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1 INTRODUCTION 1

1 Introduction

1.1 Motivation

In string theory, physical processes are described by the propagation of a one-
dimensional object, the string, in spacetime. A propagating string traces out
a two-dimensional surface, called a world sheet. The classical fields can be
described as functions or sections of line bundles on the world sheet, and
quantizing leads to a two-dimensional quantum field theory. String theories
have the advantage that they eliminate some of the problems which occur
when a particle splits into two particles. While representing a particle as a
point leads to a singularity, the string representation is a smooth 2-manifold
with boundary.

However, string theories still have some undesirable features, including many
infinities which require renormalization. A remarkable discovery in recent
times is that supersymmetry, a symmetry between particles of integer and
half-integer spin, can eliminate many of these difficulties. Although as of
now supersymmetry has not been experimentally verified, supersymmetric
theories have become very important in theoretical physics because of their
special properties.

In recent years, it has become clear that superstring theories are good can-
didates for mathematically consistent theories of quantum gravity. The dis-
covery of anomaly cancellation in a modified version of d = 10 supergravity
and superstring theory with gauge group O(32) or E8 × E8 has opened up
the possibility that they might be phenomenologically realistic as well as
mathematically consistent. For these theories to be realistic, it is necessary
that the vacuum state is of Kaluza Klein type K ×M4, where M4 is a four-
dimensional Minkowski spacetime and K is some six-dimensional compact
manifold. Quantum numbers of quarks or leptons are then determined by
topological invariants of K and an O(32) or E8×E8 gauge field defined on K.

Such considerations, however, are far from determining K uniquely. To en-
sure unbroken N = 1 supersymmetry in four dimensions, K must have SU(3)
holonomy and a vanishing cosmological constant. A manifold has SU(3)
holonomy if and only if it is Ricci-flat and Kähler [Nak90]. While there
are many examples of Kähler manifolds, there are few explicit examples of
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Ricci-flat Kähler metrics. For a Kähler manifold, the Ricci tensor has only
nonzero mixed components and gives rise to a closed two-form. Obviously,
the first Chern class [Nak90] is trivial for a Ricci-flat metric. The hard the-
orem, conjectured by Calabi [Cal57] and proved by Yau [Yau77], is that for
any Kähler manifold with vanishing first Chern class there exists a unique
Ricci-flat metric with a given complex structure and Kähler class. A Kähler
manifold with vanishing first Chern class is therefore known as Calabi-Yau
manifold.

Another important insight of recent years was the discovery of duality. For
example, it was realized that if one considers string theory on a circle of
radius R, the resulting physics can be equally well described in terms of
string theory on a circle of radius 1/R. Mirror symmetry is a generalization
of this so called T-duality to curved space. In this case, two topologically
distinct Calabi-Yau compactifications of string theory give rise to identical
physical models. The transformation relating these two distinct geometrical
formulations of the same physical model is that strong sigma model coupling
problems in one can be mapped to weak sigma coupling problems in the
other. By a judicious choice of the model which one uses, seemingly difficult
physical questions can easily be analysed with perturbation theory.

1.2 Mathematical Methods

Instead of specifying a Calabi-Yau manifold as a patchwork of coordinate
patches together with gluing instructions, it may be regarded as a subspace
of another, presumably more easily discribable space. For example, the circle
may also be represented as a subspace of a plane defined by the requirement
that all of its points are at equal distance from a specified center. Thus, the
desired circle may be considered as the (complete) intersection of a horizon-
tal plane and the sphere in 3-dimensional affine space 1. This approach is
particularly useful if an otherwise complicated space may be represented as
a complete intersection of simpler spaces.

For the construction of Calabi-Yau complete intersections we need methods
of algebraic geometry. The study of this mathematical region is based on

1In algebraic geometry, neglecting the fact that R is not an algebraically closed field,
we would say that a circle of radius r is the set of common zeros of the polynomials
x2 + y2 + z2 −R2 and z − h, where r2 + h2 = R2.
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algebraic functions, i.e. functions that are polynomials in the coordinate
functions of an affine space Kn which form a ring denoted by K[T1, . . . , Tn]
[Sha94a, Sha94b,Mil, Sha94c]. An important assumption is that the field K
is algebraically closed, so that there exists a one to one correspondence be-
tween radical ideals I in this ring and their sets of vanishing V (I) in affine
space, which follows from Hilbert’s Nullstellensatz. These sets together with
each ring of regular functions, which is the quotient ring over the ideal I,
are called affine varieties. An algebraic variety is obtained by gluing affine
varieties. The points of affine varieties may be identified with the maximal
ideals in K[T1, . . . , Tn]/I(V ). This gives an abstract definition of an affine
variety as the set of maximal ideals of a reduced K-algebra of finite type over
an algebraically closed field, called the maximal spectrum.

In the case of toric varieties the field K is the field of complex numbers,
and the ring of regular functions is generated by monomials with exponents
contained in a submonoid, or cone, of a lattice. An algebraic toric variety
is obtained by gluing affine toric varieties, where the gluing-data is given by
a fan Σ of cones. The remarkable feature of toric varieties is that all of the
information, like singularity-considerations, compactness and even the coho-
mology, is already contained in the combinatorial data of their fan.

Our main interest is therefore directed to fans corresponding to reflexive
polyhedra ∆∗ dual to ∆, where the vertices of ∆∗ lie on the rays of the
cones of such a fan Σ. We will show that hypersurfaces, which are invariant
under the action of the torus, are determined by a torus-equivariant Cartier
divisor. By intersecting such hypersurfaces Batyrev and Borisov showed in
their paper [BB95] that the result is a Calabi-Yau manifold V with at most
quotient-singularities if the divisors satisfy the so called Nef condition, which
can also be expressed as a purely combinatorial condition on the polyhedron
∆. Moreover, one obtains the dual Calabi-Yau manifold W corresponding to
a new reflexive polyhedron ∇. This pair of Calabi-Yau manifolds is called a
Mirror pair, and their Hodge numbers satisfy the relation

hp,q
st (V ) = hn−p,q

st (W ), n = dim V.

The Hodge numbers are (up to a sign) the coefficients of the so called E-
polynomial. We will show that there exists an equivalent combinatorial def-
inition of the Nef condition, and one can write the E- polynomial in a way
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which makes it possible to calculate the Hodge numbers of Calabi-Yau com-
plete intersections starting with a reflexive polyhedron.

The first sizeable sets of Calabi-Yau manifolds were constructed as com-
plete intersections (CICY) in products of projective spaces [GH87,CDLS88].
These manifolds have many complex structure deformations but only few
Kähler moduli, which are inherited from the ambient space. With the dis-
covery of Mirror symmetry [LVW89] the main interest therefore turned to
weighted projective (WP) spaces, where the resolution of singularities con-
tributes additional Kähler moduli and thus provides a much more symmetric
picture [CLS90]. A list of transversal configurations for codimension two
Calabi-Yau manifolds in WP spaces was produced by Klemm [Kle]. As in
the case of hypersurfaces there is, however, in general no Mirror construction
available in that context [KT94].

We will work out a number of examples of toric complete intersection Calabi-
Yau manifolds and discuss the relation of this construction to WP spaces.
Identifying CICYs in WP spaces as a special case of the toric construction
will provide us with, among other benefits, the Mirrors for these manifolds.
In the case of hypersurfaces in WP4, the Newton polytope of a transversal
quasihomogeneous polynomial [Fle89,KS92] can be identified with the poly-
hedron ∆, whose dual provides the toric resolution of the ambient space. It
is thus clear that, for codimensions r > 1, we should look for the identifi-
cation by trying to relate the Newton polytopes of the defining polynomial
equations of degrees di to a Nef partition ∆i of some reflexive polyhedron ∆.
In some cases, however, this procedure is not so straightforward and we will
give a detailed discussion on some examples in the last chapter.

The thesis is organized as follows: Chapter 2 contains fundamental definitions
like algebraic subsets and algebraic functions, where Hilbert’s Nullstellensatz
plays a central role, showing the unique correspondence between affine vari-
eties and ideals. At the end of the chapter we give a definition of an affine
toric variety, which motivates the purely combinatorial chapter 3, where we
work out some basic properties of cones and polytopes.

In chapter 4 we define algebraic varieties. The method is similar to that
when dealing with manifolds using atlases of open coverings. The difference
is that the open sets in a covering are open in a very special topology, the
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Zariski topology, and must themselves have the structure of affine varieties.

Chapter 5 is devoted to the discussion of local properties of affine toric vari-
eties. We define the tangent space at a point in a purely algebraic way and
give a characterization of singularities in terms of the corresponding cone.

The aim of chapter 6 is to work out the orbits of the algebraic torus and
to characterize closed subvarieties, which are invariant under the action of
the torus. Furthermore, we show that for a compact toric variety the group
of toric invariant Cartier divisors modulo principal divisors is isomorphic to
the Picard group, and relate the set of global sections with a polyhedron by
considering divisors as line bundles.

In chapter 7 we define Nef partitions on reflexive polytopes and give a
proof that there is an equivalent definition using certain decompositions into
Minkowski sums. With these Nef partitions we construct a special higher-
dimensional cone and give an explicit formula for the Hodge numbers as
coefficients of a polynomial depending only on this cone.

Finally chapter 8 together with the appendix A finishes with some tables of
new Hodge numbers and compares them with results on toric hypersurfaces
and complete intersections in weighted projective spaces [Kle,KS].
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2 Affine Varieties

2.1 The Affine Space and Regular Functions

Let K be an algebraically closed field and Kn the n-th Cartesian power of
K. Although Kn is a vector space over K, algebraic geometry supplies Kn

with a weaker structure; in fact, among all mappings Kn → K (functions),
one selects the so-called algebraic, or regular, functions.

The question arises which functions on Kn may be called algebraic in a nat-
ural way? The most natural definition seems to be the following: First of
all we include the constants which are identified with the numbers in K.
Then the coordinate functions, that is, the projection maps Ti : Kn → K,
where Ti(x1, . . . , xn) = xi. And finally the functions that are built from them
through the elementary algebraic operations of addition and multiplication.
These functions are called regular. Thus, regular functions are expressed
polynomially in terms of the coordinate functions Ti. Moreover, as K is
infinite, we can identify the ring of regular functions on Kn with the poly-
nomial ring K[T1, . . . , Tn] in the variables T1, . . . , Tn with coefficients in K.
One could also say that all functions of the form 1/f , where f is regular and
always different from zero, are regular. But such a function is necessarily
constant, so this does not lead to anything new. Here we use the fact that
K is algebraically closed, since over R the function 1+ t2 does not vanish for
any t ∈ R.

2.2 Algebraic Subsets

The algebraic subsets of Kn are defined by the systems of algebraic equations.
An algebraic equation is an expression f = 0, where f is a polynomial in
T1, . . . , Tn. Given a family F = (fr, r ∈ R) of polynomials, the family of
equations (fr = 0, r ∈ R) – or F = 0 for short – is called a system of
algebraic equations. A solution (also called zero, or root) of this system is
any point x ∈ Kn such that fr(x) = 0 ∀ r ∈ R. The set of all solutions is
denoted by V (F ) and called vanishing set of F .

Definition 2.2.1 A subset of Kn is said to be algebraic if it is of the form
V (F ) for some family F of polynomials in T1, . . . , Tn.
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For example, the empty set and also Kn are algebraic (take F = {1} and
F = {0} respectively). The intersection of any number of algebraic subsets
is again algebraic, since

⋂

V (Fj) = V (
⋃

Fj). The union of any finite number
of algebraic subsets is also algebraic. Indeed, V (F1) ∪ V (F1) = V (F1 · F2),
where F1 · F2 consists of all products of the form f1f2 with f1 ∈ F1 and
f2 ∈ F2. On the other hand, the complement of an algebraic subset V ⊂ Kn

is not algebraic (except for V = ∅ and V = Kn).

Remark 2.2.2 By definition the algebraic subsets of Kn are the closed sub-
sets of a topology, the Zariski topology.

2.3 Systems of Algebraic Equations; Ideals

Different systems of algebraic equations can have the same set of solutions.
Indeed, if we adjoin to a system F the polynomial

∑

fjgj, where fj ∈ F
and gj ∈ K[T1, . . . , Tn], the set of solutions will remain unchanged. We
shall say that

∑

fjgj can be expressed algebraically in terms of the family
F . Two families F and F ′ are said to be equivalent if every member of
F can be expressed algebraically in terms of F ′ and conversely. Clearly,
F and F ′ are equivalent if and only if they generate the same ideal in the
ring K[T1, . . . , Tn]. Going over to ideals is useful because of Hilbert’s Basis
Theorem [Spi95,Sha94a,Cig95]:

Theorem 2.3.1
Every ideal in the polynomial ring K[T1, . . . , Tn] is generated by a finite set

of elements.

In other words, the ring of polynomials over any field is noetherian. As a
corollary we see that every system of algebraic equations is equivalent to a
finite system of equations, or that every algebraic subset is the intersection
of a finite number of hypersurfaces.

Remark 2.3.2 The following conditions on a ring A are equivalent ( [Spi95,
Mil,Cig95]):

• Every ideal is finitely generated.

• Every ascending chain of ideals I1 ( I2, . . . becomes stationary, i.e.
∃m ∈ N : Im = In ∀ n ≥ m, n ∈ N.
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As we have already said, equivalent systems of equations have identical sets
of solutions; however, two nonequivalent systems may also define the same
subset. The reason for this is quite simple: The polynomials f, f 2, f 3, . . .
have the same zeros. In view of this we shall say that two families, F and F ′,
are weakly equivalent if every f ∈ F has a power f r that can be expressed
algebraically in terms of F ′ and conversely. Again, weakly equivalent systems
of equations have identical sets of solutions. As we shall see now, the converse
is also true. In any case, for each algebraic subset V ⊂ Kn there is a largest
ideal defining V , namely, the ideal I(V ) of all regular functions vanishing at
all points of V .

2.4 Hilbert’s Nullstellensatz

Let us start from the simplest situation. It is clear that the unit ideal
I = K[T1, . . . , Tn] defines the empty subset V (I). Though this is much
less obvious, the converse is also true; this assertion is called Hilbert’s Weak
Nullstellensatz:

Theorem 2.4.1
If the ideal J ⊂ K[T1, . . . , Tn] is not the unit ideal then V (J) is not empty.

Proof: It is essential here that the field K is algebraically closed. For ex-
ample, the ideal generated by 1 + t2 has no zeros in R. By 2.3.1, the ring
of polynomials K[T1, . . . , Tn] is noetherian, so it follows from 2.3.2 that ev-
ery ideal J is contained in a maximal ideal I. Therefore it is sufficient to
show that V (I) is not empty for all maximal ideals I ⊂ K[T1, . . . , Tn]. Let
I ⊂ K[T1, . . . , Tn] be a maximal ideal. Then K[T1, . . . , Tn]/I is a field which
contains K. We shall prove that these two fields coincide. Then we have a
canonical K-algebra homomorphism

ϕ : K[T1, . . . , Tn]→ K = K[T1, . . . , Tn]/I

with kern ϕ = I. Now let a = (a1, . . . , an) ∈ Kn with ai := ϕ(Ti). Then
a ∈ V (I) because for every f ∈ I, f =

∑

ci1 . . . cinT i1
1 . . . T in

n we have

0 = ϕ(f) =
∑

ci1 . . . cinϕ(T1)
i1 . . . ϕ(Tn)in =

∑

ci1 . . . cinai1
1 . . . ain

n = f(a).

Hence it remains to show that the field K[T1, . . . , Tn]/I is isomorphic to K.
Since K is algebraically closed, this assertion is a consequence of a purely
algebraic proposition [Eig,Mil, Sha94c]:
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Proposition 2.4.2 (Zariski’s lemma). Let K be an arbitrary field and L a
K-algebra of finite type. Then if L is a field it is algebraic over K (Hence
L=K if K is algebraically closed).

Corollary 2.4.3 [Sha94c, Spi95] (Hilbert’s Nullstellensatz). Let I be an
ideal in K[T1, . . . , Tn], and suppose the polynomial h vanishes at all points
of the set V (I) ⊂ Kn. Then hr ∈ I for some integer r ≥ 0.

Proof: By 2.3.1, there exists a finite set {f1, . . . , fm} generating I. Construct
the ideal J ⊂ K[T1, . . . , Tn+1] generated by the polynomials f1, . . . , fm, 1 −
Tn+1h. Since V (J) is the empty set, 2.4.1 implies that J = K[T1, . . . , Tn+1]
and

1 =

m
∑

i=1

figi + g(1− Tn+1h)

must hold for some g1, . . . , gn, g ∈ K[T1, . . . , Tn+1]. Substituting 1/h for Tn+1,
we obtain the identity

1 =
m

∑

i=1

fi(T1, . . . , Tn)gi(T1, . . . , Tn,
1

h
)

in K[T1, . . . , Tn] and there exists a N ∈ N such that

hN =

m
∑

i=1

fig̃i,

with g̃i = hNgi (i = 1, . . .m).

2.5 Affine Varieties

Let V ⊂ Kn and W ⊂ Km be two algebraic subsets. A mapping f : V →W
is said to be regular (or a morphism) if it is given by m regular functions
f1, . . . , fm ∈ K[T1, . . . , Tn], that is, if it extends to a regular mapping of the
ambient space Kn → Km. The composite of two regular maps is still regular.
Hence algebraic sets, together with regular mappings, form a category. The
objects of this category are called affine algebraic varieties (or simply affine
varieties).

A regular function on an algebraic set V is a regular mapping of V into K.
Regular functions can be added and multiplied, so that they form a ring (and



2 AFFINE VARIETIES 10

even a K-algebra) K[V ]. Given an algebraic subset V ⊂ Kn, the algebra
K[V ] identifies with the quotient algebra K[T1, . . . , Tn]/I(V ). Also, the em-
bedding V ⊂ Kn can be recovered from the generators ti = Ti |V of K[V ].

One can also think of a morphism in terms of regular functions. A mapping
f : V →W is regular if and only if, for every regular function g ∈ K[W ], the
function f ∗(g) = g ◦ f is regular on V . In this case the map f ∗ : K[W ] →
K[V ] is a K-algebra homomorphism. Conversely, such a homomorphism is
always induced by a morphism V →W .

2.6 Abstract Affine Varieties

The K-algebra K[V ] of regular functions on an algebraic set V has two spe-
cific properties. First of all it is of finite type, i.e. it is generated by finitely
many elements. Second, as an algebra of functions with values in a field K,
it is reduced, i.e. it has no nilpotent elements (other than 0). Finally, it
follows from Hilbert’s Nullstellensatz that by associating with a point x ∈ V
the maximal ideal I(x) := {f ∈ K[V ] : f(x) = 0} we get a bijection between
V and the set Specm K[V ] of all maximal ideals of the ring K[V ].

These properties enable us to give an abstract definition of an affine variety
over K as a triple (X, K[X], ϕ), where X is a set, K[X] a reduced K-algebra
of finite type and ϕ a bijection of X onto Specm K[X]. The elements of
X are the points of this variety, while those of K[X] are called its regular
functions. In fact, given x ∈ X and f ∈ K[X], it makes sense to talk about
the value of f at the point x. By definition it is the image of f under the
composite map

K[X]
α
→ K[X]/ϕ(x)

β
←
≈

K,

where α is the projection onto the quotient algebra and β the structure
K-homomorphism which is one-to-one by virtue of Hilbert’s Nullstellensatz.
The fact that ϕ is bijective means that both the points and the functions
are in good supply: There are enough functions to distinguish the points,
and enough points to realize all K-algebra homomorphisms K[X] → K. In
what follows we shall no longer write ϕ , and the values at the points will be
understood.
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With this terminology a morphism of (X, K[X]) into (Y, K[Y ]) is a pair
(f, f ∗) consisting of a mapping f : X → Y and a K-algebra homomorphism
f ∗ : K[Y ] → K[X] such that f ∗(g)(x) = g(f(x)) ∀ g ∈ K[Y ], x ∈ X. In
fact, each of f and f ∗ is determined by the other.

2.7 Affine Schemes

Suppose that, in the definition of an abstract variety, we forget about the
requirement that the ring K[X] should be reduced. Then the object obtained
will be called an affine algebraic K-scheme (more briefly: an affine scheme).
An element of K[X] defines a mapping X → K; but in general these ele-
ments of K[X] cannot be identified with functions. Indeed, some nonzero
elements of K[X] can give rise to functions which are identically zero on X.
Besides, it follows from Hilbert’s Nullstellensatz that this can only happen
with nilpotent elements of K[X].

2.8 Localization

The Zariski topology (see 2.2.2) makes it possible to define regular functions
in a more local fashion: For every f ∈ K[X] define the sets D(f) = X−V (f)
which are a basis of the Zariski topology. Then an element f ∈ K[X] defines
functions

f : X → K and 1/f : D(f)→ K.

Let U ⊂ X be a Zariski-open set. We call a function h : U → K regular at a
point x ∈ U if there exists f, g ∈ K[X] with f(x) 6= 0 such that h coincides
with g/f on an open neighbourhood Ux of x. The functions on U that are
regular at every point of U form a ring which is denoted by OX(U).

Proposition 2.8.1 Every open covering of an affine variety X has a finite
subcovering.

Proof: Let X =
⋃

i∈I Ui be an open covering of X. Choose i0 ∈ I; if Ui0 6= X,
there exists an i1 ∈ I such that Ui0 ( Ui0 ∪Ui1 . If Ui0 ∪Ui1 6= X, there exists
an i2 ∈ I etc. Let Ũk = Ui0 ∪ · · · ∪ Uik , Vk = X \ Ũk and Ik = I(Vk). By
2.3.2 ∃m ∈ N : Im = Ik ∀ k ≥ m, k ∈ N. Therefore Ũk = Ũm ∀ k ≥ m and
{Ui0 , . . . , Uim} is a finite subcovering of

⋃

i∈I Ui.
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Proposition 2.8.2 If X is an affine variety then OX(X) = K[X].

Proof:
OX(X) ⊃ K[X]: is obvious.
OX(X) ⊂ K[X]: Let h ∈ OX(X) be regular at every point x ∈ X. Then
h = gx/fx on an open neighbourhood Ux of x for all x ∈ X =

⋃

x∈X Ux.
By 2.8.1 there exists a finite sub-covering {Ux1

, . . . , Uxn
} of

⋃

x∈X Ux. Since
the set {fx1

, . . . , fxn
} has no common zeros, Hilbert’s Nullstellensatz 2.4.3

implies that the functions fxi
generate the unit ideal K[X]. So there exists

a decomposition of the unit 1 =
∑

axi
fxi

(ai ∈ K[X]) and it follows that
h = h · 1 =

∑

axi
hfxi

=
∑

axi
gxi
∈ K[X].

2.9 Affine Toric Varieties

Let M be a free abelian group of rank d and MR its real scalar extension.
Now let C ⊂ MR be a cone. Then S := C ∩M ⊂ M is a submonoid of
M , i.e. a subset of M containing {0} ∈ S which is closed under addition.
We can form a semigroup K-algebra K[S]. This algebra is generated by all
elements of the form xm with m ∈ S, multiplication being defined by the rule
xm · xm′

= xm+m′

. If S is finitely generated as a monoid then the K-algebra
K[S] is of finite type and defines an affine variety X, namely,

X = Specm K[S].
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Example 2.9.1 Let K = C be the field of complex numbers. For S =
M we get the d-dimensional complex algebraic torus T = Specm C[M ] =
Specm[T1, . . . , Tn, T

−1
1 , . . . , T−1

n ] which consists of all points z ∈ Cd with
Ti(z) 6= 0 (i = 1, . . . , d) and coincides with the set C∗d with C∗ = C \ {0}.

Example 2.9.2 Let K = C be the field of complex numbers. If C =
{(x, y) ∈ R2 : x, y ≥ 0}, we get a submonoid S = {(m1, m2) ∈M : m1, m2 ≥
0}:

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©

©

M

and
X = Specm C[S] = Specm[T1, T2] = C2.
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Example 2.9.3 Let K = C be the field of complex numbers. If C ⊂ R2 is
the cone generated by e1 and e1 + 2e2, where {e1, e2} is the standard-basis
of R2, S is generated as a semigroup by e1, e1 + e2 and e1 + 2e2:
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M

and we get

X = Specm C[S] = Specm[T1, T1T2, T1T
2
2 ] = C[U, V, W ]/(V 2 − UW ),

which is a quadric cone, i.e. a cone over a conic.

Remark 2.9.4 [Ful93,Oda88] For C[S] generated by a submonoid S ⊂M ,
the points x of an affine toric variety are easy to describe: they correspond
to homomorphisms of semigroups from S to C:

Specm C[S] = Homsg(S, C).

The value of m ∈ S is the value of the corresponding function χ(m) evaluated
at the point x:

x : S → C m 7→ x(m) := χ(m)(x).
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Let t ∈ T (see example 2.9.1). Then the action of the torus T is defined as

t : Homsg(S, C)→ Homsg(S, C) x 7→ tx,

with tx(m) := t(m)x(m) ∀m ∈ S.
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3 Convex Geometry

3.1 Convex Polyhedral Cones

At the end of the last section we saw that a K-algebra K[S] of finite type
can be constructed with a finitely generated semigroup. We constructed such
semigroups by intersecting a cone C ⊂ MR with the lattice M . It will turn
out that toric varieties can be constructed by gluing affine toric varieties,
each corresponding to a cone C, where the gluing data is given in terms of a
fan of cones. Thus we will work out some basic properties of convex geometry
in this chapter.

Let N and M be two free abelian groups of rank d which are dual to each
other, i.e. M = Hom(N, Z). We denote by

〈∗, ∗〉 : M ×N → Z

the canonical Z-bilinear pairing, and by NR (resp. by MR) the real scalar
extension of N (resp. of M) with a canonical R-bilinear pairing 〈∗, ∗〉 : MR×
NR → R.

Definition 3.1.1 A subset C ⊂ NR is called a d-dimensional convex poly-
hedral cone, if there exists a finite set {e1, . . . , ek} ∈ NR such that

C = {λ1e1 + · · ·+ λkek ∈ NR : λi ∈ R≥, i = 1, . . . , k}.

The dimension d of a cone is defined as the dimension of the space −C +C =
{−x + y : x, y ∈ C}.

Definition 3.1.2 If C ⊂ NR is a d-dimensional convex polyhedral cone, the
dual C∗ is defined as the set of equations of bounding hyperplanes, i.e.

C∗ = {ẑ ∈MR : 〈ẑ, z〉 ≥ 0 ∀z ∈ C}.

Definition 3.1.3 A face F of a cone C is the intersection of C with any
supporting hyperplane:

F = C ∩ ẑ⊥ = {z ∈ C : 〈ẑ, z〉 = 0} for some ẑ ∈ C∗.

A cone is regarded as a face of itself while the others are called proper faces.
The faces with codimension 1 are called facets.
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Proposition 3.1.4 [Ful93, Oda88] An important role plays the following
fundamental fact from the theory of convex sets:

∀ C ⊂ NR, z ∈ NR \ C ∃ẑ ∈ C∗ : 〈ẑ, z〉 < 0.

Proposition 3.1.5 For the faces F ⊂ C of a convex polyhedral cone the
following holds:

1. (C∗)∗ = C.

2. Any linear subspace V of a cone is contained in every face.

3. Any face is also a convex polyhedral cone.

4. Any intersection of faces is also a face.

5. Any face of a face is a face.

6. Any proper face is contained in some facet.

7. Any proper face is the intersection of all facets containing it.

Proof:

1. C ⊂ (C∗)∗ : follows from definition 3.1.2.
C ⊃ (C∗)∗ : Suppose there exists a z ∈ (C∗)∗ with z /∈ C. By 3.1.4
∃ z∗ ∈ C∗ with 〈ẑ, z〉 < 0. A contradiction to z ∈ (C∗)∗.

2. Follows from 〈ẑ, z〉 = 0 ∀ẑ ∈ C∗, z ∈ V .

3. A face F = C ∩ ẑ⊥ is generated by those vectors of {e1, . . . , ek} for
which 〈ẑ, ei〉 = 0. In particular, we see that a cone has only a finite
number of faces.

4.
⋂

(

C ∩ ẑ⊥i
)

= C ∩ (
∑

ẑi)
⊥ ∀ẑi ∈ C∗, i = 1, . . . , n.

5. Let F = C ∩ x̂⊥, F̃ = F ∩ ŷ⊥ for some x̂ ∈ C∗ and ŷ ∈ F ∗. Then, for
large positive p ∈ R≥, ŷ + px̂ ∈ C∗ and F̃ = C ∩ (ŷ + px̂)⊥.

6. It is sufficient to show that if F = C ∩ ẑ⊥ has codimension greater
than one F is contained in a larger face. We may assume that V :=
NR = −C + C, otherwise replace V by the span of C. Define W :=
−F + F and let ēi be the images of the generators of C under the
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canonical homomorphism ϕ : V → V/W , which are all contained in
the halfspace determined by ẑ. By moving this halfspace in the sphere
of halfspaces in V/W , we can find one that contains these vectors ēi

but with at least one such nonzero vector in the boundary hyperplane.
This hyperplane determines a ŵ ∈ C∗, such that C ∩ ŵ⊥ is a larger
face. If the codimension of F is two, so that V/W is a plane, there
are exactly two such supporting lines, which proves that any face of
codimension two is the intersection of exactly two facets.

7. Indeed, if F is any face of codimension lager than two, from (6) we can
find a facet F̃ containing it; by induction F is the intersection of facets
in F̃ and each of these is the intersection of two facets in C.

Definition 3.1.6 Let C be a convex polyhedral cone. Then we denote by:

• C◦ . . . the relative interior (topological interior) of C.

• ∂C . . . the topological boundary of C.

Proposition 3.1.7 The topological boundary ∂C of a cone C that spans V
is the union of its proper faces (or facets) F .

Proof: We have to show: z ∈
⋃

F⊂C

F ⇔ z ∈ ∂C.

⇒: is obvious, because a face is the intersection of C with a bounding hy-
perplane
⇐: Let z ∈ ∂C. ⇒ ∃ (xi)i∈N → z with xi /∈ C ∀ i ∈ N. (3.1.4)⇒ ∃ x̂i ∈
C∗ : 〈x̂i, xi〉 < 0 ∀i ∈ N. By taking the x̂i in a sphere, we find a converging
subsequence (x̂ik)k∈N → x̂ ∈ C∗. Then z ∈ F = C ∩ x̂⊥.

When C spans the space NR and F is a facet, there exists, up to multiplica-
tion by a positive scalar, a unique ẑ with F = C ∩ ẑ⊥. Such a vector, which
we denote by zF , corresponds to an equation for the hyperplane spanned by
F .

Proposition 3.1.8 If C spans NR and C 6= NR, then C is the intersection
of half-spaces HF = {z ∈ NR : 〈ẑF , z〉 ≥ 0} as F ranges over facets of C.

Proof:
C ⊂

⋂

F⊂C

HF : follows from C = (C∗)∗ and ẑF ∈ C∗ ∀F .
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C ⊃
⋂

F⊂C

HF : Assume there exists a z ∈
⋂

F⊂C

HF with z /∈ C. Take any

w ∈ C◦ and let v be the last point in C on the line segment from z to w, so
that v ∈ ∂C. (3.1.7) ⇒ ∃ facet F of C : v ∈ F ⇒ ∃ẑF ∈ C∗: 〈ẑF , w〉 > 0
and 〈ẑF , v〉 = 0 so 〈ẑF , z〉 < 0, a contradiction to z ∈

⋂

F⊂C

HF .

Corollary 3.1.9 If C spans NR the proof of (3.1.8) gives a practical proce-
dure of finding generators for the dual cone C∗: Let n be the dimension of C.
Then for each set of (n− 1) linear independent vectors search for a ẑ ∈ MR

annihilating this set. If neither ẑ nor −ẑ is nonnegative on all generators of
C it is discarded; otherwise ẑ (or −ẑ) is taken as a generator of C∗. The fact
that the cone created by these generators is C∗ follows from:

Proposition 3.1.10 (Farkas’ Theorem). The dual of a convex polyhedral
cone is a convex polyhedral cone.

Proof: We have to prove two cases:

1. C spans NR: Let C̃∗ be the cone from proposition 3.1.8, generated by
the set {ẑF} as F ranges over facets of C. We prove that C̃∗ and C∗

coincide:
C̃∗ ⊂ C∗: is obvious.
C̃∗ ⊃ C∗: Assume there exists a ẑ ∈ C∗ with ẑ /∈ C̃∗. Applying 3.1.4
to C̃∗ ⇒ ∃z ∈ (C̃∗)∗ : 〈ẑ,z〉 < 0 with 〈ẑF , z〉 ≥ 0 ∀ facets F ⊂ C. A
contradiction to (3.1.8).

2. (−C +C) 6= NR: C∗ is generated by lifts of generators of the dual cone
in MR/(−C + C)⊥ together with vectors ẑ and −ẑ, as ẑ ranges over a
basis for (−C + C)⊥.

Definition 3.1.11 A cone is said to be rational if its generators can be taken
from M .

Remark 3.1.12 (3.1.10) shows that a convex polyhedral cone can also be
given a dual definition as intersection of halfspaces: Let {ê1, . . . , ên} be gen-
erators of C∗, then

C = {z ∈ NR : 〈êi, z〉 ≥ 0 ∀i = 1, . . . , n}.
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Remark 3.1.13 Since the generators in (3.1.9) can be taken from M , it
follows that:

C is rational⇔ C∗ is rational.

Proposition 3.1.14 (Gordon’s Lemma). If C is a rational convex polyhe-
dral cone, then SC = C∗ ∩M is a finitely generated semigroup.

Proof: Take the generators {ê1, . . . , ên} of C∗ from M ∩ C∗. Let

K = {
n

∑

i=1

tiẑi : ti ∈ [0, 1] ⊂ R≥}.

Since K is compact and M is discrete the intersection K ∩M is finite. Then
K ∩M generates the subgroup. Indeed, if ẑ ∈M ∩C∗ write ẑ =

∑

riêi, ri ∈
R≥ and set the ri = mi + ti with mi ∈ N0 and ti ∈ [0, 1] ⊂ R. Then
ẑ
∑

miêi + û with û =
∑

tiêi ∈ K ∩M , so SC = C∗ ∩M is generated as a
semigroup by the finite set {ê1, . . . , ên} ∪ (K ∩M).

Proposition 3.1.15 If F is a face of C, then C∗ ∩ F⊥ is a face of C∗ with
dim(F ) + dim(C∗ ∩ F⊥) = n = dim(NR). This sets up a one to one order-
reversing correspondence between the faces of C and the faces of C∗.

Proof: Let Ĉ ∩ z⊥, z ∈ C be a face of C∗. If F is the cone containing z in
its relative interior, C∗ ∩ z⊥ = C∗ ∩ (F ∗ ∩ z⊥) = C∗ ∩ F⊥, so every face has
the asserted form. The map F → F ⋆ := C∗ ∩ F⊥ is clearly order-reversing,
and from the obvious inclusion F ⊂ (F ⋆)⋆ it follows that F ⋆ = ((F ⋆)⋆)⋆ and
hence that the map is one-to-one onto. It follows from this that the smallest
face of C is (C∗)∗ ∩ (C∗)⊥ = (C∗)⊥ = C ∩ (−C). In particular, we see that
dim (C ∩ (−C)) + dim(C∗) = n. The corresponding equation for a general
face F can be deduced by putting F in a maximal chain of faces of C and
comparing with the dual chain of faces in C∗.

Proposition 3.1.16 If ẑ ∈ C∗ and F = C ∩ ẑ⊥, then F ∗ = C∗ + R≥ · (−ẑ).

Proof: Since both sides of this equation are convex polyhedral cones, it is
sufficient to show that their duals are equal: F = C ∩ ẑ⊥ = C ∩ (R≥ · (−ẑ))∗,
as required.



3 CONVEX GEOMETRY 21

Proposition 3.1.17 Let C be a rational convex polyhedral cone and let
m ∈ SC = C∗ ∩M . Then F = C ∩m⊥ is a rational convex polyhedral cone.
All faces of C have this form and

SF = SC + Z≥(−m).

Proof: F = C ∩ ẑ⊥ for any ẑ ∈ (C∗ ∩ F⊥)◦, and ẑ can be taken from M
since C∗ ∩ F⊥ is rational, so F = C ∩ m⊥ with m ∈ (C∗ ∩ F⊥)◦ ∩ M .
SC + Z≥(−m) ⊂ SF : is obvious.
SC + Z≥(−m) ⊃ SF : Given m̃ ∈ SF , then m̃ + nm ∈ C∗ for large n ∈ N,
which shows, that m̃ ∈ SC + Z≥(−m).

Proposition 3.1.18 (Separation Lemma). If C and C̃ are convex poly-
hedral cones whose intersection is a face of each, then there exists a ẑ ∈
C∗ ∩ (−C̃∗) with

F = C ∩ ẑ⊥ = C̃ ∩ ẑ⊥.

Proof: Let C̄ = C − C̃ = C + (−C̃) and ẑ ∈ (C̄∗)◦. From (3.1.15) it follows
that C̄ ∩ ẑ⊥ = C̄ ∩ (−C̄) = (C − C̃)∩ (C̃ −C) is the smallest face of C̄. The
claim is that this ẑ works:
F ⊂ C ∩ ẑ⊥ : F = C ∩ C̃ ⇒ F ⊂ C ∧ F ⊂ C̃ ⇒ F ⊂ C + (−C̃) ∧ F ⊂
C̃ + (−C)⇒ F ⊂ C̄ ∩ (−C̄) = C ∩ ẑ⊥.
F ⊃ C ∩ ẑ⊥ : Let z ∈ C ∩ ẑ⊥ = C̃ − C ⇒′= x̃ − x, with x̃ ∈ C̃ and
x ∈ C ⇒ z + x ∈ F = C ∩ C̃ ⇒ z ∈ F .
Since the same arguments hold for −ẑ and C̃ ∩ ẑ⊥ the proof is complete.

Corollary 3.1.19 If C and C̃ are rational convex polyhedral cones whose
intersection F is a face of each, then

SF = SC + SC̃ .

Proof:
SF ⊃ SC + SC̃ : is obvious.
SF ⊂ SC +SC̃ : (3.1.18)⇒ ∃ẑ ∈ C∗∩(−C̃∗)∩M such that F = C∩ ẑ⊥ = C̃∩
ẑ⊥. From 3.1.17 and −ẑ ∈ SC̃ it follows that SF ⊂ SC + Z≥(−ẑ) ⊂ SC + SC̃ .

Definition 3.1.20 A convex polyhedral cone C is called strongly convex if
C ∩ (−C) = {0}.
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Remark 3.1.21 For a convex polyhedral cone C the following are equiva-
lent:

• C ∩ (−C) = {0}.

• C contains no nonzero linear subspace.

• ∃ẑ ∈ C∗ : C ∩ ẑ⊥ = {0}.

• C∗ spans MR.

Any cone is generated by some minimal set of generators. If the cone is
strongly convex, then the rays generated by a minimal set of generators are
exactly the one-dimensional faces of the cone, which can be seen by applying
3.1.4 to any generator that is not in the cone generated by the others.

Definition 3.1.22 A convex polyhedral cone C is called simplicial if it is
generated by a set of linear independent generators.

Remark 3.1.23 Let {e1, . . . , ek} be the set of generators of a simplicial cone
C. Then

z =
∑

i=1,...,k

λizi ∈ C◦ ⇔ λi > 0 ∀i = 1, . . . , k.

3.2 Cones from Polytopes

Definition 3.2.1 Let V be a finite dimensional vector space. Then the
convex hull of a finite set of points is called a convex polytope K. The
dimension d of K is the dimension of the vector space spanned by K.

Definition 3.2.2 A (proper) face F ⊂ K is the intersection with a bounding
affine hyperplane, i.e.

F = {z ∈ K : 〈ẑ, z〉 = r ∈ R≥} with ẑ ∈ V ∗ and 〈ẑ, z〉 ≥ r ∀ z ∈ K.

The faces of codimension one are called facets.

We assume for simplicity that dim(K) = dim(V ) and that K contains the
origin in its interior. The results of 3.1 can be used to deduce the corre-
sponding facts about the faces of convex polytopes. To see this let C be a
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strong convex polyhedral cone over K × 1 in the vector space V × R. Then
the faces of C are easily seen to be exactly the cones over the faces of K
(with the cone {0} corresponding to the empty face of K).

Definition 3.2.3 The polar set K∗of a convex polytope K is defined as

K∗ = {ẑ ∈ V ∗ : 〈ẑ, z〉 ≥ −1 ∀ z ∈ K}.

Proposition 3.2.4 The polar set K∗ is a convex polytope, and (K∗)∗ = K.
If F is a face of K, then

F ⋆ = {ẑ ∈ K∗ : 〈ẑ, z〉 = −1 ∀ z ∈ F}

is a face of K∗ and the correspondence F 7→ F ⋆ is a one-to-one, order-
reversing correspondence between the faces of K and K∗, with dim(F ) +
dim(F ⋆) = dim(V )− 1.

Proof: With C the cone over K × 1, the dual cone C∗ is given by {ẑ × r ∈
V ∗ × R : 〈ẑ, z〉 + r ≥ 0 ∀ z ∈ K}. It follows, that C∗ is the cone over K∗.
The assertions of the proposition are now simple consequences of the results
in section 3.1.

A particularly important construction of toric varieties starts with a rational
polytope P in the dual space MR. We assume that dim(P ) = dim(MR), but
it is not necessary that it contains the origin. From P a fan, denoted by
△P ⊂ NR, is constructed as follows: There is a cone CF of △P for each face
F of P defined by

CF = {z ∈ NR : 〈x̂− ŷ, z〉 ≥ 0 ∀ x̂ ∈ P and ŷ ∈ F}.

In other words, the dual cone C∗
F is generated by vectors x̂− ŷ where x̂ and

ŷ vary among vertices of P and F , respectively.

Proposition 3.2.5 The cones CF , as F varies over faces of P , form a fan
△P . If P contains the origin as an interior point, then △P consists of cones
over faces of the polar polytope P ∗.

Proof: If the origin is an interior point it is immediate from the definition
that CF is the cone over the dual face F ⋆ of P ∗ and the second assertion
follows. To see the first assertion, notice that △P is unchanged when P is
translated by some m ∈ M or multiplied by a positive integer, so any P
spanning MR can be changed to contain the origin as an interior point.
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Remark 3.2.6 Conversely, by the duality of polytopes, it follows that for a
convex rational polytope K in NR (containing the origin in its interior) the
fan of cones over the faces of K is the same as △P where P = K∗.
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4 Algebraic Varieties

4.1 Atlases and Varieties

Let X be a topological space. An affine chart on X is an open subset U ⊂ X
equipped with a structure of affine variety, with the requirement that the
induced topology on U should coincide with the Zariski topology. We say
that two charts, U and Ũ , are compatible if for every subset V ⊂ U ∩ Ũ one
has OU(V ) = OŨ(V ).

An atlas on X is a collection A = (Ui)i∈I of mutually compatible affine charts
covering X. Two atlases are equivalent if their union is also an atlas. By a
structure of algebraic variety on X we mean an equivalence class of atlases.
In what follows we shall restrict our attention to the algebraic varieties that
have a finite atlas. By a chart we mean an affine chart that belongs to some
atlas defining the variety structure of X.

There are some trivial varieties:

• Every affine variety V is an algebraic variety (an atlas is given by the
affine chart V open in V ).

• Every closed subset Y ⊂ X is an algebraic variety (for any atlas (Ui)i∈I

on X, (Ui ∩ Y )i∈I is an atlas on Y ). V is called a subvariety of X.

• An open subset U ⊂ X (obviously) has the structure of algebraic vari-
ety.

Example 4.1.1 As an example of an algebraic variety consider the projec-
tive space Pn, which is the set of lines of a n + 1 dimensional vector space
V over K. If f : V → K is a nonzero linear map, we may define Hf as the
set of lines L ⊂ kern(f). Then Uf := Pn \ Hf consists of those lines L for
which f |L= K and can be identified with the affine subspace f−1(1) ⊂ V .
If we choose a basis of V , {e0, . . . , en}, we can define n + 1 linear functions
fi : V → K by

fi(ej) =

{

0 if i = j

1 otherwise.
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The sets Ui
∼
→ Kn consist of all lines L with xi 6= 0 and A = (Ui)i=0,...,n is a

(Zariski-open) covering of Pn. If we choose homogeneous coordinates

x = (x0, . . . , xn) x ∼ λx ∀ λ ∈ K \ {0}

for Pn, there is a natural isomorphism Ui
∼
→ Kn defined as

(x0, . . . , xn) 7→ (x0/xi, . . . , xn/xi) (i = 0, . . . , n),

which induces a structure of affine variety for each Ui with the ring of regular
functions OUi

(Ui) generated by the set {T0/Ti, . . . , Tn/Ti}. These structures
agree on the intersections Ui ∩ Uj , since

(OUi
(Ui))Tj/Ti

= OUi
(Ui ∩ Uj) = OUj

(Ui ∩ Uj) = (OUj
(Uj))Ti/Tj

,

where
(OU (U))f = {

g

fn
: g ∈ OU(U), n ∈ N}.

4.2 Gluing

This operation yields some new varieties out of old ones. Let (Xi)i∈I be a
finite covering of some set X, where each Xi has a structure of algebraic
variety. We make two assumptions:

• For every pair i, j ∈ I the set Xi ∩Xj is open in Xi and Xj.

• The algebraic variety structures induced on Xi ∩ Xj from Xi and Xj

coincide.

Every algebraic variety, for example, arises by gluing affine algebraic varieties.

4.3 Morphisms of Algebraic Varieties

Let X be an algebraic variety described by an atlas (Xi)i∈I , and Y an affine
variety. We say that a map f : X → Y is regular if the restriction of f to
every chart Xi ⊂ X is a morphism of affine varieties (see 2.5). If Y = K we
have the notion of a regular function. For any open set U ⊂ X, we denote
by OX(U) the K-algebra of functions regular at U .
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Suppose now Y is an arbitrary algebraic variety. A continuous mapping
f : X → Y is called a morphism of algebraic varieties if for every chart
V ⊂ Y , the induced mapping f−1(V ) → V is regular. In other words, for
every regular function g on V the function f ∗ = g ◦ f must be regular on
f−1(V ):

f−1(V )
f∗

##G

G

G

G

G

G

G

G

G

f // V

g

��
K

4.4 Presheaves

Let X be an arbitrary topological space, and OP(X) the category of open
subsets of X. A presheaf of sets (respectively, groups, modules or rings) is
a contravariant functor F from the category OP(X) to the category of sets
(respectively, groups, modules or rings). In other words, the following must
hold:

• For each open subset U ⊂ X there exists a set F (U).

• For each inclusion of open subsets V ⊂ U we are given a map ρU,V :
F (U)→ F (V ) with ρU,U being the identity on U .

• Furthermore, if W ⊂ V ⊂ U for open subsets U, V and W , ρU,W =
ρV,W ◦ ρU,V .

The elements of F (U) are also referred to as the sections of F over U , and
the mappings ρ as the restriction maps. One also writes ρU,V (s) = s |V .

A presheaf is said to be a sheaf if it satisfies the following axiom: Suppose we
are given a family (Ui)i∈I of open subsets of X, together with sections si ∈
F (Ui) ∀i ∈ I which agree on the intersections: si |Ui∩Uj

= sj |Ui∩Uj
∀i, j ∈ I.

Then there exists a section s ∈ F (
⋃

i∈I Ui) such that si = s |Ui
∀i ∈ I and it

is unique with this property.

Example 4.4.1 Consider the sheaf OX of regular functions on an algebraic
variety (see 4.3), the sheaf of smooth functions on a differentiable manifold,
the sheaf of continuous functions on a topological space, etc.
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A morphism of presheaves ϕ : F → G is a collection of mappings ϕU :
F (U) → G(U), where U runs through OP(X), which are compatible with
the restriction maps. For example, consider the morphism of sheaves which
sends the sheaf of smooth functions to the sheaf of continuous functions on
a differentiable manifold.

Remark 4.4.2 Of course, not every presheaf is a sheaf. It is, however,
possible to attach to every presheaf F what is, in some sense, its closest
sheaf F+: For any open subset U ⊂ X, we denote by Cov(U) the set of all
open coverings of U . For any covering U = (Ui)i∈I ∈ Cov(U), we define F(U)
to be the set of families of sections (si)i∈I with si ∈ F (Ui) and si |Ui∩Uj

=
sj |Ui∩Uj

∀i, j ∈ I. Further, if U ′ is a refinement of U , there is a canonical
map F(U)→ F(U ′). Hence we get a direct system F(U), U ∈ Cov(U). We
now define

F+(U) = lim
−→
F(U)

as the direct limit of this system.

4.5 Separatedness

As a motivatiŪon, consideratopologicalspaceXandthediagonal∆ = {(x, x) :
x ∈ X} ⊂ X × X.Then∆ is closed in X × X (for the product topology)
if and only if X is Hausdorff: ∆ is closed in X × X ⇔ X \ ∆ is open
in X × X ⇔ ∀ (x, y) ∈ X × X, x 6= y ∃ U × U ′ open in X × X with
U ∩ U ′ = ∅ ⇔ X is Hausdorff.

Definition 4.5.1 [Sha94c,Mil] Let X be an algebraic variety. Then X is
separated if the diagonal ∆ is closed in X ×X.

That a variety is non-separated has to do with the fact that, when we obtain
it by gluing some affine pieces, these are glued imperfectly. To be precise, one
has the following separatedness criterion: A variety X described by an atlas
(Xi) is separated if and only if the image of all Xi ∩Xj under the canonical
injection into Xi ×Xj is closed. In fact, the image of Xi ∩Xj in Xi ×Xj is
just the intersection of Xi ×Xj with the diagonal ∆X in X ×X.

Example 4.5.2 Let us apply this criterion to the standard atlas (Ui), i =
0, . . . , n of projective space Pn (see example 4.1.1). It is easy to check that
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the image of Ui ∩ Uj in Ui × Uj is given by the equations

Tk/Ti = Tj/TiTk/Tj , Tk/Tj = Tk/TiTi/Tj, k = 0, . . . , n,

whence we see that Pn is separated.

4.6 Algebraic Toric Varieties

Definition 4.6.1 A finite collection of rational strongly convex polyhedral
cones

Σ = {C1, . . . , Cn}, Ci ⊂ NR

is called a fan if:

• Each face of a cone in Σ is also a cone in Σ.

• Σ is closed under intersection, i.e. Ci ∈ Σ ∧ Cj ∈ Σ ⇒ Ci ∩ Cj ∈
Σ ∀ i, j = 1, . . . , n.

Let Σ be a fan. For each cone C ∈ Σ, SC = C∗ ∩M is by proposition 3.1.14
a finitely generated semigroup and leads to an affine toric variety (see 2.9):

XC = Specm K[SC ].

We define an algebraic toric variety by taking the disjoint union of all affine
toric varieties XC with C ∈ Σ and glue them together by the identifications:

XC ⊃ XC∩C̃
∼
→ XC̃∩C ⊂ XC̃ ∀ C, C̃ ∈ S.

The fact that XC∩C̃ is an open subset of XC (and XC̃) follows from propo-
sition 3.1.17:

OXC
(XC∩C̃) = OXC

(XC)χ(m) for some m ∈ C.

The fact that the algebraic structures of XC and XC̃ coincide on the inter-
section XC∩C̃ = XC ∩ XC̃ follows from 3.1.19, which was a consequence of
the Seperation Lemma 3.1.18:

OXC
(XC∩C̃) = OXC

(XC) · OX
C̃
(XC̃) = OX

C̃
(XC∩C̃).

Moreover, an algebraic toric variety is separated:
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Proposition 4.6.2 If C and C̃ are cones that intersect in a common face,
then the diagonal map UC∩C̃ → UC × UC̃ is a closed embedding.

Proof: This is equivalent to the assertion that the natural mapping

OXC
(XC)×OX

C̃
(XC̃)→ OX

C∩C̃
(XC∩C̃)

is surjective, which is again a consequence of 3.1.19.

Whether an algebraic toric variety is compact (in the classical topology) or
not also depends on the fan:

Proposition 4.6.3 [Ful93] Let XΣ be an algebraic toric variety correspond-
ing to a fan Σ. Then XΣ is compact (in the classical topology) if and only if
the support | Σ |= ∪C∈ΣC is the whole space NR.
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Example 4.6.4 Let n1, n2 be a Z-basis of N and m1, m2 be the dual basis
of M . Define three cones

C1 =< n1, n2 >, C2 =< n2,−n1 − n2 > and C3 =< n1,−n1,−n2 > .

We obtain a fan Σ consisting of C1, C2, C3 as well as their faces R≥n1, R≥n2,
R≥(−n1 − n2) and {0}:
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The resulting toric variety consists of three affine toric varieties

UC1
= Specm[X1, X2], UC2

= Specm

[

1

X1
,
X2

X1

]

and

UC3
= Specm

[

1

X2
,
X1

X2

]

which are glued together along

UC1∩C2
= Specm

[

X1, X2,
1

X1

]

, UC2∩C3
= Specm

[

1

X1

,
X2

X1

,
X1

X2

]

and

UC3∩C1
= Specm

[

1

X2
,
X1

X2
, X2

]

.

We get the projective space P2(C). In terms of its homogeneous coordinate
[z0, z1, z2] we have z1/z0 = X1 and z2/z0 = X2. Moreover, UC1

, UC2
and UC3

are the affine planes {z0 6= 0}, {z1 6= 0} and {z2 6= 0}, respectively.
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Example 4.6.5 Let n1, n2 be a Z-basis of N and m1, m2 be the dual basis
of M . For a more interesting example, consider a fan generated by the cones

C1 =< n1, n2 >, C2 =< n1,−n2 >, C3 =< −n1 + an2,−n2 >

and C4 =< n2,−n1 + an2 >,

for some positive integer a, and their faces:
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The dual cones are given by

C∗
1 =< m1, m2 >, C∗

2 =< m1,−m2 >, C∗
3 =< −m1,−am1 −m2 >

and C∗
4 =< −m1, am1 + m2 >,

and we have the patching

UC4
= Specm( 1

X1
, X1

aX2)
OO

��

oo // UC1
= Specm(X1, X2)OO

��
UC3

= Specm( 1
X1

, 1
X1

aX2
) oo // UC2

= Specm(X1,
1

X2
)

The vertical arrows patch the varieties UC1
and UC2

(UC3
and UC4

) together
to C × P1, and via the horizontal patching all together is a P1 bundle over
P1. These rational ruled surfaces are called Hirzebruch Surfaces.
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5 Local Study of Toric Varieties

5.1 The Tangent Space

Let X ⊂ Kn be an affine variety defined by an ideal I = I(X) ⊂ K[T1, . . . , Tn]
(see 2.5). At every point x ∈ X consider the surjective K-linear homomor-
phism

dx : K[T1, . . . , Tn]→ Tx(K
n)∧

f 7→ dfx =
∑

i=1,...,n

∂f

∂Ti
|x dTi ,

sending a regular function f ∈ K[T1, . . . , Tn] to a linear form dfx in the
cotangent-space Tx(K

n)∧ of Kn at the point x. The tangent space Tx(X) of
X at the point x is defined as the subspace

Tx(X) = {ξ ∈ Tx(K
n) : dfx(ξ) = 0 ∀f ∈ I}.

Remark 5.1.1 Let F = {f1, . . . , fn} ⊂ I be a set of generators for I. Then

Tx(X) = {ξ ∈ Tx(K
n) : dfx(ξ) = 0 ∀f ∈ F},

since for all g =
∑

hifi ∈ I we have

(dg)x = d(

n
∑

i=1

hifi)x =

n
∑

i=1

(dhi)xfi(x) +

n
∑

i=1

(dfi)xhi(x) =

n
∑

i=1

(dfi)xhi(x).

This definition of the tangent space uses the embedding of X into Kn. It
is easy to see how we can get rid of that: Let Ix ⊂ K[T1, . . . , Tn]/I be the
maximal ideal corresponding to the point x ∈ X. Since dxk = 0 ∀ k ∈ K =
K[T1, . . . , Tn]/Ix, we can replace the study of this map by that of

dx : Ix → Tx(X)∧.

The kernel of this mapping is just Ix
2 = {f · g : f ∈ Ix ∧ g ∈ Ix}, so we

have the following invariant definition of the tangent space:

Definition 5.1.2 Let x ∈ X be a point in an affine variety. Then the tangent
space Tx(X) of X at the point x is defined as the space dual to Ix/Ix

2.
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5.2 Singularities of Toric Varieties

In what follows, let K = C be the field of complex numbers. For any cone
C ⊂ NR, the corresponding affine toric variety UC = Specm[C∗ ∩M ] has a
distinguished point which we denote by xC ∈ UC . This point is defined by a
homomorphism of semigroups:

xC : C∗ ∩M → {0, 1} ⊂ C

m 7→

{

1 if m ∈ C⊥

0 otherwise.

Remark 5.2.1 [Ful93,Oda88] If dim C = dim NR, xC is the unique fixed
point under the action of the torus (see 2.9.4). If dim C 6= dim NR, there is
no fixed point under the action of the torus.

Definition 5.2.2 If dim C = dim NR, we define the affine variety to be
nonsingular at the point x ∈ UC if the dimension of the cotangent space
Ix/Ix

2 is n-dimensional, since dim T = dim UC = n.

Suppose dim C = dim NR. Then C⊥ = {0} ⊂ MR. The maximal ideal IxC

corresponding to the distinguished point xC ∈ UC is generated by the set

{χ(m) : m ∈M ∧m 6= 0},

and IxC

2 by the set

{χ(m) : m ∈M ∧m 6= 0 ∧ m 6= m1 + m2 with m1 6= 0 ∧ m2 6= 0}.

By 5.1.2, the cotangent space of UC at xC ∈ UC is defined as IxC
/IxC

2, so if
we denote by {̺1, . . . , ̺k} the first elements in M lying on the edges of C∗,
the set

{χ(̺1), . . . , χ(̺k)}

is a basis of the cotangent space IxC
/IxC

2 at the distinguished point xC ∈ UC .
The condition for non-singularity 5.2.2 at the distinguished point implies that
k ≤ n, and since dim C∗ = dim MR it follows that k = n. Since SC generates
M as a group, the set {̺1, . . . , ̺k} must be a basis of M and the toric variety
UC is isomorphic to Cn.
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If m = dim C < dim NR = n, let ÑR ⊂ NR be the subspace generated by C
and denote by C̃ the same cone in the space ÑR. Then UC̃ is nonsingular if
the set of generators of C̃ are a basis of Ñ , and since UC

∼= UC̃ × Cn−m, we
have proved:

Proposition 5.2.3 An affine toric variety UC is nonsingular if and only if
C is generated by a subset of a basis of N , in which case

UC
∼= UC̃ × Cn−m m = dim C, n = dim NR.

5.3 Quotient Singularities

To motivate the following, consider the cone C ⊂ NR = R2 generated by
kn1 − n2 (k ∈ N) and n2 and its dual C∗ ⊂MR generated by m1 + km2 and
m1:
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The resulting affine toric variety is UC = Specm(AC) with

AC = C[X, XY, XY 2, . . . , XY k] = C[Uk, Uk−1V, . . . , UV k−1, V k] ⊂ C[U, V ],

where we have set X = Uk and Y = V/U . The inclusion of AC ⊂ C[U, V ]
corresponds to a mapping C2 → UC . The group

G = {e
2πil

k : l = 0, . . . , k − 1} ∼= Z/kZ
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acts on C2 by ξ(u, v) 7→ (ξu, ξv) and UC
∼= C2/G, i.e. UC is a cyclic quo-

tient singularity. Algebraically, G acts on the coordinate ring C[U, V ] by
f(U, V ) 7→ f(ξU, ξV ) and via this action

AC = C[U, V ]G

is the ring of invariants.

Now consider the same cone denoted by C̃ but in the lattice Ñ ⊂ N , gener-
ated by kn1 − n2 and n2, with its dual lattice M̃ ⊃ M , generated by m1/k
and m1/k+m2. Then AC̃ = C[U, UY ] = C[U, V ] and we recover the previous
description with

G ∼= N/Ñ ∼= M̃/M.

A similar procedure applies to an arbitrary singular two-dimensional affine
toric variety (see [Ful93,Oda88]). More generally consider a simplicial cone
(see definition 3.1.22) C ⊂ NR with arbitrary dimension of NR and dim C =
dim NR. Denote by Ñ ⊂ N the sublattice generated by the generators of C
with its dual lattice M̃ ⊃M . There is a canonical duality pairing

M̃/M ×N/Ñ → Q/Z →֒ C∗,

where the first map is the pairing 〈∗, ∗〉, and the second is defined as q 7→ e2πiq.
Now G ∼= N/Ñ acts on C[M̃ ] by

ξχ(m̃) = e2πi〈m̃,ξ〉χ(m̃),

and by this natural action,

C[M̃ ]G = C[M ].

Hence G ∼= N/Ñ acts on the torus TÑ and TÑ/G = TN .

To prove this, take a basis {n1, . . . , nm} of N such that {k1n1, . . . , kmnm}
are generators for Ñ for some ki ∈ N. Then C[M̃ ] is the Laurant polynomial
ring in generators Xi, and C[M ] is the Laurant polynomial ring in generators
Ui with Xi = Uki

i ∀ i = 1, . . . , m. Now an element (ξ1, . . . , ξm) ∈ N/Ñ acts
on monomials by

U l1
1 . . . U lm

m 7→ e
2πi

P ξili
ki U l1

1 . . . U lm
m .

To get the action of G on the toric variety UC , we just have to intersect the
ring AC̃ with C[M̃ ]G = C[M ]. Thus we have proved:
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Proposition 5.3.1 If C ⊂ NR is an simplicial cone the toric variety UC has
only quotient singularities and

UC
∼= UC̃/G× Cn−m, m = dim C, n = dim NR

with G ∼= N/Ñ.
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6 Orbits, Divisors and Line Bundles

To motivate the following, consider the affine toric variety Cn. The sets
which are invariant under the action of the torus are

{(z1, . . . , zn) : zi = 0 ∀ i ∈ I ∧ zi 6= 0 ∀ i /∈ I i = 1, . . . , n},

as I ranges over subsets of {1, . . . , n}. Note that each of these sets is equal
to

OF = Hom(F⊥ ∩M, C∗),

where F ⊂ C is the face generated by the subset {ei : i ∈ I} of the standard
basis of N . We will see that the sets OF are open subvarieties of their closure,
which is denoted by VF .

In the general case, let Σ ⊂ NR be a fan and denote by NC
R ⊂ NR the

subspace generated by a cone C ∈ Σ. In the quotient-space (with dual space
M(C)),

N(C) = NR/NC
R and M(C) = C⊥ ∩M,

the cones C ∈ Σ which contain C as a face are

C̄ = (C + NC
R)/NC

R ⊂ N(C).

They form a fan Star(C) ⊂ N(C) in the quotient space:

Star(C) = {C̄ : C ≥ C}.

Now set
V (C) = X[Star(C)],

the corresponding (n − k)-dimensional (k = dim NC
R) toric variety with the

torus embedding
TNC = Hom(M(C), C∗) = OC.

An affine open covering of V (C) is given by

(UC(C))C≥C,

with

UC(C) = Specm(C[C̄∗ ∩M(C)]) = Specm(C[C∗ ∩ C⊥ ∩M ]) ∀ C ≥ C.
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To embed V (C) as a closed subvariety, we first construct a closed embedding
of UC(C) in UC for all C ≥ C:

UC(C) = Homsg(C
∗ ∩M(C), C) →֒ Homsg(C

∗ ∩M, C)) = UC C ≥ C,

regarding the points as semigroup-homomorphisms, defined as extension by
zero. Since C is a face of C for all C ≥ C, this mapping is well defined. The
corresponding surjection of rings

C[C∗ ∩M ]→ C[C∗ ∩M(C)]

is the (obvious) projection: It takes χ(m) = χ(mC + m⊥
C ) to χ(mC) ∀m =

mC + m⊥
C ∈M with mC ∈M(C) and m⊥

C ∈M(C)⊥.

If C ≤ C ≤ C̃ we get the following commutative diagram:

Homsg(C
∗ ∩M(C))

� _

��

� � // Homsg(C̃
∗ ∩M(C))
� _

��

Homsg(C
∗ ∩M) � � // Homsg(C̃

∗ ∩M)

where the horizontal maps are restrictions and the vertical maps are extension
by zero. Therefore, these maps glue together to give a closed embedding

V (C) →֒ X(Σ).

If C ≤ C̃ is a face of˜
C, wehaveclosedembeddingsV (C̃) →֒ V (C)definedontheopensetsUC(C̃) = Homsg(C

∗∩
M(C̃), C) →֒ UC(C) = Homsg(C

∗ ∩M(C), C)forallC∈ Star(C) with C̃ ≤ C.
In summary, we have an order-reversing correspondence between cones C ∈ Σ
and orbit closures V (C).
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Remark 6.0.2 [Ful93] There are the following relations among orbits OC,
orbit closures VC and the affine open sets UC :

1. UC =
⊔

C≤C

OC.

2. V (C) =
⊔

C̃≥C

OC̃.

3. OC = V (C) \
⋃

C̃
C

V (C̃).
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6.1 Support Functions

Definition 6.1.1 A real valued function ϕ : |Σ| → R on the support |Σ| :=
∪C∈Σ is called an integral Σ-piecewise linear support function if it is Z-valued
on N ∩ |Σ| and linear on each cone C ∈ Σ. Namely, there exists a mC ∈ M
for each C ∈ Σ, such that ϕ(z) = mC(z) ∀ z ∈ C and mC(z) = mC̃(z) ∀ z ∈
C ∩ C̃ and C, C̃ ∈ Σ. We denote by SF(N, Σ) the additive group of integral
convex Σ-piecewise linear support functions.

Note that the set {mC : C ∈ Σ} ⊂ M may not be uniquely determined,
since {m̃C : C ∈ Σ} gives rise to the same ϕ ∈ SF(N, Σ) if mC − m̃C ∈
M ∩ C⊥ ∀ C ∈ Σ. Let us denote by

Σ(1) := {̺ ∈ Σ : dim̺ = 1}

the set of one-dimensional cones of Σ. Then we get an injective homomor-
phism

SF(N, Σ) →֒ ZΣ(1),

which sends ϕ to (ϕ(n(̺))), where n(̺) ∈ N ∩ ̺ denotes the generator of ̺.
If the toric variety is nonsingular, we get an isomorphism:

SF(N, Σ)
∼
→ ZΣ(1).

6.2 Equivariant Line Bundles

Definition 6.2.1 An equivariant line bundle on a toric variety X is a fiber
bundle π : L→ X with fiber C and with an algebraic action of the torus TN

on L, such that π(tz) = tπ(z) ∀ z ∈ L, t ∈ TN and the action of each t ∈ TN

on L induces a linear map from π−1(x) to π−1(tx) for each x ∈ X.

The set ELB(X) of isomorphism classes of equivariant line bundles is a com-
mutative group with respect to the tensor product. The identity element
10 is the trivial bundle X × C with the action t(x, c) := (tx, c) ∀ t ∈ TN .
Each m ∈ M gives rise to an equivariant line bundle 1m, which is the trivial
bundle X ×C with the action t(x, c) := (tx, χ(m)(t)c) ∀ t ∈ TN , where χ(m)
is the character corresponding to m ∈M . The map which sends m to 1m is
a homomorphism

M → ELB(X).
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The Picard group Pic(X) is the group of isomorphism classes of line bundles
on X. By disregarding the action of TN , we get an homomorphism

ELB(X)→ Pic(X)

whose kernel obviously contains {1m : m ∈M}.

6.3 Divisors

A Weil divisor is a formal finite Z-linear sum of closed irreducible subspaces
of X with codimension one. We denote by Div(X) the group of Weil divisors,
DivT(X) being the subgroup of TN -invariant Weil divisor:

DivT(X) =
⊕

̺∈Σ(1)

Z V (̺),

where V (̺) are the codimension one subvarieties corresponding to the rays
̺ ∈ Σ(1). A divisor D =

∑

̺∈Σ(1) aiV (̺) is called effective and denoted by

D≥ if all ai ∈ Z are nonnegative. The subgroup of principal divisors PDiv(X)
are those of the form

div(f) =
∑

V

νV (f) V

for a nonzero rational function f on X, where νV (f) denotes the order of
zero along each closed irreducible subspace V ⊂ X of codimension one.

Of particular interest is the subgroup CDiv(X) of Cartier divisors, i.e. lo-
cally principal (Weil) divisors. We denote by CDivT(X) the subgroup of TN -
invariant Cartier divisors. We can associate a line bundle to every Cartier
divisors D: By definition there exists an open covering X = ∪i Ui and
nonzero rational functions fi, such that D coincides with the principal divi-
sor div(f−1

i ) on each open set Ui. Thus both, fi/fj and fj/fi, are regular
functions on Ui ∩ Uj . We obtain a line bundle L = ∪i (Ui × C) by gluing
Ui × C and Uj × C along (Ui ∩ Uj)× C via the map

Ui × C ⊃ (Ui ∩ Uj)× C
∼
→ (Ui ∩ Uj)× C ⊂ Uj × C

which sends (x, c) to (x, fi/fj(c)). The projections to the first factors are
glued together to π : L→ X.
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Now let ϕ ∈ SF(N, Σ). We can construct an equivariant line bundle Lϕ ∈
ELB(X) as follows: Let {mC : C ∈ Σ} ⊂ M be as in the definition of
ϕ ∈ SF(N, Σ). Then for two cones C, C̃ ∈ Σ, mC and mC̃ have the same
values on C ∩ C̃, so mC −mC̃ ∈M ∩ (C ∩ C̃)⊥, and both χ(mC −mC̃) and
χ(mC̃ −mC), are regular functions on the open set UC ∩UC̃ = UC∩C̃ . Define
the line bundle Lϕ = ∪C∈Σ UC × C over X by gluing UC × C and UC̃ × C

along UC∩C̃ × C by the isomorphism

gCC̃ : UC × C ⊃ UC∩C̃ × C
∼
→ UC∩C̃ × C ⊂ UC̃ × C

defined by gCC̃(x, c) = (x, χ(mC −mC̃)(x)c) for (x, c) ∈ UC∩C̃ × C. We can
define the action of the torus TN on Lϕ by

t(x, c) = (tx, χ(−mC)(t)c) ∀ t ∈ TN , (x, c) ∈ UC × C

for all cones C ∈ Σ, which is obviously compatible with the gluing maps
above. If {mC : C ∈ Σ} and {m̃C : C ∈ Σ} give rise to the same ϕ, we get
isomorphisms gC : UC × C

∼
→ UC × C for all cones C ∈ Σ defined by

gC(x, c) = (x, χ(m̃C −mC)(x)c) ∀ (x, c) ∈ UC ×C,

which are glued together to a bundle isomorphism g : Lϕ̃
∼
→ Lϕ which com-

mutes with the torus-action.

Since every ϕ ∈ SF(N, Σ) determines a TN invariant Cartier divisor Dϕ =
−

∑

̺∈Σ(1) ϕ(n(̺))V (̺), which can also be regarded as a line bundle, we have
a commutative diagram of commutative groups:

coker[M → SF(N, Σ)]

�� **U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

CDivT(X)/(DivT(X) ∩ PDiv(X)) // Pic(X)

Proposition 6.3.1 [Oda88] Let Σ be a complete fan, i.e. the corresponding
toric variety is compact. Then there exists a canonical isomorphism

SF(X, Σ)/M
∼
→ CDivT (X)/(CDivT (X) ∩ PDiv(X))

∼
→ ELB(X)/{1m : m ∈M}

∼
→ Pic(X).
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Let Lϕ ∈ ELB(X) be an equivariant line bundle coming from a Σ-linear sup-
port function ϕ ∈ SF(X, Σ). Suppose m ∈ M satisfies 〈m, z〉 ≥ ϕ(z) ∀ z ∈
|Σ|. Then m−mC ≥ 0 |C ∀ C ∈ Σ, and χ(m−mC) is a regular function on
UC . The maps sC : UC → UC × C are naturally glued together to a section
s : X → Lϕ which satisfies s(tx) = χ(m)(t)(ts(x)) ∀ t ∈ TN , x ∈ X.

Proposition 6.3.2 Let Σ be a complete fan. Then for every ϕ ∈ SF(X, Σ)

∆ϕ = {m ∈MR : 〈m, z〉 ≥ ϕ(z) ∀ z ∈ NR}

is a convex polytope in MR. The set of global sections of Lϕ is a finite
dimensional C-vector space with basis {χ(m) : m ∈M ∩∆ϕ}.

Remark 6.3.3 Let m ∈M . Then the following is equivalent:

〈m, z〉 ≥ ϕ(z) ∀z ∈ |Σ| ⇔ −m + ϕ has nonpositive values on |Σ|

⇔ D−m+ϕ ≥ 0⇔ div(χ(m)) + Dϕ ≥ 0.

Definition 6.3.4 Let Σ be a complete fan, ϕ ∈ SF(N, Σ) and {mC : C ∈ Σ}
as in the definition of ϕ. Then ϕ is said to be (lower) convex if

ϕ(z) ≤ mC(z) ∀ C ∈ Σ, z ∈ NR.

ϕ is called strictly (lower) convex if the graph of ϕ lies strictly under the
graph of mC on the complement of C for all cones with dim(C) = dim(NR).

Remark 6.3.5 The convexity of ϕ is just the condition that {mC : C ∈
Σ ∧ dim C = dim MR} ⊂ ∆ϕ, where ∆ϕ is from proposition 6.3.2. Moreover,
the set {mC : C ∈ Σ ∧ dim C = dim MR} are the vertices of ∆ϕ.
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Example 6.3.6 Let n1, n2 be a Z-basis of N and m1, m2 the dual basis of
M . Consider the fan for the projective space P2(C) from example 4.6.4:
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Let ϕ ∈ SF(N, Σ) and {mC : C ∈ Σ} ⊂ M be as in the definition of
ϕ ∈ SF(N, Σ). For the mC corresponding to cones of maximal dimension we
need the following relations to coincide on the intersections:

mC1
= a11m1 + a12m2,

mC2
= a21m1 + a12m2,

and
mC3

= a11m1 + (a21 + a12 − a11)m2.

The condition for ϕ to be convex is a21 ≥ a11. Choosing a11 = 2, a12 = −2
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and a21 = 6, we get ∆ϕ = Conv({mC1
, mC2

, mC3
) :
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7 Complete Intersections

7.1 Nef Partitions

Let ∆ ⊂ MR be a reflexive polytope (with dim(∆) = dim(MR) and interior
point {0} ∈ MR) and ∆∗ ⊂ NR its dual. From now on we denote by ∆v

the set of vertices of a polytope ∆. Let E = ∆∗v be the set of vertices
of ∆∗. We define a d−dimensional complete fan Σ[∆∗] as the union of the
zero-dimensional cone {0} together with the set of all cones

C[F ] = {0} ∪ {z ∈ NR : λz ∈ F for some λ ∈ R>}

supporting faces F of ∆∗.

Assume there exists a representation of E = E1 ∪ · · · ∪ Er as the union of
disjoint subsets E1, . . . , Er and integral convex Σ[∆∗]-piecewise linear support
functions ϕi : NR → R (i = 1, . . . , r), such that

ϕi(e) =

{

1 if e ∈ Ei,

0 otherwise.

Each ϕi, which corresponds to a line bundle Li defines a supporting polyhe-
dron ∆i for the global sections:

∆i = {ẑ ∈MR : 〈ẑ, z〉 ≥ −ϕi(z) ∀ z ∈ NR}.

Conversely, each function ϕi is uniquely defined by the polyhedron ∆i. A
Calabi-Yau complete intersection is then determined by the intersection of
the closure of r hypersurfaces, each corresponding to a global section of a
line bundle Li (see [BB95,BB]).

Definition 7.1.1 If there exists a reflexive polytope ∆ and r such functions
ϕ1, . . . , ϕr, we call the data

Π(∆) = {∆1, . . . , ∆r}

a Nef partition.

Equivalent to Π(∆) = {∆1, . . . , ∆r} being a Nef partition is that the ∆i have
only {0} as common point and that ∆ can be written as the Minkowski sum
∆i + · · ·+ ∆r = ∆, which is shown by the following proposition:
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Proposition 7.1.2 Π(∆) = {∆1, . . . , ∆r} is a Nef partition if and only if
∆ is the Minkowski sum of r rational polyhedra ∆ = ∆1 + · · · + ∆r and
∆i ∩∆j = {0} ∀ i 6= j.

Proof:
⇒: Assume ∆ can be written as the Minkowski sum of r rational polyhedra
∆ = ∆1+· · ·+∆r with ∆i∩∆j = {0} ∀ i 6= j. Define r functions ϕi : NR → R

as
ϕi(z) = −min

ẑ∈∆i

〈ẑ, z〉 ∀ z ∈ NR.

• The ϕi are linear on the cones of Σ[∆∗]: It is sufficient to consider
restrictions of the ϕi to cones of maximal dimension C[F ], where

F = ∆∗ ∩ {z ∈ NR : 〈z, ê〉 = −1}

is a facet of ∆∗ corresponding to a vertex ê ∈ ∆v. Now let ê = ê1 +
· · ·+ êi + · · ·+ êr, where êi ∈ ∆v

i denotes a vertex of ∆i (i = 1, . . . , r).
If we take another vertex ê′i 6= êi ∈ ∆v

i then the sum ê′ = ê1 + · · ·+ ê′i +
· · ·+ êr denotes another vertex of ∆. Clearly 〈ê, z〉 ≤ 〈ê′, z〉 ∀z ∈ C[F ],
i.e. 〈êi, z〉 ≤ 〈ê

′
i, z〉 ∀z ∈ C[F ]. Hence ϕi(z) = −〈êi, z〉 ∀ z ∈ C[F ].

• Convexity for the ϕi follows immediately from their definition.

• ϕi(e) ∈ {0, 1} ∀ e ∈ E, i = 1, . . . , r: For every function ϕi we have :
0 ∈ ∆i ⇒ ϕi ≥ 0 and ∆i ⊂ ∆⇒ ϕi(e) ≤ 1 ∀ e ∈ E.

• ϕi(e) = 1 ⇒ ϕj(e) = 0 ∀ j 6= i: Assume ϕi(e) = ϕj(e) = 1 for i 6= j
⇒ ∃ẑi ∈ ∆i, ẑj ∈ ∆j : 〈ẑi, e〉 = 〈ẑj , e〉 = −1 ⇒ ∃ẑ = ẑi + ẑj ∈ ∆ with
〈ẑ, e〉 = −2. This contradicts ∆∗ being dual to ∆.

• ∀e ∈ E ∃ i ∈ {1, . . . , r} with ϕi(e) = 1: Assume ∃e ∈ E : ϕi(e) =
0 ∀ i = 1, . . . , r. By duality of ∆ and ∆∗ ∃ẑ ∈ ∆ : 〈ẑ, e〉 = −1, where
ẑ is contained in the facet dual to e. Now ẑ = ẑ1 + · · · + ẑr with
ẑi ∈ ∆i ∀ i = 1, . . . , r. ⇒ ∃ẑk ∈ ∆k with 〈ẑk, e〉 < 0. A contradiction
to ϕi(e) = 0 ∀ i = 1, . . . , r.

⇐: Follows from

∆ = {ẑ ∈MR : 〈ẑ, z〉 ≥ −ϕ(z) ∀ z ∈ NR},

where ϕ =
∑

i ϕi (i = 1, . . . , r) (see [Bor93]).



7 COMPLETE INTERSECTIONS 49

It can be shown that every Nef partition of a reflexive polytope ∆ gives a dual
Nef partition of a reflexive polytope ∇, which turns out to be an involution
on the set of reflexive polytopes with Nef partitions:

Remark 7.1.3 [Bor93] Let Π(∆) = {∆1, . . . , ∆r} be a Nef partition and
denote by E = E1 ∪ · · · ∪ Er the set of vertices ∆∗v. Define r rational
polyhedra ∇i ⊂ NR (i = 1, . . . , r) as

∇i = Conv(Ei ∪ {0}).

Then there is the following relation between ∆i and ∇j (i, j = 1, . . . , r):

〈∆i,∇j〉 =

{

≥ −1 if i = j

≥ 0 otherwise.

In particular ∇ = ∇1+ · · ·+∇r is a reflexive polyhedron with a Nef partition
Π(∇) = {∇1, . . . ,∇r}, and there is a natural involution on the set of reflexive
polyhedra with Nef partitions:

ι : Π(∆) = {∆1, . . . , ∆r} 7→ Π(∇) = {∇1, . . . ,∇r}.

Remark 7.1.4 The following procedure can be used to find all Nef partitions
of a reflexive polyhedron ∆ ⊂MR:

• First calculate ∆∗ ⊂ NR.

• Take all disjoint unions E = E1 ∪ . . . ,∪Er of vertices of ∆∗.

• Check if ∇ = ∇1 + · · · + ∇r (∇1 = Conv(Ei ∪ {0})) is reflexive and
∇i ∩ ∇j = {0} ∀ i 6= j.

7.2 Gorenstein Cones

A rational cone C ⊂ MR is called Gorenstein if there exists a n ∈ N in the
dual lattice such that 〈v, n〉 = 1 for all generators of C (see [BB95, BB]).
With a Nef partition Π(∆) = {∆1, . . . , ∆r} we can construct such a cone.
First we go to a larger space and extend the canonical pairing: Let Zr be
the standard r-dimensional lattice and Rr its real scalar extension. We put
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N̄ = Zr ⊕ N, d̄ = d + r and M̄ = Hom(N̄ , Z). We extend the canonical Z-
bilinear pairing 〈∗, ∗〉 : M×N → Z to a pairing between M̄ and N̄ = Zr⊕N
by the formula

〈(a1, . . . , ar, m), (b1, . . . , br, n)〉 =
r

∑

i=1

aibi + 〈m, n〉.

The real scalar extension between N̄ (resp. M̄) is denoted by N̄R (resp. M̄R),
with the corresponding R-bilinear pairing 〈∗, ∗〉 : M̄R × N̄R → R.

Definition 7.2.1 From a Nef partition Π(∆) = {∆1, . . . , ∆r} we construct
a d̄-dimensional Gorenstein cone C∆ ⊂ M̄R as

C∆ = {(λ1, . . . , λr, λ1ẑ1 + · · ·+ λrẑr) ∈ M̄R : λi ∈ R≥, ẑi ∈ ∆i, i = 1, . . . r},

with n∆ ∈ N̄ uniquely defined by the conditions

〈ẑ, n∆〉 = 0 ∀ ẑ ∈MR ⊂ M̄R

〈êi, n∆〉 = 1 for i = 1, . . . , r,

where {ê1, . . . , êr} is the standard basis of Zr ⊂ M̄ .

Note that all generators of C∆ lie on the hyperplane 〈ẑ, n∆〉 = 1. They are
the vertices of a (d̄− 1)-dimensional rational polytope:

K∆ = {ẑ ∈ C∆ : 〈ẑ, n∆〉 = 1}.

Since K∆ ∩ M̄ has no interior point, we get

K∆ ∩ M̄ =
⋃

i=1,...,r

(êi ×∆i) ∩ M̄.

Remark 7.2.2 [BB] Let Π(∇) = {∇1, . . . ,∇r} be the dual Nef partition.
Then the Gorenstein cone

C∇ = {(µ1, . . . , µr, µ1z1 + · · ·+ µrzr) ∈ N̄R : µi ∈ R≥, zi ∈ ∇i, i = 1, . . . r}

is the dual cone of C∆ defined in 7.2.1. Note that C∆ and C∇ are dual to
each other, but K∆ is not dual to K∇!
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7.3 Combinatorial Polynomials of Eulerian Posets

Let P be an Eulerian Poset (i.e. a finite partially ordered set, see [BB95])
with unique minimal element 0̂, maximal element 1̂ and same length d of
every maximal chain of P . For any x ≤ y ∈ P define the interval I = [x, y]
as

[x, y] = {z ∈ P : x ≤ z ≤ y}.

In particular, we have P = [0̂, 1̂]. Define the rank function ρ : P → {0, . . . , d}
on P by setting ρ(x) equal to the length of the interval [0̂, x]. Note that for
any Eulerian Poset P , every interval I = [x, y] is again an Eulerian Poset
with rank function ρ(z)− ρ(x) ∀z ∈ I. If an Eulerian Poset has rank d, then
the dual Poset P ∗ is also an Eulerian Poset with rank function ρ∗ = d− ρ.

Example 7.3.1 Let C ∈ NR be a d-dimensional cone with its dual C∗ ∈MR.
By proposition 3.1.15, there is a canonical bijective correspondence F ↔
F ⋆ = C∗ ∩ F⊥ between faces F ⊂ C and F ⋆ ⊂ C∗ (dimF + dimF ⋆ = d),
which reverses the inclusion relation between faces. We denote the faces
of C by indices x and define the poset P = [0̂, 1̂] as the poset of all faces
Cx ⊂ C with maximal element C, minimal element {0} and rank function
ρ(x) = deg(Cx) ∀x ∈ P . The dual poset P ∗ can be identified with the poset
of faces C∗

x = F ⋆
x ⊂ C∗ of the dual cone C∗ with rank function ρ∗(x∗) =

dim(C∗
x) ∀ x∗ ∈ P ∗.

Definition 7.3.2 Let P be an Eulerian Poset of rank d as above. Define
the polynomial B(P ; u, v) ∈ Z[u, v] by the following rules [BB95]:

• B(P ; u, v) = 1 if d = 0.

• The degree of B(P ; u, v) with respect to v is less than d/2.

•
∑

0̂≤x≤1̂

B([0̂, x]; u−1, v−1)(uv)ρ(x)(v−u)d−ρ(x) =
∑

0̂≤x≤1̂

B([x, 1̂]; u, v)(uv−1)ρ(x).

Let us consider how we can construct the B-polynomial for an interval
I = [x, y] ⊂ P with d = ρ(y) − ρ(x): Suppose we know the B-polynomials
B(Ĩ; u, v) for all sub-intervals Ĩ = [x̃, ỹ] ( I. Then we know all terms of
the relation-formula for the B-polynomials in 7.3.2 except B(I; u, v) on the
right hand side and B(I; u−1, v−1)(uv)d on the left hand side. Because the
v-degree of B(I; u, v) is less than d/2, the possible degrees of monomials with
respect to v in B(I; u, v) and B(I; u−1, v−1)(uv)d do not coincide and we can
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calculate B(I; u, v). So if we have to compute B(P ; u, v), we first have to
calculate the B-polynomials for all intervals with rank 0 (which per definition
are 1), then those intervals with rank 1, and so on.

Remark 7.3.3 Let P be an Eulerian Poset of rank d and P ∗ its dual. Then
the polynomial defined in (7.3.2) satisfies

B(P ; u, v) = (−u)dB(P ∗; u−1, v).

Definition 7.3.4 Let P be the Eulerian Poset corresponding to the Goren-
stein cone C = C∆ ⊂ M̄R from definition 7.2.1. Define two functions on the
set of faces of C by

S(Cx, t) = (1− t)ρ(x)
∑

m∈Cx∩M̄

tdeg(m)

T (Cx, t) = (1− t)ρ(x)
∑

m∈Cx
◦∩M̄

tdeg(m),

where Cx
◦ denotes the relative interior of Cx ∈ C (see definition 3.1.6) and

deg(m) = 〈m, n∆〉.

The following statement is a consequence of the Serre duality [BB95]:

Proposition 7.3.5 For the Gorenstein cone C = C∆ ⊂ M̄R the functions
S and T are polynomials: S(Cx, t), T (Cx, t) ∈ Z[t], and they satisfy the
relation

S(Cx, t) = tρ(x)T (Cx, t
−1).

Remark 7.3.6 For S =
∑

i ait
i and T =

∑

i bit
i as defined above, 7.3.5

implies that

a0 + a1t + · · ·+ ant
n = b0t

n + b1t
n−1 + · · ·+ bn−1t + bn,

where n = dim Cx, and we get the relations

ai = bn−i (i = 1, . . . , n)

for the coefficients of S and T . Since a0 = 1 and b0 = 0, the leading co-
efficients are determined to be an = 0 and bn = 1. Thus it is sufficient to
calculate m · (Cx ∩K∆) and m · (Cx

◦ ∩K∆) for m = 0, . . . , [dim(Cx)/2] and
to use the fact that ai = bn−i for i > dim(Cx)/2.
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Definition 7.3.7 [BB95] Denote by hp,q
st the string-theoretical Hodge num-

bers of a Calabi-Yau complete intersection V arising from a Nef partition
Π(∆) = {∆1, . . . , ∆r}. Then the string-theoretical E-polynomial is defined as

Est(V ; u, v) =
∑

(−1)p+qhp,q
st upvq.

Batyrev and Borisov showed in their paper [BB95] that the string-theoretical
E-polynomial of a Nef partition can be calculated from the data of the cor-
responding Gorenstein cone:

Proposition 7.3.8 [BB95] Let Π(∆) = {∆1, . . . , ∆r} be a Nef partition
and C = C∆ ⊂ M̄R the d̄-dimensional reflexive Gorenstein cone defined in
7.2.1 (with dual cone C∗ = C∇ ⊂ N̄R). Denote by P the poset of faces
Cx ⊂ C (see example 7.3.1). Then the string-theoretical E-polynomial is
given by

Est(V ; u, v) =
∑

I=[x,y]⊂P

(−1)ρ(y)

(uv)r
(v− u)ρ(x)B(I∗; u, v)(uv− 1)d̄−ρ(y)A(x,y)(u, v),

with

A(x,y)(u, v) =
∑

(m,n)∈Cx
◦∩M̄×C∗

y
◦∩N̄

(u

v

)deg(m)
(

1

uv

)deg(n)

.

The dual partition Π(∇) = {∇1, . . . ,∇r} corresponds to the Calabi-Yau
complete intersection W and (V, W ) is called a Mirror pair of (singular)
Calabi-Yau varieties. The following relation holds for the string-theoretical
E-polynomial of V and W :

Est(V ; u, v) = (−u)d−rEst(W ;
1

u
, v),

inducing the following duality of Hodge numbers between V and W :

hp,q
st (V ) = hn−p,q

st (W ) 0 ≤ p, q ≤ n = dim(V ) = dim(W ),

which is called Mirror duality.
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Remark 7.3.9 Using duality 7.3.3 for the B-polynomials and definition
7.3.4 with relation 7.3.5 between the S- and T -polynomials, we can write
the E-polynomial as

Est(V ; u, v) =
∑

I=[x,y]⊂P

(−1)ρ(x)uρ(y)

(uv)r
S

(

Cx,
v

u

)

S
(

C∗
y , uv

)

B(I; u−1, v),

which can be used for explicit calculation.
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8 Results

8.1 Comparison with Weighted Projective Space

Using the formula for the E-polynomial 7.3.9 we are able to construct Calabi-
Yau complete intersections starting with a reflexive polytope ∆ ⊂ MR (or
∆∗ ⊂ NR). Regarding complete intersections in WP5 spaces as a special case
of the toric construction we tried to reproduce the Hodge data of codimension
two Calabi-Yau manifolds in WP5 spaces listed in [Kle]. In what follows we
will analyze some examples from this list and discuss the different situations
that can occur.

In the simplest case the Newton polyhedron ∆(d) corresponding to degree
(d1, d2) equations is reflexive and the Hodge numbers of a Nef partition
Π(∆(d)) = {∆̃1, ∆̃2} agree with those in [Kle]. This works for example
in case of the first weight system 6 1 1 1 1 1 1 d=4 2 in this list.

In general, ∆(d1 + d2) may differ from the Minkowski sum ∆(d1) + ∆(d2)
and none of the two polytopes has to be reflexive. In many cases we find a
simple modification of these polytopes that makes the Hodge data agree:

• Already in the second example of this list the Newton polyhedron ∆(7)
of the weight system 7 1 1 1 1 1 2 d=3 4 is not reflexive. It is, however,
possible to reduce ∆(7) to a reflexive polyhedron ∆ by omitting 5
points, so that its dual provides a toric resolution of singularities of the
weighted projective space. Indeed, the Hodge data matches for one Nef
partition of the resulting polytope.

• Another possibility is that the Newton polyhedron is reflexive, but the
Hodge numbers do not agree. In such a case we can compute the
Minkowski sum ∆̃ = ∆(d1)+∆(d2) and check if it is reflexive and gives
the right Hodge numbers. This works for example with the weight
system 8 1 1 1 1 2 2 d=5 3.

There are still some examples where we are not able to reproduce the Hodge
data. For example, in case of the weight system 9 1 1 1 1 2 3 d=5 4, neither
∆(9) nor the Minkowski sum ∆(5) + ∆(4) is reflexive. Omitting up to 20
points yields a reflexive polyhedron, but there exists no Nef partition which
agrees with the corresponding Hodge data in [Kle].
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8.2 New Hodge Numbers

We are also interested in computing new Hodge numbers. In [KS] the full set
of 30108 pairs of Hodge numbers (15122 if they are restricted to h11 ≤ h12)
corresponding to hypersurfaces in toric varieties spaces is listed. Picking out
only the new Hodge numbers from the list of 2387 ordered pairs in [Kle], i.e.
those not contained in [KS], there remain only 15 pairs2:

New Hodge Numbers in [Kle]:

h11 h21 R h11 h21 R h11 h21 R

1 61 x 2 62 x 7 26
1 73 x 2 68 x 8 20
1 79 3 47 12 12 x
1 89 x 3 55 x 13 13 x
1 129 x 3 61 17 11

where R=x means that we could reproduce the Hodge numbers.

Using the toric construction we found 28 (56 with Mirror duality) pairs of
new Hodge numbers. They are listed in appendix A, table 1-3 together with
a detailed information about the starting polyhedron.

2(0,36) obviously is an error
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The resulting numbers are:

New Hodge Numbers with Toric CICYs:

h11 h21 h11 h21 h11 h21 h11 h21

1 61 2 68 3 56 6 31
1 73 2 70 3 86 6 119
1 89 2 76 4 47 6 139
1 129 2 77 4 75 6 251
2 59 2 81 4 87 7 138
2 60 2 100 5 106 7 152
2 62 3 55 5 166 9 164

Drawing all the new Hodge numbers together with the “background” of hy-
persurfaces in toric varieties in the range of 1 ≤ h11 ≤ 9 and 10 ≤ h21 ≤ 160
results in the following picture:

-

6

50 100 150 h21

h11

CICYs in Hypersurface Background:

q: Toric CICYs ⋄: CICYs in WP5
a: Toric Hypersurfaces

a a a a a

a a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a
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a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a
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a

q q q q

q q q q q q q q q

q q q

q q q

q

q q q

q q

⋄ ⋄ ⋄ ⋄ ⋄⋄ ⋄⋄ ⋄ ⋄
⋄⋄

Most of the new Hodge numbers lie in the lower boundary region h11 ≤ 4
which is less covered by the “background” of toric hypersufaces. It is remark-
able that almost every pair of new Hodge numbers corresponds to a starting
polyhedron ∆∗ ∩ N in the N -lattice with less than 20 points (see appendix
table 1-3).

To calculate new spectra in a systematical way it seems to be suggestive to
construct as many “small” reflexive polyhedra as possible, and to restrict
our attention to these examples. Indeed, as a temporary result we found 86
pairs of Hodge numbers not contained in [KS]. They are listed in table 4 of
appendix A and again compared with the ’background’ of hypersurfaces in
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WP4 spaces in a range of 0 ≤ h11 ≤ 9 and 10 ≤ h11 ≤ 160 in the following
picture:

-

6

50 100 150 h21

h11

CICYs in Hypersurface Background:

q: Toric CICYs a: Toric Hypersurfaces
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The advantage of this strategy now lies in restricting our interest in a “small”
class of reflexive polytopes which also dissipate less time in computing the
corresponding Nef partitions because of their small number of vertices. Pur-
suing this strategy, a further step will be to increase the codimension by
one and to construct complete intersections using six-dimensional starting
polytopes with small number of points.
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A Some New Hodge Data

Table 1

d1 w11
, . . . , wn1

d2 w12
, . . . , wn2

h11 h21 −χ #∆ ∩M #∆v #∆∗ ∩N #∆∗v

3 1 1 1 0 0 0 0 4 0 0 0 1 1 1 1 2 59 114 350 12 8 7
3 1 1 1 0 0 0 0 5 1 0 0 1 1 1 1 2 60 116 379 12 8 7
3 1 1 1 0 0 0 0 4 0 0 0 1 1 1 1 2 62 120 350 12 8 7
3 1 1 1 0 0 0 0 6 0 1 1 1 1 1 1 2 62 120 381 12 8 7
3 1 1 1 0 0 0 0 5 1 0 0 1 1 1 1 2 70 136 379 12 8 7
3 1 1 1 0 0 0 0 6 0 1 1 1 1 1 1 2 76 148 381 12 8 7
3 1 1 1 0 0 0 0 4 0 0 0 1 1 1 1 2 77 150 350 12 8 7
3 1 1 1 0 0 0 0 10 2 0 0 1 1 2 4 2 81 158 379 18 10 8
3 1 1 1 0 0 0 0 11 2 0 0 1 1 2 5 2 81 158 418 19 11 9
3 1 1 1 0 0 0 0 8 3 0 0 1 1 2 1 2 100 196 496 16 9 8
4 1 1 2 0 0 0 0 5 1 0 0 1 1 1 1 3 55 104 292 12 9 7
4 1 1 2 0 0 0 0 6 1 0 0 1 1 1 2 3 55 104 282 12 9 7
4 2 1 1 0 0 0 0 8 0 1 2 1 1 1 2 3 55 104 247 9 9 7
4 2 1 1 0 0 0 0 12 0 1 3 2 2 2 2 3 55 104 265 9 9 7
4 1 1 2 0 0 0 0 4 0 0 0 1 1 1 1 3 55 104 315 12 9 7
3 1 1 1 0 0 0 0 5 0 0 0 1 1 1 2 3 56 106 340 18 9 8
3 1 1 1 0 0 0 0 7 1 0 0 1 1 2 2 4 75 142 304 20 9 8
3 1 1 1 0 0 0 0 8 0 1 1 1 1 2 2 4 75 142 305 20 9 8
3 1 1 1 0 0 0 0 12 0 1 1 1 1 2 6 4 75 142 453 24 14 10
3 1 1 1 0 0 0 0 12 0 3 3 2 2 1 1 4 87 166 402 20 9 8
6 1 2 3 0 0 0 0 20 0 1 5 1 2 1 10 5 106 202 727 18 29 10
3 1 1 1 0 0 0 0 18 9 0 0 1 2 5 1 5 166 322 867 18 13 9
4 1 1 2 0 0 0 0 18 9 0 0 1 2 5 1 5 166 322 641 18 16 9
4 1 1 2 0 0 0 0 24 0 1 6 1 3 1 12 6 119 226 887 18 20 10
3 1 1 1 0 0 0 0 18 9 0 0 1 3 4 1 6 139 266 725 14 12 8
4 1 1 2 0 0 0 0 36 0 4 9 3 1 1 18 6 139 266 1392 16 20 9
4 1 1 2 0 0 0 0 60 0 15 30 3 10 1 1 6 251 490 3191 6 14 6
6 1 2 3 0 0 0 0 60 0 10 15 3 1 1 30 6 251 490 2722 12 31 7
3 1 1 1 0 0 0 0 16 7 0 0 1 2 5 1 7 138 262 689 18 13 9
4 1 1 2 0 0 0 0 16 7 0 0 1 2 5 1 7 138 262 509 18 16 9
6 1 2 3 0 0 0 0 36 0 4 9 3 1 1 18 7 138 262 1226 14 31 8
3 1 1 1 0 0 0 0 20 10 0 0 1 3 5 1 7 152 290 794 14 12 8
4 1 1 2 0 0 0 0 20 10 0 0 1 3 5 1 7 152 290 587 14 14 8
4 1 1 2 0 0 0 0 96 0 24 48 4 16 1 3 9 164 310 2051 6 17 6
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Table 2

d w1, . . . , wn h11 h21 −χ #∆ ∩M #∆v #∆∗ ∩N #∆∗v

12 1 1 2 2 3 3 1 61 120 407 6 7 6
6 1 1 1 1 1 1 1 73 144 462 6 7 6
8 1 1 1 1 2 2 1 73 144 483 6 7 6
6 1 1 1 1 1 1 1 89 176 462 6 7 6

12 1 2 2 2 2 3 2 62 120 321 6 8 6
9 1 1 1 2 2 2 2 68 132 434 12 8 7

10 1 1 2 2 2 2 2 68 132 378 6 8 6
15 1 1 2 2 3 6 3 86 166 607 16 9 8
33 1 1 3 3 10 15 6 251 490 1624 12 13 7
40 1 1 3 10 10 15 6 251 490 1297 14 13 8
60 1 1 3 10 15 30 6 251 490 3191 6 14 6
96 1 3 4 16 24 48 9 164 310 2051 6 17 6

Table 3

d w1, . . . , wn d1 d2 h11 h21 −χ #∆ ∩M #∆v #∆∗ ∩N #∆∗v

12 1 1 2 2 3 3 6 6 1 61 120 407 6 7 6
6 1 1 1 1 1 1 2 4 1 73 144 462 6 7 6
8 1 1 1 1 2 2 4 4 1 73 144 483 6 7 6
6 1 1 1 1 1 1 2 4 1 89 176 462 6 7 6
8 1 1 1 1 1 3 4 4 1 129 256 636 10 8 7

12 1 2 2 2 2 3 6 6 2 62 120 321 6 8 6
9 1 1 1 2 2 2 4 5 2 68 132 434 12 8 7

10 1 1 2 2 2 2 4 6 2 68 132 378 6 8 6
14 1 2 2 3 3 3 6 8 4 47 86 294 12 9 7
13 1 1 2 2 3 4 5 8 4 75 142 448 16 9 8
16 1 1 3 3 3 5 6 10 4 75 142 454 13 10 8
12 1 1 2 2 3 3 4 8 4 87 166 402 20 9 8
22 2 2 3 5 5 5 10 12 6 31 50 207 13 12 8



A SOME NEW HODGE DATA 61

Table 4

h11 h21 h11 h21 h11 h21 h11 h21 h11 h21 h11 h21

1 25 2 64 3 36 3 62 4 47 4 131
1 37 2 66 3 39 3 64 4 51 5 24
1 61 2 68 3 41 3 68 4 53 5 32
1 73 2 70 3 47 3 70 4 75 5 34
1 79 2 72 3 48 3 74 4 83 5 36
1 89 2 76 3 49 3 80 4 87 5 102
1 129 2 77 3 50 3 86 4 95 5 118
2 30 2 78 3 52 3 100 4 99 5 136
2 44 2 80 3 53 3 128 4 103 6 29
2 50 2 81 3 54 4 35 4 107 6 35
2 56 2 82 3 55 4 38 4 111
2 58 2 100 3 56 4 39 4 115
2 59 2 112 3 58 4 41 4 119
2 60 3 27 3 60 4 43 4 123
2 62 3 31 3 61 4 45 4 127
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