 72 9

M5 1 3 5 5 7 9 2 4 6 8 2 42 62 8 0 2 4 6 8 10 1 32 52 72 9

M6 2 4 6 8 2 4 6 8 1 3 52 7 9 1 32 52 72 9 1 32 52 72 9 0 22 43 63 82 10

Table B.1: The even spectrum for the two–variable E6 model.

M1 M2 M3 M4 M5 M6

M1 4 6 0 10 3 7 5 7 9 1 3 5 2 4 6 8

M2 0 10 4 6 3 7 1 3 5 5 7 9 2 5 6 8

M3 3 7 3 7 0 4 6 10 2 4 6 8 2 4 6 8 1 3 52 7 9

M4 1 3 5 5 7 9 2 4 6 8 2 42 62 8 0 2 4 6 8 10 1 35 52 72 9

M5 5 7 9 1 3 5 2 4 6 8 0 2 4 6 8 10 2 42 62 8 1 32 52 72 9

M6 2 4 6 8 2 4 6 8 1 3 52 7 9 1 32 52 72 9 1 32 52 72 9 0 22 43 63 82 10

Table B.2: The odd spectrum of the two–variable E6–model.

R–charges multiplied by the dual Coxeter number, which is 12. The exponents give the
multiplicities.
The even spectrum is summarized in table B.1. The odd spectrum is given in table B.2. By
looking at the R–charges, one finds that for the two–variable model Serre duality pairs up
bosons with bosons and fermions with fermions.

B.2 Systems with more than one D–brane – Some Examples

for A–minimal Models

In this section we give some results for the minimal models of type A, whose effective su-
perpotentials can be uniquely determined by solving the consistency constraints for open
topological strings. In [44] many results for such models were given, most of them however
in the boundary preserving sector. In the boundary changing sector, only the case without
bulk deformations was considered. Here we discuss the boundary changing sector with ti 6= 0.
We find that the Cardy condition is only valid in the boundary preserving sector and we
give a detailed example for a case where it fails. Fortunately it turns out that it is enough
to consider the Cardy condition in the boundary preserving sector in order to determine the
values of all the correlators.
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Let us first introduce some notation. The superpotential for the Ak–model is:

W (k+2)(x) =
xk+2

k + 2
, (B.6)

where the exponents in parentheses give the degrees of the polynomials. The matrix factor-
izations are:

W (k+2)(x) = E(κ+1)(x)J (k+1−κ)(x), κ = 0, . . . , [k/2] (B.7)

We denote by h the greatest common denominator of E and J , i.e Eκ+1(x) = p(x)hℓ+1(x)
and Jk+1−κ(x) = q(x)hℓ+1(x). (k, ℓ) then uniquely labels the D–brane we consider.

B.2.1 The A3 Model

We consider the A3 minimal model with superpotential W = x5

5 with two D–branes. From
the factorization of the superpotential we obtain the following BRST operators:

Q1 =

(
0 x2

x3

5 0

)
Q2 =

(
0 x
x4

5 0

)
(B.8)

We can associate charge matrices to these two branes [30, 22]:

R1 =

(
1
10 0
0 − 1

10

)
R2 =

(
3
10 0
0 − 3

10

)
(B.9)

Computing the cohomology one obtains the following spectrum:

φ
(0)
1 [1, 1] =

(
1 0
0 1

)
φ

( 2
5
)

2 [1, 1] =

(
x 0
0 x

)

ψ
( 1
5
)

3 [1, 1] =

(
0 1
−x

5 0

)
ψ

( 3
5
)

4 [1, 1] =

(
0 x

−x2

5 0

)
(B.10)

φ
( 1
5
)

5 [1, 2] =

(
x 0
0 1

)
ψ

( 2
5
)

6 [1, 2] =

(
0 1

−x2

5 0

)
(B.11)

φ
( 1
5
)

7 [2, 1] =

(
1 0
0 x

)
ψ

( 2
5
)

8 [2, 1] =

(
0 1

−x2

5 0

)
(B.12)

φ
(0)
9 [2, 2] =

(
1 0
0 1

)
ψ

( 3
5
)

10 [2, 2] =

(
0 1

−x3

5 0

)
(B.13)

The numbers in brackets contain the information about the branes where the string begins
and ends.
The deformed bulk superpotential is:

W(x; t) =
x5

5
− t4x− t3x2 − t2x3 + t22x− t5 + t3t2 (B.14)
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We now compute the effective superpotential for the system (3, 1) ⊕ (3, 0) by solving the
constraint equations using the programs discussed in appendix A. We find that we have to
truncate the Cardy equations to the boundary preserving sector in order to get consistent
equations. In the following we give one explicit example where the Cardy constraint fails in
the boundary changing sector.
First take the A∞–equation with m = 1, n = 2, where the boundary indices are a0 = 5, a1 = 8
and the bulk indices are I = {3, 4}. Inserting the non–vanishing correlators one obtains:

(−)8̃B(5,8,1)ω
(1,4)B(4);(3,4) +B(5,9,8)ω

(9,10)B(10);(3,4) +B(5,7);(4)ω
(7,6)B(6,8);(3) = 0 (B.15)

Next, one observes, that the bulk–boundary crossing constraint with m = 1, where the
boundary indices are a0 = 5, a1 = 7 and the bulk indices are i = 3, j = 2, has only one
non–vanishing summand:

∂2∂3∂1Fη(1,4)∂4F(5,7) = 0 (B.16)

This immediately yields B(5,7);(4) = 0, which cancels the third summand in the A∞–equation
above. Finally, we consider the Cardy equation with m = n = 0, where a0 = 10, b0 = 4:

0 = ∂1F10η
(1,4)∂4F4 + ∂4F10η

(4,1)∂1F4

= B10;1η
(1,4)B(4);(3,4) +B(10);(3,4)η

(4,1)B4;1 (B.17)

In the last line we cancelled a factor t3 which enters both summands. Note that the sign (−1)s

in the Cardy condition (4.103) does not enter here since only the lefthand side contributes.
Inserting for the two– and three–point amplitudes theA∞–equation yields B(4);(3,4)−B(10);(3,4) =
0, whereas the Cardy equations gives B(4);(3,4) + B(10);(3,4) = 0. We cannot set B(4);(3,4) =
0, B(10);(3,4) = 0 because this contradicts the bulk–boundary crossing relations, which explic-
itly assign the value 1 to both of the correlators1. So, there is obviously a contradiction.
This contradiction cannot be removed by changing normalizations of the bulk and boundary
metric or the states. Thus, we conclude that the Cardy equation in inconsistent with the
other constraints in the boundary changing sector.
Truncating the Cardy equations yields, together with theA∞–relations and the bulk–boundary
crossing constraint, a system of non–linear equations which has a unique solution. Since, in
the open string sector, the effective superpotential does not contain the full information about
the correlators, we also list the non–zero ones here.
283 A∞–equations, 36 bulk–boundary crossing equations and 32 Cardy constraints yield the

1These are two equations with m = 0: The first has a0 = 4,i = 2, j = 3, the second has a0 = 10,i = 2, j = 3.
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following results for the non–vanishing correlators:

F3 = F(4,4) = F(10,10) = t4 − t22
F4 = F10 = t5 − t2t3
F(3,3) = F(3,4,4) = F(4,6,8) = F(6,10,8) = F(4,4,4,4) = F(10,10,10,10) = t2

F(3,4) = F(6,8) = F(4,4,4) = F(10,10,10) = t3

F(1,1,4) = F(1,2,3) = −F(1,3,2) = F(1,5,8) = −F(1,6,7) = F(3,5,7) = F(5,9,8) = F(6,9,7) =

= F(9,9,10) = F(2,2,6,8) = F(2,3,2,4) = −F(2,4,5,8) = F(2,5,10,8) = F(2,6,7,4) =

= −F(2,6,10,7) = F(4,5,10,7) = −F(5,10,10,7) = −1

F(3,3,3) = F(3,3,4,4) = F(3,4,3,4) = F(3,4,6,8) = F(3,6,8,4) = F(3,6,10,8) = F(6,8,6,8) = F(3,4,4,4,4) =

= F(4,4,4,6,8) = F(4,4,6,10,8) = F(4,6,10,10,8) = F(6,10,10,10,8) = F(4,4,4,4,4,4) = F(10,10,10,10,10,10) = −1

5
(B.18)

With that, one gets the following expression for the effective superpotential:

Weff = −1

5

(
u6

1

6
+
w6

1

6
+ u4

1u2 +
3

2
u2

2u
2
1 +

u3
2

3
+ 2u2u1v 3

2
ṽ 3

2
+ u3

1v 3
2
ṽ 3

2
+

1

2
v2

3
2
ṽ2

3
2

+ u2v 3
2
ṽ 3

2
w1

+ u2
1v 3

2
ṽ 3

2
w1 + u1v 3

2
ṽ 3

2
w2

1 + v 3
2
ṽ 3

2
w3

1

)
− t2

(
−u

4
1

4
− w4

1

4
− u2

1u2 −
u2

2

2
− u1v 3

2
ṽ 3

2
− v 3

2
ṽ 3

2
w1

)

+ t3

(
u3

1

3
+
w3

1

3
+ u1u2 + v 3

2
ṽ 3

2

)
−
(
t4 − t22

)(
−u

2
1

2
− w2

1

2
− u2

)
+ (t5 − t2t3) (−u1 − w1)

(B.19)

Here we related deformation parameters {u, v, ṽ, w} to the fermionic cohomology elements
whose indices indicate their homogeneous weights.

B.2.2 The A4 model

We consider the A4 minimal model with superpotential W = x6

6 and three D–branes given
by the following matrix factorizations:

Q1 =

(
0 x3

x3

6 0

)
Q2 =

(
0 x2

x4

6 0

)
Q3 =

(
0 x
x5

6 0

)
(B.20)

The matrices that determine the R–charges are given by:

R1 =

(
0 0
0 0

)
R2 =

(
1
6 0
0 −1

6

)
R3 =

(
1
3 0
0 −1

3

)
(B.21)

The bulk chiral ring is defined by the monomials {1, x, x2, x3, x4}. The three–point functions
in the bulk can be calculated from the WDVV potential, given by the following expression:

F =
1

2
t25t4 +

1

2
t6t

2
4 + t6t5t3 +

1

2
t24t

2
3 +

1

6
t5t

3
3 +

1

2
t26t2 +

1

6
t34t2 + t5t4t3t2 +

1

6
t43t2

+
1

4
t25t

2
2 +

1

2
t4t

2
3t

2
2 +

1

6
t24t

3
2 +

1

8
t23t

4
2 +

1

210
t72 (B.22)

We now calculate the effective superpotentials for some examples of systems with one and
two branes.
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Brane 1 – (k, ℓ) = (4, 2)

This is the case of the self–dual brane. The spectrum is given by the following states:

φ
(0)
1 [1, 1] =

(
1 0
0 1

)
φ

( 1
3
)

2 [1, 1] =

(
x 0
0 x

)
φ

( 2
3
)

3 [1, 1] =

(
x2 0
0 x2

)

ψ
(0)
4 [1, 1] =

(
0 1
−1

6 0

)
ψ

( 1
3
)

5 [1, 1] =

(
0 x
−x

6 0

)
ψ

( 2
3
)

6 [1, 1] =

(
0 x2

−x2

6 0

)
(B.23)

Note, that for the self–dual case bosonic and fermionic states carry the same R–charges.
Solving 2359 A∞ relations, 306 bulk–boundary crossing constraints and 503 Cardy equations,
one finds:

F4 = F56 = F666 = t4 −
3

2
t22

F5 = F66 = t5 − 2t2t3

F6 = t6 −
1

2
t23 − t2t4 +

1

3
t32

F45 = F466 = F556 = F5666 = F66666 = t2

F46 = F55 = F566 = F6666 = t3

F116 = F125 = F134 = −F143 = −F152 = F224 = F2436 = F2526 = −F2634 = F3435 = −1

F446 = F455 = F4566 = F4656 = F4665 = F5556 = F46666 = F55666 =

= F56566 = F566666 = F6666666 = −1

6
(B.24)

Summing up the contribution yields the following effective superpotential:

Weff =

(
t4 −

3

2
t22

)
u3 + (t5 − 2t3t2)u2 + t2u3u2 +

1

2
t3u

2
2 −

1

6
u3u

2
2 +

(
t6 −

1

2
t23 − t4t2 +

1

3
t32

)
u1

+ t3u3u1 −
1

6
u2

3u1 +
1

2

(
2t4 − 3t22

)
u2u1 + t2u

2
2u1 −

1

6
u3

2u1 +
1

2
(t5 − 2t3t2)u

2
1 + t2u3u

2
1

+ t3u2u
2
1 −

1

2
u3u2u

2
1 +

1

3

(
t4 −

3

2
t22

)
u3

1 + t2u2u
3
1 −

1

3
u2

2u
3
1 +

1

4
t3u

4
1 −

1

6
u3u

4
1 +

1

5
t2u

5
1

− 1

6
u2u

5
1 −

1

42
u7

1 (B.25)

This expression agrees with the result given in [44].

Brane 2 – (k, ℓ) = (4, 1)

For this case we have the following spectrum:

φ
(0)
1 [2, 2] =

(
1 0
0 1

)
φ

( 1
3
)

2 [2, 2] =

(
x 0
0 x

)

ψ
( 1
3
)

3 [2, 2]

(
0 1

−x2

6 0

)
ψ

( 2
3
)

4 [2, 2]

(
0 x

−x3

6 0

)
(B.26)
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79 A∞–relations, 52 bulk–boundary crossing constraints and 47 Cardy relations yield:

F3 = F44 = t5 − 2t2t3

F4 = t6 −
1

2
t23 − t2t4 +

1

3
t32

F33 = F344 = F4444 = t3

F34 = F444 = t3 −
3

2
t22

F114 = F123 = −F132 = F2324 = −1

F334 = F3444 = F44444 = t2

F3334 = F33444 = F34344 = F344444 = F4444444 = −1

6
(B.27)

From this, we get the following superpotential:

Weff = (t5 − 2t3t2)u2 +
1

2
t3u

2
2 +

(
t6 −

1

2
t23 − t4t2 +

1

3
t32

)
u1 +

1

2

(
2t4 − 3t22

)
u2u1

+ t2u
2
2u1 −

1

6
u3

2u1 +
1

2
(t5 − 2t3t2) u

2
1 + t3u2u

2
1 +

1

3

(
t4 −

3

2
t22

)
u3

1 + t2u2u
3
1

− 1

3
u2

2u
3
1 +

1

4
t3u

4
1 +

1

5
t2u

5
1 −

1

6
u2u

5
1 −

1

42
u7

1 (B.28)

Brane 3 – (k, ℓ) = (4, 0)

The spectrum contains only two states:

φ
(0)
1 [3, 3] =

(
1 0
0 1

)
ψ

( 2
3
)

2 [3, 3] =

(
0 1

−x4

6 0

)
(B.29)

There are no A∞–relations, 13 bulk boundary crossing constraints and 8 Cardy equations
and we obtain:

F2 = t6 −
1

2
t23 − t2t4 +

1

3
t32

F22 = t5 − 2t2t3

F112 = −1

F222 = t4 −
3

2
t22

F2222 = t3

F22222 = t2

F222222 = −1

6
(B.30)

The effective superpotential is:

Weff =

(
t6 −

1

2
t23 − t4t2 +

1

3
t22

)
u1 +

1

2
(t5 − 2t3t2) u

2
1 +

1

3

(
t4 −

3

2

)
u3

1

+
1

4
t3u

4
1 +

1

5
t2u

5
1 −

1

42
u7

1 (B.31)
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Brane 2 and Brane 3 – (4, 1) ⊕ (4, 0)

Computing the cohomology yields the following spectrum:

φ
(0)
1 [2, 2] =

(
1 0
0 1

)
φ

( 1
3
)

2 [2, 2] =

(
x 0
0 x

)

ψ
( 1
3
)

3 [2, 2] =

(
0 1

−x2

6 0

)
ψ

( 2
3
)

4 [2, 2] =

(
0 x

−x3

6 0

)
(B.32)

φ
( 1
6
)

5 [2, 3] =

(
x 0
0 1

)
ψ

( 1
2
)

6 [2, 3] =

(
0 1

−x3

6 0

)
(B.33)

φ
( 1
6
)

7 [3, 2] =

(
1 0
0 x

)
ψ

( 1
2
)

8 [3, 2] =

(
0 1

−x3

6 0

)
(B.34)

φ
(0)
9 [3, 3] =

(
1 0
0 1

)
ψ

( 2
3
)

10 [3, 3] =

(
0 1

−x4

6 0

)
(B.35)

Solving 449 A∞ equations, 108 bulk–boundary crossing constraints and 55 (truncated) Cardy
equations, we find:

F3 = F(4,4) = F(10,10) = t5 − 2t2t3

F4 = F10 = t1 −
1

2
t23 − t2t4 +

1

3
t32

F(3,3) = F(3,4,4) = F(4,6,8) = F(6,10,8) = F(4,4,4,4) = F(10,10,10,10) = t3

F(3,4) = F(6,8) = F(4,4,4) = F(10,10,10) = t3 −
3

2
t22

F(1,1,4) = F(1,2,3) = −F(1,3,2) = F(1,5,8) = −F(1,6,7) = F(3,5,7) = F(5,9,8) = F(6,9,7) = F(9,9,10) = F(2,2,6,8)

= F(2,3,2,4) = −F(2,4,5,8) = F(2,5,10,8) = F(2,6,7,4) = −F(2,6,10,7) = F(4,5,10,7) = −F(5,10,10,7) = −1

F(3,3,4) = F(3,6,8) = F(3,4,4,4) = F(4,4,6,8) = F(4,6,10,8) = F(6,10,10,8) = F(4,4,4,4,4) = F(10,10,10,10,10) = t2

F(3,3,3,4) = F(3,3,6,8) = F(3,3,4,4,4) = F(3,4,3,4,4) = F(3,4,4,6,8) = F(3,4,6,8,4) = F(3,4,6,10,8)

= F(3,6,8,4,4) = F(3,6,10,8,4) = F(3,6,10,10,8) = F(4,6,8,6,8) = F(6,8,6,10,8) = F(3,4,4,4,4,4) = F(4,4,4,4,6,8)

= F(4,4,4,6,10,8) = F(4,4,6,10,10,8) = F(4,6,10,10,10,8) = F(6,10,10,10,10,8)

= F(4,4,4,4,4,4,4) = F(10,10,10,10,10,10,10) = −1

6
(B.36)
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The effective superpotential is:

Weff =− 1
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ṽ 3
2
w1 + v 3

2
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Two Copies of Brane 3 – (4, 0) ⊕ (4, 0)

We choose the following labelling for the states:

φ0
1[1, 1] = φ0

3[1, 2] = φ0
5[2, 1] = φ0

7[2, 2] =

(
1 0
0 1

)

ψ
( 2
3
)

2 [1, 1] = ψ
( 2
3
)

4 [1, 2] = ψ
( 2
3
)

6 [2, 1] = ψ
( 2
3
)

8 [2, 2] =

(
0 1

−x4

6 0

)
(B.38)

Here brane 1 is equal to brane 2 and thus, Q1 = Q2 =

(
0 x
x5

6 0

)
.

Solving the consistency conditions it turns out that one does not have to truncate the Cardy
equations in this case. However, the result is also determined completely if the equations are
truncated. The following result is found, after solving 78 A∞–relations, 93 bulk–boundary
crossing constraints and 121 Cardy equations:

F2 = F8 = t6 −
1

2
t23 − t2t4 +

1

3
t32

F22 = F46 = F88 = t5 − 2t2t3

F112 = F136 = −F145 = F235 = F376 = −F385 = F475 = F778 = −1

F222 = F246 = F486 = F888 = t4 −
3

2
t24

F2222 = F2246 = F2486 = F4646 = F4886 = F8888 = t3

F22222 = F22246 = F22486 = F24646 = F24886 = F46486 = F48886 = F88888 = t2

F2222222 = F2222246 = F2222486 = F224646 = F2224886 = F2246246 = F2246486 = F2248646 = F2248886

= F2462486 = F2464646 = F2464886 = F2486486 = F2488646 = F2488886 = F4646486

= F4648886 = F4864886 = F4888886 = F8888888 = −1

6
(B.39)
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The effective superpotential is then:

Weff =− 1

6
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1
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8w1
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2
v2
1 ṽ
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2
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+

(
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3

2
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)(
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+
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(
u2

1

2
+
w2

1

2
+ v1ṽ8
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Appendix C

Details on the Quartic Torus

In this appendix we give the explicit result for the boundary changing sector of the quartic
torus. Furthermore we collect some theta function identities which are needed for calculating
the B–model correlators.

C.1 Boundary Changing Spectrum

We now state the explicit results for the boundary changing operators of the quartic torus.
Fermions and bosons will be denoted by:

ψAB(i, j) =

(
0 ψ

(0)
AB(i, j)

ψ
(1)
AB(i, j) 0

)
and φAB(i, j) =

(
φ

(0)
AB(i, j) 0

0 ψ
(1)
AB(i, j)

)
, (C.1)

respectively, where A,B denote the branes and i, j denote the indices of the boundary moduli.
We will use bars and tildes to make a distinction if there is more than one boundary state
going from A to B. Note that all states are defined only up to a normalization by a moduli–
dependent factor.

C.1.1 Long Branes

From figure 6.1 one can read off that there are two fermions and two bosons stretching between
two of the long branes. All of them have R–charge 1/2. The first fermion has the following
structure: The second fermion has the same structure with x1 and x2 exchanged:

ψ
(0)
L1L2

(1, 2) =

(
a(1, 2) b(1, 2)
c(1, 2) d(1, 2)

)
ψ

(1)
L1L2

(1, 2) =

(
d(2, 1) −b(2, 1)
−c(2, 1) a(2, 1)

)
, (C.2)

where

a(1, 2) =

(
1

α1
1α

1
2

+
α2

3

α2
1α

2
2α

1
3

)
x1 b(1, 2) =

(
− α2

1

α2
2α

1
3α

2
3

+
(α1

2)
2α2

2

(α1
1)

2α2
1α

1
3α

2
3

)
x2

c(1, 2) =

(
α1

1

α1
2

− α1
2(α

2
2)

2

α1
1(α

2
1)

2

)
x2 d(1, 2) =

(
− α1

2

α1
1(α

2
1)

2
− α2

2α
1
3

(α1
1)

2α2
1α

2
3

)
x1 (C.3)

The second fermion has the same structure with x1 and x2 exchanged:

ψ̄
(0)
L1L2

(1, 2) =

(
ā(1, 2) b̄(1, 2)
c̄(1, 2) d̄(1, 2)

)
ψ

(1)
L1L2

(1, 2) =

(
d̄(2, 1) −b̄(2, 1)
−c̄(2, 1) ā(2, 1)

)
, (C.4)
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where

ā(1, 2) =

(
α2

2

α1
1

+
α1

2α
2
3

α2
1α

1
3

)
x2 b̄(1, 2) =

(
−(α1

1)
2α2

1

α1
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1
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3

+
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2
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2
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− (α1
2)
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1
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x1 d̄(1, 2) =

(−α1
1

α2
2

− α2
1α

1
3

α1
2α

2
3

)
x2 (C.5)

The first boson looks as follows:

φ
(0)
L1L2

(1, 2) =

(
a(1, 2) b(1, 2)
c(1, 2) d(1, 2)

)
φ

(1)
L1L2

(1, 2) =
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3
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3
d(1, 2) 1

α1
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2
3
c(1, 2)

α1
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2
3b(1, 2)

α1
3

α2
3
a(1, 2)



 , (C.6)

where
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For the second boson we find:

φ̄
(0)
L1L2

(1, 2) =

(
ā(1, 2) b̄(1, 2)
c̄(1, 2) d̄(1, 2)

)
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where
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C.1.2 Short Branes

There is one charge 1/2 fermion and one charge 1/2 boson. The fermion is given by:

ψ
(0)
S1S2

=

(
a(1, 2) b(1, 2)
c(1, 2) d(1, 2)

)
ψ

(1)
S1S2

=



 −
α2

3
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3
d(1, 2) α1
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 , (C.10)

where
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The boson looks as follows:

φ
(0)
S1S2

=

(
a(1, 2) b(1, 2)
c(1, 2) d(1, 2)

)
φ
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C.1.3 Short to Long

There is one fermion with charge 1/4 and one with charge 3/4 and, symmetrically, bosons
with charges 1/4 and 3/4. We will denote the 3/4–states with tildes. The charge 1/4 fermion
reads:

ψ
(0)
S1L2

=

(
a(1, 2) b(1, 2)
c(1, 2) d(1, 2)

)
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=



 −α
1
3α

2
3d(1, 2) −α1

3

α2
3
c(1, 2)

α2
3

α1
3
b(1, 2) 1

α1
3α

2
3
a(1, 2)



 , (C.14)

where
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When computing the charge 3/4 states one has to be careful with exact states. We can use
those to “gauge away” one of the variables. We choose the convention that the charge 3/4
states contain terms linear and quadratic in x1 but not linear and quadratic in x2. One mixed
term x1x2 will always remain. In this gauge the charge 3/4 fermion reads:

ψ̃
(0)
S1L2

=

(
ã(1, 2) b̃(1, 2)

c̃(1, 2) d̃(1, 2)
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where
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The charge 1/4 boson looks as follows:
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The charge 3/4 boson is:
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C.1.4 Long to Short

By Serre duality, the bosons and fermions pair up with the states going from the short branes
to the long branes. The charge 1/4 fermion reads:
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For the 3/4 fermion we find:
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where
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The charge 1/4 boson is given by the following expression:
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where
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Finally, the charge 3/4 boson is:
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where
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C.2 Theta Function Identities

In this appendix we collect definitions and useful identities for theta functions. Standard
references are for instance [117, 116]. The theta functions with characteristics are defined as
follows:

Θ

[
c1
c2

]
(u, τ) =

∑

m∈Z

q(m+c1)2/2e2πi(u+c2)(m+c1), (C.30)

where q = e2πiτ .
For our purpose we need the Jacobi theta functions:

Θ1(u, τ) ≡ Θ

[
1
2
1
2

]
(u, τ) Θ2(u, τ) ≡ Θ

[
1
2
0

]
(u, τ)

Θ3(u, τ) ≡ Θ

[
0
0

]
(u, τ) Θ4(u, τ) ≡ Θ

[
0
1
2

]
(u, τ) (C.31)

We write Θi(0, τ) ≡ Θi(τ).
These theta functions are symmetric in the u–argument:

Θ1(−u, τ) = −Θ1(u, τ) Θ2(−u, τ) = Θ2(u, τ) Θ3(−u, τ) = Θ3(u, τ) Θ4(−u, τ) = Θ4(u, τ)
(C.32)
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In particular, one sees that Θ1(0, τ) = 0. To uniformize the αi (6.41), we used the identities
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2
4(τ) = Θ2

4(u, τ)Θ
2
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2
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2
2(τ)−Θ2

1(u, τ)Θ
2
3(τ). (C.33)

In order to simplify the cohomology elements we applied the following addition rules:
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2
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2 (C.34)

Θ1(u1 + u2, τ)Θ4(u1 − u2, τ)Θ2(0, τ)Θ3(0, τ) = Θ1(u1, τ)Θ2(u2, τ)Θ3(u2, τ)Θ4(u1, τ) + (u1 ↔ u2)

Θ4(u1 + u2, τ)Θ1(u1 − u2, τ)Θ2(0, τ)Θ3(0, τ) = Θ1(u1, τ)Θ2(u2, τ)Θ3(u2, τ)Θ4(u1, τ)− (u1 ↔ u2)
(C.35)

These identities are actually just special cases of more general identities. In order to determine
the correlators we need the most general addition theorems. For this, we introduce some more
notation [117]:

x1 =
1

2
(x+ y + u+ v) y1 =

1

2
(x+ y − u− v) u1 =

1

2
(x− y + u− v) v1 =

1

2
(x− y − u+ v)

(C.36)

Furthermore we define Θu
i ≡ Θi(u, τ). For our calculations we can make use of the following

formulas:
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What we need for our calculations are the differences of the two relations (C.37) and (C.38):
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