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Kurzfassung

Eine der spannendsten Entwicklungen in der Stringtheorigen letzten Jahren
beschaftigt sich mit Dualitaten. Im Bereich der Stringkmaktifizierung spielt
dabei vor allem Mirror Symmetrie eine wichtige Rolle, beileieer Stringtheorien
auf sogenannten Calabi—Yau (CY) Mannigfaltigkeiten, direMirror—Paar bilden,

zur selben Physik fuhren. Solche CY Mirror—Paare konnerder torischen
Geometrie durch vollstandige Schnitte von HyperflachéhC's) konstruiert

werden, deren Information in Paaren von reflexiven Polyedediert ist. Tell

meiner Arbeit war es, ein C—Programmpaket zu erstellen,daih man diese
Polyeder auf solche CICYs durchsuchen und deren Kohonm(d@g sogenannten
Hodge—Zahlen) berechnen kann. Die gewinschte Kodimerdso CICY kann

dem Programm als fixer, aber beliebiger, Parameter tibengelerden. Damit ist
man nun in der Lage, die vollstandige Kohomologie einer YCI@it beliebiger

Dimension und Kodimension zu bestimmen.

Da sich noch niemand zuvor systematisch mit der Physik vasdoen CICYs

beschaftigt hat, berechne ich einige Beispiele und diskatdie wesentlichen
Unterschiede zum Hyperflachenfall, wie das Nichtschneien Divisoren, die

zu Eckpunkten gehoren. Aufgrund der hohen Dimensioneriateschen Raume
spielt auch das Auflosen der Singularitaten eine entdehnelie Rolle, und wird fur
die einfachsten auftretenden Falle diskutiert. SpeziBligenschaften der CYs,
so wie Faserungen und nichttriviale Fundamentalgruppendew in die torische
Sprache ubersetzt und diskutiert.

Im weiteren benitze ich die Mirror—Abbildung in einem ureseBeispiele, um
damit explizit Weltflachen—Instantonen von einer toreehCICY zu berechnen.
Diese Instantonen fuhren zu stringtheoretischen Koarekt in der vierdimensio-
nalen effektiven Supergravitation.
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Chapter 1

Introduction

1.1 Motivations for Mirror Symmetry

Mirror symmetry is one of the most fascinating areas in gttimeory, and gives rise to ex-
tremely rich interactions between mathematics and physie$]. Roughly speaking, the idea
of mirror symmetry is that it relates identical string thiesron topologically different mani-
folds. Unbroken N > 1) supersymmetry in four dimensions and conformal invariaderce
strong constraints on these spaces [5]. They have to be-Ratcand Kahler and are known as
Calabi—Yau (CY) manifolds [6—8]. Now mirror symmetry isenésting for two reasons:

(i) It can be used to calculate gauge couplings and contobsitto the superpotential in
four dimensional supergravity arising from dimensionduetion of low energy effective
actions in string compactifications.

(i) It relates different types of string theories.

At very large distances, or low energies< 10'°GeV), the dimensions in the internal (the CY)
part are hidden and the theory effectively looks four—disi@mal. If one expands the (mass-
less) fields appearing in such a ten—dimensional low endfggtize action into an internal and
a four—dimensional part, the Hamiltonian in the internaltseproduces a mass term by the
Kaluza—Klein effect [9]. Since the excitation spectrumyigitally at10'® GeV, we are mainly
interested in the massless zero—modes. They also play anrtemprole in algebraic geome-
try [10], and can be identified with the Cohomology of the CaspV: H2“(V) [11]. The
dimensions of these spaceés,, are called Hodge—numbers, and mirror symmetry interobsing
hp, with h,,_,, of the mirror CY. For a CY 3-fold, only:;; andhy; are independent, and
correspond to Kahler and complex structure deformaticespectively [12]. These geometric
parameters, which are called moduli, appear as charge@mifigitls in the four dimensional
superpotential, where the coupling constants are equéletohtreepoint functions [13, 14] in
the topological string theory [15]. It turns out that there &wo different ways to define the
topological string, which are related by the mirror autoptosm of the superconformal alge-
bra [11]. The nice thing is that only in one case, called A—eigithe Yukawa couplings receive



Introduction

corrections from worldsheet instantons, while in the ottese, which is known as B—model,
they are equal to the classical intersection numbers of ¥hegace [1,16]. Mirror symmetry re-
lates these two models and, as mentioned in (i), can be usedcidate these non—perturbative
corrections of the superpotential.

However, there are a lot of choices of different CY manifoksch of which leads in general
to different physics in four dimensions, and, even worsehé&aY has a huge parameter space
by itself. On top of this there are five different consistemerstring theories in ten dimensions,
increasing the number of possible compactifications. OnasCx good as the other, and the
problem that one has no preferred compactification is knasweaauum degeneracy problem.
Unfortunately we do not have a good answer to this problerhekciting progress has been
made in understanding the relations between differentstypfestring theories (see [17] and
the references therein). The concept relating differembiies is known as duality, and mirror
symmetry is a duality relating type IIA and type IIB stringetiry on a mirror pair of CY
manifolds.

1.2 Constructing mirror CYs

The first sizable sets of CY manifolds were constructed asptete intersections (CICY) in
products of projective spaces [18,19]. These manifold® masny complex structure defor-
mations but only few Kahler moduli, which are inheritedrfréhe ambient space. The advan-
tage of weightedl{/IP), in contrast to ordinary, projective spaces, is that tiselgion of the
singularities contributes additional Kahler moduli, ahds provides a much more symmetric
picture [20]. However, it turned out that mirror symmetryoisly approximately realized in
this class of models [21, 22]WP spaces are a special class of toric varieties [23-28], and
there is a remarkable construction of mirror pairs of CY hgpéaces which was discovered
by Batyrev [29]. In this construction mirror symmetry magsfs itself in the duality of a pair
of reflexive polytopes. A generalization to complete intetions was presented in [30,31]. A
special class of toric CICYs, which is per construction mrirsymmetric, corresponds to nef—
partitions of reflexive polytopes. Mirror symmetry at thenomological level in this setup was
proven in [32]. In this work the authors also gave an expfaniula for the string—theoretical
hodge numbers, using the combinatorics of these polytdpesdevelopment of theef —code

is the foundation of the present thesis, which enables ustwss the specifics of CICY's cor-
responding to nef—partitions and their relevance in stiivggpry. The code for this program is
implemented in the PALP package [33]. First results areipbbtl in [34] and more, which are
closely related with this thesis, will follow in [35].

1.3 Outline of the thesis

It is most convenient to formulate first quantized stringottyein terms of a2—dimensional
guantum field theory on the world sheet swept out by the st@i@pter 2 of this thesis provides
the necessary background for understanding the A— and Btevisector of théV = (2,2)
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topological field theory, which is crucial for type IIA andpg IIB string compactifications on
Calabi—-Yau (CY) manifolds. We briefly discuss the calcalatf the correlation functions and
show why those of the A—model get corrections from worldshestantons, in contrast to those
of the B—model. In the case of a non—linear sigma model on npair of CY manifolds they
are related by the mirror map.

Toric geometry provides a powerful tool in constructing CYsstead of gluing together
affine patches to a manifold, one can also intersect a cantaimber of hyperplanes in order
to get a suitable space, which inherits the Kahler propfeoty) the ambient space. As already
mentioned, mirror pairs of CY manifolds can be constructetthe toric setup using the duality
of reflexive polytopes. In chapter 3 we give all the matheosativhich is needed to understand
the geometry of toric ambient spaces. Since those spacedsmahave singularities, we briefly
discuss how one can resolve them using triangulations gtguoés. This will turn out to be
very important when we determine the Mori cone of the CY, Wwhga certain section of the
Mori cone of a smooth ambient space. We also give a reviewsoiiole mirror—program for
toric hypersurfaces and calculate an explicit exampleeetid of this chapter.

While the computation of the cohomology in the hypersurfzase is rather simple, the case
of complete intersections gets very complicated. @efr—code is a very efficient tool which
findsall nef—partitions irarbitrary codimensions of reflexive polytopesafiydimensions and
calculates thavhole cohomological data. With this program we are able to diseuksge
number of examples, which is the main part of chapter 4. Wadowery interesting new
effects. For example, we found out that even divisors cpoeding to vertices of a polytope
do notintersect the CY. Non—intersecting divisors coroes{to projections of the Kahler—cone,
which are dual to sections of the Mori cone, as mentioned@bbue to the high dimensions
of the polytopes in contrast to hypersurfaces, the resoiwf the singularities gets also more
complicated. We discuss systematically the method of Uattige points which are at distance
higher than one from the origin to resolve those singuksiin order to get a smooth CY
manifold. The appearance of singularities is also strorglted to quotients of lattices, which
we use to construct CYs with non—vanishing fundamentakelas

Of patrticular interest are CY manifolds which are elliptic8 fibrations, where the latter
can be used to construct models which admit Heterotic dudbts@n/i'3 x T2. We discuss the
appearance of fibrations in the toric setup, which boils dawthe search for reflexive sections
of polytopes. Oucws—program is very helpful for the construction of ambientcgsawhich
admit fibrations, since it combines weights correspondm{jldrations of suitable weighted
projective spaces.

At the end of this section we discuss different realizatiohshe first interesting pair of
hodge numbers not appearing in the hypersurface case. WotbBabthe manifolds are indeed
isomorphic we calculate the triple intersection numberslapting the techniques of the hy-
persurfaces case, we calculate also the Yukawa couplintigeahirror using the mirror map.
Furthermore we also give an explicit rational transforimmatielating the complex structure
moduli space of two different realizations of this model.

A listing of the available options can be found in appendix lA.appendix B we give a
summary of the Hodge—data we have computed, and comparéhie toypersurface case and
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complete intersections in (products of) weighted proyec{iVP) spaces.

1.4 OQutlook

There is an intimate relationship between Landau—Ginzi§u€g) orbifolds and CY mani-
folds [36, 37], which was the original motivation to create tcode for the programen.x
(see appendix A.3). It transforms (if possible) Gorensteines arising from generalized CY-
manifolds [30, 38] into those coming from nef—partitionsgdaan be viewed as the toric version
of the path integral procedure used in [36]. Unfortunataly,calculations are not sophisticated
enough to be put into this thesis, but we mention them bediese are a lot of newer devel-
opments in the area of super CY's [39], where generalized C¥sbacome important.

The idea of generalized CYs is that they act as higher dimmaeasgeometrical replacements
in the cases where no honest CYs are possible, for exampheiriass of rigid CY manifolds
(ho1 = 0) [38]. Since we can associate a nef—partition to a lot of gdized CY's, and since we
have for both a mirror construction [30, 32], it would be netgting to check if it is possible to
perform the whole mirror program for a mirror pair of generadl CYs and compare it to that
of the associated CICYs coming from a nef—partition.

From the point of view of super CYs the first question one sthamswer is the exact defi-
nition of a super CY, and its physical significance. In a néap®ne should try to give a clean
definition of mirror symmetry for those spaces. In [40] thehaus reformulated the mirror
construction using'—duality [41] for super CYs, applying the ideas of [42] toatel a CICY
to a fermionic bundle. However, this construction does rtggalize thé'—duality approach
in [41]. The only exception they gave is the example of theroniof the supermanifol@®©I3),
Since mirror symmetry using—duality can be viewed as a non—compact version of the Batyre
mirror construction, it is natural to ask how super CY's canlégcribed in the latter approach.
Generalized CYs can be used to subserve as bodies of supea@d/'the known mirror con-
struction for the former may become very useful. These camations are very speculative,
and in a first step the best will be just to play around with s@xamples until one finds a
general structure.

From the CICY point of view it would be useful to find a more mgeable formula for the
Hodge—numbers, as it exists in the hypersurface case. Tduklihave the advantage to get a
better understanding of the assignment of divisors andicdgttice points in the polytope, and
maybe one can say a priori, without analyzing the intereacing, which of them not intersect
the CY space.



Chapter 2
The physical background

In this chapter we give the physical background which is ede@ understand the (twisted)
topological string. Our starting point is thé = (2, 2) superconformal algebra:

2.1 N =(2,2) SCFT

The N = (2,2) superconformal algebra is generated by the energy—mometetusor?’, the
two weight 3/2 supercurrentsy, G, and thelU(1) current.J. They split into a left— and a
rightmoving part:

(2.1)
T, (2) T (%)
Gi(x) Gil2) G-(z) G-(3)
Ji(2) J_(2).

The algebra can either be defined by th& F—expansions or in terms of (anti-) commutators
of the modes:

[[Lm, L, } = (m —n)Lpiy + 5m(m® — 1)0p, —n,
Jma J, - §m5m,—na
[ ] = —mJmin, .
[Ln, Gmtal = (_% — (m+ a)) Grntntar [Lny Gm—a) = (% —(m — a)) Gmtn—a;
[Jna Gm—i—a] - Gm—l—n-i—aa [Jna Gm—i—a] = _Gm-i—n—m
{Gsa,Gnoa} = 2Lpin + (n—m+2a)Jpym + 5 ((n +a)? — i) Om,—n-

(2.2)
If we omit + the statements are valid for both the left and rightmovirey, holomorphic and
antiholomorphic, part of the algebra. Unitary (irreduejbtepresentations of this algebra are
those satisfying the hermicity conditions

Lh=1_, Jh=7., al=a., (2.3)
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in a Hilbert space with positive definite norm. The paramet&kes values il € [0, 1), thus
we have a whole family of algebras. It turns out that one carfrgen one member of this
family to another by defining new generators which are justitable linear combination of
the old ones. The fields in the = (a — 1/2) = 0 sector are called Ramond (R), those in
then = (a — 1/2) = 1/2 sector are called Neveu-Schwarz (NS) fields. Fields tramsfoy

as tensors, i.e. primary fields, are in one—to—one correfpuare to highest weight states, i.e.
states which are annihilated by all modes with positiveaadj which are per definition the
annihilation operators.

There are two distinguished classes of states in the R an&dt8rsA field in the R sector
is called a R groundstate if it is annihilated by andG,. A field in the NS sector is called
(anti) chiral if it is annihilated bﬁ_m (G_1/2). It follows immediately from the algebra that
a (anti) chiral primary field satisfies

h < and h = g, (2.4)

o

whereg is theU (1) charge/ is the conformal weight, andis the central charge of the algebra.
From the additivity of thd/(1) charge it follows that the OPE of two chiral primary fields is
again a chiral primary field (the same holds for the anti dHietds), up to regular terms which
vanish in the limit when the difference of the position of th@ operators goes to zero. There
is an important isomorphism, called spectral flow, inteaioly between these sub-sectors:

n=1/2 n=1/2
P h P
g - - - q
3 6 6 )
| chiral primary,h = ¢/2 | | R ground statesy = ¢/24 | [ anti-chiral primaryh = —¢/2 |
The Hamiltonian and the momentum are
H=L+1L; and P=1Lf - Ly, (2.5)
and the generators of the vector and of the akiabymmetry are
Fv=Jf+Jy and Fa=Js —Jy, (2.6)

respectively.
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If we defineQ = G, and@Q = G, we get the following (anti) commutator relations:

Q1=0Q.=0,
. {Q.Q=H=P
Q.Q )= 2 {Q.Q)= 7

{Q-. Q.= Z, {QJHQ—}: Z_*, (2.7)
[iM, Qx] =FQx, (i), Qi] =F0Qs,

[iM, Qs] =FQx, [i0M, Qi] =FQs,

[iFv, Qi) =—iQx, [iFv, Q)= iQy,

[iFAv Q:I:] ::Finl:a [iFAa Q:I:] ::FiQi7

with Q. = Ql. In the following we assume that the central charges allsla(ff = Z = 0).
Let us now define the following operators:

QAZQJr + 9*7 Q,TA:QJr + @77 (2 8)
Qp=Q, +Q_, QL=Q;+Q-. '

Setting(Q, F') = (Qa, Fa) or (Q, F') = (Qp, Fy) the operators obey

{Q. QY =2H, @*=0, [F,Q=Q. (2.9)
Thus the Hilbert space of states ig'agraded)—complex:
T L B (2.10)

at each energy level. This complex is an exact sequence.if- 0, i.e. the cohomology van-
ishes forn > 0. At zero energy) = 0. Thus the space of SUSY ground states is characterized
by the cohomology of th@—operator. We note thédt is not necessarily a conserved charge and
the grading may not beZa-grading. However, the fermion number1)” is always conserved
and thus we have at leasZa—grading. SUSY ground states are in one—to—one correspoade
with Q cohomology classes. There is an important automorphidiedaairror automorphism,
interpolating between these two choices:

Qi< Qp, Fy < Fu, A=A (2.11)

An operatorQ is called

chiral & {Qp, 0} =0,

twisted chiral & {Q4,0} = 0. (2.12)

Using the Jacobi Identity one easily finds for (twisted) ahaperatorg) that:

(H+P),0]={0,[0+,0]} and [(H - P),0]={Q.[Q_ 0]}, (2.13)
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with $(0,, + 0x,)O = [H £+ P,O]. Thus the worldsheet translation does not changexhe
cohomology classes. After a Wick rotatian = iz, and a change to complex coordinates
2z =1/2(zy + izy) We get

0.0 =i[(H — P),0] and 0:0=—i[(H+ P),0]. (2.14)
Starting with aQ—closed fieldD®) = O we find that:
dO© =, do© = {Q, oW}, doW = {Q, 0P}, dO? =, (2.15)
with
o = idz[(é),, O] —idz[Q,,0] and 0@ = d2dz{Q.,, [(é),, o). (2.16)
We can then construct the followirig—closed integrated vertex operators:

/ oW and / 0, (2.17)
0 P

where~ is a closed 1-cycle and is our worldsheet (without boundary). The operators of the
second type can be used to deform the twisted theory. Twistieans that we combine the
euclidianSO(2) = U(1) rotation Mg = iM with theU (1) coming fromFy, of Fa:

A—tWISt M,EIMELXIME—FF\/,

B —twist : M}, = ME = Mg + Fy. (2.18)

Twisting of the theory has some important consequences:

() It affects the spin of the supercharges. In particultiera A (B) twistQ 4 (Qp) is a spin
zero charge. Théd/gz—charges before and after the A (B) twist and the correspagndi
powers of the cotangent bundles are:

Q- Qy Q- Q@
Mp| 1 1 1 -1 C K77 K77 K K
MAl O O 2 -2 Mp| 0 1 1 2 2
ME| 2 o0 o0 -2

(i) The energy momentum tensor for the A (B) twist gets medifand is BRST exact:
Tj_WiSted — T+ + %aj_’_ = %{QJF, G+} .
rvised — 7 +lpy =L@ ¢}y (H{Q_,G_}.

(i) Because of (ii) correlation functions with only—closed operators inserted are indepen-
dent of the metric on the worldsheet.

(2.19)

(iv) Deformations of theD—term can always be written &5, and() 3 exact terms. Twisted
chiral and anti—chiral deformations afgz—exact, Chiral and anti—chiral deformations

are() 4—exact. Thus the B (A) model depends only holomorphicallytamsted) chiral
deformations.

We will briefly discuss realizations of th¥ = (2,2) SCA:



2.2 The non-linears (nlo) model and the Landau—Ginzburg (LG) model

2.2 The non-linears (nlo) model and the Landau—Ginzburg
(LG) model

2.2.1 The non-linearc model

The Lagrangian of the— model is defined as

L= —0g 90,8 + a0 (Do DL +iggiL (Do = D,
FRGLETLTL) + g5(F' - L ) (F - Fézﬁ@i)-

We use the convention that Greek indices come from the woekety:, and Latin indices come
from the target manifold’. If we want this action to be invariant undéf = (2,2) super-
symmetry the target manifold, in which the fielfis'} embedding our worldshe&t take their
values, has to be a Kahler manifdldwith Kahler metric

PK

W’ (2.20)

gij =

which can be written as the derivative of the Kéhlerpo&érﬁ(qﬁiﬁz). R is the curvature of
g:;» and the covariant derivative is defined as

Dy = 0,0 + 0,0’ T vk (2.21)

The fermionic fields are sections of the bundles:

w_’_ c F(Kl/Q ® gb*Tl’O), w_ c F(K71/2 ® ¢*T1,0)’

b, eT(KYV2@ ¢ T, 3 eT(K-V2® ¢ T, (2.22)

where K is the cotangent bundle of the worldshéktWe can also add a topological term to
the action

/Egb*(B) (2.23)

involving the antisymmetrid field B € H*(V;R)/H?*(V,Z). In the superspace formalism,
the Lagrangian of the non-linea~model can be written as a function of chiral superfields
{®,..., "}

L= /d‘*&K((I)Z',EZ). (2.24)
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2.2.2 LG models

If V has a holomorphic functiof’ (¢!, ..., ¢"), one can deform the theory by adding the
F—term to the Lagrangian:

R 1 )
L = /d40K(<I>Z,Q> ) + 3 (/ d*OW (") +c.c>
= 950" 80,8 +ig0" (Do + D)W +ig50 (Do — Di)i,
i —j —1 1 P 1 i . 1 I
R R g — 79 GWOoW — §Di8ij+wi - §D58;Ww_wi,

where we have integrated out theand F:

, o 1 -
F' =Tt = g o, (2.25)
The SUSY variations of the fields are:
8¢ = e i — e i, 09 =&l e,
Ol =2 Dy + e Fi, 0 = —2ie 0,4 +&.F, (2.26)
oYt = —2ie, 0_¢' + e_Fi, 6 =2ie 0 ¢ + e F .

By the Nother procedure one finds the supercurrents:

—0 —1 : ; —1 —1 : ; '
G.= 9%j¢¢(80 +01)¢ &+ WF@‘VV, G = ¢9€j¢¢(60 +01)¢) &+ @/&@‘VV,

with charges)® = [ d2'GY andQ ™ = [ da'G,.

2.2.3 R-symmetry

R—symmetry rotates the fermionic components as follows:

Uy : e = e dhe, Py 0y, (2.28)
UD)a:ts—ePipy, hp TPy, .
with chargesiyy = 2= [(Y_¢_ + ¢, ¢y )dat andFy = & [(—_1p_ + 1,4, )dzt. On the
supercharges R—symmetry acts in the same way as on the fecrfigds. Since thef*, g
are derivatives, R—symmetry acts on them with the oppogjte s

At the classical level/ (1) 4 is always preserved. Siné80 = df~df" has al/(1)y charge
of —2 this has to be compensated by the superpotential. If weragsid/ (1), (U(1)4) a R—
charge of;’ (0) to the fields®?, the superpotential must be a quasi-homogeneous holoimorph
function:

WA DY) = N2 (D). (2.29)
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At the quantum level, not only the action must be preservettuR—symmetry. If we want
the path integral to be invariant, we should also examinéethraionic measuréW. Let us do
this for the euclidian two torus:( — ix5) in complex coordinates (= =1 +ixs, z = 1 —ixs).
The anomaly comes from the zero modes of the fermionic lartetm:

2ig;;07, Dt — 2igi0” Dyt (2.30)

which we have to insert to get a non—vanishing correlatiorction. The index theorem gives
dimker D; — dimker D, = k = / ¢ cr(TH) = (e (V), 6, [5)), (2.31)
P

and we get#, is the number of zero modes):

#o(- — vy ) = oWy — ) =k (2.32)

To get a non—vanishing correlation function we have to ingep_ and k E+ fields. They
have opposité/(1),, charge, but thé/(1), charge gives a contribution ef*?® and the axial
R—symmetry is broken t@,,. The integerk only depends on the cohomology classX:].
For example, if we consideP” ! the first Chern class is equal 19 times the generator of
H?*(V,Z) = 7 (each integer defines a line bundle) aiill) 4 is broken toZ,y. U(1)4 R—
symmetry is preserved exactly when the first Chern classhasi i.e. whefv is a CY mani-
fold. To summarize, we give the following table [43]:

nlem CY | nlom, ¢, (M) # 0 | LG on CY, | LG on CY, W quasi—
W generic_| homogeneous

U(]-)V o) @) X e}
U(1)a o X o o
2.2.4 Twisting

So far we have assumed that our worldsheet is flat. Stringiardpt are defined as the sum
over all topologies and conformal classes of Riemann sesfaand the starting point is the
string amplitudeF, for a fixed but arbitrary curved Riemann surfaceSUSY variation of the
action gives a term which vanishes only if the parametemmndeé.. are covariantly constant. If
3} has non—vanishing curvature ¢ 1) there is no covariant constant spinor. However, if we
twist the theory we get one fermionic symmetry and can makeofithe localization principle
and deformation invariance.

A-twist (nlom on a Kahler manifold)

'l/JJr c F(K ® (b*Tl’O),

(¢*T170>7
EJF c F((Z)*To’l), (233)

(Kfl ® (Z)*TO,l)’

v el
v_erl
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Thus, setting_ = e, = 0 ande = e = ¢, and definingy’ = ¢/, ¥ = 1, p. =, and
pt = ', the remaining SUSY variations= ¢Q 4 are:

0¢' =ex', O\ =0, Op.=2ied:0" + ellyply®,

7 i s~ i o i i~k (2.34)
0p =ex', 0X' =0, 0p. = —2ied,p +6Fﬁcpgx .

The physical operator®,, are the) 4, cohomology classes and are easily seen to be in one—

to—one correspondence with the de Rham cohomology cI@s}sestlp’q)(V) ofd =0+ 0
closed formesy:

0, = Oéz‘l...z‘pjl...quil XYL 80, = €Oy (2.35)

These operators havé&(1)y (U(1)4) chargegy = —p; + ¢; (¢4 = pi + ¢;)- For the correlators
we get the following selection rules: The vector R—charggilnot anomalous, sd°;_, p; =
>:_, ¢; must hold fors insertions. Foi/(1)4 we have the following mismatch between zero
modes:

Hol(x — p) = 2k, (2.36)

where k is the index of the Dolbeault operatérsnd 0 on the worldsheet (thg’s are now
scalar fields on the worldsheet). Using the Riemann Roch¢neave get

k= /ch(V) +dim V(1 —g) = (1 (V),[¢.X]) + dim V(1 — g), (2.37)

and we thus get the following selection rule:

sz- = Zqi = (c1(V), 9. [2]) + dim V(1 — g). (2.38)

In what follows we assume that> 0 and that there are nozero—modes. Localization tells us
that we only have to look ap 4 fixed points, which obey.¢’ = 0. At these fixpoints we can
write the bosonical action as

5 = /E ¢ (w — iB) = (6,[5], (w — iB)), (2.39)

wherew is the Kahler form and we have also added the B—field. The mmap> — [ has

to be holomorphic (localization), and for a fixed cygle= [¢.Y] infinitesimal deformations
correspond to holomorphic vector fields Iyingﬁfg(qS*Tv). This space, denoted byts(V, ),

is precisely the space of thé's and has dimension (because of our assumption) eqéalftbe
measure on this moduli space comes from the insertions ofd&ators); at the points; € X.
EachQ, corresponds to a class € H;(V'). Since we want to have a form on the moduli space
and not on/” we use the pull-back of the evaluation map:at

evi: Ms(V,8) — V,
¢ = o(x).
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The correlation function is then

(O1...04) = Z e~ (B (w=iB) / eviwi A Aeviws. (2.40)

The w; are Poincare dual to divisor3; and can be chosen to have delta function support on
D;. Each integral above is only non—vanishingifr;) € D;(i = 1,...,s) and the numbers
ng.p,.....n, count all holomorphic mappings such thatX] = g and¢(z;) € D;(i = 1,...,s)
. Integration of the Kahler form on any cycle is nhon—negatwnd zero precisely when is
mapped to a pointd{ = 0). In the large volume limit theg = 0 contribution is dominant and
the moduli space i¥ itself. The mappingsv; are the identities in this case and the integrals
of the 3 = 0 contribution are just the classical intersection numbess \{ill use this later to
normalize our Yukawa couplings). Because of our assumpiiergenus has to be zewp= 0.

Of particular interest are the = 0 threepoint functions, where we assume thias a CY
manifold:

K(123) = <Oal Oa20a3>g:0- (241)

From the selection rule we get that < Hc(ll’l)(V), which correspond to Kahler deforma-
tions. One may wonder if there are any non—vanishing camedavith more than three in-
sertions. The additional insertions must hévg ), charge equal to zero. There are indeed
such operators, namely the integrated operaf®¥fs which can be used to deform the action:
68 =t [ 0. Correlators with additional insertions can be constmibgdifferentiation

of the threepoint functions with respectio

4]

510,010),m0 = (0,0,01 [ O (2.42)
Conformal invariance implies that it does not matter if weleange with j, k, orl. Thus we
get

O K (i) (1) = 0K iy (1), (2.43)

which is known as the WDVV equation. Together with the synmnet permutation of the
indices, it follows that thé< can be integrated:

Fy is the genus zero partition function.
B—twist (compact CY or LG model on a non—compact CY)

'l/JJr c F(K ® (b*Tl’O),
EJF c F((Z)*To’l),

(K~ @ ¢ T"?),

((b*TO’l). (245)

¢_ el
w_erl
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Now we set, = c_ = 0ande = ¢ = .. We define the fermionic fieldg; = gﬁ@i —Ei),
= + @Z)+ pL =", andpl = ¢" . The SUSY variations = Q) p are:

5§ =0, 80;=—cW, 66 =en’, =0, op,=2J0,4. (2.46)

The Q ;—cohomology is now the space of holomorphic functighs ¢* modulod; V. @ p—
fixed points have to obey:

5 =0 oW = 0. (2.47)

If we assume that there is only a finite numBéof isolated critical pointg;, which are non—
degenerate, the path integral decomposes into a sum

(O1...0y) = Z(o1 L ON) y, - (2.48)

Each summand can be computed by the quadratic approxinaatand the fixpoints;(x) =
y;. The bosonic and fermionic determinants from the constatewn cancel, and the contribu-
tion from the non—constant modes comes from the quadrapimajation of the superpoten-
tial. ¢, ¢, and@it are scalars on the worldsheet and each of them has one comstde. )",
are (co-) vectors and thus each of them jasnstant modes. In summary we end up with:

(O Zﬁ Yi) - - fs(y:) (det B0, W)* ! (). (2.49)

If W = 0andV is a compact CY the physical operatd?s, which are th&)z cohomology
classes, can be identified with theeohomology classes] in H ) (V, ATy, ):

Ow — wzl an 1 Jpe L 9jq7 5Ow = E(’)gw, (250)

Ji---Jp

The correlation functions again have to fulfill selectiotesu Eachy; € HP)(V, AYTy,) has
U(1)v (U(1)4) chargegy = —p;+qi (g4 = pi+4qs). Since the target space is a CY, the anomaly
of the axial charge i8 dim V(1 — g). We thus have the selection rule:

Y pi=) g =dmV(l-g). (2.51)
i=1 i=1

The only non—vanishing correlators argyat 0 andg = 1.
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Localization tells us thai¢ = 0, i.e. the map® are constant maps. The whole worldsheet
Y is mapped onto a point ilf. The path integral reduces to an integral overin order to get
a(n,n) form (for g = 0) we have to contract the operator with the holomorpfitorm €2:

((91...(98):/V<w1/\---AwS,Q>/\Q. (2.52)

In the case of a CY threefold, the threepoint function of apans corresponding to the Beltrami
differentialsyy, ji2, u3 € HY (V. Ty/) is:

?(123) = <Om Ouz Ou3>g=0 = / /iil A Mé A Nggijk A, (2.53)
1%

which will turn out to be the third—order derivative of theepotentialF.

2.2.5 ModuliofaCY

Infinitesimal deformations of the metric on a CY manifoldispito two types. Kahler de-
formations correspond to elementsfif}' (V, C), while deformations of the complex structure
correspond to elements Hg’l(v, Tv). We will briefly discuss the second type of these defor-
mations.

The almost complex structuré satisfiesJ? = —1 and can be written in local complex
coordinates z,, z; } as.Jy = idy and.Ji = i67. Now we send/ — J' = J + ¢. The new.J’
must still square te-1. Linearizing this gives the conditiofe + ¢J = 0 ande must be of the
form

€ = 2dz"0s, + €2dz"0,, = €4 + €y (2.54)

Integrability means that the Lie bracket of two holomorplactorfields must again be a holo-
morphic vectorfield. Defining the projectors

1
Py = 3 (1F4dJ), (2.55)
we get the condition
P_[P.X, P.Y]=0 (2.56)

for all vector fieldsX, Y. Sending/ — J + e transforms the projectors @& — Py F i/2e.
The integrability constraint applied to the vectorfiells= 0., , 9, = 9., then gives:

0 = <P_ + ée) (P, — %e)@a, (P, — %e)@b]
= (P_ -+ %6) [&1 — %EA((?@), ab — %6,4(61,)]

DP9 (eal@h) — D1 (eaD)) = 5Dt — D)
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Thuso,e4 = 0. The condition that the Lie bracket of two anti—-holomorphéectorfields is

an anti—-holomorphic vectorfield givése; = 0. Exact terms are easily seen to correspond to
infinitesimal change of coordinates without changing theglex structure. We conclude that
infinitesimal deformations of the complex structure coomasd to cohomology groups in

HY(Ty) = H'(Ty), (2.57)

where in the last step we have used the Cech—Dolbeaut istisorp

In different complex structures, the decomposition of @uegent (cotangent) bundle into
holomorphic and anti-holomorphic parts may be differertug; the cohomology class repre-
senting then, 0) form on a CY manifold changes over the moduli space of comgtieictures.
All cohomology 3—form classes form a bundle over the modudice, the hodge bundl¢, and
the CY 3—form is a section of this bundle. The buntiean be given a flat connection, called
Gauss—Manin connexion. The fibersigfare 73(V; C) for CY manifoldsV. We can define a
metric onH by

(amzifeAn vn,0 € H*(V;C). (2.58)

This metric is hermitian sincé,n) = (n,0)*, which implies that we can find a symplectic
basis of real integer three—formia,, 3%} a = 1,..., h3/2 such that

(, 8°) = id, (g, ap) =0 (8°,8%) =0, (2.59)
with dual basis{A% B,} a = 1,...,h*/2 in H3(V;Z). The holomorphic 3—form can be
expanded in this basis:

Q = 2%, + iw,° with 2% = / Q, 1wy = / Q. (2.60)

It can be shown that both® andw,, define local projective coordinates on the moduli space
[44].

Since the CY 3—form is unique up to scale, it defines a comphexdundle in the Hodge
bundle. A natural metric in this line bundle is

hzumﬁzgmyzingQ. (2.61)

If 2 is a (local) coordinate vector on the moduli space #fe) a holomorphic function, then
0 — e/®) Q defines the same projective section, but> he/*/. Thus the quantity

K = —log (||]) (2.62)

transforms as a Kahler potenti&dl, — K — f — f, and we can define a metric on the moduli
space by )
Gap = 0uOp K. (2.63)
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called the Weil-Petersson metric. Since the variatign gives a(3,0) and a(2, 1) partk,2 +
1, the variationd, Q) gives a(0, 3) and a(1, 2) partksQ + iz, andd,Q = 9,2 = 0, it is easy
to check that Ty
v ) Ha/\ Ha
0o TTE (2.64)

Important identities arg Q9.Q = [ Q0.0,2 = 0, which will also turn out to be useful for us
in calculating relations between the different Yukawa dmgs. From the first we get immedi-
ately that

(2% + 1w B, e 4 10,wg %) = we — 20w, = 0. (2.65)

Setting
F = z2%w,, (2.66)

we see thatv, = 1/20.F. Summing withz¢ on both sides we get‘0.F = 2F, soF is
homogeneous of degree Z.is called the prepotential. From the prepotential one camprde
the Kahler potential and all the couplings. The Kahlerpbial is given by the formula:

h:€K:i/QAQ:Kf@f—f@f) (2.67)
The Yukawa couplings are:

Fabc = <O,ua O,Lbbo,uc>g=0 = / MZ A Ni A M?Q A Qijk = aa8b8t2~¢‘7 (268)
\%

wherey., corresponds to the, 1)—part ofd, (2. Note that the Yukawa couplings are only given

up to multiplication with a non—zero complex number. Theaidé mirror symmetry is now
that, for a mirror pai, V* of CY manifolds, the Yukawa couplings corresponding to k€éh
deformations orl/ can then be expressed in terms of the Yukawa couplings gamesng to
deformations of the complex structure on the mivorusing the mirror map. It is the task of
the next chapter to give all the mathematical backgrounahtterstand how this works.
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Chapter 3

The mathematical background

3.1 Basics of toric geometry

Let M and N = Hom(M, Z) be dual free abelian groups of radk)r and Ny the real scalar
extension of\/ and NV, respectively, andx, ) : My x Ng — R the natural pairing. Eventually
we have to enlarge the lattices fiy. Then we writeN = N @ Z" andM = M @ Z" with real
scalar extensiond and Mg (dim My = dim Ng = d). TheM-lattice can be regarded as the
space of exponents of Laurambnomials. More precisely, the M-lattice can be identifiethwi
the character group of all group homomorphisms from thebatje torusC?” to C*. Objects
of Nk will usually be marked with &, vertices in thel/ (NV)—lattice will be named by (p*).
The basic objects in these spaces are cones and polytopes:

Definition 3.1.1 Asubsetr C My is called & = dim (Span(c))—dimensional rational convex
polyhedral cone if there exists a finite det, . . ., p,} C M such that

O':{)\lpl—l-"'—l-)\npnEMRI)\Z‘ERE,izl,...,n}. (31)

If n = k the cone is called simplicial. Nol ({p1,...,p,}) = 1 we call the cone unimodular.
The dual cone™* C Ny is defined as

o"={2"€Ng:(2,2") >0 Vzeo}. (3.2)

It can be shown that* is also rational ( [23]), i.ec™ is generated by lattice points.

An important class of cones are Gorenstein cones:

Definition 3.1.2 A d—dimensional rational convex polyhedral cafiec My, is called Goren-
stein if there exists a lattice poimtz € N in the dual lattice such thdjp, nc) = 1 for all
generators of”. The polytopeAs = {z € C : (z,n) = 1} is called the support of’. A
Gorenstein cone is called reflexive if the dual cériec Ny is also a Gorenstein cone. In this
case, the integeim,, n¢) is called the index of” (C*).
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Definition 3.1.3 Let A = {p1, ..., pn} C M be afinite set of lattice points. The convex hull
A = Conv (A) (3.3)

is called a lattice polytopA C Mg. If the origin0 is in an interior point ofA, the dual polytope
A* C Ng is defined as:

A" ={z"€ Ng:(2,2") > -1V z e A}. (3.4)

A is called reflexive if bothA andA*, are lattice polytopes.

3.1.1 Definition of a toric variety

Toric ambient spaceXs- are defined in terms of a fan*, which is a collection of rational
polyhedral cones™* € ¥* containing all faces and intersections of its elements 28327].
X+ is compact if and only ifJ,«c5» = Ng. We are mainly interested in the case wheie
consists of the cones over the faces of a reflexive polytope Nr. The origin is associated
to the O—dimensional con@}.

The toric variety is smooth if and only if each cone of maxirdahension in the fan is
simplicial and unimodular, i.e. the generators of each aimeaximal dimension generate the
lattice. Singularities at codimensidrof such an ambient space are irrelevant for a sufficiently
generic choice of equation for a Calabi—Yau 3—fold. Higklerensional singularities have to
be resolved by a subdivision of the fan. Sometimes it is resggsto add points which are
contained in(rA*\ (r — 1)A*) N N in order to get a smooth ambient space. This will turn
out to be important to get the right Mori cone, and we will agidr this issue in more detail in
Section 4.2. In the rest of this subsection we will give a dtdin of a toric variety in terms
of homogeneous coordinates, which is one of the simpless wagefine these spaces. Since
we are also interested in resolving singularities, we byridifcuss the main arguments used
for triangulating polytopes. Note that we have been a Ighbgpy in the definition of our toric
ambient space: we also need the lattice in which this pog/tivps and which triangulation we
use to resolve the singularities. Thus we should betteewddwvn a triple{ A*, N, 7 (A, A*))
to get all the information we need to define our variety (thelse A* N N is a set of lattice
points containing the vertices &f*, and the vertices of each simplex in the triangulatioare
all contained inA).

Definition using homogeneous coordinates

LetX* be a complete fan and denote¥¥(/) the set of—dimensional cones id*. In particular
¥*(1) = {p},....p} is the set of generators of the faif. We have the following exact
sequence of groups:

0— M- P z Dy Ai(X) —0, (3.5)

preX*(1)
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with o : m — > (m, p*)D,- andf : (a,) — [>_ . a,D,]. Eachp® € ¥*(1) corresponds
to a torus invariant Weil divisoD,,, and eachn € M gives a charactey™. Regarding every
character as a rational function, the magives an embedding of the rational functions into
the group of7y,—invariant Weil divisors. The map maps thely,—invariant Weil divisors
onto the Chow group, which is the group of Weil divisors maddtional equivalence. Inside
the Chow group sits the Picard groiic(X), which is the group of Cartier divisors modulo
rational equivalence. A Weil divisab = »_ . a,- D, is Cartier if and only if there is ab*—
piecewise linear integral functiob, : Ng — R such thatb,(p*) = a,- Vp* € ¥*. On cones
of maximal dimensiowr we have®, |,= m, |, for some uniquen, € M. There are two
important cases [2}:

(i) D is generated by global sectioss (m,, p*) > —a,- whenevep* ¢ o,
(i) D is amples (m,, p*) > —a,~ whenevep* ¢ o.

In the first caseb is called (upper) convex, and in the second case called strictly (upper)
convex. Every Cartier divisab defines a polytopé&, C My as

Ap ={m € Mg : (m,p*) > —a,}. (3.6)

Condition (i) is precisely that this polytope is the convexlfof the {m,}. Condition (ii)
requires in addition that., # m; for all different cones of maximal dimensien 7. There
is a one-to—one correspondence between lattice poirtg,@fnd monomials irb|p;:

meANM & Z xp*<m’p*>+ap* € Sip- (3.7)
preX*(1)

Note that the Chow group in the exact sequence (3.5) may loasi®n. WhenX is smooth,
thenPic(X) = A,,_1(X). If £* is simplicial then the Picard group has finite index in the @ho
group. The Picard group is always torsions free when thesfaoiinplete, whiled,,_; (X) may
have torsion, even whex* is simplicial [2].

If we applyHom(_, C*) to the exact sequence (3.5) we get another exact sequence:

0— G — (CH™W Ty, —0. (3.8)
In particular

G = Hom(A,_1(X),C"). (3.9

Thus G is isomorphic to(C*)k~4 times some finite cyclic group, which is present precisely
when A4,,_; has torsion. The embedding 6f into (C*)*"() extends to an action off on
C¥ MW, wherea = (a,-) € C*"W andg € G map to

g-a=(g9([Dy])ay). (3.10)

For a detailed discussion of semiample divisors see [45]
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Now consider the polynomial ring
S =Clz,: p* € £*(1)], (3.12)

where every monomialp, = [] ,- x%" € S corresponds to an effective torus—invariant divisor
D=3 es-q) Dy The exact sequence (3.5) induces a grading of this ring fiyidg

degzp =[D] € A,1(X), (3.12)

which decomposeS into a direct sum:

S= B Sa Sa=Span({zp:degrp = a}). (3.13)

acAn_1

The toric varietyXs- is then defined as the categorical quotient

X5 = (C¥ W\ Z(¥Y) /G, (3.14)

whereZ = V(B) and B is theG-invariant ideal defined as

B={]] zp : 0 € =°(a)}. (3.15)

p*¢o

This quotient is geometrical if and only if the fatt is simplicial [26]. In this case we really
have homogeneous coordinates: (z,-). Up to torsion the groug- acts as

(a) (a)

(21:...:zn)w()\?;)zl:...:/\‘(Jg)zn), a=1,....,h=Fk—d, (3.16)
where), € C* (a = 1,...,h) and theh vectors(qi“)) are generators of the linear relations

> qia)p;-k = 0. If L is a matrix such that the rows yield a basis of relations of#réices>* (1),
the maps can be identified with..

Example 3.1.4 As an example, we will show how the Hirzebruch surfd¢eis constructed
from a fanX C Ng:
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Us,, = Spec(C[z™1, 2%y])

Us, = Spec(C[z, y])

Uy, = Spec(C[z™!, 27~ !]) =<— U, = Spec(C[z,y]).

g2

The vertices generating the rays afe= e,, p5 = —e,, p5 = —e, + ae,, andp; = e, with

a € Z>. The diagram on the right hand side shows how the differeiches are glued together.
The exponents of the monomials are the generators of thecdnak. The horizontal patching
gives two copies of x P!. performing also the vertical patching give®abundle oveiP'.

For the construction using homogeneous coordinates we aéadis of the relations be-
tween the vertices:

p+py = 0,
p1+kpy+p3 = 0,
which will give us the two scaling relations after assigniogevery vertex! a coordinate;.

Since the set§p?, p5} and{p}, p;} are not contained in any cone we get for the exceptional set
Z = {z1, 23} U {29, z4}. Thus our toric variety is

{(21, 20, 23, 22) € C*\ Z 2 (21, 20, 23, 24) ~ (21, \iF 20, pzs, Azg) VN, p € C*}. (3.17)

The fact that we have a fibration of two projective spacesasbge the two relations do not act
independently (fok # 0). The divisorD = ZP* D, in our example is:

ample Fo,Fh
generated by global sectiong,

If & > 2, Apisnolongerthe convex hull of the,, which are equal té , on cones of maximal
dimensions. Fork < 2 the first chern class af}, is that of the line bundle associated to the
divisor D. For both,F, and Fy, D is ample, which implies that the first Chern class is positive
For F5, D is no longer ample, but is still generated by global sectidimgis the first chern class
is still non—negative folF,. In the next section we define the Kahler cone. There we wél s
that ample means that the divisor is in the Kahler cone, amegted by global sections means
that it is in the closure of the Kahler cone. Varieties withsjpive first Chern class are called
Fano, those with non—negative first Chern class are calléd Ne



24

The mathematical background

3.1.2 The Kahler and the Mori cone

Let X* C Ny be a simplicial fan and denote by , ® R the cone generated by the divisor
classegD,.]. Then the Kahler cone sits inside’_; ® R and is defined as follows. Let=

D rexy @ Dpr] € Al ® R. SinceX* is simplicial, (a,-) corresponds to &*—piecewise
linear integral functionp, on N defined by®,(p*) = a,- V p* € £*(1) (Note that®, is only
defined modulo rational equivalence). Then one defines the co

cpl (XF) = {a € At | ® R : ais convex. } (3.18)

For a simplicial projective variet' = X the Kahler cone is the interior of the cond (>*),
which is the cone of all strictly convex functions.
For a simplicial fan>* these functions can be found using primitive collectionsestices:

Definition 3.1.5 Let X* be a simplicial fan. A primitive collectio® is a subse’ C ¥*(1)
with the property thaP is not the set of generators of a conelihwhile any proper subset of
Pis.

Proposition 3.1.6 [46] On a projective simplicial toric varietg, coming from
D rexy @ Dpe] € Al ® R is strictly convex if and only if for any primitive collectio
P={p},...,pt} C ¥*(1) we have

Do(p] + -+ p5) > Pulpy) + -+ Pulpy) (3.19)

The Mori coneM (Xx-) of a simplicial and complete varietys- is the cone of effective 1-
cycles. It turns out that the Mori cone is dual to the Kahleme.

Toric varieties via symplectic reduction

There is another very important approach to construct t@iteties via symplectic reduction.
It is strongly related to the gauged linear sigma model andiNeliscuss it briefly. For us, the
most important example i8* with symplectic formw = Zle dz; N dy;. The special feature
of C¥ is that the action of the grougf onC* is symplectic, which means that theis invariant
under this action. The Lie algebra of this groufRis and the vector field corresponding to the
flow of an elemenf € R in C* is

XA_Z)\ ( +xzaa). (3.20)

Yi

This action is Hamiltonian, which means that for eachwe can find a functiory, such that
w(Xy, -) = df\: defining the moment map as

1
p:CF— (RM* 21— 5(\21\2, ooz (3.21)
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givesf, = A o u. Now suppose that we have a simplicial fah C Nk. The maximal compact
subgroup&r of GG in the exact sequence (3.8) is

Gg = Hom(4,_1(X), S,

with Lie algebragr = Hom(A,,—1(X),R). Thusg; = A,,_1(X) ® R and we get the moment
map as:

s CT S RE DAL (X)) @R, (3.22)
wheref is defined by tensoring (3.5) witR. If « € A,,_;(X) ® R is Kahler, then one defines

X = pst(a)/Gr. (3.23)

One can think ofus+ as fixing the size and the quotient &% is needed to get a non—degenerate
symplectic form. Since this group can have finite stabifizére quotient has the natural struc-
ture of an orbifold. If Xy« is simplicial and projective, there is an orbifold diffeorpbism
betweenXy: and X [2].

A simple example is the construction Bf out of C**!: first one fixes the size by setting
f(z) = 1/2||z]]> = r > 0 and gets a spher&***! with radiusr. The induced symplectic
form is degenerate. The null-vectorfield is precis&ly. Thus we have to mod out the
corresponding to the flow of;.

One important thing is that botlfiz andys-, in the definition (3.23) ofX only depend on
¥*(1). If X*" is another simplicial projective fan such that(1)’ ¢ ¥*(1) one can show that
there is the following orbifold diffeomorphism [2]:

“;(1)(@/(;(2*(1))11% ~ Xy, (3.24)

wherea is in the interior ofcpl (¥*') € A(X*(1)). Thus the moment maps-(;) can be used
to construct not just one toric variety, but all projectiveplicial toric varieties Xs... with
¥*(1)  ¥*(1). In the language of gauged linear sigma models [87%& A(X*(1)) is a
parameter, and one gets different physical theories dépgmchereq lies. If a € cpl (X*(1)')
the theory involves the toric varietys..., while if it lies outside, one gets LG theories or Hybrid
models.

3.1.3 Triangulations and the secondary fan

Definition 3.1.7 Let A* = Conv (A) C R?"! be a(d — 1)-dimensional polytope. A triangu-
lation 7" of (A*, A) is a triangulation ofA* into simplices with vertices inl. A triangulation
7 of (A*, A) is called coherent if there exists a strictly convExpiecewise—linear function
whose domains of linearity are precisely the (maximal) sice;s of 7.

Every sucHl —piecewise linear function is uniquely defined by it's vawa the vertices of the
maximal simplices off. Thus we get a surjective (we do not require every element tf
appear as a vertex of a simplex) linear map- g, 7 from linear maps oiR“ on the space of
T—piecewise linear functions ai*.
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Definition 3.1.8 Let C(7') be the cone of functiong : A — R with the property that

(i) gyp7: A" — Ris convex.

(if) foranyz* € A which is not a vertex of any simplek we haveg,, 7 (2*) > ¢(2*).
Clearly a TriangulatiorY is coherent (3.1.7) if and only if the interior 6f(7) is non empty.

Proposition 3.1.9 [47] For fixed(A*, A), the cone<’(7) for all the triangulations of A*, A)
together with all faces of these cones form a complete fak“inThis fan is called secondary
fan of A.

Definition 3.1.10 Let again(A*, A) (dim A* = d — 1) be as above, and fix a translation in-
variant volume forniol (_) onRR¢~!. A characteristic function on a triangulation @t*, A) is
a functionA — R defined as

pr(p)= > Vol(o). (3.25)

o:p* € Vert (o),
dimo =d -1

The secondary polytopg(A) is defined as the convex hull of the det;} c R4, whereT
runs over all triangulation® of (A*, A). For anyp, we can define the normal coné,, >(A)
as?

N, S(A) = {z € R : (z,07) > (2,2") ¥V 2* € B(A)}. (3.26)

o7 is a vertex if and only if the interior aV,,, >(A) is not empty.
Proposition 3.1.11 [47] The secondary polytope(A) has the following properties:
(i) dimX(A) =k — d, wherek = #A.

(i) The vertices ob2(A) are in one—to—one correspondence with the coherent triatnoyus
of (A*, A).

(iii) For any triangulatior?” the normal coneV,,, $(A) coincides with the con€'(7) c R4
from definition (3.1.8).

Definition 3.1.12 Let L4 be the set of all affine relations between the elements, ok.

La={(l+) eR*: Y L.z"=0,) L. =0} (3.27)

z*€A z*€A

Let b.. be the images of the canonical basis vectors under the fimjéR*” — L*, which is
dual to the injectiorl. , — R4. The setB = {b.. : z* € A} is called the Gale transform [47,48]
of A.

%we identify the spac®&“ with it's dual by defining the scalar produgt, w) = 3. . 4 (2, v*)(w, v*).
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In matrix notation the rows oB correspond to a basis of the affine relations, and the columns
are theb,.. Now let A = {z* x 1 : z* € A} and define the following projection on the basis
{e.-} of R4:

m:RY — R'=R"" xR,
e.. — (2" x1)eA.

Clearly,ker 7 = L 4. Thus for any linear formy onRR* the following statements are equivalent:

> Yebr = 0=yl kerr =y = jor (§€RT) = =gom, (3.28)

z*€EA

where in the last stepis an affine—linear function oR¢~! defined agj(z*) = §(z*,1) V 2* €
A. As an immediate consequence, we get:

Proposition 3.1.13 [47]

(i) Let! be asubsetafl. Then the set of forméb,- : z* € I} form a basis of % if and only
if the setA \ I is affine independent, i.e. corresponds t@a 1)-dimensional simplex
of A*.

(i) the convex hull ofB contains the origim € L% in its interior.

Thus any simplex of A* defines a con€’, C L% which is generated by the forn{$.- :
z* € I}. For any con&” we denote byC” the relative interior of this cone. The interiof§
of the coneg’, are called dual chambers. Now there is the following biyectiorrespondence
between coherent triangulatiofisof (A*, A) and dual chambers:

Proposition 3.1.14 [47] Let 7 be the projectiolR4” — L%, which is dual to the injection
L, — RA. Then for any coherent triangulatiah the corresponding dual chamber has the
form (—1)x(C°(T)), whereC(7) is the cone of definitiol.1.8. The closure of this chamber
coincides with the intersection,.-C,. By a slightly abuse of notation, we will call the fan
generated by the closure of this chambers also secondary fan

Definition 3.1.15 [47]) A circuit is a collectionZ of points in an affine space such that any
proper subset’ C 7 is affinely independent buf itself is not,i.e. the points satisfy

> emp =0 > em=0 cm €Z\{0}V pt, € Z. (3.29)

pi€Z P €L
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In other words, we can obtain a circuit by adding just one piaigeneral \
position to the set of vertices of a simplex. The convex htikh @ircuit
has precisely the two triangulatiofis = {Conv (Z \ {p%,}) |p%, € Z+}
whereZ, = {p!, € Z|c,, = 0}. As an easy consequence, we note that
el = VOL(Z\ {p5,}).

To summarize, we have the following important result: Thisra
one—to—one correspondence between simplices*afvith vertices inA
and cones of maximal dimension in the (projected) seconidaryEach _ _
cone of maximal dimensiof-1)x(C° (7)) corresponds to a coherent tri-2 POSSible triangu-
angulationsZ. The simplices of this triangulation are in one to one corré"’-‘t'ons_Of a C'QC”“
spondence with all cones containifigl)x(C°(7)). Contiguous coher- of 4 points inRk".
ent triangulations are related by circuits.
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3.2 Special Geometry and Mirror—symmetry

In this section we review how to calculate the Yukawa cougdifor a toric hypersurface by
deforming the complex structure. We also define the mirrop,mwhich we use in order to
calculate the worldsheet instantons in the A—model of theaniAt the end of this section we
discuss everything explicitly in one example.

3.2.1 Picard—Fuchs (PF) equations and Yukawa couplings (Y<}

We discuss two methods of getting the PF equations: the §ir8ta Griffiths—Dwork (GD)
method, which works (theoretically) for any ample hypeface” in a d—dimensional simpli-
cial projective toric variety and leads to a complete setpdrators. The disadvantage of this
method is that it uses Grobner basis techniques for thebataeal.

The second method uses tHesystem associated to the polytapeThis is a very fast way
to get a set of PF operators. However, the problem is that asédreduce this system in order
to get generators of the PF ideal. Also the system needs raatrbplete, so that one has to find
additional operators which annihilate the periods.

The (GD) method

The GD method can be used to calculate the PF system for anle diyypersurfacé’ in an
d—dimensional simplicial projective toric variety [2,29]. LetX* be the fan inN defining
Xs+. The hypersurfac is defined by the equatiofi= 0 for a general element € 53, with
deg f = 5 € A,_1(X) such that3 is the first chern class of an ample bundle. We first define a
homogeneous volume form of degrée= Zle[Di] on the toric ambient space:

Qo =Y _ det (ef) Fyd X, dX; = dx; A--- Nda,, 71 =[] = (3.30)
[|=k igl
where! runs over all subsets C {1, ..., k} with #I = d anddet (e;) = det ({eq, p},)1<ab<a)
is used to make the definition 6%, independent of the ordering of the verticgs < X*}.
n—forms onXs. with poles along/ are then of the form

Py
e
To reduce the pole order, one needs for ehchi < k a (d — 1)—form Q; of degrees, — ;

(8; = deg[D;]) whose exact form will not concern us. Important for us is trerfula

with deg P = kf — By, (3.31)

oP 0
pay (122 - kP2L) O
d( 7 ) = i : (3.32)
which can be used to reduce the pole order modulo exact fdbms defines the Jacobian ideal
by
3} 0
J(f) = <—f or ), (3.33)

8x1""’8xk
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and considers also the ideal quotigitf):

3713f $kaf

Ooxy 7 Oxg

Ji(f) = IR AR (3.34)

Then one can show that there are the following isomorphisshsden the primitive cohomol-
ogy and thekg — (y)—part of S/ J(f) andS/Ji(f), respectively [2]:

(S)T(f)kpp, =~ PH" ™ =L Wk (d/2)+1
(S/I(f)kp-pe =~ PH' ™1 vk,

Note that.J; is only needed it/ is even (the reason for using the modified idéglf) has its
origin in the non—vanishing aff¢(X) = H%?4/? of X whend is even. In this case the kernel
of the residue map is not empty fér= n/2 + 1 [2]). Now we can perform the following
procedure:

12

e choose a basifv; = PZQ;i (i=1,...,h = h?¥1 — 1)} of the primitive cohomology of
the hypersurfac&’, i.e. of S/J(f) or S/Ji(f);

o repeatedly differentiate = €2,/ f with respect to the moduliz; } to geth + 1 sections
(including ©?) of the Hodge—bundlg&{. Each of these terms can be written as a linear
combination of the basis plus a formpwhere the numerator of the coefficient functions
of n lies in the ideal/(f) (J1(f)). This can be done most easiest by using Grobner basis
techniques. Then one can use the formula (3.32) to redugmtaerdering of) modulo
exact forms.

e The result can again be expressed as a linear combinatioar dfasis plus a formy,,
where the numerator of the coefficient functiongpfs again in the ideal. Since we have
h + 1 sections an@{ has rankh, iterating this procedure leads to a relation between the
different derivatives of).

PF equations andA—systems

Definition 3.2.1 Let A = {my,...,m} C M = Z*! be a collection ofc > d + 1 points
lying in an integral affine hyperplane and fix a vectoe (3, ..., 8;) € C?*L. Introduce a set
of variables{ )} and defin®,;, = A\707 = A\7n0/0,,,. Then thed—system is the system of
differential equations, defined by the following two typé®perators:

Z; = (Z mjém) -6, (=1,...,d+1)

meA
Oy= T 9 — I 95 leA,
lm>0 l7'n<0

whereA is the lattice of relations among the elementsiof
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Now let A C M be a reflexive polytope. Then the sections of the anticambbiendle can be
identified with the Laurant polynomials

F= dnt™ =X+ > Ant™ € L(A), (3.35)
m m#0

whereL(A) denotes the set of Laurant polynomials with exponents.ifThen define

A=(ANM)x {1} Cc M =M x Z, (3.36)
andg = (0,...,0,—1). The lattice of relationd of A is precisely the lattice of affine relations
of AN M, i.e.

Y ln=0VIieA and > lam=0. (3.37)
meA meA
Defining thed—form
1 dty dtg
w=-n, =— A AN—, 3.38
= ry (3.38)

it follows immediately form (3.37) that is annihilated by the operataorg for all [ € A. From

the formula
1dt, dt, dt,
d __/\... _j/\..- - — E )\m tm y 339
<f tl " tj A td ) < m m] ) 1 ( )

one can easily show that also the operatéf§ = 1,...,d + 1) annihilatew. The formw is
defined onl" \ {f = 0}. However, we want PF equations &hand not just on the affine part.
This can be done by relating the torus coordinaiée the homogeneous coordinates(use
(3. 7) witha; =1(i =1,...,k)):

(=D*
f2

ty == (3.40)
=1
Under this substitution we get
Qo
Qo=um1... = 3.41
‘ o i f('rlv . 7'7:/6) ( )
Note that the action of
T x C*, (3.42)

whereT acts on itself (on the torus coordinates) &tidacts by multiplyingf, leads to isomor-
phic hypersurfaces. Thus we have an actiofi'of C* on L(A) and the quotient defines the
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moduli space. We now choose a bdsis(a = 1, ..., h on the lattice\ of relations and define
the following functions:
(a)
=[] »= (3.43)
meA

Then thez, are invariant under the action 6fx C* and define local coordinates in the quotient
of the moduli space near the point of maximally unipotent otbomy. It remains to express
the PF operators in thie, } —coordinates. The following identity is very useful wheregushes
the A\, through théj,;,:

e, = A2 (0, + p). (3.44)

The last thing we have to do is to transfounin equation (3.41) into an expression that is
invariant under ou€* action. This can be done be considering the form

@49

and multiplying our PF system witk, ' from the right:

Z;— Z\' (G=1,...,d+1)

L, — Dl)\o_l leA. (346)

Yukawa couplings

Once we have the PF-system, it is very easy to compute theré@sdquation (2.53)K;, ..
First we define the quantities

\%

which are zero fok < 2 due to Griffiths transversality. f = 3 we get the YCs. Repeated
Differentiation of thek < 2 case leads to the following identities:

i1i16261) )
E(ilililiZ) = %5 15(21“22) + 5Z2K(Z1Z111)

E(ililiﬂé) = 52 5(21@22) + 512K (i19122) (348)
E(ililiQiS) = 52 5(112213) + 522K (414113) + 5Z3K(211122)

K(i1i2i3i4) = %5 K(lzlsu) + 522K (411314) + 5Z3K (411214) + 5Z4K (t1213)

The YCs can then be computed as follows:

(i) multiply all PF operators with logarithmic derivativds;} to get a set of differential
operators of third order which annihila}‘frg, Q A Q. Due to Griffiths transversality we
only need to keep terms which are third derivatives. Theltieguequations can be used
to express all YCs as rational functions of a single one fsay).
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(i) multiply all PF operators with logarithmic derivatives;} to get a set of forth order
differential operators acting of]/ Q A Q. Again, we only need to keep terms which are
derivatives of order higher than two. The identities (3.d&) then be used to replace the
quantitiesk ;i in terms of derivatives of the YCs. Expressing Al|;jz) # K111y in
terms of K'(11,) gives a system of linear differential equations fof;1,).

The Mirror map

We use a definition of the mirror map which takes advantagéneftoric data and defines
mirror symmetry for toric hypersurfaces [2]. As usual, IstC My and A* C Ny be a
pair of reflexive polytopes corresponding to the (family wilic hypersurface¥ C Xy« and
V* C Xy, respectively. The idea is to find a local isomorphism betwaesubspace of the large
complex structure moduli space Bfand a subspace of the Kahler moduli spac&af

To give a precise definition on these subspaces we need towifog definition:

Definition 3.2.2 Given a reflexive polytop& C Mg, a fan¥* is a simplified projective subdi-
vision if it has the following properties:

(i) X* refines the normal fan ak.

(i) X*(1) consists of all lattice points ak* except the interior poinf0} and interior points
of facets ofA*.

(i) Xy« is projective and simplicial.

The difference to maximal projective subdivisions usedXoand >* in the Batyrev mirror
construction is that we throw away all points lying in theeimor of facets, which correspond
to divisors that do not intersect the CY hypersurface. It tain out that the mirror map is
completely fixed by a smooth cone C cpl(X). The subspaces of the moduli spaces are
defined as follows (for details see [2]):

Definition 3.2.3 Let X correspond to a simplified projective subdivision of themal fan of
A*. The simplified moduli spacé;,,,(V') of the CY hypersurfac#” is defined as the Chow
guotient [49]:

Maimp(V) = P(L(5(1) U 0))//T, (3.49)

whereT' is the torus action from (3.42).

There is a conjecture [50] which proposes that each of thesogives a maximal unipotent
boundary poing of M.,

3For an exact definition of the point of maximal unipodent mamoony see, for example, [2]. For us, this
point is a special point in the moduli space such that thexeae holomorphic ankk ; logarithmic—holomorphic
solutions of the PF—system.
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Definition 3.2.4 Let X* corresponding to a simplified projective subdivision of tioeemal fan
of A. The toric Kahler moduli spacEM,,,..(V) is defined as follows. First note that we
exclude interior points of facets &*. Thus the restriction mafi?(Xx-) — H?(V) isinjective
and we have an obvious inclusiopl (X*) € K(V),, .. = H2,..(V) N K (V) (K is the Kahler
cone ofXs+). Now there is another conjecture which asserts that the tooduli space is, up
to an action of a finite group, the union.. cpl (¥*'), where the union runs over all fans which
differ from X* by a sequence of trivial flips. In order to get a smooth modugice we use a

refinement given by the unimodular cones}.

The mirror map is now an isomorphism betweeén,,,..(V*) and M;,,,,,(V'). Note that we
have to take the mirror in definition (3.2.4). We choose lacairdinatesg, . . ., ¢, around the
large radius point of the complexified Kahler moduli spaseng the map

(D" — (H;

toric

(V*R) + iKoric(V™)) /i (Hyoric(V*, 7)), (3.50)

sending(e?™ ... e to [22:1 taTa]. Here,(D*)" is the punctured polydisk, arifj, are
the generators of. This map extends to an immersion of the whole polydisk, wlilee origin
corresponds to the large radius limit point. Thus, we wi# tise coordinates

G =¢e"" (a=1,...,h) (3.51)

to define the mirror map. As coordinates around the point ofimal unipotent monodromy
we can choose thgz, } defined in (3.43). The mirror map can then be defined as [2]

4o = (=) 2, exp (2mifia /o) (3.52)
with yo being the unique holomorphic solution of the PF equatiorte@point of maximally
unipotent monodromy, and tHe,, (e« = 1,..., h)} being solutions of the PF equations that are
of the form: “

Ya = Yo log ((_1)10 Za) + gaa a = 17 ) h, (353)
wherey, is holomorphic at the origin withy,(0) = 0. Thus, it remains to find the quantities
{v0,vy1,-..,yn}. Letw be the volume form oKy — V' from equation (3.45) with its residue
on V' being the holomorphi¢n — 1) form 2. We also have a cycle C T' C Xy defined by
[ti| = --- = |t4q] = 1 corresponding to a cohomology clagss H? (V). Thus we have a
pairing

1 Ao dity dtg

O) — M NP 3.54

<g7 > (27”)6[ ; f tl td ) ( )

where(2 is the residue ofy from equation (3.45). Plugging the expansion

K
. : 3] DIRWERR

20 - = Am(Xo) ™ (3.55)
f 1- EmGE(l) Am(Ao) Mt K=0 \mex(1)
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into (3.54) and performing the integration gives

—lo)!
(9.9 = > (' O)l'(—AO)IOAgl...Ags, (3.56)
RN

where the sum runs over all relatiohs= (lp;l1,...,ls) € Aof ¥ x {1} withl;, > 0 (i =
1,...,s =#X(1)). Switching to the coordinatds, } defined in (3.43) coming from a basis

1@ = (0@l a=1,...,h, (3.57)

and writing eachi asl = n 1M + - - - 4 n, I gives:

LS (@) . .
(9.0 = > HE ?Zhl Tiozg)').((_”lé)“) (a) T @)

where the sum is over all,, ..., n;, such thaty"_, nal](,“) >0( =1,...,s). Now the
crucial pointisthat; > 0 (i = 1,...,s = #X(1)), which implies that is in the cone dual to
the cone spanned by effective divisor classéd,]). Dualizinge C cpl (X) C ([D;]) gives

| € o* = (I@). Thus the integerén, } are all non—negative. It is also not hard to see that the

series (3.58) converges [2], and we can set

yo(z1,- .-, 2n) = (g, Q). (3.59)

Next we calculate thg, using the method of Frobenius. The idea is to replace thgense,,
by n, + p., Wherep, is a real parameter. This means that we have to replace ttogifds:

h h
<Z nalﬁ»“))! ada <Z<na + o)l + 1) , (3.60)
a=1

a=1

and that we also have to shift the exponent(}oit)léa)za (a=1,...,h). The key result is that
the quantities

Yo = (0p,90(2,p)) |p=0, (a=1,...,h) (3.61)

have the desired property, which follows from the fact fh#t 0,,] = 0 and that the action of

d,, on powers of —1)4" z, (a = 1,. .., h) generates a factdog ((—1)léa)za>. The following

two formulas are needed when performing the calculation:

TP i = Tl ) (—wZ%) (3.62)
D(s)[(1—s) = —0 (3.63)

sin(rs)’



36

The mathematical background

wheres is a real parameten, is a positive integer, angis Euler’'s constant.

Let {V, V*} be a mirror pair, and denote ldy (K) the A- (B-) model threepoint correlators
onV* (V). The large complex structure coordinates¥Qr(z,), are related to the large radius
coordiantes oV *, (¢,). By mirror symmetry, the correlators are related by:

Kmdzm%omay:/QAv%vg@Q. (3.64)
Vv

Here,d, = 2miq,0/d,, andQ = Q/y, is the normalized 3—form ol. In order to evaluate
the rhs, it remains to insert the mirror map. THg;;), are then given up to a multiplication
by a non—vanishing complex constant, which can be detedrbgealculating the intersection
numbers in the large radius limit. The final form is:

© I %"
K(abc) = Rabe + Z nab)cdaddeW’ (365)
dg ,dp,de>0 a ta

wherer,,. are the classical intersection numbegsare the coordinates defined in (3.51), and
the sum counts the worldsheet instantons.
A simple example

In this subsection we will show how all this works explicittythe case of the mirror of a degree
8 hypersurface ifP(1,1,2,2,2). The polytopeA* c N defining the weighted projective
space is defined as the convex hull of the vertices

* * * * *

ph= ¢l -2 -2 -2 pi=el, pi=eh pi=ch pi=ci  (3.66)

The cone generated Hyy;, pi } is not unimodular. To resolve the singularity, we can add the
vertexp: = 1/2(pf+ p}). We denote the polytope with the extra vertex/y, and the fan with
cones over the faces of the polytofié (A*') by ¥* (X*).

The Kahler cone

In this simple example it is very easy to get the Kahler cars#sg the primitive collections of
definition (3.1.5). Fob2* they are:

{ph.pi} and {p},....p5} (3.67)
Using the two relations
205 = po+py and  py+p3+py+p5 =0, (3.68)
we see that a support functignis strictly convex if and only if

20(p5) = Y(po + 1) > ¥(ps) +¥(p1),
0=1(ps+ - +p5) > »(p5)+--+P(ps)
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Settingy(p;) = —a,; we have to interpret these inequalities in terms of the Chamwug Under
the mapg of the exact sequence (3.5),...,as) is mapped ta(s,t) = (az + a3 + a4 +
as, —2as + ag + a1). In these coordinates the Kahler cone is the interior otthree

cpl (%) = {(s,t) € A(X*) : s,t > 0}. (3.69)

The fanX* has only one primitive collectionfp, ..., p;}. Defining again)(p;) = —a; and
using the relationg + p; + 2p5 + 2p3 + 2p; = 0 we find that

ag + a1 + 2(1,2 + 2&3 + 2&4 > 0. (370)
Thus the Kahler cone is the interior of the cdne

cpl (%) = {(s,t) € A(X*) : s > 0,25+t > 0}. (3.71)

Griffiths—Dwork on the mirror

In order to find the mirror family we have to construct the dpalytopeA’ C Mg ° which
turns out to be the convex hull of the vertices

popP1 P2 P3 P4
-1 7 -1 -1 -1
-1 -1 3 -1 -1 (3.72)
-1 -1 -1 3 -1
-1 -1 -1 -1 3

This time the groug~ defining the quotient contains torsion, which can be seehéyect that
p1+ -+ ps =0 mod 4. The lattice points im\*’ are in one to one correspondence to the
set of monomials having the same grading as the divigo= [D,,] + --- + [D,,], i.e. the
monomials are
[T = zea’nn, (3.73)

pEVert(A/)
which are just allZ,—invariant monomials of degree eight B(1, 1, 2, 2, 2). We can write the
equation of the anticanonical hypersurface in the form

8, .8 4, 4 4 44
[ = 20] + 25 + 2105 + Ty + X5 + T10903T4T5 + T T, (3.74)

where the choice of the parametérs, z,) is such that:; = 2, = 0 is a point of maximal
unipotent monodromy. Defining, = z;d/dz; we can choose the basis

4
Q 212580 _ 2T 800
w1= 70 y Wo= 5lel— —f% , W3= 5Z2W1: 12 s
222280 221 2028230 6zza:xQ
u)4:52%(4‘}1 wo + 2 1 3 07 Ws= 521522&}1 ! 2f§ 3 07 5 522(4}1 122 i 420
(3.75)

“Note that we considet*’ instead of*, but¥*(1) is fixed.
5Since we now construct the mirror CY*, the meaning of the lattices has changed: The ambient spaosi
defined by the polytope in th&/—lattice, and the exponents of the monomials are from\tkéattice.
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The PF equations are then obtained by expressing vat{austerms in this basis. For example,

we can use

2221190
f3

Using Grobner basis techniques, we get the following i@atbetween:(%, 25, andx$x} (the

latter two are the monomials appearing in our bdsig over f3):

532(,01 = w3 + (376)

of
2o(1 — 42p) 210 — 2228 + 42y 2000y = 6 ZA xl » (f) = <8xi>’ (3.77)
with
Ay = 24z — 1)ad 4 mimowsrsrs — 42l
AQ = 2.77?,
Ay = 421x§ - 16221’? — T1T9X3X4T5.

Inserting this into equation (3.76) gives

2
(1—42’2)552&)1—2’2(521—531—4531522+2522)W1 (1 622 522(4}1 162;32 Z[L'Z QO (3 78)

Using (3.32) the right hand side can be written modulo exarch$ as:

(1= 62)0.,01 — —22 iA-x-ﬁQ (1= 620)0,,01 — —2 ii(Aw-)Q -
2)02,W1 iLq "800 2)02,W1 16f2 - (’3202 iLq 0=

163 — Ox;
_%5@ wy + 18(;22 (2175 — 212:3) 0.
Applying again Grobner basis techniques we can write thiet hand side as
—%5@ 18(?22 (z]zy — zlxg)Qo = 5222 0,w1 + 2—;22 (—42230? - %g—i + %g—i) Qo
“ o (o )

where in the last step again (3.32) was used. Thus we end bgheitPicard Fuchs equation:

(1 - 42’2)532(4}1 - 22(53 - 521 - 4521522 + 2522)(4}1 =0. (379)

1

PF equations using thd—system of the mirror

We now compute the PF equations using thesystem of the polytope (3.72). Homogenizing
f € L(A*) gives

=Mz} + oal + Asrs + Mz + )\5:c§ + N1 Lo 232425 + T2, (3.80)
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which is the same as equation (3.74). A basis of relationthiad—system is given by:
1M =(0,0,1,1,1,1, —4) and 1 =(1,1,0,0,0,—2,0). (3.81)
Thus we get the followin@—invariant moduli coordinates:

L AsMadsAe
1 =
Ao

and 2y =

(3.82)

From the two relations (3.81) we get two PF operators:

Moo As A s AT Ag ! = AoAaAsAads (0203040505 — 93)Ag " = 0,
Ao AR Agt = AoAda(9105 — 92Nt = 0.

Using identity (3.44), and the identities
(51 = (52 = 5,227 53 - (54 - (55 - 5217 56 - 521 - 2(522, (50 - _45,217 (383)
we end up with the following PF operators in thg, z;) coordinates:

62 (8, — 20,,) — 4210, (46,, + 1)(40,, +2)(46,, +3) = 0,
62, — 22(6., — 20,)(8,, — 26, — 1) = 0.

The first operator can be reduced (dividing it&y from the left) and we have two operators
of rank 3 and2. Hence the space of solutions has dimension of at ioshich is the Betti
numberb; of the mirror. Thus we have found a complete system of PF ¢qera

YCs

Having a complete set of PF operators we can now compute tise Xffer some algebra the
PF operators take the form:

= (1 —42)62, — 29(62, — 40,,0., — 62, +205,), (3.84)
0 = (1—2562)0° — 262 6,, — 821(4802, + 226, + 3). (3.85)

Multiplying the first equation with, or 4., gives two third order equations. Thus we have three
independent equations of order three relating our coupling: 1, K (112, K (122) and K (299

— (1 — 25621)?(111)

Ky = 5 ;
F . 22(—1 —+ 51221)?(111)
(122) = 1— 4z )
— 1 — 2562 + 4z — 30722120 K
K(229) = il i 2122) K (3.86)

2(1 — 42,2 ’

where we again have used Griffiths transversality.
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Multiplying the first PF operator with? , 62 or 4,0, and the second with., or 4., gives
five differential equations of order four. Again derivasveith degree lower than three can
be thrown away. Inserting the identities (3.48) and usinggBto express all YCs in terms of
F(m) gives us a system of linear differential equationsﬂ_ﬁﬁll). The calculation is straight

forward and can be found, for example, in [2]. The resultiogmings are:

K — _c K — c(1-25621)

Kany = AAD K119) = 2AIALA, (3.87)

? _ (51221 -1) F c(1— 256z1+4zz 307221 22) .
(122) - A1A2A3A47 (222) 2A1A2A2 9

with the discriminants:

Ay = (1 — 51221 + 6553622 — 26214423 25), Ao = (1 —4zs), Ag=1z1, Ag=2. (3.88)

The mirror map

We now compute the mirror map in our example. Using the bdsislations from equation
3.81 we get

(L, ... 16, 1o) = n1(0,0,1,1,1,1,—4) +ny(1,1,0,0,0,—2,0), (3.89)

i.e. i = ly = nq, 13 =1 = l5 = Ngo, 16 =n; — 2ny andlo = —4ny, andli >0 ImplleS
ny > 2no. Thus the series in equation (3.58) is given by

4TL1! non
Yo(21,22) = Z (n1!)3(( ) 721 2 (3.90)

n1>2n2>0 na!)?(ny — 2ny)!
The subtle point is that, > 2n, and that we really have

27t 202 3.91
Z F m + 1 3F(n2 + 1)2F(n1 — 2712 + 1) A2 ( )

n1,n2>0

217’22

which agrees with the foregoing series becausé thwction has simple poles &b, —1, -2, ... }.
We have to calculate

Y1 = 8p1y0 |p1:p2:0 and Yo = 8p2y0 |p1:p2:0 . (3.92)

Derivation of y,: Differentiation ofz}"' " gives the pari (21, 22) log (z1). The derivatives of
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the coefficients are:

4nq
ﬁl"(élnl +4p1+1) [p=0 = 4(4ny)! (—g + > %) for  my,ng >0,
j=1

ni
dzl F(TLT ‘Pl =0 = (n_l?)?, —g + 2:1 %) for ni,ng > 0,
J:
d L ==L _ S f 2ny > 0
dp1 T(—2np+n1+p1+1) lp1=0 = i | 9T ]; j or np—zng 2 U,
sin(7(2n2—n
ﬁr(—znﬁ;wmﬂ) lp1=0 = d%i( i e F(2n2 - —/)1)) |p1=0
= (—1)"1+1((2n2 —ny— 1)) for ny;—2ny <0.
Altogether we find:
n1)!(2ne—ni— n ni _n
y1(21, z2) = yo(21, z2) log (21) + Z; TP e g (— DA 25
ni<ing
(4n1)! ni _no E 1 L 1 n—2n2 1 ni . n
+ 2 (D3 (n2)2(n1 —2na)l 71 ~2 430 7 -3 i > i SRR
ni>2ns9 i j=1 —
(3.93)
If we write y; asy; = yo(z1, 22) log (1) + 91, the mirror map fox;, reads as:
@1 = z1exp (U1/%) | (3.94)

Derivation of y,: Differentiation ofz,*"* gives the pary,(z1, 22) log (2,) The derivatives of
the coefficients are:

n2
d 1 _ -2 1
dp2 T'(n2+p2)2+1 |P2:0 - (nah)2 —g + Zl 3) for Ny, N9 Z O,
]:

ni—2ns
d 1 -2 | _ 1 —
dp2 T'(n1—2n2—2pa+1) ‘pQ:O T (n1—2n2)! g+ 231 j) for n1 277,2 > 07
J:

d_ 1 __d_(sin(m(2n2+2p2—n1)) .
dpa I‘(n172n272p2+1) |P2:0 - dp2 T F(2n2 + 2p2 nl) |p2:0

= 2(=1)"(2ny —ny — 1)1 for mny —2ny <O0.

Altogether we find:
ni)!(2na—ni— niy N1 N
a(er, ) = vo(er, 2) 108 (22) +2 T Gt oy (— 1) 2725
ni1<ing
(4n1)! ni . n m Z2n2 1 72 1 ni _no (395)
+2 ;2 (n1!)3(n2!)2(n1—2n2)! 171 %2 Z i 2 7 211252,
nip=4n2 _]—1 ]_1

If we write yo asys = yo(z1, 22) log (22) + 72, the mirror map fox, reads as:

g2 = 22 exp (J2/v0) | (3.96)




42

The mathematical background

Kahler YCs ori/

We are now ready to compute the Kahler threepoint functamis using the mirror map. The
Kahler classes modulo rational equivalence are:

L =Dy~ D H =Dy~ Dy~ D, Ds ~ Dy — 2Dy, (3.97)

where eaclD; corresponds to the vertex (i = 0, ..., 6) of A*. From the primitive collections
(3.67) we get in addition the relations:

DOD1 =0 and D2D3D4D5 =0. (398)
SinceV €| Y. D; |=| 4Ds |, we get, for the classical triple intersection numbé&¥fs; H, H ),

4HH3 ~ D2D3D4D2 ~ 2D3D4D5+8DOD2D3D5 ~ 8V01(p8,p§,p§,pj;) = 8,

AHPL ~ 4DyDyD3Dy ~ 4Vol(pg, p3. P35, P1) = 4,
AHL? ~ 4DED\ Dy = 0,
4H?’L? ~  4DyD\D; = 0. (3.99)

The mirror conjecture predicts that

<H7H7H> = K(lll) - / Q/\V(ﬁv&vél@ = <H7H7H>CL+-"7 (3100)
V*

whered; = 2m’q1§1, Q = Q/yo, andg; = ¢;(21, %) (i = 1,2) via the mirror map. Using the
chain rule we get:

omi)® | (q1 0.\ — q 0., @10z

Q1 azl Q1 aZQ 2 T Q1 8,22 ’ T
e —— | K —— | K . 3.101
’ (21 6«11) (22 a111) (122) (22 o (222 ( )

It remains to set the constanin (3.87) equal ta = )3 in order to get the classical intersec-
tion numbers as leading term. The first terms oft e exparsien

(H,H, H) =8 + 6402 + 1003225 + 640:22- 4 O(g?)
= 8 + 640q; + 80896¢7 + 6406]16]2 + O(¢®),

(H,H,L) =4+ 640q,¢2 + O(q?), (3.102)

<H7 L, L> = 640(]1(]2 + O(q3),

<L7 L7 L> = 4(]2 + 4QS + 640(]1(]2 + O(q3)7
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where we have also added the expansions of the other cogjplibfor completeness. Because
of our normalization, the constant terms in the expansiom# classical intersection numbers
from equation (3.99). Comparing the result with equatio®%3 gives the instanton number
n(a,b) = ngpip, Whereah + bl is an element of»(V, Z), and{h,(} is the basis dual to
{H, L}.
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Chapter 4

The geometry of toric CICY’s

4.1 Complete intersections in toric varieties

Batyrev showed that a generic section of the anticanonigatile of PA = Xy defines a
Calabi—Yau hypersurface ik is reflexive, which means, by definition, thatand its dualA*
are both lattice polytopes. Mirror symmetry correspondbéoexchange ok andA* [29]. The
generalization of this construction to complete interisas of codimension > 1 (CICYs) was
obtained by Batyrev and Borisov [31] who introduced the mobf a nef—partition.

Let A € Mg, A* C Ng be a dual pair oti—-dimensional reflexive polytopes. Denote by
Y[A*] C Ng the fan over faces af\* and letXyya-) be the toric variety corresponding to the
fan X[A*].

Definition 4.1.1 A partition £ = F, U- - - U E,. of the set of vertices aA* into disjoint subsets
E,...,E, is called a nef—partition if there existintegral convex:[A*|— piecewise linear
support functions; : Ng — R (i = 1,...,r) such that

7%= N0 otherwise.

Eachy; corresponds to a semi—ample Cartier divispr= Zp*eEi Dy on X, whereD; is the
irreducible component ok \ 7' corresponding to the vertgx € E;, andV = D;nN---N D,
defines a family of Calabi—Yau complete intersections. Muoeg, eachy; corresponds to a
lattice polyhedron\; defined as

Aj={z € Mg :(z,y) > —pi(y) Vy € Nr} (4.1)

supporting global sections of the semi—ample invertibka$th(D;). Since the knowledge of
the decompositioy = £, U --- U FE, is equivalent to that of the set of supporting polyhedra
II(A) = {Ay4,...,A,}, this data is often also called a nef—partition. We notetthapolytopes

VZ- = Conv ({O} U Ez) C N]R
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define also a nef—partitioi*(V) = {V1,...,V,.} withV = A; +--- + A,. In summary we
have the following relations between all the polyhedra mdifferent spaces:

MR NR
A=A+ +A, A* = Conv (V4,...,V,) (4.2)
V* = Conv (Aq,...,4A,) V=Vi+---4+V,

This yields a paifV, V*) of Calabi—Yau varieties, whelé C Xy andV* C Xy, are mirror to
each other.

Given the nef—partitiol\* = Conv (V4,...,V,), let \,, € C be the coefficients of the
Laurent polynomialdi, .. ., f,,

L) =1— > Aut™ eL(A)  (I=1,...,7). (4.3)

meN;NM

The simultaneous vanishing of these polynomialshen defines the complete intersection
Calabi—-Yau manifold” C Xy, or in other words, theé\; are the Newton polyhedra fqf.
Similarly, theV, are the Newton polyhedra fofr*.

4.1.1 The Cayley trick

To compute the cohomology of a complete intersection, weusarthe Cayley—trick. The affine
caseis treated in [52]: Idtf, ..., f,} be a system of nondegenerate Laurant polynomials. They
define a complete intersectioh= 7Z; N ---N Z, in thed—dimensional algebraic tords Now

add a set of Lagrange multipliefs\, ..., A.} and consider the hypersurfage C 7' x C"
defined by the equation

F()\,Z):)\1f1+"'+)\rfr—1:0. (44)

Restrict the projection : T'xC" — T'to Zr. If a pointz belongs td” equation (4.4) obviously
has no solution and the fiber!(z) is empty. On the other handif¢ Y the fiber is an affine
linear subspac€™! c C". Using the fact that thé&—polynomial [52]

E(u,v) = Z hPA(—1)P TPy (4.5)
p,q
of a bundle that is locally trivial in the Zariski topologytise product of theZ—polynomial of
the base space and that of the fiber we get:
E(Zp;u,v) = BE(T\ Y;u,v) E(C™ 5 u,v). (4.6)

Now E(C™ Y u,v) = (uv — 1)V, B(T;u,v) = (wv)?, andE(T \ Y;u,v) = BE(T;u,v) —
E(Y;u,v), sowe end up with

E(Y;u,v) = (uwv)® — E(Zp;u,v)(uv — 1)1, (4.7)
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This result was generalized to relate a complete inteweéti = D, N --- N D, in ad-
dimensional toric varietyX' to a hypersurfac® in the projective bundl®(€) = P(O(D,) &
--® O(D,)) overX [30,32]: letr : P(£) — X be the natural projection. Then(Op) (1)) =
O(D,) ® --- @ O(D,) and every global section @p)(1)) corresponds to global sections
(s1,...,8.)of O(Dy) & --- & O(D,). Again one can show that

PE)-Y—-X—-DiNn---ND, (4.8)
is a locally trivial C"~! bundle in the Zariski topology and hence
H(X —Din---ND,) ~ HT=D(PE) - ). (4.9)

~ Now we extend the lattice¥/, NtoM =Z"®M,N = Z"@® N, respectively, and define the
d = d + r—dimensional reflexive Gorenstein cofieof indexr corresponding to the complete
intersection a$

C:{()\1,...,)\“}\11‘1+"'+)\rl’r) GMRZAZ' GRz,l‘i GAZ‘, Z:]_,T’} (410)

The support ofC can be identified with the set of global sections®fD,) & --- & O(D,.).
The string—theoretic Hodge numbers of the complete intdsel are then related via the
Cayley trick to those oProj(C[C' N M]) and can be computed from the combinatorial data of
the reflexive pair of Gorenstein con€sC* [32, 34]:

(_)Pwtpy

E(V;u,v) = Z(—l)“q hP9 uP v? = Z (o)

I=[zy]

v . _
S(Cy, E)S(Cy’ uv)Br(u™t, v).

(4.11)

In this formulaz, y label faces”: of dimensionp, of C* andC, denotes the dual face of
the dual cone”. The intervall = [z,y] labels all cones that are faces@f containingCj.
The polynomialsB; (u, v) encode the combinatorics of the face lattice [32]. The poigials
S(Cru) = (1 —u)= >, o u"l,(C) of degreep, — 1 are related to the numbets(C?) of
lattice points at degree in C* and hence to the Ehrhart polynomial [53] of the Gorenstein
polytope generating’, [32].

In the case of hypersurfaces,= 1, it is known [29] that the Picard nhumber can also be
computed with the formula

W=UAT) —1—d— > O+ Y F(e)(e) (4.12)

codim(©*)=1 codim(©*)=2

where© and©* are facesA and A*, respectively.l(©) is the number of lattice points of a
face®, and(*(©) the number of its interior points. This formula has a simpleipretation
(see also [45]): The principal contributions come from tbact divisors D; = {z; = 0}

Inc is defined uniquely by the conditioris;, nc) = 1 for the generators af; of Z" and(z,n¢) =0V x €
Mpg. The dual Gorenstein corte* is given by the dual partitioll*(V) = {Vy,..., V.. }.
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that correspond to points iA* different from the origin. There aré linear relations among
these divisors. The first sum corresponds to the subtraofi@merior points of facets. The
corresponding divisors of the ambient space do not inteesgeneric Calabi—Yau hypersurface.
Lastly, the bilinear terms in the second sum can be undetsteonultiplicities of toric divisors
so that their presence indicates that only a subspace obti@wlogy (i.e. the Kahler moduli
space) can be analyzed with toric methods.

Unfortunately, the general formula (4.11) does not lenélfit® a similar interpretation in
any known way As for hypersurfaces, interior points of facets/of never contribute divisors
to a toric Calabi—Yau, but explicit computations of intextsen rings show that for complete
intersections it may happen that even for vertipeshe corresponding divisob; does not
intersec{V] = (,_, Do,, where

Doy =Y D (4.13)

i€k

corresponds to th&” equation of the Calabi—Yau variety. A simple example is the blowup
by a non-intersecting divisor of the degree (3,4) CICYP{,,,, with Hodge numbers (1,79)
that is discussed in [34]. It is very important to find a morglext formula for the Picard
number of a complete intersection that allows for an intgdion in terms of the multiplicities
of divisors D; after restriction to the Calabi—Yau. There is a good chahateduch a formula
exists: While intersection numbers depend on the triartigu®f the fan we observed in many
examples that these multiplicities are independent ofriaadulation and thus should depend
only on the combinatorics of the data of the polytope thatie@.11).

4.2 Resolution of singularities

It is known that the points on the polyhedrayt are in general not sufficient to give a smooth
ambient space [54, 55]. In addition, one may have to takeaotount certain points in degree
greater than one, i.e. points(ihA*\ (k—1)A*)NN (k > 1), in order to resolve all singularities.
In this section, we give a general discussion of these pointparticular in the context of
constructing smooth complete intersection CY spaces.

Recall that a toric ambient space is smooth if its fan is siogdland unimodular, i.e. if
all its cones are simplicial and unimodular. Suppose we haded all the lattice points in the
polyhedronA* and determined one of the possible star triangulationsiestt of points.

A star triangulation is a triangulatioh for which all simplices contain the origin df*. In
other words, each simplex € T" determines a pointed corg,, i.e. a cone over a facet a&f*
whose apex is the origin. If there is a simplex, sayith Vol (o) > 1, then the corresponding
coordinate patcl/, = SpecC[o¥ N M] of the toric variety will be singular.

°There are, however, more suggestive formulasifdrin special cases [31].
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The general procedure to resolve this singular-
ity is to subdivider by adding lattice points on the
polyhedron. But since we already have added all
these points, the next best thing one can do is to add
points at distance two, i.e. pointsdn, N2A*N N.

We then replace the simplex by a double pyra-
mid & over the corresponding facet df* whose
apices are the origin and the extra point, and with
Vol (a) = 2Vol (o). We then have to find a tri-
angulation ofg such that all simplices have unit
volume. If such a point were to lie in the interior of
C,, triangulatings would divide it intod simplices

of integral volume.

This is not always possible, and if it is not, the
corresponding point will lie in a face @fA* whose
codimension is at least one. In this case, there must
be at least one othersing_ular simplex, sgyadja- layer two in order to triangulate the
cent too, such_ that thereisa=onNo # @_. The simplex 5 C N with Vol(5) =
existence ot is independent of the star triangula- 91 (5) > 2 (this is only necessary
tion of A*. We can get an upper bound onthe codi-  if 4 > 3).
mension ofr as follows: Any two—dimensional
simplex without additional points has volume one,
therefore three—dimensional simplices in a star triartgaiaf A* have the same property, due
to the Gorenstein condition. Hence codimc d — 3.

Before we can analyze this situation in more detail, we havientd these singular cones.
At this point it is helpful to recall the notion of a circuit.(815), which gives us an easy way
to find simplices of the triangulation ak* whose volume is larger than one, and have to be
subdivided: they correspond to simplices with | > 1.

We will discuss the casé= 5 in more detail since it is most relevant to the examples in the
later sections. IVol (¢) < 5, then we cannot divide into d = 5 integral parts. Therefore we
already know that the extra point will lie precisely in codinsion one, and that there will be
another singular simplex. Lép7, .. ., pi} be the set of vertices generating the four dimensional
simplexr. Then the extra poing? lying in layerk must be of the form:

Idea of adding one extra points at

4 4
p:Zaip;‘, Zai:k, a; >0 (i=1,...,4). (4.14)
1 1
If £ = 2,i.e. the extrapointis in the interiour &f, we can discuss the following situations:

Casek = 2 and Vol (0)) = 2:

We can use the extra poip} = % Zj‘zl pr.
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Casek = 2 and Vol (0)) = 3:

In this situation we have to add two points at layer two. Tlas e seen as follows: The
generators of are:

corR LR
OHOH[?*
cocory

P3
1
1
1
3

That this choice is unique (up to a basis transformationgwd from the Gorenstein condition
(the entries of the first line are all equal to one), and thetfaat in three dimensions there is
only one simplex without any extra points and volume threendition (4.14) withr = 2 gives
pricisely two interiour points at layer two:

(q(pi +p3) +(B=a)(p3+p1) g=1,2.

Wl =

* —_—
pr,q -

Now we have to triangulater, A), with A = {p},..., i, p}, 01,0} We can choose the
following basis of affine relations:

1 1 1 1 -1 -1 -2
L_<111 -1 -3 3 0)

The columns{b, ..., b;} of this matrix are the generators of the secondary fan. lItfivas
cones of maximal dimensions, corresponding to the five @stidriangulations, and five rays
correspondig to the circuits. There is one unique stargtitation related to the con@,, bs).
According to proposition (3.1.14) we find eight simpliceshrs triangulation dual to the cham-
bers:

<blv b3>7 <bla b4>> <b27 b3>7 <627 b4>>

(b1,b5), (ba,bs), (bs,bs), (bs,bg).

Since all coefficients in the circuits relating two of thesmdices are plus or minus one

we see that they all have the same volume. Thhas volume eight and is devided into eight
simplices, each having volume one.

Casek =2 and Vol (o)) > 3:

The cases where the volurifeis greater than three can be treated in a similar way. Geallgric
these three dimensional simplices are of the form:

10 1 0
01 10
00V o0

However, there are dimensions where other joices are gessibr example in dimension
five we have in addition:
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If V = 7 in turns out that there are even two non—standard simplitfe$’ is greater than
five the extra point can also lie in the interior@fand we have to study triangulations of four
dimensional simplices. A more detailed discussioof 4, 5 can be found in [35].

It is clear that all the points in the polyhedrdxi must be affine linear combinations of the
vertices belonging to one sét.. This follows immediatly from the properties of the intelgra
piecewise linear functions used in the definition of the paftition given in section 4. Points
in the Gorenstein cone belonging to layer- 1 are in generahota sum ofr lattice points of
layer two. However, since thB, are lattice points, the values of the piecewise linear fonest
used in the definition (4.1.1) of a nef—partition are intégfrherefore, (4.13) becomes

Dos= Y Di+ Y gDy (4.15)

piER; q

O = O
(2 O NPl
o O O

where the second sum is over the extra points, and the ceefficare integers and satisfy
> i1 G = k. For example, in the cage= 5 andr = 2, i.e. CY threefolds, an¥ol (¢) = 2
only an even number of the can belong to onév;, and thereforéc, 1, ¢, 2) is either(2,0),
(1,1), or(0,2) (we dropped the index = 1).

One last point concerns the toric quotients of section 4f.3hd variety is a quotient, the
volumina of all the simplices will be multiples of the indéX : N,. In this case it turns out
that we can work on the covering space and need only to redodvangularities there.

4.3 Free quotients

We now come to the discussion of toric CY spaces with nonatrfundamental groups. We
mainly restrict our attention to the situation where thageafrom free quotients coming from
group actions that correspond to lattice quotients. Westalh quotientsoric. Let N’ be the
sublattice ofN that is generated by the lattice vectorsif(1), and let>*' be the fan obtained
from X* by relating everything to the lattick¥’. ThenXy. = Xy.//G is a quotient ofXy.. by

a finite abelian groug; isomorphic toN/N’ that acts by multiplication with phases on the
homogeneous coordinates Herew is a|G|™ root of unity. We will denote such group actions
by (a1, ..., a,)/|G|, whered~"  a; =0 mod |G|.

To see how this comes about we note that the ring of regulatifums on an affine coordi-
nate patci, of Xy is spanned by the monomidl$ z~"**~, wherem € ¢¥ N M is a vector
in the dual latticel/ = Hom(N, Z). If we change from the lattic&” to the finer latticeV then
we have to exclude all monomials corresponding to vectors )M’ that do not belong to the
sublatticeM C M'’. Thus there are no more functions available to distingudhtp in Xs..,
that live on orbits ofG (in turn, this can be used to defid®. The quotientXs: = X5/ /G
is never free for a toric variety [25]. If, however, a (Calaau) hypersurface or complete
intersection does not intersect the set of fixed points therget a manifold with nontrivial
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fundamental group; isomorphic toG. This is the case for CY 3-folds if the refinement of the
lattice does not lead to additional lattice points%f. For a given pair of reflexive polytopes,
the dual of the latticd/’ that is spanned by the verticesAfis the finest latticéV’ with respect

to which the polytope is reflexive. If the lattid€, that is spanned by the vertices &f is a
proper sublattice of the lattic¥’ then any subgroup a¥’ /N, corresponds to a different choice
of the NV lattice and hence to a different toric CY hypersurface:

({p1}) = No—> N N
L] e
My ——0 ~——07 — ({pi}).

There is thus only a finite number of lattices that have to beckéd to find all toric free
guotients.

Some well-known examples are the fiegquotient of the quintic and the fré& quotient
of the CY hypersurface i#? x P2. For both cases cyclic permutation of the coordinates of the
projective spaces defines another free group action of tine sader that commutes with the
toric quotient, leading to Euler numbers 8 and 18, respelstivi hese free “double quotients”
are, however, not toric in the sense that the resulting malhi$ not a CICY in a toric variety.
Analyzing the complete list of 473'800°776 reflexive polpes for CY hypersurfaces [56-58]
one finds 14 more examples of toric free quotients [33]: Thpteally fiberedZs; quotient of
the degree surface inP},,,;, whose group action on the homogeneous coordinates is given
by the phaseél, 2, 1,2,0)/3, and 13 elliptic K3 fibrations where the lattice quotient aex
2. Among the latter there is tH®, quotient of(P')* with phase0, ) on each factor which
admits an additiond, freely acting on the CY hypersurface by simultaneous exgéaf the
coordinates of allP! factors. Models of a similar type are currently studied liseaof their
promising phenomenlogical properties [59, 60].

The condition thatA* N N and A* N N’ coincide is sufficient for a free quotient of a
CICY with dimension up to 3 because the singularities of aimakcrepant resolution are at
codimension 4 and can be avoided by a generic choice of tr@mggquations. It is, however,
not necessary: Divisors corresponding to interior poiffacets ofA* do not intersect the CY
and hence do not kill the fundamental group if they are geadrhy a refinement of th&/
lattice.

An analysis of the complete lists of reflexive polytopes wigh to 4 dimensions shows
that the only case where the weaker condition is relevarttypersurfaces is that of the torus.
In that case a fre&; quotient inP?, and a freeZ, in P?,, and inP! x P! can be realized
torically in the obvious way. Taking a product with a (tork€3 this can be used to construct
CICYs at codimension 2 with first Betti numbgr = 2. The resulting Hodge numbers are
h'! = 13 for the Z, quotients and:!' = 9 in case ofZ;; the simplest examples afé x P3,,,
with group action(0,1,2;0,1,0,2)/3 for Zs, andP?,, x P3 with phaseg0, 1,1;0,1,0,1)/2
or P x P! x P? with phaseq0, 1;0,1;0,1,0,1)/2 for Z,. These Hodge numbers have also
been obtained for Landau—Ginzburg orbifold models [61]ewehthe valueg!! = 3,5,9,13
were found forh®! = 1 [58,61]. One might expect that the models witAnd5 would require
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a larger order of the free group action. It was shown, howenej61] that the 1-forms in
Landau—Ginzburg models can only arise if the model factusZi? x K3. Moreover, the twist
that reduces the Picard number must act with unit deterrhovathe7? and hence must agree
with the freeZs; on the elliptic curve ifP? or with the freeZ, on P?,, that we already know
from the other examples. Only the K3s can be realized inmiffeways. Indeed, analyzing the
lists of [61] we found several realizations of these Hodgabers with K3s that correspond the
generalized Calabi—Yau varieties in the sense of [30, 88]the cubic ifP®, where aZs;—twist
with phaseg1, 1,1,0,0,0)/3 and a free action on the torus leadsitd = h'? = 3, and the
degree 12 hypersurface i, ,,, Wwhere aZ, with phaseg0,0,0,0,1,1)/2 and a free action
on the torus inP;,, leads toh!' = h'2 = 5. For all of these models a mirror construction is
available both in the CFT framework [62, 63] and, more geoiraty, in terms of reflexive
Gorenstein cones [30].

There are many more examples of toric free quotients for Gl@lth codimension > 1,
some of which will play a role later on. In that case a group metyfreely under even weaker
conditions because even divisors that correspond to esrii@ay not intersect the CY. But with
the present state of the art this requires a case by casesanafythe intersection ring. For
Calabi-Yau 4—folds, on the other hand, the above criterayraffree quotient is no longer
sufficient because the codimensions of the singulariti¢isérambient space may be too small
to avoid them by an appropriate choice of the hypersurfagateans. There are many examples
where this happens.

4.4 Fibrations

We will now discuss some properties of fibrations. Again, e&rnict ourselves to the situation
where the combinatorial data of the polytopes contain tlevaat information. For (hon—toric)

K3 surfaces and Calabi—Yau 3—folds there exists a criteopp®©guiso for the existence of
elliptic and K3 fibrations in terms of intersection numbe§4][ We will state it in Section 4.8.1.

Like the latter, fibration properties thus depend on thengidation, or in other words, on the
choice of the phase in the extended Kahler moduli space.

For toric Calabi—Yau spaces there is, however, a more diragto search for fibrations that
manifest themselves in the geometry of the polytope andhigiesbut appropriate triangulations
[57,65—-67]. These fibrations descend from toric morphishte@ambient space [23, 68]: Let
Y and, be fans inV and V,, respectively, and let : N — N, be a lattice homomorphism
that induces a map of fars: > — 3, such that for each cone € X there is a cone,, € ¥,

3Free quotients can be constructed easily with PALP [33]. i 4ill candidates among quotients of the sextic
4—fold one can use the following commandbifi.aux is an auxiliary file storing polytopes on sublattices)
$ cws.x -w5 6 6 -r | class.x -f -sv -po zbin.aux
$ class.x -b -pi zbhin.aux | class.x -sp -f
and obtains the N—lattice polytopes in a basis where thedajuotient is diagonal.
$ class.x -b -pi zbin.aux | class.x -sp -flews.x -N -f | poly.x -fg
displays weight systems and Hodge data. This yields 6 cateidor fre€Zs quotients. They are, however, all
singular, as the Euler numbers are bigger than 1/3 of thodeakspective covering spaces.
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that contains the image of*. Then there is &—equivariant morphism : Vs, — Vs, and the
lattice N for the fibers is the kernel af in N.

0 Ny —ie N -2 N, 0

Hom(.,C*)

0 My <"— M M, 0

For our construction of a fibered Calabi—Yau variety we regthe existence of a reflexive
sectionA} C A* of the polytopeA* C Ng. The toric morphismy is then given by the
projection along the linear space spannedMyand N, is defined as the image of in the
quotient spaceVg/(A%)r. In order to guarantee the existence of the projection wesha
triangulation ofA’% and then extend it to a triangulation of . For each such choice we can
interpret the homogeneous coordinates that corresporysamA’; as coordinates of the fiber
and the others as parameters of the equations and hence ak ohtite fiber space. Reflexivity
of the fiber polytopeA’} ensures that the fiber also is a CICY because a nef-partitidk* o
automatically induces a nef—partition 4f;. This follows immediately from the definition by
restriction of the convex piecewise linear functions definihe partition tq V), .

For hypersurfaces the geometry of the resulting fibratios been worked out in detalil
in [67]. The codimensiom; of the fiber generically coincides with the codimensioaf the
fibered space also for complete intersections./For1 it may happen, however, thé]; does
not intersect one (or more) of thg'’s, in which case the codimension decreases. An example
of that type is the model

P 2224110\ |8
0004112) |8

with A = 3 and h'? = 43, which is a freeZ, quotient of a blowup of?s,,,,, with the
position of the additional vertep: = —(4p; + p + p;) given by the second linear relation
(the bottom line in the parenthesis). (This notation will édglained in more detail in the
next section.) This polytope has one nef—partition wWith = {p3, p, ps, p§, p3} and B, =

{p%, p5}. The corresponding bidegrees are seperated by a vertigairithe bracket (they
are given by the sums of the gradings of the homogeneousiocated that correspond to the
vertices that belong t&;). The codimension two fiber polytop¥; thatis spanned by, . . ., p7

has all of its vertices in; so that we obtain a K3 fibration with the generic fiber being a
degree 8 hypersurface %, ,, instead of an elliptic codimension two fiber that would nive
be expected.

In our searches for fiber spaces with certain properties walynestricted attention to the
generic case where = r;. We also analyzed the intersection numbers of many spacks an
found no example where a fibration has no toric realizatiooviged that the possible change
of the codimension is taken into account. There are, howeases where the fibration does

3}/22:1101100 (4.16)

4For example, the projectiofi’> — Z sending(z,y) +— « for the Hirzebruch surfacé, (example 3.1.4)
fulfills this condition if and only ifa = 0.
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not lift to a toric morphism of the ambient space. An exampléhe polytope (4.40) which will
be discussed in section 4.8.2.

4.5 The (2,30) example

In this section we will discuss a set of examples of CICYs itadle We will exhibit their
non-trivial fundamental group, their fibrations, and thpartitions.

In our analysis of the geometry and of applications of coteplatersections it was natural
to start with models with a small numbgt!' of Kahler moduli. In this realm it is quite likely
that our lists of toric CICYs is fairly complete, at least fmydimension two. Among the one—
parameter models we found only two new Hodge numbers, namély 25 for the freeZ;
quotient of the degree (3,3) CICY i andh!? = 37 for the freeZ, quotient of the degree
(4,4) CICY inP3,,,,,. The Picard—Fuchs equations of the respective universalsevere both
analysed in [69].

We therefore turn to the list of 2—parameter examples, teedirwhich have Hodge num-
bers (2,30). They will serve as our main examples in this hachext sectior? In the appendix
we compile a brief overview of toric CICYs with smail*.

There are three different polytopes which allow for codisien two complete intersections
with Hodge numbers (2,30). These have eight or nine veraogsno additional boundary
points. In a convenient basis the coordinates of the vertiéehe first of these polytopes are
given by the column vectors

1 0 0 0 -2 1 -1 -1
o 1 0 0 -1 1 -1 0

Aly{pi}=¢40 0 1 0 -1 1 -1 0 (4.17)
o 0 0 1 -1 0 0 O©
o 0 0 0 0 2 -2 0

If the number of vertices is close to the simplex case it istrmosnomical to describe a poly-
tope in a coordinate independent way by the linear relateoneng the vertices. This data is
sufficient if the latticeNV is generated by the vertices. Otherwise it has to be supplitdy
an abelian group action that defines the lattice. The tomietacorresponding to the polytope
AFA), generalizing the notatidf! or P"(w) in the simplex case, is thus

21111000
Pa;, =P (00000110) /Z,: 11100100 (4.18)
10000001

The lines in the parenthesis indicate the linear relationsray the vertices. The first two tell us
that the toric variety corresponds to a product sg&ge, x P!, while the third linear relation
p; + pi = 0 amounts to a blow—up df;,,,; by the last vertexy;. Finally, the group action

5The first hypersurfaces example (2,29) is the #geuotient of the degree (3,3) hypersurfac@®ix P2,
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indicates that the lattic& is not generated by the vertices alone. It requires, as aiti@ul
generator, the lattice poist(p} + p5 + p5 + p), i.e. the linear combination of vertices that
corresponds to the phases of fhegaction on the homogeneous coordinates.

The coordinates displayed in eq. (4.17), with the last linesible by two for all lattice
points, shows that the CICY is a free quotient. The groumpaatan be recovered by finding an
integer linear combinatiop* of the column vectors with coefficients §¥ whose last coordi-
nate is odd (thus refining the lattice). The resulting getoerfar theZ, action is unique only up
to linear combinations with the weight vectors modulo 2,etgorresonds to a different choice
p*— p* A Ap* with Ap* = 5(p5 + p5 + pi + p3) = —pi, 5(05 + p3) = 0 0r 5(pj + p§) = 0.

Next, we have to look at the possible nef—partitionsﬁﬁcg/g). It turns out that, up to symme-
tries,® there is a unique nef—partition, given By = {p%, p5, pi, pi} and Ey = {p%, pt, pi, pi}
with the Hodge numbers (2,30). This leads to the partitigriin= 4 + 2, 2 = 2 + 0 and
2 = 2 + 0 of the total degrees of the complete intersectionnto multidegrees. We will
augment the previous notation by a bracket indicating thedédegrees and write

21111000\ [4
Viay=P | 00000110 |2
10000001/ |2

2
o] /Zy: 11100100 (4.19)
0

In general these degrees do not specify the partition utyjgWée observed, however, in all ex-
amples that equal multidegrees of different partitionsagisvead to the same Hodge numbers.
The Z, quotient now indicates that the lattiée is replaced by the sublattice corresponding
to monomials that are invariant under the given phase symm®ince this quotient does not
lead to additional lattice points Lﬁ’(*A) the corresponding group action is free on the CICY, i.e.
7T1(V) = ZQ.

In the present example the ambient space is a product spataiti factor. The CICY is,
nevertheless, a nontrivial K3—fibration orbecause the coefficients of the equations defining
the K3 fiberV; depend on the coordinates of the base. The K3 family comigithie generic
fibers is obtained by dropping the second line and the colwanmesponding te; andps,

211110 |4
Vf—P(moom) {2

Note that theZ, quotient does not change the fiber lattice because it alswadt', effectively
dividing the base by 2. Over the two fixed—points on the basebta&in, however, an Enriques
fiber. (Sincek 3 only admits fre€Z, quotients and since the group action on the [fssways
has fixed points, a free quotient offé3 fibration can only have order 2.) The induced nef-
partition is obtained by dropping; andp; from Es. It does, of course, lead to the bi—degrees
of the divisors given in (4.20).

The lines in the parenthesis of our notation for toric vaesgtas in (4.18), (4.19), or (4.20),
generate the cone of non—negative linear relations amangadmts in/N. We will often call

(ﬂ | (4.20)

®The symmetry group has order 16 and is generated by the tsitispsp; < p3, p; < pi, pi < p% and by
the exchangéps, p3) < (pi. p3).
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themweight vectorsThe definition of the polytope only requires the linear tielas among the
vertices (and possibly the group action defining a subigtti€or the discussion of fibrations
and other geometrical data it is, however, often convenieimiclude the linear relations among
all lattice points ofA*. When the partitioning of the total degrée= > w; of a weight vector
by the nef—partition is specified &s-d;, —ds; w1, ..., wy) With d = d; + d; we may also call
themcharge vectordecause this is the data that characterizes part of the ddingar sigma
model realization of these geometries [37]. Note that ferdkfinition of the polytope and for
the degree data of the nef—partition, it is sufficient to giwe charge vectors that correspond
to the linear relations among the vertices. A more redundastription may, nevertheless,
be useful to make fibrations or non—free lattice quotierdgole. A complete definition of the
model, on the other hand, may require a resolution of simgigs through triangulations and
the inclusion of additional points. In the weighted propjeetcase the (single) weight vector
coincides with the generator of the Mori cone of the ambi@aice. In general, however, the
Mori cone will be larger than the cone that is spanned by tlaegghvectors.

The other realizations of the (2,30) model are

21111000\ [4]2
Vipy=P 22101110 (44| /Zy: 11100100 (4.21)
10000001/ [2]0

with nef—partitionst, UE, = {p7, o3, p5, o5} UL 03, Pi, 06, p7 1 {1, 03: 03, 07, pa YL 05, 05, P51
or {p1, p3. pi, P5} U {p5, p3. ps, p7}+ and

211110000\ [4]2
221011100 |4]4

Vior=P (100000010l |2lol /Z2: 111001000 (4.22)
010000001/ |0|2

with partitionsEy UE; = {p7, o3, o1, 07, 03 }U{ 05, 05, 06; 3} OT 0T, 05, 05, P8 Y05, P1s P6: P75 P5 -
The polytopeﬁ’(*B) for Vi 5y has the same “K3 fiber” polytope a‘s(* Ay but the two points above
and below the fiber—hyperplane are shifted along the fibeaase seen by the non—zero en-
tries(2,2,1,0,1) in the second line, below the weights of the fiber. The amtspate looks,

at first sight, like a non—trivial fibration over ti® with homogeneous coordinatés; : 7).
This is, however, not true because the Igig: now intersects the fiber hyperplane outside the
convex hull of the other lattice points. This line thus beesman edge of any star triangulation
of AE‘B) so that the points in the intersectidn N D,, which have homogeneous coordinates
r¢ = x7 = 0, have no image in the bage.

We will see in the next section th&t,) andV/z) are nevertheless diffeomorphic and that
their Picard—Fuchs equations are related by a change afbkes. In particular, alstg) is a
K3 fibration. This is only possible iDg N D; does not intersect the CICY (as is indeed the
case).

The polytop%fc) is similar toA7,, except for an additional blowup of the fiber polytope
with an exceptional divisoD, that, as we will see in section 4.8.2, does not intersect the C
threefold. The additional point does, however, make the Ki&fion manifest, becausk.
is again reflexive.
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In the next section we will discuss in more detail how diffarpartitions or different poly-
topes leading to CICYs with the same topological data mayelzed.

4.5.1 Construction the nef—partition out of the Newton polyopes

Itis instructive to see how the nef—partition tﬁ( 4 can be obtained from the Newton polytopes
of the degree (4,0) and (2,2) polynomials in the double co¥éne ambient space. In order to
arrive at the polytope (4.17) we observe that the ambiertespathe double cover is closely
related to the product spat®,,,, x P!. We thus start with the Newton polytopeof a degree
(6,2) equation in that space. It has 10 vertices correspgrtdithe monomials

zoys, afy? with1 <i<4,0<j<1,

wherez; andy; are the homogeneous coordinate®iy,,; andP*, respectively. The degree
(4,0) and (2,2) polynomials correspond to the Newton pgigto

Al = <SL’3,$?>, AQ = <x0y327xz2y]2>
sothatA = A, + A,. TheZ, quotient acting with signé— — — ++, —+) kills the two vertices
zgy; and generates 9 additional ones:

x%yoyl,xgx?y? withl1 <i<4, 0<;5<1. (4.23)

The resulting polyhedron is not reflexive, has 196 pointsydrfices and 9 facets, but can be
made reflexive by dropping the verte§y,y:. This yields a polyhedror\ 4y with 195 points
and 16 vertices that possesses a nef—partition with Hodgéersh!'t = 2 andh?! = 30 (up
to automorphisms there is only one additional nef—partitihose Hodge numbers ai&" = 4
and h?' = 44). The dual polyhedromfA) has 9 points and (in an appropriate basis) the 8
vertices given in eq. (4.17). The linear relations 2w+ pi + pi + pi + pt = 0 = p§ + p5 and
the facet equation corresponding to the last veptex: —pj is the one that eliminategy,y;
and makes\ 4 reflexive.

The nef-partition of 4y is now constructed from the Newton polyhedka as follows:
In order to getA4) = A; + A, we drop the pointryyey; (which becomes a vertex on the
sublattice) fromA, and obtain

Ay = (a5, 27), Az = (a7y5).

With vy = 22, v; = z} andw;; = x?y? we thus findA 1) = Ay + Ay = (vowyj, viw;;) for the
decomposition of the 8+8=16 vertices &f4). Shifting A; (A,) by subtracting the exponent
vectors ofrgxixsxy (z2y0y1) and dropping the redundant exponents péndy,; we obtain the
vertex—matrices

1 -1 -1 -1 -1 0o 0 0 0 0 0 0 0
-1 -1 -1 3 -1 2 0 0 2 0 0 0 0

A7 = 0 4 0 0 0 A=< -1 1 -1 -1 -1 -1 -1 1
-1 -1 3 -1 -1 o 0 0 0 2 0 2 0

1 1 -1 1 -1 -1 -1

o 0 0 0 O 1
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with o] = (1,1,0,1,0), 01 = (0,0,1,0,1) andA? ~ A; — o;. The shifted Newton polytopes
AY can be separated by a hyperplate,D7) < 0 < (p, D), with p = (2,1,0,1,0). The
points of D and those of)J on that hyperplane have no common non-zero coordinateshwhi
implies thatA7NAJ = {0} and thus establishes the nef—property. (Up to symmetridstbére

is only one other choice of integral shift vectersvith AJNAS = {0} ando;+0, = (1,...,1),
which leads to the same nef—partition). Converting to thesa

0 0 00

Sy

Il
_— o O o
_ o O =

0
1
0
1

o= OO
N O OO

of theZ, quotient of the original lattice we find the nef—partitimﬁA) = B7'AY,

1 -1 -1 -1 -1 o 0 0 0O 0 0 0 0
-1 -1 -1 3 -1 2 0 0 2 0 0 0 0
Ef = 0 4 0 0 O E;=¢ -1 1 -1 -1 -1 -1 -1 1
-1 -1 3 -1 -1 O 0 0 0 2 0 2 0
0 -1 1 -1 1 o 0 1 -1 1 0 0 -1
which is dual to the partition
1 0 0 -1 0 -2 1 -1
0 1 0 0 0 -1 1 -1
Ei=<0 0 0 0 Ey=<{1 -1 1 -1 (4.24)
0 0 1 0 0 -1 0 0
0 0 0 0 0 0 2 -2

of the convex huIlAfA) = (V1, Vo) = (Ey, E»).

4.6 The geometry of toric CICYs

It is well-known that the same Hodge numbers can come frofardiit polyhedra and even at
different codimensions, so it is important to identify ctvastions that actually give equivalent
CYs. First note that any hypersurface or complete intei@ectan be reconstructed at higher
codimension: Just multiply with an intervél1, 1] and take the corresponding trivial nef—
partition. 7 A less trivial redundancy is due to partitions where one ef A consists of a
single vertex, sayj: In that case the nef condition implies that the projectiom\d along
p; is reflexive. Moreover, the CY is given by the intersectiorthed toric divisorD; with the
remaining divisor(s) defined by the partition of the versic&inceD; can only intersect the
toric divisors that correspond to points bounding the réfeeprojection along/; we conclude
that we can construct the same CY variety in the ambient gpates given by that projection of
A*. In this section we discuss for some examples how CICYs cgiinom different polytopes
and/or from different nef—partitions can be related.

’In the formulas for the Hodge numbers [32] this leads to a tioglbecause a quadratic equationFih is
solved by two points.
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4.7 Equivalence of different nef—partitions

As our example for different nef—partitions we have chosemaf the nine polytopes in our list
of models with Hodge numbers (2,44),

p <4222110> {8 4
1000001/ |2]0
and its double cover, which we will relate to two differenpleysurface polytopes. The polytope
A of the quotient and its duah* have (P, P*y+) = (23219,97) points P and vertices/ .
The polytope for the double cover ha&1,4,9-), so that theZ, quotient is free (the number
P* of points in A* does not change). This model is again a K3 fibration, but tmsg the
fiber polytope has an additional vertex, namgly= 1(p; + pj), which is a lattice point on
an edge ofA*. Anticipating the structure of the nef—partitions, theresponding relation
207 + p5 + ps + pi + p5 = 0 shows that the fiber is agairi; in (4.20). Up to permutation
symmetries this polyhedron only admits two nef—partitions, p;, pt, o5, p3} U {p3, pi} and
{0, P5, P4y P35} U {5, pi, pé}. Both lead to the same partitioning of the degré@s= 8 + 4
and2 = 2 + 0, as indicated above. Note that non—vertices always belmongée of theV,’s of
a partition.® In our example this implies that andp; always have to belong to the save
More cases with Hodge numbers (2,44) will be discussed iti3e4.8.3.
Since the reflexivity constraint oW, + V, is weaker on a sublattice all of our partitions
must lift to the double cover, but additional ones can showngeed, up to automorphisms, we

find a total of nine nef—partitions with four different degseand three different sets of Hodge
numbers:

} /Zoy: 11101Q (4.25)

p (4222110) (8141 286 {7, p5, p, pfs, 7} U {03, i} (4.26)
1000001 ) |2]0] _s {r1, 03,05, p7} U{PL, P35, 96}
12922110\ [g]4] 286 103 05, P 95, 05, P71} U {pi }

1000001) |1]1]| i tPIP3:P3F U L0L P55 07} (4.27)
LT {p1, 05,05, P53 UAP3, P37}

4222110 [6[6] 369 {01, 05, 5} U{p3, 03, pis 7} (4.28)
1000001 ) |1]1] _13 {p1:p3} U5, 04s 5 05, 0507}

4222110 10
1000001
For the double cover we thus find two trivial partitions, fohish we can construct the cor-
responding hypersurfaces: It is quite easy to work this ouerms of the weight data: A
projection along;, as required by the third partition in (4.27), just amouwtsltopping that

vertex from the linear relations. Singé = —pj the last vertex is projected onto the origin and
we find the weighted projective spas,,,, [8], whose degree 8 hypersurface indeed has Hodge

399 {pt, p%, Pk, P%, p%, 5} U {p5} (4.29)
{01, 05, p%, P4, PEY U {0, pé}.

8 The piecewise linear functiong defining the nef—partition are integral on lattice pointshwialues) or 1
on the vertices. The facets Af thus cannot contain lattice points with other values.



4.8 Equivalence of different polyhedra: the (2,30) model

61

data (2,86). For the trivial partition in (4.29) we projettrag p5 and find the CY hypersurface

422110) [10 L
IP’<1 0000 1) [2] , again with the expected Hodge numbers (3,99).

We also observe that the partitioning indeed fixes the Hodgebers, i.e. equal charge
vectors always lead to the same spectrum. This could be egpbecause for weighted projec-
tive intersections the degrees contain all informationwHiais result comes about in the toric
context will be seen explicitly in the examples below. Thewerse is, however, not true: The
first two partitions with Euler numbey = —168 are the ones that survive tifg quotient, but
there is now a different realization of the same Hodge numbe€he difference in the charge
vectors is, however, only due to the contributionpdfand it turns out that the corresponding
divisor D; does not intersect the CICY. All spaces with equal Hodge rersiburn out to be
topologically equivalent so that there do not seem to be &ag@ boundaries associated with a
transition among the respective partitions.

4.8 Equivalence of different polyhedra: the (2,30) model

We now take the main example introduced in section 4.5 and/ ghat the three different
modelsV, 4, V(B), andV|¢) are topologically equivalent.

4.8.1 The first realisation of the (2,30) model

We first discuss the modél 4 in detail. Recall that the intersection ring of the complete
intersection CY is obtained as the quotient of the interseaing of the ambient toric variety
by the ideal generated by the linear relations among thetpoamd by the Stanley—Reisner
ideal. The latter is obtained from the primitive collectsowhich are collections of vertices
which do not form a cone but any proper subset forms a cone [#6}his example these
primitive collections can easily be seen in the geometrwefnolyhedrom@). As discussed

in section 4.5, the section in the lattidethat corresponds to the K3 fiber is a blowudhf,

by the vertexpi = —p}, hence it is a double pyramid over the tetrahed(ph p3, pi, pi).
This implies the relation®), - Ds = 0 = D, - D3 - D, - D5 because the respective vertices
never can belong to the same cone of any (triangulated) fantbe polyhedron. The complete
polyhedron is a double pyramid over that 4—dimensional toppramid. Asp; + p3 = 0 this
leads to the additional relatioRg - D; = 0, which completes the generators of the Stanley—
Reisner ideal. The polyhedron is simplicial and has the ¢6t& 8234567, where a hat above a
sequence of numbers indicates to take all simplices thee &g dropping one of the respective
vertices. The linear equivalences (up to principal diw$dollow from the lines of (4.17) and
we find altogether

Dy ~ 2Ds5 + Dy, Dy ~ D3 ~ Dy ~ Ds, D¢ ~ Dy, (4.30)
Dl'Dgzo, DQ'Dg'D4'D5:0, DG'D7:0. (431)
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According to the nef—partition (4.24) the complete intet&m V| 4 is given by Dy, - Dy
(cf. (4.13)) with
Dy =Dy + Dy + Dy+ Dg ~ 2Dy,

so thatDg does not intersect the Calabi—Yau and the Kahler modutespond to the volumes
of, for example,Ds; and Ds.

The unique star triangulation of the simplicial polytopel(®) fixes the toric intersection
numbers and therefore the Mori cone of the ambient SE@%. We determine this Mori cone
as

(4.32)

(M =(0,0,0,0,0,1,1, 0),

1® =(0,1,1,1,1,0,0, —2), (4.33)
[ =(1,0,0,0,0,0,0, 1).

As mentioned above the divis@ds of IP’A?A) does not intersect the complete intersection. All
other divisors descend to divisors on the hypersurface.€ehixges in the Mori vectors are the
intersections of the curves®, which have positive volume inside the Kahler cone, wita th
corresponding divisor. The Mori vectors of the completeiiséction must therefore have a
zero in the eighth entry. Besidés) there is the unique minimal length combinatihi =

1@ 4+ 2[® = (2,1,1,1,1,0,0,0) with this property. We drop the eighth entry and add the
negative value of the intersection of #& with Dy 1 andD, » as the first entries (these numbers
correspond to the negative degrees in the charge vectdrs} We get the Mori vectors for the
complete intersectiol 4

1M = (-4, 0,0),
(0 1), (4.34)
(in the present example they coincide with the charge vedbecause, dropping the non—
intersecting vertex, the ambient space is a product of vwetbrojective spaces, but generically
the Mori vectors span a larger cone). This way of summari#negMori generators becomes
particularly useful, when we discuss the Picard—Fuchsesyst

It is convenient to summarize all the relevant informationif 4, in the following table:

_27 27 17 17 17 17
_27 07 07 07 07 07

~
—~
N
~

9

) 2
Do 1 0 0 0 0 0 0| —4 0
Dy o 0 1 0 0 0 0 0] -2 =2
Dy 1 0 1 0 0 0 0 2 0 2H
Dy 1 0 0 1 0 0 0 1 0 H
D3 0 1 0 0 1 0 0 1 0 H (4.35)
Dy 1 0 0 0 0 1 0 1 0 H
Ds 0 1 -2 -1 -1 -1 0 1 0 H
Dg 0 1 1 1 1 0 2 0 1 L
Dy 1 0o -1 -1 -1 0 -2 0 1 L

On the left-hand side of the vertical line we have listed frimm to bottom the pointg; of
the polyhedrom\*, where the first two entries refer to the nef—partitibn! = 1,2, and the
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next five entries are their coordinatesinh = Z°. Together they form the coordinates of the
generators of the 7—dimensional Gorenstein doi®"*) that was defined below (4.11). To each
pointp; we have associated the corresponding divi3prThe first two rows, i.eD, ; and Dy »
correspond to the interior point appearing once in eitheitpa. The two columns labeled by
¢ on the right-hand side of the vertical line denote the Moriagators. lts entries are the
intersection numbers of the restrictions of the divisbrgto V' with the curves: ¥, The data
only refer to the CY manifold, i.e. we dropped the non—irgetisg divisors and the curves that
do not descend to the complete intersection.

Let us denote the independent divisors of the completesaetéion byH and L. In our
example we can choodé = D3;D, D, andL = D¢Dy 1D, 2, as is indicated on the right
in (4.35). The classical intersection numbers are defined as

lia,b,c:/ Ja/\Jb/\Jc:Damecha (436)
\%4

whereJ, € H*(V,Z) and D, € H,(V,Z). Here,J, and J, are the Kahler forms dual to
H and L, respectively. They can be easily evaluated from the iatgisns onP, , , €.9.
D1DyD3DyDg = Vol ({p3, p5, p3, pi, pé)) = 2, and the relations in (4.30) and (4.31). The fact
that we are dealing with a fré@, quotient is accounted for by a division by 4. Therefore, the

intersection numbers are
K111 = R11,2 = 2,

(4.37)

K122 = K222 = 0.

According to Oguiso [64], a CY threefold admitsia3—fibration if there exists an effective
divisor L such that

L-c>0forallcurvesc L?- D = 0 for all divisorsD. (4.38)

Therefore, we conclude from (4.37) the geometry of the CYcepay) is a fibration withJ,

the Kahler class of the fiber ant the Kahler class of the base. This is in agreement with the
purely combinatorial argument in (4.20). Normally, one @xs in such cases the fiber to be
K3 and ||, Ho.J, = 24 [64,70,71]. That is because the integraljpfover the bas@' gives 1,

the rest of the integral extends over the fiber and yigldst, = 24. Instead one has here

HoL = / HyJy = 12, HoH = / HoJi = 20, (4.39)
14 14

which indicates that th&, quotient has divided the volume of tf# by two. Indeed, we know
that the model is a freg, quotient of an ordinary K3 fibration, which might be repraseinas
the complete intersection of degrge0) and(2, 2) in P3,,,, x P! with Euler numbery = —112
and the samé&® vectors as in (4.34). Now recall our extensive discussiah@fproperties of
V(4 in section 4.5. With the homogeneous coordinateandy;, respectively, the polynomials
f1andf, are

fi =3+l +ay+as+a2+. ..

fo = ap(ys +yoyr +3) + ...
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For any choicegy, : y1) in P! the fiber is the complete intersection R3. The Z, acts on
the coordinates by, z1, T2, T3, T4; Y0, ¥1) — (=0, T1, —T2, T3, —T4; Yo, —¥y1). HENce theP?
gets folded with fixpoint$1 : 0) and(0 : 1), which explains the division of;, H,.J, by 2, while
theZ,-action leads to an Enriques fiber over the fixed points in #seb Note that, therefore,
only Z, quotients can act freely on K3 fibered Calabi—Yau manifolds.

4.8.2 Other realisations of the (2,30) model

One difficulty with complete intersection realisations ikigh redundancy in the description

of a given family of Calabi—Yau spaces. For example, we knamnfsection 4.5 that there

are two more polyhedra with three and two nef—partitionpeesvely, which lead to complete

intersections with Hodge numbe(8, 30). In addition, these polyhedra admit two and five
different star triangulations respectively, which coutitentially lead to different large volume

phases of the families.

To settle the question about equivalences we will follow titygological classification of
real six manifolds by C.T.C. Wall [72]. Specialized to Cata¥au manifolds it states that two
manifoldsV andV’ are of the same topological type if, beside the Hodge numbeedriple
intersection numberﬁv J. N\ Jy A\ J. and the integralg‘v H,.J, are the same in a suitable basis
of J,.

We find no counterexample to the statement that families avidrge volume limit of the
same topological type have the same Gromov-Witten invesj&at the toric mirror may have
a different natural parametrisation of the complex striecttariables, which leads to different
Picard—Fuchs equations and mirror maps.

We first consider the second realisation of the Hodge nun(B¢8),V|). In this case the
dual ponhedrorAfB) has vertices

-2
-1
-1

-1 =
-2
-1
1
-2

Alp {pi} = (4.40)

S oo o
OO OO
SO R OO
O R O OO
N O ==
S oo O

and admits the three nef—partitions given below eq. (4.Biprder to find the triangulations
we observe that the shift pf, as compared to its position mf 4)» moves the intersection point
of the linepj; p; with the fiber hyperplane through the faget45] of A’ till it reaches the linear
span of{3458] outside of that facet of the fiber polytope. This kills the mplices[1834567]

of Af,, and replaces them by the 3 triangl@é84567] and by the 16th faceB45678]. The
vertices of the non—simplicial facet form a circyt, + 2p; + pt = p§ + ps + 2p§, for which
we introduce the short hand notatit4,5,|6,7,8,). It indicates the labels: of the involved
verticesp}, and, as subscripts, their coefficienfsin the linear relation (3.1.15). Therefore, it
can be triangulated in the two different way$15678] or [345678], so that we find two different
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triangulations with 18 simplices:

T, = {[18234567], [1834567]},

(02020 ], [Loo% _ 4.41
T, = {[18234567), [134567], [345678]}. (4.41)

Since we deal with a freg, quotient, the volume of each simplex is divisible by two. Baese

of the coefficient 2 ofp; and pj} in the circuit the simplices that do not contain one of these
vertices, i.e.[35678] € T and[34567] € T, have volume 4. We thus need to resolve the
singularities of the ambient space by adding points at higlegree, following the general
discussion given in Section 4.2. From that we expect andtingplex of volume 4, sharing a
facet, which has to be the same for both triangulations. Tt @ossibility is[13567], which
indeed has volume 4. The additional point in degree two, Wingsolves all singularities is
pr = 5(p5 + pi + pi + p3). The corresponding triangulations are

Ty = {[18234567], [1835467], [1835677]}, (4.42)
Ty, = {[18234567], [146735], [345867], [143567r]}. '
The linear relations are
D¢~ D7, Dy ~2Ds+ Dg+ Dy, (4.43)

D3 ~ D5 ~ D4—|—D6 ~ DQ—DG—DT.

For the first two nef—partitions in (4.21), the fa¢® 5,6, 7) belongs to both sets of vertices,
therefore (4.15) becomes for the first nef—partition

Dy = D1+ Ds + Ds + Dg + D, ~ 2Dy,

4.44
Doy =Dy + Dy + D¢+ D7+ D, ~2D,. ( )

The second nef—partition is analogous and yields the sasudt.ré-or the third one, however,
this face lies entirely in the second set of vertices, so that

Do1 = Dy + Dy + Dy + Dy ~ 2Dy,

4.45
Doy = D3+ D5 + Dg + Dy + 2D, ~ 2D,. (4.45)

yields again the same result. Since the triangulationsrageeneral independent of the nef-
partition, we can discuss them for a single nef—partitiay, the first one. The Stanley—Reisner
ideal, of course, always contains the generatprDs because antipodal points can never belong
to the same simplex. The divisdk thus never intersects the Calabi—Yau manifidlg), whose
first defining equation is a section 6D, ;) = O(2D,). Furthermore, sincg; andp} never
belong to the same simplex, the divisbr coming from the blow—up of the ambient space
never intersect¥z) because its second defining equation is a sectiafl(@d, ,) = O(2D,).
Otherwise it depends on the triangulation, and we find, usimglar arguments, from (4.42)

Zsp(Th) = {D:1Ds, DyDg¢D7, D3DyDs,
D3DsDgD7, Dy D,, DyD, },

Zsp(Th) = {D1Ds, DyDg¢D7, DgD7Dg, D1D3DyDs, DyD3DyDs,
D3D5D6D77D2Dr7D8DT7D1D4DI‘}-

(4.46)
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Note that the first lines in (4.46) correspond to the StarfR®ysner ideal of the unresolved toric
varietyIP’A?B). Next, we determine the Mori cone of the resolved ambientspad find

o 1 0 -1 0 1 1 0 0
i o 0 1 0 1 1 1 0 -2
= 1 0 0 O 0 0 0 1 0
o 0 o0 1 0 -1 -1 -1 1
1 0 0 1 0 -1 -1 0 1
P 0o 1 1 1 0 0 -2 0
o~ 0 0 -1 -1 -1 0 0 1 1
o 0 1 0 1 1 1 0 -2

SinceDg and D, do not intersect the Calabi—Yau space, we consider therlowabinations of
the vectors above for which the eighth and the ninth entrysvees, and adding the intersections
of — Dy, with ¢(@) as before, we get for both triangulations the two Mori getwesa

Z(l) :<_47 07 707 ) 27 7_17_17070)7
U001 (4.47)

2.0,1 1
1® =( 0,-2;0,1,0,—1,0, 1,0,0) .

Now we have to check that the curves which bound the correbpgrKahler cones Wﬂzm
descend to the Calabi—Yau spade;. As mentioned above these curves have intersection
o). D, = z§“>. In particularc™) has negative intersection with bofh and D;. Negative inter-
section numbers indicate that the curves are actually swdan the corresponding divisors.
Since by (4.46)DsD; = 0 on the Calabi—Yau space, we conclude tH&tdoes not descend

to V(). For this reason the Mori cone must become smaller and tgeK&one becomes
bigger due to the absence of the bounding curve . The minimal positive integer linear
combination of ™ andi® without two negative entries 6" = (V) + |2

l(l) = (_47 _2;271717 17170707070)’

1® =(0,-2;0,1,0,—1,0,1,1,0,0) . (4.48)

We can then picl = D3 D, 1D, andL = DgD, 1D, » and observe exactly the same classical
intersections as in (4.37) and (4.39). According to the rtbeoof Wall the Calabi—Yau mani-
folds are then of the same topological type. It turns out th@twvorld sheet instanton numbers
on both Calabi—Yau spaces are the same. However, as we with section 4.9.1, the slightly
different vectord® lead to a different parametrization of the complex struetmoduli space.
Since these arguments used only the triangulations, wihecindependent of the nef—partition,
they show that the other two nef—partitions lead to the sapeldgical type of the Calabi—Yau
space.

The third model with Hodge numbe(g, 30

~—

has the dual polyhedron

1000 -2 1 -1 -1 0
0100 -1 1 -2 0 -1

o {pt=q0 010 -1 1 -1 0 0 (4.49)
0001 -10 1 0 0
0000 0 2 -2 0 0
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Figure 4.1: Secondary fan of the fa¢&@t56789] of Ay with circuits relating its triangulations.

and admits the two nef—partitions given below (4.22). Tl siangulations oﬂfc) again
contain the twelve simplice{ﬁ%Q?ﬁ@?} of A7), but now there are 5 additional facets, namely

the two simpliceg135679], and the facet$1435679] and [3456789]. The circuip; + p: =

ps + ps shows that the additional vertgg restores the possibility of a fibered ambient space.
Namely, if we triangulate this circuit 8679], we avoid the edgg;p%. The triangulations of
Afc) that are consistent with the fibration are easily found nigulating the reflexive section

A?C),f’ which is spanned by, ..., pt, ps, ps. Its single non—simplicial face{34589], yields

a circuit (3,4,5,|8,9;). One triangulation[34589], leads to a regular ambient space while the
other contains the simplé3459] of volume 2. In the 4—dimensional ambient space of the fiber
we expect a resolution of the singularity by a point in deg2ei@ the interior of the cone.
Indeed,p; = 1(p5 + pi + pi + pi) is a lattice point (which actually is identical to the point
pr that resolved the singularities in the previous example}eiiding these subdivisions to a
triangulation of the complete polytope we thus obtain thst fiwo triangulations/; and T}
below. T} is regular whileT} requires the subdivision of the two triangl@g5967] throughp?.

The complete set of triangulations can be found by consigi¢the secondary fan 3.1.14
for the facet [3456789]: Letl denote the matrix consisting of the coordinates of the resfe
verticesps, . . ., p5 and compute its Gale transform (see definition 3.1.12):

1 1 1 0 0 -2 -1
B:(Ol 0o 1 1 01) (4.50)

which is the transpose of its kernel, i.2lBT = 0, where we have chosen the two circuits
(31415118291) and (6,71|4,9,) as generators of the kernel. The rays of the secondary fan are
generated by the column vectors®f which we label by the respective verticesMC). The
triangulations’; can then be read off as indicated in the figure of the securidarg.1.

As an example considél;, where these complements &48, 39, 49, 59}, yielding the
triangulation{[35679], [3/4\5678]}. Adjacent triangulations are connected by (bistellar flgy$
circuits involving, on either side, vertices that can forstiactly convex cone with the ray that
separates the corresponding phases (see Propositiomzhapter 7 of [47]).
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A triangulation of[3456789] induces a triangulation of the other two non—simpliciakfac
[1435679]. Writing the triangulations as a union of the simplices af tig facet[3456789),
simplices of the induced triangulations of the cirCL@ité;3AE)679], and simplical facets aﬁfc)
respectively, we obtain:

Ty = {[3456789]} U {[1435679]} U {[18234567], [135679]},
T, = {[3456789]} U {[1435679]} U {[18234567], [135679]},
Ty = {[3549678], [356789]} U {[1493567]} U {[18234567], [135679]},
T, = {[345678],[35679]} U {[1493567]} U {[18234567], [135679]},
Ty = {[345678],[35679]} U {[1493567]} U {[18234567], [135679]}.

T, andT; have 24 regular simplices. The triangulatidhsT, andT; have 22 simplices, two of
which have volume 2. Inspection of the coefficients in thewits connecting the phases shows
that these aré45967], [356749] and[356749], respectively, so that the refinement induced by
adding

pi = 5(P5 + pi+ 05+ p5) = 3(P5 + 05 + P + 3) (4.51)
resolves the singularities in all cases. Note that stanguéations are refinements of the poly-
hedral subdivision induced by the cones over the facets*ofFigure 4.1 is therefore a face of
the complete secondary fan that describes all triangmiatibez‘C) (see Theorem 2.4 in chapter
7 of [47]). We list here the data for the ambient space onlyiar triangulations;; and 7.
ForT, we do not neeg; Therefore, the linear relations are

Dg~ Dy, Dy~2Ds+Ds, Dy—Dg— Dy~ D3y~ Dy+ Dg~ D5, (4.52)
and the Stanley-Reisner ideal is
Isr(Ty) = {D1Dg, Dy Dy, DgD7, D3DyD5}. (4.53)
The Mori generators associated to the triangulafipare
o 1 0 0 0 0 0 0 1
m=lo o 1 1 1 o 02 (459
0o 0 0 -1 0 1 1 0 -1
The complete intersectiori. for the first nef—partition below (4.22) is defined by
Dy1 = Dy + D3+ Dy + D7 + Ds, (4.55)

D072 == D2 + D5 + D6 + Dg.
ForT; the linear relation invoIV@;
D6 ~ D77

D1N2D5—|—D8+Dp, D2-D6—D9—DPND3ND4+D6ND5, (456)



4.8 Equivalence of different polyhedra: the (2,30) model

69

and so does the Stanley-Reisner ideal

Isg(Ty) = {DiDs,D1D,, DyDy, DyD,, DsD7, DDy, DsD,, DyD3DyDs, (4.57)
DyD3D,Ds, D3sDyD5 Dy} (4.58)

The Mori generators become accordingly

o 1 1 1 1 0 0 -2 0 0
. 1 0 0 0O 0O 0 0 0 -1 1
I,=10 0o 1 1 1 0 0 0 1 -2 (4.59)
o 0 -1 -1 -1 0 0 1 0 1
o 0 0 -1 0 1 1 0 -1 0

The complete intersection for the first nef—partition be(dw2?2) is defined by

Doy =D+ D3+ Dy+ Dy + Dy + D,,

4.60
D072:D2+D5+D6+D9+DP. ( )

We find for all triangulations (and all partitions) th@t and Dy do not intersect the Calabi-Yau
spaceV(¢y. Taking linear combinations for which the correspondingiponents of the Mori
vectors vanish and going to a basis where curvel tmound the Kahler cone yields again

—2:2
—2:0

I

)

1N = (-4,
0 )

7177 17 7070707070
12 = 1,0,—1,0,1,1,0,0,0

1, 1,1 :
707 707 ) ) * (4.61)

Y ) ) Y

With H = D3Dy1Dy» and L = DgDy1D, 2 We find the same intersections as (4.37) and
(4.39). The same conclusions arise for the other star tiatigns.

To summarize all representations of the (2,30) model, béférdnt polyhedra, different
nef—partitions, or different triangulations, are equerdl Some of them exhibit however differ-
ent parametrisations of the complex moduli space of theamirr

4.8.3 A selection of other models

In this section we will present a few more codimension two plate intersection CY man-
ifolds, but without going into so much detail as in the lasttsm. The selection contains
manifolds with the next smallest Hodge number after (2,3bese are (2,36) and (2,44). The
latter is particularly interesting since it has realizaias both a simply connected space and a
freeZ, quotient.

In Section 4.7 we mentioned that there are nine polyhedratadgnnef—partitions giving
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Hodge numbers (2,44). The CICYs obtained from these polghack

2 1 11 0 0)[4]2
2 1 1 11 0 0 0\ [4]2]

V5(29413,98) ~ PO 1 1 1 3 2 2 0] |4]6 (4.63)
00007100 1/ |02]
21131 0 0 0\ [6]2]

V3(29816,93) ~ P[0 1 1 3 3 2 2 0] |6]6 (4.64)
0001000 1/ |2]0]
211110 0 0\ [4]|2]

Vi(23210,97) ~ P4 2 2 2 0 1 1 0] |8(4| /Zy: 11010100 (4.65)
1 0000O0O0 1/ [2]0
2 11110 0 0\ [4]|2]

V5(23212,98) ~ P2 1 1 0 0 1 1 0] [4(2| /Zy: 11010100 (4.66)
1 0000O0O0 1/ [2]0

V, is the same variety as the one given in (4.25). The other 4i@udg yield blow-ups of the
ambient spaces df, V3, V, and Vs, respectively. These blow-ups are obtained by adding a
vertex in the definition of the ambient spaces in (4.62) tégfan additional columt0, 0, 0)”

and an additional row. This row has zeros everywhere exagpa fone at both the entries
corresponding to the vertex in bold face and the new vertée lihear relation corresponding
to this row describes th&' resulting from the blow-up. Only the blow-up of the ambiepase

of V3 descends to the complete intersection.

Some of the nine polytopes admit several nef—partitiongaarseéveral triangulations. Sim-
ilar to the(2, 30) example, it turns out that for a given polytope there is omlg topologically
inequivalent manifold. This justifies the notation in (4.6@ (4.66). A representative will be
given below.

Va, Vi, Vs, as well as the blow-up dfs, have reflexive hyperplane sections of codimension
one, and hence admit K3 fibrations (ag£aquotient thereof in the casesdf or V5). In addition
V3 itself also admits a K3 fibration, which however does not cdrom a toric morphism in
the ambient space. In fadty and its blow-up are related in the same mannérigsandV ¢,
discussed in Section 4.5.

Two out of the nine polytopes have lattice points which areveetices. These are related
to the ambient spaces b and its blowup. In fact, there is only one such lattice paiaimely
Py = %(pg + p%). This can be seen by subtracting twice the (redundant) fiesght vector
from the second one. We included that point to make the K3 fibér, visible, although it
is redundant for the characterization of the polytope. IRina turns out thatl; andV; are
topologically equivalent, for the same reasorlag andV(z) in Section 4.8 were equivalent,
cf. also the discussion below (4.22). Note thiaiandV; are freeZ, quotients.

We summarize the reduced data fgrto V, in the same way as we did faf 4 in (4.35),
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together with the intersection numbers and the linear forms

e

e

Vi:

-1 -1

-1

0

=11,

K222

7,

H2J2 - 50

K122

3,

HaJp = 22,

K112

=1,

R111

e

e

Dy 1
Do, 2
D,
D,
D3

Vs

Dy

-1 -1

-1

0

Ds

Dg
Dy
Ds

=0,

K222

0,

HoJy = 24.

K122

4,

HoJ, = 32,

R112

=2,

R111

e

e

Vs

1 -2 -1 -1 -3

0

=0,

K222

0,

Hady = 24.

K122

2,

HoJy = 22,

R112

=1,

R111
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) 2

Do.1 1 0 0 0 0 0 0| —4 0

Dy 2 0 1 0 0 0 0 0| -2 =2

D; 0 1 1 0 0 0 0 2 0

Do 1 0 0 1 0 0 0 1 0

|\ Ds 0 1 0 0 1 0 0 1 0
Dy 1 0 0 0 0 1 0 1 0

Dy 0 1 -2 -1 -1 -1 0 1 0

Dg 1 0 1 1 0 1 2 0 1

Dy 0 1 -5 -3 -2 -3 -2 0 1

Dg 0 1 -1 0 0 0 0 0 1

ki1 = 4, K112 = 2, K122 = 0, Koo = 0,
Hle - 28, HQJQ — 12

There are three polyhedra yielding nef—partitions with g@dumbers (2,36). The first
polyhedron admits two star triangulations, one with 12 and with 10 simplices, both of
which are not unimodular. We have to add four and five pointdegree two, respectively.
After going through the procedure explained in detail intleec4.8.2 we can describe the
(reduced) data as follows

) 2
Do1 1 0 0 0 0 0 0] -2 =2
Dy o 0 1 0 0 0 0 0| -2 =2
D, 0 1 1 0 0 0 0 0 1
Doy 0 1 0 1 0 0 0| -1 2
Ds 1 0 0 0 1 0 0 1 0
Dy 0 1 0 0 0 1 0 1 1
Ds 1 0 0 1 1 1 2 1 1
Dsg 1 0O -1 -3 -3 -4 -4 0 1
Dy 0 1 0 0o -1 -1 -1 2 =2

All divisors of the ambient space in degree one descend tG#febi-Yau threefold and the flop
in the ambient space is also realized in the complete intBoseCY. The family contains two
large volume limits of different topological type. The irdections numbers are

K11 = 2, Kii2 = 2, K122 = 2, Kaogo = 1,

Hy - Ji = 20, Hy - Jo = 22.

4.9 Periods and Picard—Fuchs equations for toric CICYs

We start our discussion with the construction of the fundatadeperiod of a toric CICY. A
natural generalization of (3.54) is:

®
(g,Q) = @ /(H)\ )dtl _../\%7 (4.67)
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with the Laurant polynomials

FO = Z Amt™ = Aoy + Z Amt™ € L(A)) (I=1,...,7). (4.68)

meA meA\{0}

Here,A? is a list of the 'relevant’ lattice points af,. In the hypersurface case we introduced
the notion of a projective subdivisions (Definition 3.2.@)exclute all interior points of facets
of A;. Now even divisors corresponding to vertices do not int#rs® we have to exclude
additional points, which can be found after performing aetidranalysis of the intersection
ring. We assume that the first element of thigalways corresponds to the origin. We now use
the expansions

KO

)\07! 1 > —1,m
dor =Y | A (4.69)
FO 1y (=) S meA\{0}

meAP\{0}

and do further expansion of the expressi()ns)K”), where the powers,, of the monomials
t™ are partitions ofx V)

—loy =KD = Y"1, (4.70)
meAP\{0}

It is clear that the integral in equation (4.67) gets a nom-zentribution if and only if the
vectors

T

L= (o1, logsli,. .o, l) with s+7=>Y #A) and [ € Zs (4.71)

=1

are relations o\, N M, the set of relavant points of the suppdit N M, whereC' C Mg is
the Gorenstein cone of the nef—partitiifA) = {A4, ..., A, } (AL N M is constructed by the
lattice points ofA? x ¢; (I = 1,...,7)). Thus we get:

—lp1)!. .. (=lp,)!
(9.9 = > ( 0715)1 l(v o) (o)™ (o) A LA, (4.72)
1. .. bg!

where the sum runs over all relatiohsf the form (4.71). If we define thel as A = A?, it
is clear that the operators from the-system in definition 3.2.1, after multiplying them with
(Mo --- AO,T)_l, annihilate the fundamental period (4.72). Again, we cleabasis

1@ = (15,108 1), for a=1,...,h (4.73)

for the Mori generators and introduce torus invarigntcoordinates:

S

2o = [T rodo TN (4.74)
=1

=1
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Writing eachl asy" | n,1@, we end up with:

T 1( Za 1nal(()l))' h (@ )”a (4.75)

—_ ||(( 1)211012
s h a
N1yenp Hj:l (Za:1 nal](' )>! a=1

Note that we have to restrict the sum over the integgr® those linear combinations of the
relations that are of the form (4.71). Once we have deterthine fundamental period (4.75)
and the PF operators, we can determine the YCs and the miaprimthe same way as for
toric hypersurfaces. We give an explicit example of a tofliC'C

4.9.1 Periods, Picard—Fuchs equations, and instanton nuneis of the (2,30)
model

V4 from section 4.8.1

We start with the first realization of the (2,30) model. Sime2want to compute the periods
of the mirror, we have to swtich to th¥—lattice. In section 4.8.1 we found out th@g (cor-
responding teg) does not intersect the CY. The polytopé¢ has only vertices, so the relevant
points are:

VY ={0,p}, 05, P} and V9 = {0, 0%, p%, pi, Pr}- (4.76)

Thus the polytop@\}. N M is:

(1 0 1 1 0 1 0 0 0
o 1 0 o0 1 o0 1 1 1
~ o 0 1 0 0 0 -2 1 -1
Al.A"M=¢0 0 0 1 0 0 -1 1 -1 (4.77)
o 0 0 0 1 0 -1 1 -1
0o 0 0 0 0 1 -1 0 0
L0 0 0 0 0 0 0 2 —2)
with a basis of relations (4.34):
l )
l IV = (-4,-2;2,1,1,1,1,0,0)
1 =( 0,-2;0,0,0,0,0,1,1).
Equation (4.75) gives the fundamental period:
4 !
Yo = <gaQ> = Z Z{le;?( nl)( (n1+n2)2) (478)

(n1!)*(2n1)!(na!)* ~

n1,n2>0
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with
)\%)\2)\3)\4)\5 )\6>\7
2= and 29 = (4.79)
R Y
The logarithmic derivatives are related by:
(51 = 25z1 (52 = 5Z1 (53 = 5z1 54 = 5,21 (55 = 5Z1 56 — 5,21 57 - 521
So1 = 4., dos = —26., — 20.,. (4.80)
Now recall the definition of thél,—operators:
O =[] o - [] oa ten (4.81)

lm>0 lm<0
of an A—system (see definition 3.2.1), which have to be rescaled #ihypersurface case
(equation (3.46)). In our example they are:
O = (0702050405 — 05,035) (Mogho2) (4.82)
|:|2 = (6687 - 6372) ()\071>\072)71 . (483)

Multiplying OJ; with zl)\al)\gg and, with 22)\071)\372 from the left gives:

|:|1 = (5% — 51)52(535455 — Zl)\g,l)\g,Q()\6&(50,1)4()\67%50,2)2()\0@)\0,2)71,
|:|2 = 5657 - 22)\372()\0_755072)2)\0_5. (484)

After inserting form (4.80) for the logarithmic derivatsvand repeated application of (3.44) we
end up with:

O = (462 —25.,)02, — 21(46,, + 4)(46,, + 3)(46,, + 2)(46,, + 1)
(20,, + 26, + 1)(20,, + 20,, + 2),

O, = 62, — 22(20,, + 25, + 1)(20,, + 25, + 2). (4.85)
In order to reduce this system it is useful to push 4fgethrough the derivatives. This can be
done by using the identity

20, = (62, — 0i5) 2, (4.86)

and we end up with:
Oy = 2(202, —6.,)02, — 168, (46,, — 1)(28., — 1)(40,, — 3)(20, + 20., — 1)(0s, + 02,) 21,
0o = 62, — (20, +28,, — 1)(0s, + 0s,) 2. (4.87)

These operators can be reduced by defining the opefatoasds:

~ Oy — 20,,(26,, — 1)53 Ly
0, = L 4.88
' _25,21 (25z1 - 1)<521 + 521)’ ( )

O, = O, (4.89)
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and a complete set of PF operators is given by:

Oy = 02, (0zy — 02y) + (202, + 262, — 1)(8(40., — 1)(40,, — 3)z1 — 202 ) (4.90)
|:|2 = (532 — (25,21 + 25,22 — 1)((521 + 5Z2>ZQ. '

The YCs are now easily obtained from the system (4.90) in @ineesway as for a toric hyper-
surface:

— l+a—-0 — l—a+b
K1) =2—, Kaig) =2 —5—7+—,
CLAl CLbAl (491)
e _23—a+b % _21—a+b(6+b—a) '
(122) = PNV (222) = A A )

where we performed a linear transformation on the coords{at):
a o 256 0 Z1
()= ) (2) @
A, are the discriminants:

Ay =(1-a)?-b2+2a—0b), Ay=1-0. (4.93)

The two lorarithmic solutions can be obtained from the Frobe method (3.60). The calcula-
tion is straight foward and even simplyer as in the examptbeeaend of chapter 3, because wo
do not perform a distinction of cases. Inserting the mirrapnmto equation (3.64) gives the
instanton corrected YCs of the mirror. For the present exentpe integral expansion of the
instanton contribution (3.65) with respect(id , d,) yields:

di da =0 1 2 3 4 ) 6

0 8

1 384 1088 384

2 4688 117088 247680 117088 4688

3 146816 12092928 84309504 148640576 84309504 12092928 146816

4 5462064 1205851824 20072874752 86051357872 135328662848 86051357872 20072874752

V¢ from section 4.8.2

As we mentioned before the large complex structure varsatidined by the polyhedron can
differ even for topologically equivalent families. In piarilar, the Picard-Fuchs equations for
the variablegz,, Z;) defined by (4.61) are formally different from (4.90), namely

Oy = 67, (82, — 0z,) — 8(4dz, — 3) (405, — 1)(265, + 205, — 1)%

4.94
Oy = 62, — 2(6z, — 0z, + 1)(20z, + 20z, — 1)7,. (4.94)




4.9 Periods and Picard—Fuchs equations for toric CICYs 77

The derivation is the same as in section 4.9.1 with the Mariors (4.61):

l )
l 1M = (—4,-2:2,1,1, 1,1,0,0)
1® =(0,-2:01,0—1,0,1,1).
The triple intersections of this model are:
_ 1+a — 1—a
Ky =2 —, Kaig) =2 —=
a3A1 CLQbAl (4 95)
=, lta o 1-a '
(122) d6A1A27 (222) 62A1A2
with
Ay =(1—a)*—4ab, Ay=1+0b. (4.96)

The coordinatesa, b) are related tdZ,, z,) by the same transformation as in equation (4.92).
As the A-models are topologically equivalent we should firrdtéonal transformation of vari-
ables preserving the large complex structure limjt= 0,2z, = 0) — (2, = 0,2, = 0) and
identifying (4.90) with (4.94). To find this transformatiare make the following ansatz:

Al(CL, b) ~ ~ Al(CL, b) ~

Pla.b) = Aq(a,b) and Pla.b) = Ay(a,b),

(4.97)

whereP(a, b) is some rational function. Solving farandb gives:
—1—-P+b
P )
. —4 — 2P +4b £+ 2,/4(—=1+b)2 — P(=3 + a2 + 2b + b2 — 2a(1 + b))
a = .

2P
This transformation is rational if and only if we can get rictloe squareroot. Setting

P=—(b—1)

E =

(4.98)

completes the square in the expression under the squaardate find (for the plus sign in

(4.98)):
a’y\ ﬁ 0 a
()% ) ()

This phenomenon is not special to complete intersectioresn also occur for hypersur-
faces. For example, the degree 12 hypersurface in the esboleighted projective space

4
P}9534and
P 2111110 6
1211101 6

(4.99)
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yield topologically equivalent Calabi-Yau hypersurfaceish 1! = 2 and h>! = 74, but
different Mori cones. The corresponding polyhedra comesiio different blowups of the same
simplex associated ] , , , ,, and the Picard-Fuchs equations as well as the triple Ettons
can be mapped onto each other in a similar way. As an other@grathe well-studied two-
parameter modé#! , , , 4[12] also has a cousin which is

4111110Y |8
P (1411101) M
It is easy to read off from the weight vectors that both potidaecome from two different blow-

ups of P}, ,, ,. We observe that in all these examples the number of verticgsoints ofA
is the same, while a single vertex is added to the simplex



Appendix A

Computer programs

The programmef.x calculates nef—partitions of arbitrary codimension fdtesave polytops
and computes the cohomological data. The softveave.x creates weight systems and is
also able to combine them. This is very useful for constngctiertain toric ambient spaces,
especially fibrationsgen.x is under development and transforms Gorenstein polytapes f
generalized CY into those arising from a nef—partitinaf.x andcws.x are already imple-
mented into the PALP package [33] for testing.
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A.1 The program nef.x

A.1.1 help listing for nef.x

$nefx-h
This is ‘nef.x’: calculates hodge numbers of nef-partition S.
Usage: nef.x -<options>
Options:
-h print this information.
-f or - use as filter; otherwise parameters denote I/O files.
-N starting-poly is in N-lattice (default is M).
-H gives full list of hodge numbers.
-Lv prints L vector of vertices (in N-lattice).
-Lp prints L vector of points (in N-lattice).
-p prints only partitions, no Hodge numbers.
-D calculates also direct products.
-P calculates also projections.
-t full time info.

-cCODIM  codimension (default = 2).
-Fcodim  fibrations up to codim (default = 2).
Input: degrees and weights ‘dl1 w1l w12 .. d2 w21 w22 ..’
or ‘d np’ or ‘np d (d=Dimension, np=#[points]) and
(after newline) np*d coordinates.
Output: as specified by options.

A.1.2 extended (experimental) options for nef.x

$ nef.x -x
This is extended help for “./nef.x":
-y print poly/CWS in M lattice if it has nef-partitions.
-S information about #points calculated in S-poly.
-T checks Serre-duality.
-S don’t remove symmetric nef-partitions.
-n prints poly only if it has nef-partitions.
-v prints vertices and #points of starting-poly in one
line. With the following option the output is limited
by #points:
-UPOINTS ... upper limit of #points (default = POINT_Nmax).
-IPOINTS ... lower limit of #points (default = 0).
-m starts with [d w1l w2 ... wk d=d_1 d_2 (Minkowski sum).
-R prints vertices of starting-poly if it is
not reflexive.
-V prints vertices of poly (in N-lattice).
-Q only direct products (up to lattice quotient).

-gNUMBER  prints points of Gorenstein poly in N-lattice.
-dNUMBER  prints points of Gorenstein poly in M-lattice.

If NUMBER = 0 ... no 0/1 info.
If NUMBER = 1 ... no redundant 0/1 info (=default).
If NUMBER = 2 ... full 0/1 info.

-M print VPM of gore polytopes.
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A.2 The program cws.x

A.2.1 help listing for cws.x

$cws.x -h
This is ‘cws.x: create weight systems and combined weight s ystems.
Usage: CWs.x -<options>; the first option must be ‘w’, ‘c’,
‘i',or ‘h’.
Options:

-h print this information.

-w# [L H] make IP weight systems for #-dimensional polytopes

For #>4 the lowest and highest degrees L<=H are required.
-rl-t make reflexive/transversal weight systems (optiona .

-cH# make combined weight systems for #-dimensional polytop
For #<=4 all relevant combinations are made by default,
otherwise the following option is required:

-n[#] followed by the names wf 1 ... wf # of weight files
currently #=2,3 are implemented.

[-t] followed by # numbers n_i specifies the CWS-type, i.e.
the numbers n_i of weights to be selected from wf_i.
Currently all cases with n_i<=2 are implemented.

-i compute the polytope data M:p v [F:f] N:p [v] for all IP
CWS, where p and v denote the numbers of lattice points
and vertices of a dual pair of IP polytopes; an entry
F:f and no v for N indicates a non-reflexive ‘dual pair'.

-f  use as filter; otherwise parameters denote I/O files

A.2.2 extended (experimental) options for cws.x

$ cws.x -X
This is ‘cws.x: -x gives undocumented extensions:
-ip printf PolyPointList.
-id printf dual PolyPointList.
-N make CWS for PPL in N lattice.
-p# [infilel] [infile2] makes cartesian product
of Vertices. # dimensions are identified.

es.
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A.3 The program gen.x

A.3.1 help listing for gen.x

$gen.x-h
This is ‘gen.x’: computing splits of generalized CYs.
Usage: gen.x [-<Option-string>] [in-file [out-file]]

Options (concatenate any number of them into <Option-strin g>):
h print this information. | p print input (gen) poly.
f use as filter. | I print input (gen) poly
s no hodge calculation. | + weights.
L print split poly + nef | d print dual (M) input
info + L info. | (gen) poly.
P print split poly. | t show transformations for
r print index x input | split.
poly.
Input: degrees and weights ‘dl w1l w12 ... d2 w21 w22 ..’

or ‘d np’ or ‘np d (d=Dimension, np=#[points]) and
(after newline) np*d coordinates
Output: as specified by options

A.3.2 extended (experimental) options for gen.x

$ gen.x -x
Testing options:

X print this information. | c[r] (needs points in

W  print weight if poly [ N-lattice as input):
has full dimension. | print poly if it has diff.

r print r x input-poly | splits.
(r=index). [ S print poly if it splits.

M  print pairing matrix | m print poly if it has mult.
of gen. polys. | splits.

| a print all different splits.
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Cohomological results

B.1 Toric Calabi-Yau spaces with small Picard numbers

In this appendix we compile the Hodge data with < 3 that have been obtained for weighted
projective spaces and more general toric ambient spacesreBhlts are complete for hyper-
surfaces and they are probably (at least almost) completotbmension 2:

H:(1,h'?) weighted projective toric
hypersurfaces] 101103145149 | 21
codimension 2] 61737989129 | 2537

H:(2,h'?) weighted projective toric
hypersurfaces] 74 86 95 106 122 128 132 2729 38 83 84 90 92 102 116 120 144
codimension 2] 62 68 (83 84 90) 30 36 44 50 54 56 58 59 60 64
66 70727677 788082100112

H:(3,h'?) weighted projective toric
hypersurfaces] 66 69 7587 99 103 105| 434551 5759636567 7172737677 78 79|81
123131 165195231248 83848589919395107111115119127 141
codimension 2] 47 556187 (455157671 232427293133353739414244484950
71778183899193111) 5253545658 60626468 7080101113

Complete intersections in products of projective space®waumerated completely for
arbitrary codimension many years ago [73]. The relevantgéathta from [74] are

657389 101 fom!t =1,
46 47505556 58 59 62 64 66 68 72 76 77 83 86 fort = 2,
27 31 33 35363738394041 43-454647-61 63 66 69 72 75 far!t = 3.

Bold-face numbers are those valueshdf that do not occur in the above tables. As a check
for the completeness of our results we used the lists thabaiable at [75] to verify that
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the missing values indeed require codimension 3 or moresiBlegepresentations of minimal
codimension are

P'2222]=P(11111111)[2222]"%,

i.e. 4 quartics irP” for the example with Picard number 1, and

2,46 2,47 2,55
P2|2100 P2 (210 P3 (211
P>|1122 ’ Pt|113 ’ P3|121 ’
—88 —90 —106
P2 210733 P2 2100738 Pl 1107340 P! [110]>%
P2 (111 , P2 1011 , P2 102 , P2 (201
2 3 3 3
P? [012] 4 PP l0121] - PP l121] -, PP 1121 o

for h'! = 2 andh!! = 3, respectively.

B.2 Free quotients of elliptic K3 fibrations

In this appendix we present the Hodge data and some polytbpesve found for fre€zZ,
guotients of elliptic K3 fibrations.

Among all Calabi—Yau hypersurfaces in toric varieties ¢hare 16 polytopes that corre-
spond to free quotients. This can be compatible with a K3 ftitimaonly for Z, quotients
because the action on the ba&ealways has fixed points and the K3 fibers only admit a free
Z, action. The well-known example of the fré&g quotient of the quintic has no fibration. The
two Z3 examples are elliptic. The remaining 13 polytopes havedumehtal groufZ., and are
elliptic-K3 fibrations. The Hodge data of these manifoldd ahtheir double covers are

h'' h'2[x] | double cover| A K2 [x] | double cover| h'* h'2[x] | double cover
343[-80] | 3 83 [[160] || 428[-48]| 452[-96] || 529[-48]| 755[-96]

359[-112]| 3115[-224] || 436[-64] | 4 68 [-128]
375[-144]| 4148[-288] || 4 44[-80]| 5 85 [-160]

At codimension 2 we found 72 polytopes with nef partitiond @fiptic K3 structure that
corresond to a free quotient. In 3 cases the lattice quadietnglly corresponds toZ, quotient,
but only theZ, refinement of the lattice is compatible with the nef partitio



B.2 Free quotients of elliptic K3 fibrations

h'' h'2[x] | double covern| h'' h'2[x] | double coven| h!' h'?2[x] | double cover
323[40] | 343 [-80] || 422[-36] |541[72] 525[-40] | 7 47 [-80]
327[48] | 351 [-96] | 424[-40] |5 45[-80] 527 [-44] | 8 52[-88]
329[-52] | 355[-104] || 4 26[-44] | 650 [-88] 529 [-48] | 6 54 [-96]
331[-56] | 359[-112] || 436[-64] | 670[-128] || 533[-56] | 7 63[-112]
333[-60] | 464[-120] || 442[-76] | 541[-152] || 535[-60] | 7 67 [-120]
339[-72] | 476[-144] || 458[-108]| 6 114 [-216] || 541[-72] | 8 80 [-144]

6 24[-36] | 1046[-72] || 7 19[-24] | 11,35[-48] || 8 14[-12] | 13 25 [-24]
626 [-40] | 949[-80]

The hypersurface with Hodge data (3,43) and the completesattion (4,36) are discussed in
Section 4.8.3.

A surprise in view of the Heterotic-Type 1l anomaly conditg[76], [77] is the small num-
ber of hypermultiplets even for small numbers (liké = 3) of vectors. Some of the corre-
sponding polytopes are

11110000, [2]2
P*2 (00001100| |2{0] /Z2:11101010
0000001y [0|2
P*27(2211110[4|4] /Zs:022130
320 (2210210) [4]4 .
P> (0001001) 5 0] /7Z5:1011100
3310211022\ (4|4 )
P56 (1100110 2 2] /Z2:1110004
22120100 [4]4]
P*3 1 11021010| |4|2| /Z;:10111000
0001000Y [2|0]
02142210 [8]4]
P*¥ (11010100| |2(2]| /Z2:11101000
0001000Y [2|0]
22101200 [4]4]
P2 (00121220| |4(4] /Z5:01110100
0001000Y [2|0]
22100210 [4]4]
P (11011000| |2(2] /Z2:10110100
0001000Y [2|0]
22110002 [4]4]
P*% (11000110| |2(2] /Z5:01101100
0000100Y [2|0]
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