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Kurzfassung

Eine der spannendsten Entwicklungen in der Stringtheorie in den letzten Jahren
beschäftigt sich mit Dualitäten. Im Bereich der Stringkompaktifizierung spielt
dabei vor allem Mirror Symmetrie eine wichtige Rolle, bei welcher Stringtheorien
auf sogenannten Calabi–Yau (CY) Mannigfaltigkeiten, die ein Mirror–Paar bilden,
zur selben Physik führen. Solche CY Mirror–Paare können in der torischen
Geometrie durch vollständige Schnitte von Hyperflächen (CICYs) konstruiert
werden, deren Information in Paaren von reflexiven Polyedern kodiert ist. Teil
meiner Arbeit war es, ein C–Programmpaket zu erstellen, mitdem man diese
Polyeder auf solche CICYs durchsuchen und deren Kohomologie (die sogenannten
Hodge–Zahlen) berechnen kann. Die gewünschte Kodimension der CICY kann
dem Programm als fixer, aber beliebiger, Parameter übergeben werden. Damit ist
man nun in der Lage, die vollständige Kohomologie einer CICY mit beliebiger
Dimension und Kodimension zu bestimmen.

Da sich noch niemand zuvor systematisch mit der Physik von torischen CICYs
beschäftigt hat, berechne ich einige Beispiele und diskutiere die wesentlichen
Unterschiede zum Hyperflächenfall, wie das Nichtschneiden von Divisoren, die
zu Eckpunkten gehören. Aufgrund der hohen Dimensionen dertorischen Räume
spielt auch das Auflösen der Singularitäten eine entscheidende Rolle, und wird für
die einfachsten auftretenden Fälle diskutiert. Spezielle Eigenschaften der CYs,
so wie Faserungen und nichttriviale Fundamentalgruppen, werden in die torische
Sprache übersetzt und diskutiert.

Im weiteren benütze ich die Mirror–Abbildung in einem unserer Beispiele, um
damit explizit Weltflächen–Instantonen von einer torischen CICY zu berechnen.
Diese Instantonen führen zu stringtheoretischen Korrekturen in der vierdimensio-
nalen effektiven Supergravitation.





Acknowledgements

First of all I want to thank my supervisor Max Kreuzer for his dedicated support
and encouragement. His trust in me was the foundation of thiswork.

I am especially grateful to my office mate Emanuel Scheidegger. With his
enthusiasm for physics he brought new energy to this institute and I learned very
much from him.

It is my great pleasure to thank all the members of the Theory Division, from the
old guard up to the next generation. Especially I want to emphasize the following
people: Herbert Balasin, with whom I had many interesting discussions during
coffee breaks with topics starting at physics, mathematics, or linux, and ending at
all the world and his brother (and we consumed a lot of coffee...). Robert Wimmer
and Manfred Herbst, who began their thesis almost at the sametime as I did. This
autumn also Manfred and I will be at different departments totry our luck. I wish
Manfred and Robert to bring out the best, and I am anxious to see where we will be
in a few years. Johanna and Sebastian, the new shooting starsin our group.

Physics is more than a job, and certainly one has to give all toget ahead. But the
most important issue I have learned in the last years is that there are other things
in life which are more important. I want to thank Sylvia for wonderful eight and
a half years. The last time was not easy, and next year will presumably be more
difficult. But no matter what will come up in the future, our love will be strong
enough to cope with things together.

I am appreciative to Michael. Unfortunately I had not enoughtime to continue
our running units, but the next marathon comes for sure. I am much obliged to
Wolfgang and Susanna. I spent a lot of nice hours with them, and I hope that our
contact will not break away.





Contents

1 Introduction 1
1.1 Motivations for Mirror Symmetry . . . . . . . . . . . . . . . . . . . .. . . . 1
1.2 Constructing mirror CYs . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 2
1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 2
1.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 The physical background 5
2.1 N = (2, 2) SCFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The non–linearσ (nlσ) model and the Landau–Ginzburg (LG) model . . . . . . 9

2.2.1 The non–linearσ model . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 LG models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 R–symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.4 Twisting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.5 Moduli of a CY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 The mathematical background 19
3.1 Basics of toric geometry . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 19

3.1.1 Definition of a toric variety . . . . . . . . . . . . . . . . . . . . . .. . 20
3.1.2 The Kähler and the Mori cone . . . . . . . . . . . . . . . . . . . . . .24
3.1.3 Triangulations and the secondary fan . . . . . . . . . . . . . .. . . . 25

3.2 Special Geometry and Mirror–symmetry . . . . . . . . . . . . . . .. . . . . . 29
3.2.1 Picard–Fuchs (PF) equations and Yukawa couplings (YCs) . . . . . . . 29

4 The geometry of toric CICY’s 45
4.1 Complete intersections in toric varieties . . . . . . . . . . .. . . . . . . . . . 45

4.1.1 The Cayley trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Resolution of singularities . . . . . . . . . . . . . . . . . . . . . . .. . . . . 48
4.3 Free quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
4.4 Fibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5 The (2,30) example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55

4.5.1 Construction the nef–partition out of the Newton polytopes . . . . . . . 58
4.6 The geometry of toric CICYs . . . . . . . . . . . . . . . . . . . . . . . . .. . 59
4.7 Equivalence of different nef–partitions . . . . . . . . . . . .. . . . . . . . . . 60



ii CONTENTS

4.8 Equivalence of different polyhedra: the (2,30) model . .. . . . . . . . . . . . 61
4.8.1 The first realisation of the (2,30) model . . . . . . . . . . . .. . . . . 61
4.8.2 Other realisations of the (2,30) model . . . . . . . . . . . . .. . . . . 64
4.8.3 A selection of other models . . . . . . . . . . . . . . . . . . . . . . .69

4.9 Periods and Picard–Fuchs equations for toric CICYs . . . .. . . . . . . . . . 72
4.9.1 Periods, Picard–Fuchs equations, and instanton numbers of the (2,30)

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A Computer programs 79
A.1 The program nef.x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.1.1 help listing for nef.x . . . . . . . . . . . . . . . . . . . . . . . . . . .80
A.1.2 extended (experimental) options for nef.x . . . . . . . . .. . . . . . . 80

A.2 The program cws.x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.2.1 help listing for cws.x . . . . . . . . . . . . . . . . . . . . . . . . . . .81
A.2.2 extended (experimental) options for cws.x . . . . . . . . .. . . . . . . 81

A.3 The program gen.x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
A.3.1 help listing for gen.x . . . . . . . . . . . . . . . . . . . . . . . . . . .82
A.3.2 extended (experimental) options for gen.x . . . . . . . . .. . . . . . . 82

B Cohomological results 83
B.1 Toric Calabi-Yau spaces with small Picard numbers . . . . .. . . . . . . . . . 83
B.2 Free quotients of elliptic K3 fibrations . . . . . . . . . . . . . .. . . . . . . . 84



Chapter 1

Introduction

1.1 Motivations for Mirror Symmetry

Mirror symmetry is one of the most fascinating areas in string theory, and gives rise to ex-
tremely rich interactions between mathematics and physics[1–4]. Roughly speaking, the idea
of mirror symmetry is that it relates identical string theories on topologically different mani-
folds. Unbroken(N ≥ 1) supersymmetry in four dimensions and conformal invarianceenforce
strong constraints on these spaces [5]. They have to be Ricci–flat and Kähler and are known as
Calabi–Yau (CY) manifolds [6–8]. Now mirror symmetry is interesting for two reasons:

(i) It can be used to calculate gauge couplings and contributions to the superpotential in
four dimensional supergravity arising from dimensional reduction of low energy effective
actions in string compactifications.

(ii) It relates different types of string theories.

At very large distances, or low energies (<< 1019GeV), the dimensions in the internal (the CY)
part are hidden and the theory effectively looks four–dimensional. If one expands the (mass-
less) fields appearing in such a ten–dimensional low energy effective action into an internal and
a four–dimensional part, the Hamiltonian in the internal sector produces a mass term by the
Kaluza–Klein effect [9]. Since the excitation spectrum is typically at1019 GeV, we are mainly
interested in the massless zero–modes. They also play an important role in algebraic geome-
try [10], and can be identified with the Cohomology of the CY spaceV : Hp,q

∂̄
(V ) [11]. The

dimensions of these spaces,hpq, are called Hodge–numbers, and mirror symmetry interchanges
hpq with hn−pq of the mirror CY. For a CY 3–fold, onlyh11 andh21 are independent, and
correspond to Kähler and complex structure deformations,respectively [12]. These geometric
parameters, which are called moduli, appear as charged matter fields in the four dimensional
superpotential, where the coupling constants are equal to the threepoint functions [13, 14] in
the topological string theory [15]. It turns out that there are two different ways to define the
topological string, which are related by the mirror automorphism of the superconformal alge-
bra [11]. The nice thing is that only in one case, called A–model, the Yukawa couplings receive
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corrections from worldsheet instantons, while in the othercase, which is known as B–model,
they are equal to the classical intersection numbers of the CY space [1,16]. Mirror symmetry re-
lates these two models and, as mentioned in (i), can be used tocalculate these non–perturbative
corrections of the superpotential.

However, there are a lot of choices of different CY manifolds, each of which leads in general
to different physics in four dimensions, and, even worse, each CY has a huge parameter space
by itself. On top of this there are five different consistent superstring theories in ten dimensions,
increasing the number of possible compactifications. One CYis as good as the other, and the
problem that one has no preferred compactification is known as vacuum degeneracy problem.
Unfortunately we do not have a good answer to this problem, but exciting progress has been
made in understanding the relations between different types of string theories (see [17] and
the references therein). The concept relating different theories is known as duality, and mirror
symmetry is a duality relating type IIA and type IIB string theory on a mirror pair of CY
manifolds.

1.2 Constructing mirror CYs

The first sizable sets of CY manifolds were constructed as complete intersections (CICY) in
products of projective spaces [18, 19]. These manifolds have many complex structure defor-
mations but only few Kähler moduli, which are inherited from the ambient space. The advan-
tage of weighted (WP), in contrast to ordinary, projective spaces, is that the resolution of the
singularities contributes additional Kähler moduli, andthus provides a much more symmetric
picture [20]. However, it turned out that mirror symmetry isonly approximately realized in
this class of models [21, 22].WP spaces are a special class of toric varieties [23–28], and
there is a remarkable construction of mirror pairs of CY hypersurfaces which was discovered
by Batyrev [29]. In this construction mirror symmetry manifests itself in the duality of a pair
of reflexive polytopes. A generalization to complete intersections was presented in [30, 31]. A
special class of toric CICYs, which is per construction mirror symmetric, corresponds to nef–
partitions of reflexive polytopes. Mirror symmetry at the cohomological level in this setup was
proven in [32]. In this work the authors also gave an explicitformula for the string–theoretical
hodge numbers, using the combinatorics of these polytopes.The development of thenef –code
is the foundation of the present thesis, which enables us to discuss the specifics of CICYs cor-
responding to nef–partitions and their relevance in stringtheory. The code for this program is
implemented in the PALP package [33]. First results are published in [34] and more, which are
closely related with this thesis, will follow in [35].

1.3 Outline of the thesis

It is most convenient to formulate first quantized string theory in terms of a2–dimensional
quantum field theory on the world sheet swept out by the string. Chapter 2 of this thesis provides
the necessary background for understanding the A– and B–twisted sector of theN = (2, 2)
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topological field theory, which is crucial for type IIA and type IIB string compactifications on
Calabi–Yau (CY) manifolds. We briefly discuss the calculation of the correlation functions and
show why those of the A–model get corrections from worldsheet instantons, in contrast to those
of the B–model. In the case of a non–linear sigma model on a mirror pair of CY manifolds they
are related by the mirror map.

Toric geometry provides a powerful tool in constructing CYs. Instead of gluing together
affine patches to a manifold, one can also intersect a certainnumber of hyperplanes in order
to get a suitable space, which inherits the Kähler propertyfrom the ambient space. As already
mentioned, mirror pairs of CY manifolds can be constructed in the toric setup using the duality
of reflexive polytopes. In chapter 3 we give all the mathematics, which is needed to understand
the geometry of toric ambient spaces. Since those spaces canalso have singularities, we briefly
discuss how one can resolve them using triangulations of polytopes. This will turn out to be
very important when we determine the Mori cone of the CY, which is a certain section of the
Mori cone of a smooth ambient space. We also give a review of the whole mirror–program for
toric hypersurfaces and calculate an explicit example at the end of this chapter.

While the computation of the cohomology in the hypersurfacecase is rather simple, the case
of complete intersections gets very complicated. Ournef –code is a very efficient tool which
findsall nef–partitions inarbitrary codimensions of reflexive polytopes ofanydimensions and
calculates thewhole cohomological data. With this program we are able to discussa large
number of examples, which is the main part of chapter 4. We found very interesting new
effects. For example, we found out that even divisors corresponding to vertices of a polytope
do not intersect the CY. Non–intersecting divisors correspond to projections of the Kähler–cone,
which are dual to sections of the Mori cone, as mentioned above. Due to the high dimensions
of the polytopes in contrast to hypersurfaces, the resolution of the singularities gets also more
complicated. We discuss systematically the method of usinglattice points which are at distance
higher than one from the origin to resolve those singularities in order to get a smooth CY
manifold. The appearance of singularities is also stronglyrelated to quotients of lattices, which
we use to construct CYs with non–vanishing fundamental classes.

Of particular interest are CY manifolds which are elliptic or K3 fibrations, where the latter
can be used to construct models which admit Heterotic dual models onK3×T2. We discuss the
appearance of fibrations in the toric setup, which boils downto the search for reflexive sections
of polytopes. Ourcws–program is very helpful for the construction of ambient spaces which
admit fibrations, since it combines weights corresponding to fibrations of suitable weighted
projective spaces.

At the end of this section we discuss different realizationsof the first interesting pair of
hodge numbers not appearing in the hypersurface case. To show that the manifolds are indeed
isomorphic we calculate the triple intersection numbers. Adapting the techniques of the hy-
persurfaces case, we calculate also the Yukawa couplings ofthe mirror using the mirror map.
Furthermore we also give an explicit rational transformation relating the complex structure
moduli space of two different realizations of this model.

A listing of the available options can be found in appendix A.In appendix B we give a
summary of the Hodge–data we have computed, and compare it tothe hypersurface case and
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complete intersections in (products of) weighted projective (WP) spaces.

1.4 Outlook

There is an intimate relationship between Landau–Ginzburg(LG) orbifolds and CY mani-
folds [36, 37], which was the original motivation to create the code for the programgen.x
(see appendix A.3). It transforms (if possible) Gorensteincones arising from generalized CY–
manifolds [30,38] into those coming from nef–partitions, and can be viewed as the toric version
of the path integral procedure used in [36]. Unfortunately,our calculations are not sophisticated
enough to be put into this thesis, but we mention them becausethere are a lot of newer devel-
opments in the area of super CYs [39], where generalized CYs may become important.

The idea of generalized CYs is that they act as higher dimensional geometrical replacements
in the cases where no honest CYs are possible, for example, asmirrors of rigid CY manifolds
(h21 = 0) [38]. Since we can associate a nef–partition to a lot of generalized CYs, and since we
have for both a mirror construction [30, 32], it would be interesting to check if it is possible to
perform the whole mirror program for a mirror pair of generalized CYs and compare it to that
of the associated CICYs coming from a nef–partition.

From the point of view of super CYs the first question one should answer is the exact defi-
nition of a super CY, and its physical significance. In a next step one should try to give a clean
definition of mirror symmetry for those spaces. In [40] the authors reformulated the mirror
construction usingT–duality [41] for super CYs, applying the ideas of [42] to relate a CICY
to a fermionic bundle. However, this construction does not generalize theT–duality approach
in [41]. The only exception they gave is the example of the mirror of the supermanifoldP(3|3).
Since mirror symmetry usingT–duality can be viewed as a non–compact version of the Batyrev
mirror construction, it is natural to ask how super CYs can bedescribed in the latter approach.
Generalized CYs can be used to subserve as bodies of super CYs, and the known mirror con-
struction for the former may become very useful. These considerations are very speculative,
and in a first step the best will be just to play around with someexamples until one finds a
general structure.

From the CICY point of view it would be useful to find a more manageable formula for the
Hodge–numbers, as it exists in the hypersurface case. This would have the advantage to get a
better understanding of the assignment of divisors and certain lattice points in the polytope, and
maybe one can say a priori, without analyzing the intersection ring, which of them not intersect
the CY space.



Chapter 2

The physical background

In this chapter we give the physical background which is needed to understand the (twisted)
topological string. Our starting point is theN = (2, 2) superconformal algebra:

2.1 N = (2, 2) SCFT

TheN = (2, 2) superconformal algebra is generated by the energy–momentum tensorT , the
two weight 3/2 supercurrents̄G,G, and theU(1) currentJ . They split into a left– and a
rightmoving part:

T+(z)

G+(z)G+(z)

J+(z)

T−(z̄)

G−(z̄)G−(z̄)

J−(z̄).

(2.1)

The algebra can either be defined by theOPE–expansions or in terms of (anti–) commutators
of the modes:

[Lm, Ln] = (m− n)Lm+n + c
12
m(m2 − 1)δm,−n,

[Jm, Jn] = c
3
mδm,−n,

[Ln, Jm] = −mJm+n,
[Ln, Gm+a] =

(
n
2
− (m+ a)

)
Gm+n+a, [Ln, Gm−a] =

(
n
2
− (m− a)

)
Gm+n−a,

[Jn, Gm+a] = Gm+n+a, [Jn, Gm+a] = −Gm+n−a,
{Gm+a, Gn−a} = 2Lm+n + (n−m+ 2a)Jn+m + c

3

(
(n+ a)2 − 1

4

)
δm,−n.

(2.2)
If we omit ± the statements are valid for both the left and rightmoving, i.e. holomorphic and
antiholomorphic, part of the algebra. Unitary (irreducible) representations of this algebra are
those satisfying the hermicity conditions

L†
n = L−n J†

n = J−n Gs
†
= G−s, (2.3)
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in a Hilbert space with positive definite norm. The parametera takes values ina ∈ [0, 1), thus
we have a whole family of algebras. It turns out that one can get from one member of this
family to another by defining new generators which are just a suitable linear combination of
the old ones. The fields in theη = (a − 1/2) = 0 sector are called Ramond (R), those in
theη = (a − 1/2) = 1/2 sector are called Neveu-Schwarz (NS) fields. Fields transforming
as tensors, i.e. primary fields, are in one–to–one correspondence to highest weight states, i.e.
states which are annihilated by all modes with positive indices, which are per definition the
annihilation operators.

There are two distinguished classes of states in the R and NS sector. A field in the R sector
is called a R groundstate if it is annihilated byG0 andG0. A field in the NS sector is called
(anti) chiral if it is annihilated byG−1/2 (G−1/2). It follows immediately from the algebra that
a (anti) chiral primary field satisfies

h ≤
c

6
and h = +

(−)

q

2
, (2.4)

whereq is theU(1) charge,h is the conformal weight, andc is the central charge of the algebra.
From the additivity of theU(1) charge it follows that the OPE of two chiral primary fields is
again a chiral primary field (the same holds for the anti chiral fields), up to regular terms which
vanish in the limit when the difference of the position of thetwo operators goes to zero. There
is an important isomorphism, called spectral flow, interpolating between these sub–sectors:

-

6
��

��������

HH
s

s

c
3

c
6

q

h

chiral primary,h = q/2

-

6

s s

− c
6

c
6

q

h

R ground states,h = c/24

-

6
HH

HHHHHHHH

��
s

s

− c
3

c
6

q

h

anti-chiral primary,h = −q/2

η=1/2
%%

η=1/2
%%

The Hamiltonian and the momentum are

H = L+
0 + L−

0 and P = L+
0 − L−

0 , (2.5)

and the generators of the vector and of the axialR–symmetry are

FV = J+
0 + J−

0 and FA = J+
0 − J−

0 , (2.6)

respectively.
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If we defineQ = G0 andQ = G0 we get the following (anti) commutator relations:

Q2
±=Q

2

±=0,
{Q±, Q±}=H ± P,

{Q+, Q−}= Z, {Q+, Q−}= Z∗,

{Q−, Q+}= Z̃, {Q+, Q−}= Z̃∗,

[iM,Q±] =∓Q±, [iM,Q±] =∓Q±,
[iM,Q±] =∓Q±, [iM,Q±] =∓Q±,
[iFV , Q±]=−iQ±, [iFV , Q±]= iQ±,
[iFA, Q±]=∓iQ±, [iFA, Q±]=∓iQ±,

(2.7)

with Q± = Q†
±. In the following we assume that the central charges all vanish(Z = Z̃ = 0).

Let us now define the following operators:

QA=Q+ +Q−, Q†
A=Q+ +Q−,

QB=Q+ +Q−, Q†
B=Q+ +Q−.

(2.8)

Setting(Q,F ) = (QA, FA) or (Q,F ) = (QB, FV ) the operators obey

{Q,Q†} = 2H, Q2 = 0, [F,Q] = Q. (2.9)

Thus the Hilbert space of states is aF–gradedQ–complex:

. . . Q // Hq−1
n

Q // Hq
n

Q // . . . (2.10)

at each energy leveln. This complex is an exact sequence ifn > 0, i.e. the cohomology van-
ishes forn > 0. At zero energyQ ≡ 0. Thus the space of SUSY ground states is characterized
by the cohomology of theQ–operator. We note thatF is not necessarily a conserved charge and
the grading may not be aZ–grading. However, the fermion number(−1)F is always conserved
and thus we have at least aZ2–grading. SUSY ground states are in one–to–one correspondence
withQ cohomology classes. There is an important automorphism, called mirror automorphism,
interpolating between these two choices:

QA ⇔ QB, FV ⇔ FA, Z ⇔ Z̃. (2.11)

An operatorO is called

chiral ⇔ {QB,O} = 0,
twisted chiral ⇔ {QA,O} = 0.

(2.12)

Using the Jacobi Identity one easily finds for (twisted) chiral operatorsO that:

[(H + P ),O] = {Q, [Q+,O]} and [(H − P ),O] = {Q, [
(−)

Q −,O]}, (2.13)



8 The physical background

with i
2
(∂x0 ± ∂x1)O = [H ± P,O]. Thus the worldsheet translation does not change theQ

cohomology classes. After a Wick rotationx2 = ix0 and a change to complex coordinates
z = 1/2(x1 + ix2) we get

∂zO = i[(H − P ),O] and ∂z̄O = −i[(H + P ),O]. (2.14)

Starting with aQ–closed fieldO(0) = O we find that:

dO(0) = 0, dO(0) = {Q,O(1)}, dO(1) = {Q,O(2)}, dO(2) = 0, (2.15)

with

O(1) = idz[
(−)

Q −,O] − idz̄[Q+,O] and O(2) = dzdz̄{Q+, [
(−)

Q −,O]}. (2.16)

We can then construct the followingQ–closed integrated vertex operators:
∫

γ

O(1) and

∫

Σ

O(2), (2.17)

whereγ is a closed 1–cycle andΣ is our worldsheet (without boundary). The operators of the
second type can be used to deform the twisted theory. Twisting means that we combine the
euclidianSO(2) = U(1) rotationME = iM with theU(1) coming fromFV of FA:

A − twist : M ′
E = MA

E = ME + FV ,
B − twist : M ′

E = MB
E = ME + FA.

(2.18)

Twisting of the theory has some important consequences:

(i) It affects the spin of the supercharges. In particular, after a A (B) twistQA (QB) is a spin
zero charge. TheME–charges before and after the A (B) twist and the corresponding
powers of the cotangent bundles are:

Q− Q+ Q− Q+

ME 1 -1 1 -1
MA

E 0 0 2 -2
MB

E 2 0 0 -2

C K1/2 K−1/2 K K−1

ME 0 1 -1 2 -2

(ii) The energy momentum tensor for the A (B) twist gets modified and is BRST exact:

T twisted
+ = T+ + 1

2
∂J+ = 1

2
{Q+, G+}

T twisted
− = T− ±1

2
∂J− = 1

2
{Q−, G−} (1

2
{Q−, G−}.

(2.19)

(iii) Because of (ii) correlation functions with onlyQ–closed operators inserted are indepen-
dent of the metric on the worldsheet.

(iv) Deformations of theD–term can always be written asQA andQB exact terms. Twisted
chiral and anti–chiral deformations areQB–exact, Chiral and anti–chiral deformations
areQA–exact. Thus the B (A) model depends only holomorphically on(twisted) chiral
deformations.

We will briefly discuss realizations of theN = (2, 2) SCA:
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2.2 The non–linearσ (nlσ) model and the Landau–Ginzburg
(LG) model

2.2.1 The non–linearσ model

The Lagrangian of theσ– model is defined as

L = −gij̄∂
µφi∂µφ

j̄
+ igij̄ψ

j̄

−(D0 +D1)ψ
i
− + igij̄ψ

j̄

+(D0 −D1)ψ
i
+

+Rij̄kl̄ψ
i
+ψ

k
−ψ

j̄

−ψ
l̄

+) + gij̄(F
i − Γijkψ

j
+ψ

k
−)(F

j̄
− Γj̄

k̄l̄
ψ
k̄

−ψ
j̄

+).

We use the convention that Greek indices come from the worldsheetΣ, and Latin indices come
from the target manifoldV . If we want this action to be invariant underN = (2, 2) super-
symmetry the target manifold, in which the fields{φi} embedding our worldsheetΣ take their
values, has to be a Kähler manifoldV with Kähler metric

gij̄ =
∂2K

∂φi∂φj̄
, (2.20)

which can be written as the derivative of the Kählerpotential K(φi, φ
ī
). R is the curvature of

gij̄, and the covariant derivative is defined as

Dµψ
i
± = ∂µψ

i
± + ∂µφ

jΓijkψ
k
±. (2.21)

The fermionic fields are sections of the bundles:

ψ+ ∈ Γ(K1/2 ⊗ φ∗T 1,0), ψ− ∈ Γ(K−1/2 ⊗ φ∗T 1,0),

ψ+ ∈ Γ(K1/2 ⊗ φ∗T 0,1), ψ− ∈ Γ(K−1/2 ⊗ φ∗T 0,1),
(2.22)

whereK is the cotangent bundle of the worldsheetΣ. We can also add a topological term to
the action ∫

Σ

φ∗(B) (2.23)

involving the antisymmetricB field B ∈ H2(V ; R)/H2(V,Z). In the superspace formalism,
the Lagrangian of the non–linearσ–model can be written as a function of chiral superfields
{Φ1, . . . ,Φn}:

L =

∫
d4θK(Φi,Φ

ī
). (2.24)
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2.2.2 LG models

If V has a holomorphic functionW (φ1, . . . , φn), one can deform the theory by adding the
F–term to the Lagrangian:

L =

∫
d4θK(Φi,Φ

ī
) +

1

2

(∫
d2θW (Φi) + c.c

)

= −gij̄∂
µφi∂µφ

j̄
+ igij̄ψ

j̄

−(D0 +D1)ψ
i
− + igij̄ψ

j̄

+(D0 −D1)ψ
i
+

+Rij̄kl̄ψ
i
+ψ

k
−ψ

j̄

−ψ
l̄

+ −
1

4
g īj∂īW∂jW −

1

2
Di∂jWψi+ψ

j
− −

1

2
Dī∂j̄Wψ

ī

−ψ
j̄

+,

where we have integrated out theF andF :

F i = Γijkψ
j
+ψ

k
− −

1

2
gil̄∂l̄W. (2.25)

The SUSY variations of the fields are:

δφi = ǫ+ψ
i
− − ǫ−ψ

i
+, δφ

ī
= −ǭ+ψ

ī

− + ǭ−ψ
ī

+,

δψi+ = 2iǭ−∂+φ
i + ǫ+F

i, δψ
ī

+ = −2iǫ−∂+φ
ī
+ ǭ+F

ī
,

δψi− = −2iǭ+∂−φ
i + ǫ−F

i, δψ
ī

− = 2iǫ+∂−φ
ī
+ ǭ−F

ī
.

(2.26)

By the Nöther procedure one finds the supercurrents:

G0
± = gij̄(∂0 ± ∂1)φ

j̄
ψi± ∓ ψ

ī

∓∂īW, G1
± = ∓gij̄(∂0 ± ∂1)φ

j̄
ψi± − ψ

ī

∓∂īW,

G
0

± = gījψ
ī

±(∂0 ± ∂1)φ
j ± ψi∓∂iW, G

1

± = ∓gījψ
ī

±(∂0 ± ∂1)φ
j ± ψi∓∂iW,

(2.27)

with chargesQ± =
∫
dx1G0

± andQ
±

=
∫
dx1G

0

±.

2.2.3 R–symmetry

R–symmetry rotates the fermionic components as follows:

U(1)V : ψ± 7→ e−iα ψ±, ψ± 7→ eiα ψ±,

U(1)A : ψ± 7→ e±iβ ψ±, ψ± 7→ e∓iβ ψ±,
(2.28)

with chargesFV = 1
2π

∫
(ψ−ψ− + ψ+ψ+)dx1 andFA = 1

2π

∫
(−ψ−ψ− + ψ+ψ+)dx1. On the

supercharges R–symmetry acts in the same way as on the fermionic fields. Since thedθ±, dθ
±

are derivatives, R–symmetry acts on them with the opposite sign.
At the classical levelU(1)A is always preserved. Sinced2θ = dθ−dθ+ has aU(1)V charge

of −2 this has to be compensated by the superpotential. If we assign for U(1)V (U(1)A) a R–
charge ofqi (0) to the fieldsΦi, the superpotential must be a quasi–homogeneous holomorphic
function:

W (λq
i

Φi) = λ2W (Φi). (2.29)
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At the quantum level, not only the action must be preserved under R–symmetry. If we want
the path integral to be invariant, we should also examine thefermionic measureDΨ. Let us do
this for the euclidian two torus (x0 7→ ix2) in complex coordinates (z = x1+ix2, z̄ = x1−ix2).
The anomaly comes from the zero modes of the fermionic kinetic term:

2igij̄ψ
j̄

+Dzψ
i
+ − 2igij̄ψ

j̄

−Dz̄ψ
i
−, (2.30)

which we have to insert to get a non–vanishing correlation function. The index theorem gives

dim kerDz̄ − dim kerDz = k =

∫

Σ

φ∗c1(T
(1,0)
V ) = 〈c1(V ), φ∗[Σ]〉, (2.31)

and we get (#0 is the number of zero modes):

#0(ψ− − ψ+) = #0(ψ+ − ψ−) = k. (2.32)

To get a non–vanishing correlation function we have to insert k ψ− andk ψ+ fields. They
have oppositeU(1)V charge, but theU(1)A charge gives a contribution ofe2kiβ and the axial
R–symmetry is broken toZ2k. The integerk only depends on the cohomology classφ∗[Σ].
For example, if we considerPN−1 the first Chern class is equal toN times the generator of
H2(V,Z) ∼= Z (each integer defines a line bundle) andU(1)A is broken toZ2N . U(1)A R–
symmetry is preserved exactly when the first Chern class vanishes, i.e. whenV is a CY mani-
fold. To summarize, we give the following table [43]:

nlσm CY nlσm, c1(M) 6= 0 LG on CY,
W generic

LG on CY, W quasi–
homogeneous

U(1)V ◦ ◦ × ◦
U(1)A ◦ × ◦ ◦

2.2.4 Twisting

So far we have assumed that our worldsheet is flat. String amplitudes are defined as the sum
over all topologies and conformal classes of Riemann surfaces, and the starting point is the
string amplitudeFg for a fixed but arbitrary curved Riemann surfaceΣ. SUSY variation of the
action gives a term which vanishes only if the parametersǫ± andǭ± are covariantly constant. If
Σ has non–vanishing curvature (g 6= 1) there is no covariant constant spinor. However, if we
twist the theory we get one fermionic symmetry and can make use of the localization principle
and deformation invariance.

A-twist (nlσm on a Kähler manifold):

ψ+ ∈ Γ(K ⊗ φ∗T 1,0), ψ− ∈ Γ(φ∗T 1,0),

ψ+ ∈ Γ(φ∗T 0,1), ψ− ∈ Γ(K−1 ⊗ φ∗T 0,1),
(2.33)
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Thus, settingǫ− = ǭ+ = 0 andǫ = ǭ− = ǫ+ and definingχi = ψi−, χī = ψ
ī

+, ρīz = ψ
ī

−, and
ρiz̄ = ψi+, the remaining SUSY variationsδ = ǫQA are:

δφi = ǫχi, δχi = 0, δρiz̄ = 2iǫ∂z̄φ
i + ǫΓijkρ

j
z̄χ

k,

δφ
ī
= ǫχī, δχī = 0, δρīz = −2iǫ∂zφ

ī
+ ǫΓī

j̄k̄
ρj̄zχ

k̄.
(2.34)

The physical operatorsOα are theQA cohomology classes and are easily seen to be in one–
to–one correspondence with the de Rham cohomology classes[α] ∈ H

(p,q)
d (V ) of d = ∂ + ∂̄

closed formesα:

Oα := αi1...ipj̄1...j̄qχ
i1 . . . χipχj̄1 . . . χj̄q δOα = ǫOdα. (2.35)

These operators haveU(1)V (U(1)A) chargeqV = −pi + qi (qA = pi + qi). For the correlators
we get the following selection rules: The vector R–charge isstill not anomalous, so

∑s
i=1 pi =∑s

i=1 qi must hold fors insertions. ForU(1)A we have the following mismatch between zero
modes:

#0(χ− ρ) = 2k, (2.36)

where k is the index of the Dolbeault operators∂ and ∂̄ on the worldsheet (theχ’s are now
scalar fields on the worldsheet). Using the Riemann Roch theorem we get

k =

∫

Σ

c1(V ) + dim V (1 − g) = 〈c1(V ), [φ∗Σ]〉 + dimV (1 − g), (2.37)

and we thus get the following selection rule:

s∑

i=1

pi =

s∑

i=1

qi = 〈c1(V ), φ∗[Σ]〉 + dimV (1 − g). (2.38)

In what follows we assume thatk ≥ 0 and that there are noρ zero–modes. Localization tells us
that we only have to look atQA fixed points, which obey∂z̄φi = 0. At these fixpoints we can
write the bosonical action as

Sb =

∫

Σ

φ∗(ω − iB) = 〈φ∗[Σ], (ω − iB)〉, (2.39)

whereω is the Kähler form and we have also added the B–field. The mapφ : Σ → β has
to be holomorphic (localization), and for a fixed cycleβ = [φ∗Σ] infinitesimal deformations
correspond to holomorphic vector fields lying inH0

∂̄
(φ∗TV ). This space, denoted byMΣ(V, β),

is precisely the space of theχi’s and has dimension (because of our assumption) equal tok. The
measure on this moduli space comes from the insertions of theoperatorsOi at the pointsxi ∈ Σ.
EachOi corresponds to a classωi ∈ H∗

d(V ). Since we want to have a form on the moduli space
and not onV we use the pull–back of the evaluation map atxi:

evi : MΣ(V, β) → V,

φ 7→ φ(xi).
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The correlation function is then

〈O1 . . .Os〉 =
∑

β=φ∗[Σ]

e−〈β,(ω−iB)〉

∫

MΣ(V,β)

ev∗
1 ω1 ∧ · · · ∧ ev∗

s ωs

︸ ︷︷ ︸
nβ,D1,...,Dr

. (2.40)

Theωi are Poincare dual to divisorsDi and can be chosen to have delta function support on
Di. Each integral above is only non–vanishing ifφ(xi) ∈ Di(i = 1, . . . , s) and the numbers
nβ,D1,...,Dr count all holomorphic mappings such thatφ∗[Σ] = β andφ(xi) ∈ Di(i = 1, . . . , s)
. Integration of the Kähler form on any cycle is non–negative and zero precisely whenΣ is
mapped to a point (β = 0). In the large volume limit theβ = 0 contribution is dominant and
the moduli space isV itself. The mappingsevi are the identities in this case and the integrals
of theβ = 0 contribution are just the classical intersection numbers (we will use this later to
normalize our Yukawa couplings). Because of our assumptionthe genus has to be zero,g = 0.

Of particular interest are theg = 0 threepoint functions, where we assume thatV is a CY
manifold:

K(123) = 〈Oα1Oα2Oα3〉g=0. (2.41)

From the selection rule we get thatαi ∈ H
(1,1)
d (V ), which correspond to Kähler deforma-

tions. One may wonder if there are any non–vanishing correlators with more than three in-
sertions. The additional insertions must haveU(1)A charge equal to zero. There are indeed
such operators, namely the integrated operatorsO(2) which can be used to deform the action:
δS =

∑
i ti
∫
S
O

(2)
i . Correlators with additional insertions can be constructed by differentiation

of the threepoint functions with respect toti:

δ

δti
〈OjOkOl〉g=0 = 〈OjOkOl

∫

Σ

O(2)〉g=0. (2.42)

Conformal invariance implies that it does not matter if we exchangei with j, k, or l. Thus we
get

∂lK(ijk)(t) = ∂iK(ljk)(t), (2.43)

which is known as the WDVV equation. Together with the symmetry in permutation of the
indices, it follows that theK can be integrated:

K(t) = ∂i∂j∂kF0. (2.44)

F0 is the genus zero partition function.
B–twist (compact CY or LG model on a non–compact CY):

ψ+ ∈ Γ(K ⊗ φ∗T 1,0), ψ− ∈ Γ(K−1 ⊗ φ∗T 1,0),

ψ+ ∈ Γ(φ∗T 0,1), ψ− ∈ Γ(φ∗T 0,1).
(2.45)
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Now we setǫ+ = e− = 0 andǫ = ǭ− = ǭ+. We define the fermionic fields:θi = gij̄(ψ
j̄

−−ψ
j̄

+),

ηj̄ = ψ
j̄

− + ψ
j̄

+, ρiz̄ = ψi+, andρiz = ψi−. The SUSY variationsδ = ǫQB are:

δφi = 0, δθj = −ǫ∂jW, δφ
ī
= ǫη ī, δη ī = 0, δρiµ = 2ǫJνµ∂νφ

i. (2.46)

TheQB–cohomology is now the space of holomorphic functionsfi in φi modulo∂jW . QB–
fixed points have to obey:

δφ = 0 ∂iW = 0. (2.47)

If we assume that there is only a finite numberN of isolated critical pointsyi, which are non–
degenerate, the path integral decomposes into a sum

〈O1 . . .ON〉 =
N∑

i=1

〈O1 . . .ON 〉 |yi
. (2.48)

Each summand can be computed by the quadratic approximationaround the fixpointsφi(x) =
yi. The bosonic and fermionic determinants from the constant modes cancel, and the contribu-
tion from the non–constant modes comes from the quadratic approximation of the superpoten-

tial. φ
ī
, φi, andψ

ī

± are scalars on the worldsheet and each of them has one constant mode.ψi±
are (co–) vectors and thus each of them hasg constant modes. In summary we end up with:

〈O1 . . .ON 〉g =
N∑

i=1

f1(yi) . . . fs(yi)(det ∂i∂jW )g−1(yi). (2.49)

If W = 0 andV is a compact CY the physical operatorsOω, which are theQB cohomology
classes, can be identified with the∂̄ cohomology classes[ω] in H(0,p)(V,∧qTV ):

Oω := ω
i1...iq
j̄1...j̄p

ηj̄1 . . . ηj̄pθj1 . . . θjq , δOω = ǫO∂̄ω. (2.50)

The correlation functions again have to fulfill selection rules. Eachωi ∈ H(0,p)(V,∧qTV ) has
U(1)V (U(1)A) chargeqV = −pi+qi (qA = pi+qi). Since the target space is a CY, the anomaly
of the axial charge is2 dimV (1 − g). We thus have the selection rule:

s∑

i=1

pi =
s∑

i=1

qi = dim V (1 − g). (2.51)

The only non–vanishing correlators are atg = 0 andg = 1.
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Localization tells us thatdφ = 0, i.e. the mapsφ are constant maps. The whole worldsheet
Σ is mapped onto a point inV . The path integral reduces to an integral overV . In order to get
a (n, n) form (for g = 0) we have to contract the operator with the holomorphicn–formΩ:

〈O1 . . .Os〉 =

∫

V

〈ω1 ∧ · · · ∧ ωs,Ω〉 ∧ Ω. (2.52)

In the case of a CY threefold, the threepoint function of operators corresponding to the Beltrami
differentialsµ1, µ2, µ3 ∈ H1(V.TV ) is:

K(123) = 〈Oµ1Oµ2Oµ3〉g=0 =

∫

V

µi1 ∧ µ
j
2 ∧ µ

k
3Ωijk ∧ Ω, (2.53)

which will turn out to be the third–order derivative of the prepotentialF .

2.2.5 Moduli of a CY

Infinitesimal deformations of the metric on a CY manifold split into two types. Kähler de-
formations correspond to elements inH1,1

d (V,C), while deformations of the complex structure
correspond to elements inH0,1

∂̄
(V, TV ). We will briefly discuss the second type of these defor-

mations.
The almost complex structureJ satisfiesJ2 = −1 and can be written in local complex

coordinates{za, z̄ā} asJab = iδab andJ ā
b̄

= iδā
b̄
. Now we sendJ 7→ J ′ = J + ǫ. The newJ ′

must still square to−1. Linearizing this gives the conditionJǫ + ǫJ = 0 andǫ must be of the
form

ǫ = ǫāadz
a∂z̄ā + ǫaādz̄

ā∂za = ǫA + ǫH . (2.54)

Integrability means that the Lie bracket of two holomorphicvectorfields must again be a holo-
morphic vectorfield. Defining the projectors

P± =
1

2
(1 ∓ iJ) , (2.55)

we get the condition
P−[P+X,P+Y ] = 0 (2.56)

for all vector fieldsX, Y . SendingJ → J + ǫ transforms the projectors asP± → P± ∓ i/2ǫ.
The integrability constraint applied to the vectorfields∂a = ∂za , ∂b = ∂zb

then gives:

0 =

(
P− +

i

2
ǫ

)
[(P+ −

i

2
ǫ)∂a, (P+ −

i

2
ǫ)∂b]

=

(
P− +

i

2
ǫ

)
[∂a −

i

2
ǫA(∂a), ∂b −

i

2
ǫA(∂b)]

lin
= −

i

2
P− (∂a (ǫA(∂b)) − ∂b (ǫA(∂a))) = −

1

2
(∂aǫ

ā
b − ∂bǫ

ā
a)∂ā.
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Thus∂aǫA = 0. The condition that the Lie bracket of two anti–holomorphicvectorfields is
an anti–holomorphic vectorfield gives∂āǫH = 0. Exact terms are easily seen to correspond to
infinitesimal change of coordinates without changing the complex structure. We conclude that
infinitesimal deformations of the complex structure correspond to cohomology groups in

H1
∂̄(TV ) = H1(TV ), (2.57)

where in the last step we have used the Cech–Dolbeaut isomorphism.
In different complex structures, the decomposition of the tangent (cotangent) bundle into

holomorphic and anti–holomorphic parts may be different. Thus, the cohomology class repre-
senting the(n, 0) form on a CY manifold changes over the moduli space of complexstructures.
All cohomology 3–form classes form a bundle over the moduli space, the hodge bundleH, and
the CY 3–form is a section of this bundle. The bundleH can be given a flat connection, called
Gauss–Manin connexion. The fibers ofH areH3(V ; C) for CY manifoldsV . We can define a
metric onH by

(θ, η) = i

∫
θ ∧ η̄ ∀η, θ ∈ H3(V ; C). (2.58)

This metric is hermitian since(θ, η) = (η, θ)∗, which implies that we can find a symplectic
basis of real integer three–forms{αa, βa} a = 1, . . . , h3/2 such that

(αa, β
b) = iδba (αa, αb) = 0 (βa, βb) = 0, (2.59)

with dual basis{Aa, Ba} a = 1, . . . , h3/2 in H3(V ; Z). The holomorphic 3–form can be
expanded in this basis:

Ω = zaαa + iwbβ
b with za =

∫

Aa

Ω, iwb =

∫

Bb

Ω. (2.60)

It can be shown that both,za andwb, define local projective coordinates on the moduli space
[44].

Since the CY 3–form is unique up to scale, it defines a complex line bundle in the Hodge
bundle. A natural metric in this line bundle is

h = ‖Ω‖2 = (Ω,Ω) = i

∫
Ω ∧ Ω̄. (2.61)

If z is a (local) coordinate vector on the moduli space andf(z) a holomorphic function, then
Ω → ef(z) Ω defines the same projective section, buth→ h ef+f̄ . Thus the quantity

K = − log
(
‖Ω‖2

)
(2.62)

transforms as a Kähler potential,K → K − f − f̄ , and we can define a metric on the moduli
space by

gab̄ = ∂a∂̄b̄K, (2.63)
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called the Weil–Petersson metric. Since the variation∂aΩ gives a(3, 0) and a(2, 1) partkaΩ +
µa, the variation∂̄āΩ̄ gives a(0, 3) and a(1, 2) part k̄āΩ + µ̄ā, and∂aΩ̄ = ∂̄āΩ = 0, it is easy
to check that

gab̄ =
i
∫
µa ∧ µ̄ā
‖Ω‖2

. (2.64)

Important identities are
∫

Ω∂cΩ =
∫

Ω∂c∂dΩ = 0, which will also turn out to be useful for us
in calculating relations between the different Yukawa couplings. From the first we get immedi-
ately that

(zaαa + iwbβ
b, αc + i∂cwdβ

d) = wc − za∂cwa = 0. (2.65)

Setting
F = zawa, (2.66)

we see thatwc = 1/2∂cF . Summing withzc on both sides we getzc∂cF = 2F , soF is
homogeneous of degree 2.F is called the prepotential. From the prepotential one can compute
the Kähler potential and all the couplings. The Kähler potential is given by the formula:

h = e−K = i

∫
Ω ∧ Ω̄ = i(z̄ā∂aF − za∂̄āF). (2.67)

The Yukawa couplings are:

Kabc = 〈OµaOµb
Oµc〉g=0 =

∫

V

µia ∧ µ
j
b ∧ µ

k
cΩ ∧ Ωijk = ∂a∂b∂cF , (2.68)

whereµa corresponds to the(2, 1)–part of∂aΩ. Note that the Yukawa couplings are only given
up to multiplication with a non–zero complex number. The idea of mirror symmetry is now
that, for a mirror pairV, V ∗ of CY manifolds, the Yukawa couplings corresponding to Kähler
deformations onV can then be expressed in terms of the Yukawa couplings corresponding to
deformations of the complex structure on the mirrorV ∗ using the mirror map. It is the task of
the next chapter to give all the mathematical background to understand how this works.
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Chapter 3

The mathematical background

3.1 Basics of toric geometry

LetM andN = Hom(M,Z) be dual free abelian groups of rankd, MR andNR the real scalar
extension ofM andN , respectively, and〈∗, ∗〉 : MR ×NR → R the natural pairing. Eventually
we have to enlarge the lattices byZr. Then we writeN̄ = N ⊕ Zr andM̄ = M ⊕ Zr with real
scalar extensions̄NR andM̄R (dim M̄R = dim N̄R = d̄). TheM–lattice can be regarded as the
space of exponents of Laurantmonomials. More precisely, the M-lattice can be identified with
the character group of all group homomorphisms from the algebraic torusCd∗ to C∗. Objects
of NR will usually be marked with a∗, vertices in theM (N)–lattice will be named byρ (ρ∗).
The basic objects in these spaces are cones and polytopes:

Definition 3.1.1 A subsetσ ⊂MR is called ak = dim (Span(σ))–dimensional rational convex
polyhedral cone if there exists a finite set{ρ1, . . . , ρn} ⊂ M such that

σ = {λ1ρ1 + · · ·+ λnρn ∈MR : λi ∈ R≥, i = 1, . . . , n}. (3.1)

If n = k the cone is called simplicial. IfVol ({ρ1, . . . , ρn}) = 1 we call the cone unimodular.
The dual coneσ∗ ⊂ NR is defined as

σ∗ = {z∗ ∈ NR : 〈z, z∗〉 ≥ 0 ∀z ∈ σ}. (3.2)

It can be shown thatσ∗ is also rational ( [23]), i.e.σ∗ is generated by lattice points.

An important class of cones are Gorenstein cones:

Definition 3.1.2 A d̄–dimensional rational convex polyhedral coneC ⊂ M̄R is called Goren-
stein if there exists a lattice pointnC ∈ N̄ in the dual lattice such that〈ρ, nC〉 = 1 for all
generators ofC. The polytope∆C = {z ∈ C : 〈z, n〉 = 1} is called the support ofC. A
Gorenstein cone is called reflexive if the dual coneC∗ ⊂ N̄R is also a Gorenstein cone. In this
case, the integer〈m∗

C , nC〉 is called the index ofC (C∗).
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Definition 3.1.3 LetA = {ρ1, . . . , ρn} ⊂M be a finite set of lattice points. The convex hull

∆ = Conv (A) (3.3)

is called a lattice polytope∆ ⊂MR. If the origin0 is in an interior point of∆, the dual polytope
∆∗ ⊂ NR is defined as:

∆∗ = {z∗ ∈ NR : 〈z, z∗〉 ≥ −1 ∀ z ∈ ∆}. (3.4)

∆ is called reflexive if both,∆ and∆∗, are lattice polytopes.

3.1.1 Definition of a toric variety

Toric ambient spacesXΣ∗ are defined in terms of a fanΣ∗, which is a collection of rational
polyhedral conesσ∗ ∈ Σ∗ containing all faces and intersections of its elements [23–25, 27].
XΣ∗ is compact if and only if∪σ∗∈Σ∗ = NR. We are mainly interested in the case whereΣ∗

consists of the cones over the faces of a reflexive polytope∆∗ ⊂ NR. The origin is associated
to the 0–dimensional cone{0}.

The toric variety is smooth if and only if each cone of maximaldimension in the fan is
simplicial and unimodular, i.e. the generators of each coneof maximal dimension generate the
lattice. Singularities at codimension4 of such an ambient space are irrelevant for a sufficiently
generic choice of equation for a Calabi–Yau 3–fold. Higher–dimensional singularities have to
be resolved by a subdivision of the fan. Sometimes it is necessary to add points which are
contained in(r∆∗ \ (r − 1)∆∗) ∩ N in order to get a smooth ambient space. This will turn
out to be important to get the right Mori cone, and we will address this issue in more detail in
Section 4.2. In the rest of this subsection we will give a definition of a toric variety in terms
of homogeneous coordinates, which is one of the simplest ways to define these spaces. Since
we are also interested in resolving singularities, we briefly discuss the main arguments used
for triangulating polytopes. Note that we have been a littlesloppy in the definition of our toric
ambient space: we also need the lattice in which this polytope lives and which triangulation we
use to resolve the singularities. Thus we should better write down a triple(∆∗, N, T (A,∆∗))
to get all the information we need to define our variety (the set A ⊂ ∆∗ ∩ N is a set of lattice
points containing the vertices of∆∗, and the vertices of each simplex in the triangulationT are
all contained inA).

Definition using homogeneous coordinates

LetΣ∗ be a complete fan and denote byΣ∗(l) the set ofl–dimensional cones inΣ∗. In particular
Σ∗(1) = {ρ∗1, . . . , ρ

∗
n} is the set of generators of the fanΣ∗. We have the following exact

sequence of groups:

0 −→ M
α

−→
⊕

ρ∗∈Σ∗(1)

Z ·Dρ∗
β

−→ An−1(X) −→ 0, (3.5)
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with α : m 7→
∑

ρ∗〈m, ρ
∗〉Dρ∗ andβ : (aρ) 7→ [

∑
ρ∗ aρ∗Dρ∗ ]. Eachρ∗ ∈ Σ∗(1) corresponds

to a torus invariant Weil divisorDρ, and eachm ∈ M gives a characterχm. Regarding every
character as a rational function, the mapα gives an embedding of the rational functions into
the group ofTNR

–invariant Weil divisors. The mapβ maps theTNR
–invariant Weil divisors

onto the Chow group, which is the group of Weil divisors modulo rational equivalence. Inside
the Chow group sits the Picard groupPic(X), which is the group of Cartier divisors modulo
rational equivalence. A Weil divisorD =

∑
ρ∗ aρ∗Dρ∗ is Cartier if and only if there is anΣ∗–

piecewise linear integral functionΦD : NR → R such thatΦD(ρ∗) = aρ∗ ∀ρ
∗ ∈ Σ∗. On cones

of maximal dimensionσ we haveΦD |σ= mσ |σ for some uniquemσ ∈ M . There are two
important cases [2]1:

(i) D is generated by global sections⇔ 〈mσ, ρ
∗〉 ≥ −aρ∗ wheneverρ∗ /∈ σ,

(ii) D is ample⇔ 〈mσ, ρ
∗〉 > −aρ∗ wheneverρ∗ /∈ σ.

In the first caseΦ is called (upper) convex, and in the second caseΦ is called strictly (upper)
convex. Every Cartier divisorD defines a polytope∆D ⊂MR as

∆D = {m ∈MR : 〈m, ρ∗〉 ≥ −aρ∗}. (3.6)

Condition (i) is precisely that this polytope is the convex hull of the {mσ}. Condition (ii)
requires in addition thatmσ 6= mt for all different cones of maximal dimensionσ 6= τ . There
is a one–to–one correspondence between lattice points of∆D and monomials inS[D]:

m ∈ ∆ ∩M ⇔
∑

ρ∗∈Σ∗(1)

xρ∗
〈m,ρ∗〉+aρ∗ ∈ S[D]. (3.7)

Note that the Chow group in the exact sequence (3.5) may have torsion. WhenX is smooth,
thenPic(X) = An−1(X). If Σ∗ is simplicial then the Picard group has finite index in the Chow
group. The Picard group is always torsions free when the fan is complete, whileAn−1(X) may
have torsion, even whenΣ∗ is simplicial [2].

If we applyHom( ,C∗) to the exact sequence (3.5) we get another exact sequence:

0 −→ G −→ (C∗)Σ∗(1) −→ TNR
−→ 0. (3.8)

In particular
G = Hom(An−1(X),C∗). (3.9)

ThusG is isomorphic to(C∗)k−d times some finite cyclic group, which is present precisely
whenAn−1 has torsion. The embedding ofG into (C∗)Σ∗(1) extends to an action ofG on
CΣ∗(1), wherea = (aρ∗) ∈ CΣ∗(1) andg ∈ G map to

g · a = (g([Dρ])aρ∗). (3.10)

1For a detailed discussion of semiample divisors see [45]
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Now consider the polynomial ring

S = C[xρ∗ : ρ∗ ∈ Σ∗(1)], (3.11)

where every monomialxD =
∏

ρ∗ x
aρ∗ ∈ S corresponds to an effective torus–invariant divisor

D =
∑

ρ∗∈Σ∗(1) aρ∗Dρ∗. The exact sequence (3.5) induces a grading of this ring by defining

deg xD = [D] ∈ An−1(X), (3.12)

which decomposesS into a direct sum:

S =
⊕

α∈An−1

Sα, Sα = Span({xD : deg xD = α}). (3.13)

The toric varietyXΣ∗ is then defined as the categorical quotient

XΣ∗ =
(
C

Σ∗(1) \ Z(Σ∗)
)
/G, (3.14)

whereZ = V (B) andB is theG–invariant ideal defined as

B = {
∏

ρ∗ /∈σ

xρ∗ : σ ∈ Σ∗(d)}. (3.15)

This quotient is geometrical if and only if the fanΣ∗ is simplicial [26]. In this case we really
have homogeneous coordinatesz = (zρ∗). Up to torsion the groupG acts as

(z1 : . . . : zn) ∼ (λ
q
(a)
1

(a) z1 : . . . : λq
(a)
n

(a) zn), a = 1, . . . , h = k − d, (3.16)

whereλa ∈ C∗ (a = 1, . . . , h) and theh vectors(q
(a)
i ) are generators of the linear relations∑

q
(a)
i ρ∗i = 0. If L is a matrix such that the rows yield a basis of relations of theverticesΣ∗(1),

the mapβ can be identified withL.

Example 3.1.4 As an example, we will show how the Hirzebruch surfaceFa is constructed
from a fanΣ ⊂ NR:
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x//
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OO
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TT********************

σ1

σ2

σ3

σ4

_ _ _ _ _ _

Uσ4 = Spec(C[x−1, xay])
OO

��

oo // Uσ1 = Spec(C[x, y])
OO

��
Uσ3 = Spec(C[x−1, x−ay−1]) oo // Uσ2 = Spec(C[x, y−1]).

The vertices generating the rays areρ∗1 = ex, ρ∗2 = −ey, ρ∗3 = −ex + aey, andρ∗4 = ey with
a ∈ Z≥. The diagram on the right hand side shows how the different patches are glued together.
The exponents of the monomials are the generators of the dualcones. The horizontal patching
gives two copies ofC × P1. performing also the vertical patching gives aP1 bundle overP1.

For the construction using homogeneous coordinates we needa basis of the relations be-
tween the vertices:

ρ∗2 + ρ∗4 = 0,

ρ∗1 + kρ∗2 + ρ∗3 = 0,

which will give us the two scaling relations after assigningto every vertexρ∗i a coordinatezi.
Since the sets{ρ∗1, ρ

∗
3} and{ρ∗2, ρ

∗
4} are not contained in any cone we get for the exceptional set

Z = {z1, z3} ∪ {z2, z4}. Thus our toric variety is

{(z1, z2, z3, z4) ∈ C
4 \ Z : (z1, z2, z3, z4) ∼ (µz1, λµ

kz2, µz3, λz4) ∀ λ, µ ∈ C
∗}. (3.17)

The fact that we have a fibration of two projective spaces is because the two relations do not act
independently (fork 6= 0). The divisorD =

∑
ρ∗ Dρ∗ in our example is:

ample F0,F1

generated by global sectionsF2

If k > 2, ∆D is no longer the convex hull of themσ, which are equal toΦD on cones of maximal
dimensionσ. For k ≤ 2 the first chern class ofFk is that of the line bundle associated to the
divisorD. For both,F0 andF1,D is ample, which implies that the first Chern class is positive.
ForF2 D is no longer ample, but is still generated by global sections. Thus the first chern class
is still non–negative forF2. In the next section we define the Kähler cone. There we will see
that ample means that the divisor is in the Kähler cone, and generated by global sections means
that it is in the closure of the Kähler cone. Varieties with positive first Chern class are called
Fano, those with non–negative first Chern class are called Nef.
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3.1.2 The Kähler and the Mori cone

Let Σ∗ ⊂ NR be a simplicial fan and denote byA+
n−1 ⊗ R the cone generated by the divisor

classes[Dρ∗ ]. Then the Kähler cone sits insideA+
n−1 ⊗ R and is defined as follows. Leta =

[
∑

ρ∗∈Σ∗(1) aρ∗Dρ∗ ] ∈ A+
n−1 ⊗ R. SinceΣ∗ is simplicial,(aρ∗) corresponds to aΣ∗–piecewise

linear integral functionΦa onNR defined byΦa(ρ
∗) = aρ∗ ∀ ρ

∗ ∈ Σ∗(1) (Note thatΦa is only
defined modulo rational equivalence). Then one defines the cone

cpl (Σ∗) = {a ∈ A+
n−1 ⊗ R : a is convex.} (3.18)

For a simplicial projective varietyX = XΣ∗ the Kähler cone is the interior of the conecpl (Σ∗),
which is the cone of all strictly convex functions.

For a simplicial fanΣ∗ these functions can be found using primitive collections ofvertices:

Definition 3.1.5 Let Σ∗ be a simplicial fan. A primitive collectionP is a subsetP ⊂ Σ∗(1)
with the property thatP is not the set of generators of a cone inΣ∗ while any proper subset of
P is.

Proposition 3.1.6 [46] On a projective simplicial toric varietyΦa coming from
[
∑

ρ∗∈Σ∗(1) aρ∗Dρ∗ ] ∈ A+
n−1 ⊗ R is strictly convex if and only if for any primitive collection

P = {ρ∗1, . . . , ρ
∗
s} ⊂ Σ∗(1) we have

Φa(ρ
∗
1 + · · ·+ ρ∗s) > Φa(ρ

∗
1) + · · · + Φa(ρ

∗
s). (3.19)

The Mori coneM(XΣ∗) of a simplicial and complete varietyXΣ∗ is the cone of effective 1-
cycles. It turns out that the Mori cone is dual to the Kähler cone.

Toric varieties via symplectic reduction

There is another very important approach to construct toricvarieties via symplectic reduction.
It is strongly related to the gauged linear sigma model and wewill discuss it briefly. For us, the
most important example isCk with symplectic formω =

∑k
i=1 dxi ∧ dyi. The special feature

of Ck is that the action of the groupSk1 onCk is symplectic, which means that theω is invariant
under this action. The Lie algebra of this group isRk, and the vector field corresponding to the
flow of an elementλ ∈ Rk in Ck is

Xλ =

r∑

i=1

λi

(
−yi

∂

∂xi

+ xi
∂

∂yi

)
. (3.20)

This action is Hamiltonian, which means that for eachXλ we can find a functionfλ such that
ω(Xλ, ) = dfλ: defining the moment map as

µ : C
k → (Rk)∗ z 7→

1

2
(|z1|

2, . . . , |zk|
2) (3.21)
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givesfλ = λ ◦ µ. Now suppose that we have a simplicial fanΣ∗ ⊂ NR. The maximal compact
subgroupGR of G in the exact sequence (3.8) is

GR = Hom(An−1(X), S1),

with Lie algebragR = Hom(An−1(X),R). Thusg∗
R

= An−1(X) ⊗ R and we get the moment
map as:

µΣ∗ : C
r µ
−→ R

k β
−→ An−1(X) ⊗ R, (3.22)

whereβ is defined by tensoring (3.5) withR. If a ∈ An−1(X) ⊗ R is Kähler, then one defines

X̃ = µ−1
Σ∗(a)/GR. (3.23)

One can think ofµΣ∗ as fixing the size and the quotient byGR is needed to get a non–degenerate
symplectic form. Since this group can have finite stabilizers, the quotient has the natural struc-
ture of an orbifold. IfXΣ∗ is simplicial and projective, there is an orbifold diffeomorphism
betweenXΣ∗ andX [2].

A simple example is the construction ofPn out of Cn+1: first one fixes the size by setting
f(z) = 1/2‖z‖2 = r > 0 and gets a sphereS2n+1 with radiusr. The induced symplectic
form is degenerate. The null–vectorfield is preciselyXf . Thus we have to mod out theS1

corresponding to the flow ofXf .
One important thing is that both,GR andµΣ∗, in the definition (3.23) ofX̃ only depend on

Σ∗(1). If Σ∗′ is another simplicial projective fan such thatΣ∗(1)′ ⊂ Σ∗(1) one can show that
there is the following orbifold diffeomorphism [2]:

µ−1
Σ∗(1)(a)/G(Σ∗(1))R ∼ XΣ∗′, (3.24)

wherea is in the interior ofcpl (Σ∗′) ⊂ A(Σ∗(1)). Thus the moment mapµΣ∗(1) can be used
to construct not just one toric variety, but all projective simplicial toric varietiesXΣ∗′ with
Σ∗(1)′ ⊂ Σ∗(1). In the language of gauged linear sigma models [37]a ∈ A(Σ∗(1)) is a
parameter, and one gets different physical theories depending wherea lies. If a ∈ cpl (Σ∗(1)′)
the theory involves the toric varietyXΣ∗′, while if it lies outside, one gets LG theories or Hybrid
models.

3.1.3 Triangulations and the secondary fan

Definition 3.1.7 Let ∆∗ = Conv (A) ⊂ Rd−1 be a(d − 1)–dimensional polytope. A triangu-
lationT of (∆∗, A) is a triangulation of∆∗ into simplices with vertices inA. A triangulation
T of (∆∗, A) is called coherent if there exists a strictly convexT –piecewise–linear function
whose domains of linearity are precisely the (maximal) simplices ofT .

Every suchT –piecewise linear function is uniquely defined by it’s values on the vertices of the
maximal simplices ofT . Thus we get a surjective (we do not require every element ofA to
appear as a vertex of a simplex) linear mapψ 7→ gψ,T from linear maps onRA on the space of
T –piecewise linear functions on∆∗.
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Definition 3.1.8 LetC(T ) be the cone of functionsψ : A→ R with the property that

(i) gψ,T : ∆∗ → R is convex.

(ii) for anyz∗ ∈ A which is not a vertex of any simplexT we havegψ,T (z∗) ≥ ψ(z∗).

Clearly a TriangulationT is coherent (3.1.7) if and only if the interior ofC(T ) is non empty.

Proposition 3.1.9 [47] For fixed(∆∗, A), the conesC(T ) for all the triangulations of(∆∗, A)
together with all faces of these cones form a complete fan inRA. This fan is called secondary
fan ofA.

Definition 3.1.10 Let again(∆∗, A) (dim ∆∗ = d − 1) be as above, and fix a translation in-
variant volume formVol ( ) onRd−1. A characteristic function on a triangulation of(∆∗, A) is
a functionA→ R defined as

ϕT (ρ∗) =
∑

σ : ρ∗
∈ Vert (σ) ,

dimσ = d − 1

Vol (σ) . (3.25)

The secondary polytopeΣ(A) is defined as the convex hull of the set{ϕT } ⊂ RA, whereT
runs over all triangulationsT of (∆∗, A). For anyϕT we can define the normal coneNϕT

Σ(A)
as2

NϕT
Σ(A) = {z ∈ R

A : 〈z, ϕT 〉 ≥ 〈z, z∗〉 ∀ z∗ ∈ Σ(A)}. (3.26)

ϕT is a vertex if and only if the interior ofNϕT
Σ(A) is not empty.

Proposition 3.1.11 [47] The secondary polytopeΣ(A) has the following properties:

(i) dim Σ(A) = k − d, wherek = #A.

(ii) The vertices ofΣ(A) are in one–to–one correspondence with the coherent triangulations
of (∆∗, A).

(iii) For any triangulationT the normal coneNϕT
Σ(A) coincides with the coneC(T ) ⊂ RA

from definition (3.1.8).

Definition 3.1.12 LetLA be the set of all affine relations between the elements ofA, i.e.

LA = {(lz∗) ∈ R
A :
∑

z∗∈A

lz∗z
∗ = 0,

∑

z∗∈A

lz∗ = 0}. (3.27)

Let bz∗ be the images of the canonical basis vectors under the projection RA∗
→ L∗

A, which is
dual to the injectionLA → RA. The setB = {bz∗ : z∗ ∈ A} is called the Gale transform [47,48]
of A.

2we identify the spaceRA with it’s dual by defining the scalar product(z, w) =
∑

v∗∈A〈z, v
∗〉〈w, v∗〉.
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In matrix notation the rows ofB correspond to a basis of the affine relations, and the columns
are thebz∗ . Now let Ã = {z∗ × 1 : z∗ ∈ A} and define the following projection on the basis
{ez∗} of RA:

π : R
A → R

d = R
d−1 × R,

ez∗ 7→ (z∗ × 1) ∈ Ã.

Clearly,ker π = LA. Thus for any linear formψ onRA the following statements are equivalent:

∑
z∗∈A

ψz∗bz∗ = 0 ks +3 ψ⊥ ker π ks +3 ψ = g̃ ◦ π (g̃ ∈ Rd∗) ks +3 ψ = g ◦ π, (3.28)

where in the last stepg is an affine–linear function onRd−1 defined asg(z∗) = g̃(z∗, 1) ∀ z∗ ∈
A. As an immediate consequence, we get:

Proposition 3.1.13 [47]

(i) Let I be a subset ofA. Then the set of forms{bz∗ : z∗ ∈ I} form a basis ofL∗
A if and only

if the setA \ I is affine independent, i.e. corresponds to a(d − 1)–dimensional simplex
of ∆∗.

(ii) the convex hull ofB contains the origin0 ∈ L∗
A in its interior.

Thus any simplexσ of ∆∗ defines a coneCσ ⊂ L∗
A which is generated by the forms{bz∗ :

z∗ ∈ I}. For any coneC we denote byC◦ the relative interior of this cone. The interiorsC◦
σ

of the conesCσ are called dual chambers. Now there is the following bijective correspondence
between coherent triangulationsT of (∆∗, A) and dual chambers:

Proposition 3.1.14 [47] Let π be the projectionRA∗
→ L∗

A, which is dual to the injection
LA → RA. Then for any coherent triangulationT the corresponding dual chamber has the
form (−1)π(C◦(T )), whereC(T ) is the cone of definition3.1.8. The closure of this chamber
coincides with the intersection∩σ∈T Cσ. By a slightly abuse of notation, we will call the fan
generated by the closure of this chambers also secondary fan.

Definition 3.1.15 [47]) A circuit is a collectionZ of points in an affine space such that any
proper subsetZ ′ ⊂ Z is affinely independent butZ itself is not,i.e. the points satisfy

∑

ρ∗m∈Z

cmρ
∗
m = 0

∑

ρ∗m∈Z

cm = 0 cm ∈ Z \ {0} ∀ ρ∗m ∈ Z. (3.29)
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In other words, we can obtain a circuit by adding just one point in general
position to the set of vertices of a simplex. The convex hull of a circuit
has precisely the two triangulationsT± = {Conv (Z \ {ρ∗m}) |ρ

∗
m ∈ Z±}

whereZ± = {ρ∗m ∈ Z|cm ≶ 0}. As an easy consequence, we note that
|cm| = Vol (Z \ {ρ∗m}).

To summarize, we have the following important result: Thereis a
one–to–one correspondence between simplices of∆∗ with vertices inA
and cones of maximal dimension in the (projected) secondaryfan. Each
cone of maximal dimension(−1)π(C◦(T )) corresponds to a coherent tri-
angulationsT . The simplices of this triangulation are in one to one corre-
spondence with all cones containing(−1)π(C◦(T )). Contiguous coher-
ent triangulations are related by circuits.
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3.2 Special Geometry and Mirror–symmetry

In this section we review how to calculate the Yukawa couplings for a toric hypersurface by
deforming the complex structure. We also define the mirror map, which we use in order to
calculate the worldsheet instantons in the A–model of the mirror. At the end of this section we
discuss everything explicitly in one example.

3.2.1 Picard–Fuchs (PF) equations and Yukawa couplings (YCs)

We discuss two methods of getting the PF equations: the first is the Griffiths–Dwork (GD)
method, which works (theoretically) for any ample hypersurfaceV in ad–dimensional simpli-
cial projective toric variety and leads to a complete set of operators. The disadvantage of this
method is that it uses Gröbner basis techniques for the Jacobian ideal.

The second method uses theA–system associated to the polytope∆. This is a very fast way
to get a set of PF operators. However, the problem is that one has to reduce this system in order
to get generators of the PF ideal. Also the system needs not becomplete, so that one has to find
additional operators which annihilate the periods.

The (GD) method

The GD method can be used to calculate the PF system for any ample hypersurfaceV in an
d–dimensional simplicial projective toric varietyX [2, 29]. LetΣ∗ be the fan inNR defining
XΣ∗. The hypersurfaceV is defined by the equationf = 0 for a general elementf ∈ Sβ, with
deg f = β ∈ An−1(X) such thatβ is the first chern class of an ample bundle. We first define a
homogeneous volume form of degreeβ0 =

∑k
i=1[Di] on the toric ambient space:

Ω0 =
∑

|I|=k

det (eI) x̂IdXI , dXI = dxi1 ∧ · · · ∧ dxin , x̂I =
∏

i/∈I

xi, (3.30)

whereI runs over all subsetsI ⊂ {1, . . . , k} with #I = d anddet (eI) = det
(
〈ea, ρ

∗
ib
〉1≤a,b≤d

)

is used to make the definition ofΩ0 independent of the ordering of the vertices{ρ∗ ∈ Σ∗}.
n–forms onXΣ∗ with poles alongV are then of the form

PΩ0

fk
, with degP = kβ − β0. (3.31)

To reduce the pole order, one needs for each1 ≤ i ≤ k a (d − 1)–form Ωi of degreeβ0 − βi
(βi = deg[Di]) whose exact form will not concern us. Important for us is the formula

d

(
PΩi

fk

)
=

(
f ∂P
∂xi

− kP ∂f
∂xi

)
Ω0

fk+1
, (3.32)

which can be used to reduce the pole order modulo exact forms.One defines the Jacobian ideal
by

J(f) = 〈
∂f

∂x1
, . . . ,

∂f

∂xk
〉, (3.33)
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and considers also the ideal quotientJ1(f):

J1(f) = 〈
x1∂f

∂x1

, . . . ,
xk∂f

∂xk
〉 : x1 . . . xn. (3.34)

Then one can show that there are the following isomorphisms between the primitive cohomol-
ogy and the(kβ − β0)–part ofS/J(f) andS/J1(f), respectively [2]:

(S/J(f))kβ−β0 ≃ PHn−k,k−1 ∀k 6= (d/2) + 1

(S/J1(f))kβ−β0 ≃ PHn−k,k−1 ∀k.

Note thatJ1 is only needed ifd is even (the reason for using the modified idealJ1(f) has its
origin in the non–vanishing ofHd(X) = Hd/2,d/2 of X whend is even. In this case the kernel
of the residue map is not empty fork = n/2 + 1 [2]). Now we can perform the following
procedure:

• choose a basis{ωi = PiΩ
ki

f (i = 1, . . . , h = hd−1 − 1)} of the primitive cohomology of
the hypersurfaceV , i.e. ofS/J(f) or S/J1(f);

• repeatedly differentiateω = Ω0/f with respect to the moduli{zi} to geth + 1 sections
(including Ω) of the Hodge–bundleH. Each of these terms can be written as a linear
combination of the basis plus a formη, where the numerator of the coefficient functions
of η lies in the idealJ(f) (J1(f)). This can be done most easiest by using Gröbner basis
techniques. Then one can use the formula (3.32) to reduce thepole ordering ofη modulo
exact forms.

• The result can again be expressed as a linear combination of our basis plus a formη1,
where the numerator of the coefficient functions ofη1 is again in the ideal. Since we have
h + 1 sections andH has rankh, iterating this procedure leads to a relation between the
different derivatives ofΩ.

PF equations andA–systems

Definition 3.2.1 Let A = {m̄1, . . . , m̄k} ⊂ M̄ ∼= Zd+1 be a collection ofk > d + 1 points
lying in an integral affine hyperplane and fix a vectorβ = (β1, . . . , βk) ∈ Cd+1. Introduce a set
of variables{λm̄} and defineδm̄ = λm̄∂m̄ = λm̄∂/∂λm̄ . Then theA–system is the system of
differential equations, defined by the following two types of operators:

Zj =

( ∑
m̄∈A

m̄jδm̄

)
− βj (j = 1, . . . , d+ 1)

�l =
∏
lm̄>0

∂lm̄m̄ −
∏
lm̄<0

∂−lm̄m̄ l ∈ Λ,

whereΛ is the lattice of relations among the elements ofA.
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Now let ∆ ⊂ M be a reflexive polytope. Then the sections of the anticanonical bundle can be
identified with the Laurant polynomials

f =
∑

m

λmt
m = λ0 +

∑

m6=0

λmt
m ∈ L(∆), (3.35)

whereL(∆) denotes the set of Laurant polynomials with exponents in∆. Then define

A = (∆ ∩M) × {1} ⊂ M̄ = M × Z, (3.36)

andβ = (0, . . . , 0,−1). The lattice of relationsΛ of A is precisely the lattice of affine relations
of ∆ ∩M , i.e.

∑

m̄∈A

lm̄ = 0 ∀ l ∈ Λ and
∑

m̄∈A

lm̄m = 0. (3.37)

Defining thed–form

ω =
1

f
η, η =

dt1
t1

∧ · · · ∧
dtd
td
, (3.38)

it follows immediately form (3.37) thatω is annihilated by the operators�l for all l ∈ Λ. From
the formula

d

(
1

f

dt1
t1

∧ · · · ∧
d̂tj
tj

∧ · · · ∧
dtd
td

)
=

(−1)k

f 2

(∑

m

λmmjt
m

)
η, (3.39)

one can easily show that also the operatorsZj(j = 1, . . . , d + 1) annihilateω. The formω is
defined onT \ {f = 0}. However, we want PF equations onV and not just on the affine part.
This can be done by relating the torus coordinatesti to the homogeneous coordinatesxi (use
(3.7) withai = 1(i = 1, . . . , k)):

tj =

k∏

i=1

x
〈ej ,ρ

∗
i 〉+1

i . (3.40)

Under this substitution we get

Ω0 = x1 . . . xkη, ω =
Ω0

f(x1, . . . , xk)
. (3.41)

Note that the action of
T × C

∗, (3.42)

whereT acts on itself (on the torus coordinates) andC∗ acts by multiplyingf , leads to isomor-
phic hypersurfaces. Thus we have an action ofT × C∗ onL(∆) and the quotient defines the
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moduli space. We now choose a basisl(a) (a = 1, . . . , h on the latticeΛ of relations and define
the following functions:

za =
∏

m̄∈A

λ
l
(a)
m̄
m̄ . (3.43)

Then theza are invariant under the action ofT ×C∗ and define local coordinates in the quotient
of the moduli space near the point of maximally unipotent monodromy. It remains to express
the PF operators in the{za}–coordinates. The following identity is very useful when one pushes
theλm̄ through theδm̄:

δm̄λ
p
m̄ = λpm̄(δm̄ + p). (3.44)

The last thing we have to do is to transformω in equation (3.41) into an expression that is
invariant under ourC∗ action. This can be done be considering the form

ω̃ = λ0ω (3.45)

and multiplying our PF system withλ−1
0 from the right:

Zj → Zjλ
−1
0 (j = 1, . . . , d+ 1)

�l → �lλ
−1
0 l ∈ Λ.

(3.46)

Yukawa couplings

Once we have the PF–system, it is very easy to compute the YCs from equation (2.53).Ki1...i3 .
First we define the quantities

K i1...ik =

∫

V

Ω ∧ ∇δi1
. . .∇δik

Ω i1 ≤ · · · ≤ ik, (3.47)

which are zero fork ≤ 2 due to Griffiths transversality. Ifk = 3 we get the YCs. Repeated
Differentiation of thek ≤ 2 case leads to the following identities:

K(i1i1i1i1) = 2δi1K(i1i1i1)

K(i1i1i1i2) = 3
2
δi1K(i1i1i2) + 1

2
δi2K(i1i1i1)

K(i1i1i2i2) = δi1K(i1i2i2) + δi2K(i1i1i2)

K(i1i1i2i3) = δi1K(i1i2i3) + 1
2
δi2K(i1i1i3) + 1

2
δi3K(i1i1i2)

K(i1i2i3i4) = 1
2
δi1K(i2i3i4) + 1

2
δi2K(i1i3i4) + 1

2
δi3K(i1i2i4) + 1

2
δi4K(i1i2i3) .

(3.48)

The YCs can then be computed as follows:

(i) multiply all PF operators with logarithmic derivatives{δi} to get a set of differential
operators of third order which annihilate

∫
V

Ω ∧ Ω. Due to Griffiths transversality we
only need to keep terms which are third derivatives. The resulting equations can be used
to express all YCs as rational functions of a single one, sayK(111).
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(ii) multiply all PF operators with logarithmic derivatives{δi} to get a set of forth order
differential operators acting on

∫
V

Ω ∧ Ω. Again, we only need to keep terms which are
derivatives of order higher than two. The identities (3.48)can then be used to replace the
quantitiesK(ijkl) in terms of derivatives of the YCs. Expressing allK(ijk) 6= K(111) in
terms ofK(111) gives a system of linear differential equations forK(111).

The Mirror map

We use a definition of the mirror map which takes advantage of the toric data and defines
mirror symmetry for toric hypersurfaces [2]. As usual, let∆ ⊂ MR and ∆∗ ⊂ NR be a
pair of reflexive polytopes corresponding to the (family of)toric hypersurfacesV ⊂ XΣ∗ and
V ∗ ⊂ XΣ, respectively. The idea is to find a local isomorphism between a subspace of the large
complex structure moduli space ofV and a subspace of the Kähler moduli space ofV ∗.

To give a precise definition on these subspaces we need the following definition:

Definition 3.2.2 Given a reflexive polytope∆ ⊂MR, a fanΣ∗ is a simplified projective subdi-
vision if it has the following properties:

(i) Σ∗ refines the normal fan of∆.

(ii) Σ∗(1) consists of all lattice points of∆∗ except the interior point{0} and interior points
of facets of∆∗.

(iii) XΣ∗ is projective and simplicial.

The difference to maximal projective subdivisions used forΣ andΣ∗ in the Batyrev mirror
construction is that we throw away all points lying in the interior of facets, which correspond
to divisors that do not intersect the CY hypersurface. It will turn out that the mirror map is
completely fixed by a smooth coneσ ⊂ cpl (Σ). The subspaces of the moduli spaces are
defined as follows (for details see [2]):

Definition 3.2.3 Let Σ correspond to a simplified projective subdivision of the normal fan of
∆∗. The simplified moduli spaceMsimp(V ) of the CY hypersurfaceV is defined as the Chow
quotient [49]:

Msimp(V ) = P(L(Σ(1) ∪ 0))//T, (3.49)

whereT is the torus action from (3.42).

There is a conjecture [50] which proposes that each of the conesσ gives a maximal unipotent
boundary point3 of Msimp.

3For an exact definition of the point of maximal unipodent monodromy see, for example, [2]. For us, this
point is a special point in the moduli space such that there are one holomorphic andh2,1 logarithmic–holomorphic
solutions of the PF–system.
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Definition 3.2.4 Let Σ∗ corresponding to a simplified projective subdivision of thenormal fan
of ∆. The toric Kähler moduli spaceKMtoric(V ) is defined as follows. First note that we
exclude interior points of facets of∆∗. Thus the restriction mapH2(XΣ∗) → H2(V ) is injective
and we have an obvious inclusioncpl (Σ∗) ⊂ K(V )toric = H2

toric(V ) ∩K(V ) (K is the Kähler
cone ofXΣ∗). Now there is another conjecture which asserts that the toric moduli space is, up
to an action of a finite group, the union∪Σ∗′ cpl (Σ∗′), where the union runs over all fans which
differ from Σ∗ by a sequence of trivial flips. In order to get a smooth moduli space we use a
refinement given by the unimodular cones{σ}.

The mirror map is now an isomorphism betweenKMtoric(V
∗) andMsimp(V ). Note that we

have to take the mirror in definition (3.2.4). We choose localcoordinatesq1, . . . , qr around the
large radius point of the complexified Kähler moduli space using the map

(D∗)h → (H2
toric(V

∗,R) + iKtoric(V
∗))/ im(Htoric(V

∗,Z)), (3.50)

sending(e2πit1 , . . . , e2πith) to
[∑h

a=1 taTa

]
. Here,(D∗)h is the punctured polydisk, andTa are

the generators ofσ. This map extends to an immersion of the whole polydisk, where the origin
corresponds to the large radius limit point. Thus, we will use the coordinates

qa = e2πita (a = 1, . . . , h) (3.51)

to define the mirror map. As coordinates around the point of maximal unipotent monodromy
we can choose the{za} defined in (3.43). The mirror map can then be defined as [2]

qa = (−1)l
(a)
0 za exp (2πiỹa/y0) , (3.52)

with y0 being the unique holomorphic solution of the PF equations atthe point of maximally
unipotent monodromy, and the{ya (a = 1, . . . , h)} being solutions of the PF equations that are
of the form:

ya = y0 log
(
(−1)l

(a)
0 za

)
+ ỹa, a = 1, . . . , h, (3.53)

whereỹa is holomorphic at the origin withya(0) = 0. Thus, it remains to find the quantities
{y0, y1, . . . , yh}. Let ω̃ be the volume form onXΣ∗ − V from equation (3.45) with its residue
onV being the holomorphic(n − 1) form Ω. We also have a cycleγ ⊂ T ⊂ XΣ∗ defined by
|t1| = · · · = |td| = 1 corresponding to a cohomology classg ∈ Hd−1(V ). Thus we have a
pairing

〈g,Ω〉 =
1

(2πi)d

∫

γ

λ0

f

dt1
t1

∧ · · · ∧
dtd
td
, (3.54)

whereΩ is the residue of̃ω from equation (3.45). Plugging the expansion

λ0

f
=

1

1 −
∑

m∈Σ(1) λm(λ0)−1tm
=

∞∑

K=0


 ∑

m∈Σ(1)

λm(λ0)
−1tm



K

(3.55)
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into (3.54) and performing the integration gives

〈g,Ω〉 =
∑

l1,...,ls

(−l0)!

l1! . . . ls!
(−λ0)

l0λl11 . . . λ
ls
s , (3.56)

where the sum runs over all relationsl = (l0; l1, . . . , ls) ∈ Λ of Σ × {1} with li ≥ 0 (i =
1, . . . , s = #Σ(1)). Switching to the coordinates{za} defined in (3.43) coming from a basis

l(a) = (l
(a)
0 ; l

(a)
1 , . . . , l(a)s ) a = 1, . . . , h, (3.57)

and writing eachl asl = n1l
(1) + · · ·+ nhl

(h) gives:

〈g,Ω〉 =
∑

n1,...,nh

(
−
∑h

a=1 nal
(a)
0

)
!

∏s
j=1

(∑h
a=1 nal

(a)
j

)
!

(
(−1)l

(1)
0 z1

)n1

. . .
(
(−1)l

(h)
0 zh

)nh

, (3.58)

where the sum is over alln1, . . . , nh such that
∑h

a=1 nal
(a)
j ≥ 0 (j = 1, . . . , s). Now the

crucial point is thatli ≥ 0 (i = 1, . . . , s = #Σ(1)), which implies thatl is in the cone dual to
the cone spanned by effective divisor classes,〈[Dj ]〉. Dualizingσ ⊂ cpl (Σ) ⊂ 〈[Dj ]〉 gives
l ∈ σ∗ = 〈l(a)〉. Thus the integers{na} are all non–negative. It is also not hard to see that the
series (3.58) converges [2], and we can set

y0(z1, . . . , zh) = 〈g,Ω〉. (3.59)

Next we calculate theya using the method of Frobenius. The idea is to replace the integersna
by na + ρa, whereρa is a real parameter. This means that we have to replace the factorials:

(
h∑

a=1

nal
(a)
j

)
! → Γ

(
h∑

a=1

(na + ρa)l
(a)
j + 1

)
, (3.60)

and that we also have to shift the exponents of(−1)l
(a)
0 za (a = 1, . . . , h). The key result is that

the quantities
ya = (∂ρay0(z, ρ)) |ρ=0, (a = 1, . . . , h) (3.61)

have the desired property, which follows from the fact that[�l, ∂ρa ] = 0 and that the action of

∂ρa on powers of(−1)l
(a)
0 za (a = 1, . . . , h) generates a factorlog

(
(−1)l

(a)
0 za

)
. The following

two formulas are needed when performing the calculation:

d

ds
Γ(s) |s=n+1 = Γ(n + 1)

(
−γ +

n∑

j=1

1

j

)
, (3.62)

Γ(s)Γ(1 − s) =
π

sin(πs)
, (3.63)
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wheres is a real parameter,n is a positive integer, andγ is Euler’s constant.
Let {V, V ∗} be a mirror pair, and denote byK (K) the A- (B-) model threepoint correlators

onV ∗ (V ). The large complex structure coordinates forV , (za), are related to the large radius
coordiantes onV ∗, (qa). By mirror symmetry, the correlators are related by:

K(abc) = 〈Oa,Ob,Oc〉 =

∫

V

Ω̃ ∧∇δa∇δb∇δcΩ̃. (3.64)

Here,δa = 2πiqa∂/∂qa andΩ̃ = Ω/y0 is the normalized 3–form onV . In order to evaluate
the rhs, it remains to insert the mirror map. TheK(ijk) are then given up to a multiplication
by a non–vanishing complex constant, which can be determined by calculating the intersection
numbers in the large radius limit. The final form is:

K(abc) = κabc +
∑

da,db,dc≥0

n
(0)
abcdadbdc

∏
a q

da
a

1 −
∏

a q
da
a

, (3.65)

whereκabc are the classical intersection numbers,qa are the coordinates defined in (3.51), and
the sum counts the worldsheet instantons.

A simple example

In this subsection we will show how all this works explicitlyin the case of the mirror of a degree
8 hypersurface inP(1, 1, 2, 2, 2). The polytope∆∗′ ⊂ NR defining the weighted projective
space is defined as the convex hull of the vertices

ρ∗0 = −e∗1 − 2e∗2 − 2e∗3 − 2e∗4, ρ∗1 = e∗1, ρ∗2 = e∗2, ρ∗3 = e∗3, ρ∗4 = e∗4. (3.66)

The cone generated by{ρ∗0, ρ
∗
1} is not unimodular. To resolve the singularity, we can add the

vertexρ∗5 = 1/2(ρ∗0 +ρ∗1). We denote the polytope with the extra vertex by∆∗, and the fan with
cones over the faces of the polytope∆∗ (∆∗′) by Σ∗ (Σ∗′).

The K̈ahler cone

In this simple example it is very easy to get the Kähler conesusing the primitive collections of
definition (3.1.5). ForΣ∗ they are:

{ρ∗0, ρ
∗
1} and {ρ∗2, . . . , ρ

∗
5}. (3.67)

Using the two relations

2ρ∗5 = ρ∗0 + ρ∗1 and ρ∗2 + ρ∗3 + ρ∗4 + ρ∗5 = 0, (3.68)

we see that a support functionψ is strictly convex if and only if

2ψ(ρ∗5) = ψ(ρ∗0 + ρ∗1) > ψ(ρ∗0) + ψ(ρ∗1),

0 = ψ(ρ∗2 + · · · + ρ∗5) > ψ(ρ∗2) + · · ·+ ψ(ρ∗5).
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Settingψ(ρ∗i ) = −ai we have to interpret these inequalities in terms of the Chow group. Under
the mapβ of the exact sequence (3.5)(a0, . . . , a5) is mapped to(s, t) = (a2 + a3 + a4 +
a5,−2a5 + a0 + a1). In these coordinates the Kähler cone is the interior of thecone

cpl (Σ∗) = {(s, t) ∈ A(Σ∗) : s, t ≥ 0}. (3.69)

The fanΣ∗′ has only one primitive collection:{ρ∗0, . . . , ρ
∗
4}. Defining againψ(ρ∗i ) = −ai and

using the relationρ∗0 + ρ∗1 + 2ρ∗2 + 2ρ∗3 + 2ρ∗4 = 0 we find that

a0 + a1 + 2a2 + 2a3 + 2a4 > 0. (3.70)

Thus the Kähler cone is the interior of the cone4

cpl
(
Σ∗′
)

= {(s, t) ∈ A(Σ∗) : s ≥ 0, 2s+ t ≥ 0}. (3.71)

Griffiths–Dwork on the mirror

In order to find the mirror family we have to construct the dualpolytope∆′ ⊂ MR
5 which

turns out to be the convex hull of the vertices



ρ0 ρ1 ρ2 ρ3 ρ4

−1 7 −1 −1 −1
−1 −1 3 −1 −1
−1 −1 −1 3 −1
−1 −1 −1 −1 3



.

(3.72)

This time the groupG defining the quotient contains torsion, which can be seen by the fact that
ρ1 + · · · + ρ4 = 0 mod 4. The lattice points in∆∗′ are in one to one correspondence to the
set of monomials having the same grading as the divisorβ0 = [Dρ0 ] + · · · + [Dρ4 ], i.e. the
monomials are ∏

ρ∈Vert(∆′)

x〈ρ,z
∗〉+1

ρ z∗ ∈ ∆∗′ ∩N, (3.73)

which are just allZ4–invariant monomials of degree eight onP(1, 1, 2, 2, 2). We can write the
equation of the anticanonical hypersurface in the form

f = z2x
8
1 + x8

2 + z1x
4
3 + x4

4 + x4
5 + x1x2x3x4x5 + x4

1x
4
2, (3.74)

where the choice of the parameters(z1, z2) is such thatz1 = z2 = 0 is a point of maximal
unipotent monodromy. Definingδzi

= zid/dzi we can choose the basis

ω1=
Ω0

f
, ω2= δz1ω1= −

z1x4
3Ω0

f2 , ω3= δz2ω1= −
z2x8

1Ω0

f2 ,

ω4=δz21ω1=ω2 + 2
2z21x

8
3Ω0

f3 , ω5=δz1δz2ω1=
2z1z2x8

1x
4
3Ω0

f3 , ω6=δ
2
z1
δz2ω1=ω5 −

6z21z2x
8
1x

8
3Ω0

f4 .
(3.75)

4Note that we considerΣ∗′ instead ofΣ∗, butΣ∗(1) is fixed.
5Since we now construct the mirror CYV ∗, the meaning of the lattices has changed: The ambient space is now

defined by the polytope in theM–lattice, and the exponents of the monomials are from theN–lattice.
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The PF equations are then obtained by expressing variousδjzi
ω1 terms in this basis. For example,

we can use

δ2
z2
ω1 = ω3 +

2z2
2x

16
1 Ω0

f 3
. (3.76)

Using Gröbner basis techniques, we get the following relations betweenx16
1 , x

8
3, andx8

1x
4
3 (the

latter two are the monomials appearing in our basis{ωi} overf 3):

z2(1 − 4z2)x
16
1 − z2

1x
8
3 + 4z1z2x

8
1x

4
3 =

−1

16

3∑

i=1

Aixi
∂f

∂xi
∈ J(f) = 〈

∂f

∂xi
〉, (3.77)

with

A1 = 2(4z2 − 1)x8
1 + x1x2x3x4x5 − 4x4

1x
4
2,

A2 = 2x8
1,

A3 = 4z1x
4
3 − 16z2x

8
1 − x1x2x3x4x5.

Inserting this into equation (3.76) gives

(1−4z2)δ
2
z2
ω1−z2(δ

2
z1
−δz1−4δz1δz2+2δz2)ω1 = (1−6z2)δz2ω1−

2z2
16f 3

3∑

i=1

Aixi
∂f

∂xi
Ω0. (3.78)

Using (3.32) the right hand side can be written modulo exact forms as:

(1 − 6z2)δz2ω1 −
2z2
16f 3

3∑

i=1

Aixi
∂f

∂xi
Ω0 ∼ (1 − 6z2)δz2ω1 −

z2
16f 2

3∑

i=1

∂

∂xi
(Aixi)Ω0 =

−
5z2
2
δz2ω1 +

10z2
8f 2

(x4
1x

4
2 − z1x

4
3)Ω0.

Applying again Gröbner basis techniques we can write the right hand side as

−
5z2
2
δz2ω1 +

10z2
8f 2

(x4
1x

4
2 − z1x

4
3)Ω0 = −

5z2
2
δz2ω1 +

5z2
8f 2

(
−4z2x

8
1 −

x3

2

∂f

∂x3

+
x1

2

∂f

∂x1

)
Ω0

=
5z2
16f 2

(
x1∂f

∂x1

−
x3∂f

∂x3

)
Ω0 ∼ 0,

where in the last step again (3.32) was used. Thus we end up with the Picard Fuchs equation:

(1 − 4z2)δ
2
z2ω1 − z2(δ

2
z1 − δz1 − 4δz1δz2 + 2δz2)ω1 = 0. (3.79)

PF equations using theA–system of the mirror

We now compute the PF equations using theA–system of the polytope (3.72). Homogenizing
f ∈ L(∆∗) gives

f = λ1x
8
1 + λ2x

8
2 + λ3x

4
3 + λ4x

4
4 + λ5x

4
5 + λ6x1x2x3x4x5 + x4

1x
4
2, (3.80)
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which is the same as equation (3.74). A basis of relations fortheA–system is given by:

l(1) = (0, 0, 1, 1, 1, 1,−4) and l(2) = (1, 1, 0, 0, 0,−2, 0). (3.81)

Thus we get the followingT–invariant moduli coordinates:

z1 =
λ3λ4λ5λ6

λ4
0

and z2 =
λ1λ2

λ2
6

. (3.82)

From the two relations (3.81) we get two PF operators:

λ0λ2λ3λ4λ5λ6�l1λ
−1
0 = λ0λ2λ3λ4λ5λ6(∂2∂3∂4∂5∂6 − ∂4

0)λ
−1
0 = 0,

λ0λ1λ2�l2λ
−1
0 = λ0λ1λ2(∂1∂2 − ∂2

6)λ
−1
0 = 0.

Using identity (3.44), and the identities

δ1 = δ2 = δz2 , δ3 = δ4 = δ5 = δz1 , δ6 = δz1 − 2δz2, δ0 = −4δz1 , (3.83)

we end up with the following PF operators in the(z1, z2) coordinates:

δ3
z1(δz1 − 2δz2) − 4z1δz1(4δz1 + 1)(4δz1 + 2)(4δz1 + 3) = 0,

δ2
z2
− z2(δz1 − 2δz2)(δz1 − 2δz2 − 1) = 0.

The first operator can be reduced (dividing it byδz1 from the left) and we have two operators
of rank3 and2. Hence the space of solutions has dimension of at most6, which is the Betti
numberb3 of the mirror. Thus we have found a complete system of PF operators.

YCs

Having a complete set of PF operators we can now compute the YCs. After some algebra the
PF operators take the form:

0 = (1 − 4z2)δ
2
z2 − z2(δ

2
z1 − 4δz1δz2 − δz1 + 2δz2), (3.84)

0 = (1 − 256z1)δ
3
z1
− 2δ2

z1
δz2 − 8z1(48δ2

z1
+ 22δz1 + 3). (3.85)

Multiplying the first equation withδz1 or δz2 gives two third order equations. Thus we have three
independent equations of order three relating our couplingsK(111), K(112), K(122) andK(222):

K(112) =
(1 − 256z1)K(111)

2
,

K(122) =
z2(−1 + 512z1)K(111)

1 − 4z2
,

K(222) =
z2(1 − 256z1 + 4z2 − 3072z1z2)K(111)

2(1 − 4z2)2
, (3.86)

where we again have used Griffiths transversality.
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Multiplying the first PF operator withδ2
z1
, δ2
z2

or δz1δz2 and the second withδz1 or δz2 gives
five differential equations of order four. Again derivatives with degree lower than three can
be thrown away. Inserting the identities (3.48) and using (3.86) to express all YCs in terms of
K(111) gives us a system of linear differential equations forK(111). The calculation is straight
forward and can be found, for example, in [2]. The resulting couplings are:

K(111) = c
∆1∆3

3
, K(112) = c(1−256z1)

2∆1∆2
3∆4

,

K(122) = c(512z1−1)
∆1∆2∆3∆4

, K(222) = c(1−256z1+4z2−3072z1z2)

2∆1∆2
2∆2

4
,

(3.87)

with the discriminants:

∆1 = (1 − 512z1 + 65536z2
1 − 262144z2

1z2), ∆2 = (1 − 4z2), ∆3 = z1, ∆4 = z2. (3.88)

The mirror map

We now compute the mirror map in our example. Using the basis of relations from equation
3.81 we get

(l1, . . . , l6, l0) = n1(0, 0, 1, 1, 1, 1,−4) + n2(1, 1, 0, 0, 0,−2, 0), (3.89)

i.e. l1 = l2 = n1, l3 = l4 = l5 = n2, l6 = n1 − 2n2 and l0 = −4n1, and li ≥ 0 implies
n1 ≥ 2n2. Thus the series in equation (3.58) is given by

y0(z1, z2) =
∑

n1≥2n2≥0

(4n1)!

(n1!)3(n2!)2(n1 − 2n2)!
zn1
1 zn2

2 . (3.90)

The subtle point is thatn1 ≥ 2n2 and that we really have

y0(z1, z2) =
∑

n1,n2≥0

Γ(4n1 + 1)

Γ(n1 + 1)3Γ(n2 + 1)2Γ(n1 − 2n2 + 1)
zn1
1 zn2

2 , (3.91)

which agrees with the foregoing series because theΓ function has simple poles at{0,−1,−2, . . .}.
We have to calculate

y1 = ∂ρ1y0 |ρ1=ρ2=0 and y2 = ∂ρ2y0 |ρ1=ρ2=0 . (3.92)

Derivation of y1: Differentiation ofzn1+ρ1
1 gives the party0(z1, z2) log (z1). The derivatives of
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the coefficients are:

d
dρ1

Γ(4n1 + 4ρ1 + 1) |ρ1=0 = 4(4n1)!

(
−g +

4n1∑
j=1

1
j

)
for n1, n2 ≥ 0,

d
dρ1

1
Γ(n1+1)3

|ρ1=0 = −3
(n1!)3

(
−g +

n1∑
j=1

1
j

)
for n1, n2 ≥ 0,

d
dρ1

1
Γ(−2n2+n1+ρ1+1)

|ρ1=0 = −1
(n1−2n2)!

(
−g +

n1−2n2∑
j=1

1
j

)
for n1 − 2n2 ≥ 0,

d
dρ1

1
Γ(−2n2+n1+ρ1+1)

|ρ1=0 = d
dρ1

(
sin(π(2n2−n1−ρ1))

π
Γ(2n2 − n1 − ρ1)

)
|ρ1=0

= (−1)n1+1((2n2 − n1 − 1)!) for n1 − 2n2 < 0.

Altogether we find:

y1(z1, z2) = y0(z1, z2) log (z1) +
∑

n1<2n2

(4n1)!(2n2−n1−1)
(n1!)3(n2!)2(n1−2n2)!

(−1)n1+1zn1
1 zn2

2

+
∑

n1≥2n2

(4n1)!
(n1!)3(n2!)2(n1−2n2)!

zn1
1 zn2

2

(
4

4n1∑
j=1

1
j
− 3

n1∑
j=1

1
j
−

n1−2n2∑
j=1

1
j

)
zn1
1 zn2

2 .

(3.93)
If we write y1 asy1 = y0(z1, z2) log (z1) + ỹ1, the mirror map forq1 reads as:

q1 = z1 exp (ỹ1/y0) . (3.94)

Derivation of y2: Differentiation ofzn2+ρ2
2 gives the party0(z1, z2) log (z2) The derivatives of

the coefficients are:

d
dρ2

1
Γ(n2+ρ2)2+1

|ρ2=0 = −2
(n2!)2

(
−g +

n2∑
j=1

1
j

)
for n1, n2 ≥ 0,

d
dρ2

1
Γ(n1−2n2−2ρ2+1)

|ρ2=0 = 2
(n1−2n2)!

(
−g +

n1−2n2∑
j=1

1
j

)
for n1 − 2n2 ≥ 0,

d
dρ2

1
Γ(n1−2n2−2ρ2+1)

|ρ2=0 = d
dρ2

(
sin(π(2n2+2ρ2−n1))

π
Γ(2n2 + 2ρ2 − n1)

)
|ρ2=0

= 2(−1)n1(2n2 − n1 − 1)! for n1 − 2n2 < 0.

Altogether we find:

y2(z1, z2) = y0(z1, z2) log (z2) + 2
∑

n1<2n2

(4n1)!(2n2−n1−1)
(n1!)3(n2!)2(n1−2n2)!

(−1)n1zn1
1 zn2

2

+2
∑

n1≥2n2

(4n1)!
(n1!)3(n2!)2(n1−2n2)!

zn1
1 zn2

2

(
n1−2n2∑
j=1

1
j
−

n2∑
j=1

1
j

)
zn1
1 zn2

2 .
(3.95)

If we write y2 asy2 = y0(z1, z2) log (z2) + ỹ2, the mirror map forq2 reads as:

q2 = z2 exp (ỹ2/y0) . (3.96)
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Kähler YCs onV

We are now ready to compute the Kähler threepoint functionsonV using the mirror map. The
Kähler classes modulo rational equivalence are:

L = D0 ∼ D1 H = D2 ∼ D3 ∼ D4 D5 ∼ D2 − 2D0, (3.97)

where eachDi corresponds to the vertexρ∗i (i = 0, . . . , 6) of ∆∗. From the primitive collections
(3.67) we get in addition the relations:

D0D1 = 0 and D2D3D4D5 = 0. (3.98)

SinceV ∈|
∑

iDi |=| 4D3 |, we get, for the classical triple intersection numbers:〈H,H,H〉CL:

4HH3 ∼ D2D3D4D2 ∼ 2D3D4D5 + 8D0D2D3D5 ∼ 8 Vol (ρ∗0, ρ
∗
2, ρ

∗
3, ρ

∗
4) = 8,

4H3L ∼ 4D0D2D3D4 ∼ 4 Vol (ρ∗0, ρ
∗
2, ρ

∗
3, ρ

∗
4) = 4,

4HL3 ∼ 4D2
0D1D3 = 0,

4H2L2 ∼ 4D0D1D
2
3 = 0. (3.99)

The mirror conjecture predicts that

〈H,H,H〉 = K(111) =

∫

V ∗

Ω̃ ∧ ∇δ1∇δ1∇δ1Ω̃ = 〈H,H,H〉CL + . . . , (3.100)

whereδ1 = 2πiq1
∂
∂1

, Ω̃ = Ω/y0, andqi = qi(z1, z2) (i = 1, 2) via the mirror map. Using the
chain rule we get:

〈H,H,H〉 =
(2πi)3

y2
0

[(
q1
z1

∂z1
∂q1

)3

K(111) + 3

(
q1
z1

∂z1
∂q1

)2(
q1
z2

∂z2
∂q1

)
K(112)+

3

(
q1
z1

∂z1
∂q1

)(
q1
z2

∂z2
∂q1

)2

K(122) +

(
q1
z2

∂z2
∂q1

)3

K(222)

]
. (3.101)

It remains to set the constantc in (3.87) equal toc = 8
(2πi)3

in order to get the classical intersec-
tion numbers as leading term. The first terms of the expansionare:

〈H,H,H〉 = 8 + 640 q1
1−q1

+ 10032
23q21
1−q21

+ 640 q1q2
1−q1q2

+O(q3)

= 8 + 640q1 + 80896q2
1 + 640q1q2 +O(q3),

〈H,H,L〉 = 4 + 640q1q2 +O(q3),
〈H,L, L〉 = 640q1q2 +O(q3),
〈L,L, L〉 = 4q2 + 4q2

2 + 640q1q2 +O(q3),

(3.102)
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where we have also added the expansions of the other couplings [51] for completeness. Because
of our normalization, the constant terms in the expansions are the classical intersection numbers
from equation (3.99). Comparing the result with equation (3.65) gives the instanton number
n(a, b) = nah+bl, whereah + bl is an element ofH2(V,Z), and{h, l} is the basis dual to
{H,L}.
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Chapter 4

The geometry of toric CICY’s

4.1 Complete intersections in toric varieties

Batyrev showed that a generic section of the anticanonical bundle of P∆ = XΣ∗ defines a
Calabi–Yau hypersurface if∆ is reflexive, which means, by definition, that∆ and its dual∆∗

are both lattice polytopes. Mirror symmetry corresponds tothe exchange of∆ and∆∗ [29]. The
generalization of this construction to complete intersections of codimensionr > 1 (CICYs) was
obtained by Batyrev and Borisov [31] who introduced the notion of a nef–partition.

Let ∆ ⊂ MR,∆
∗ ⊂ NR be a dual pair ofd–dimensional reflexive polytopes. Denote by

Σ[∆∗] ⊂ NR the fan over faces of∆∗ and letXΣ[∆∗] be the toric variety corresponding to the
fanΣ[∆∗].

Definition 4.1.1 A partitionE = E1 ∪ · · ·∪Er of the set of vertices of∆∗ into disjoint subsets
E1, . . . , Er is called a nef–partition if there existr integral convexΣ[∆∗]– piecewise linear
support functionsϕi : NR → R (i = 1, . . . , r) such that

ϕi(ρ
∗) =

{
1 if ρ∗ ∈ Ei,

0 otherwise.

Eachϕi corresponds to a semi–ample Cartier divisorDi =
∑

ρ∗∈Ei
D∗
ρ onX, whereD∗

ρ is the
irreducible component ofX \ T corresponding to the vertexρ∗ ∈ Ei, andV = D1 ∩ · · · ∩Dr

defines a family of Calabi–Yau complete intersections. Moreover, eachϕi corresponds to a
lattice polyhedron∆i defined as

∆i = {x ∈MR : 〈x, y〉 ≥ −ϕi(y) ∀ y ∈ NR} (4.1)

supporting global sections of the semi–ample invertible sheafO(Di). Since the knowledge of
the decompositionE = E1 ∪ · · · ∪ Er is equivalent to that of the set of supporting polyhedra
Π(∆) = {∆1, . . . ,∆r}, this data is often also called a nef–partition. We note thatthe polytopes

∇i = Conv ({0} ∪ Ei) ⊂ NR
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define also a nef–partitionΠ∗(∇) = {∇1, . . . ,∇r} with ∇ = ∆1 + · · · + ∆r. In summary we
have the following relations between all the polyhedra in the different spaces:

MR NR

∆ = ∆1 + · · ·+ ∆r ∆∗ = Conv (∇1, . . . ,∇r)
∇∗ = Conv (∆1, . . . ,∆r) ∇ = ∇1 + · · ·+ ∇r

(4.2)

This yields a pair(V, V ∗) of Calabi–Yau varieties, whereV ⊂ XΣ∗ andV ∗ ⊂ XΣ are mirror to
each other.

Given the nef–partition∆∗ = Conv (∇1, . . . ,∇r), let λm ∈ C be the coefficients of the
Laurent polynomialsf1, . . . , fr,

fl(t) = 1 −
∑

m∈∆l∩M

λmt
m ∈ L(∆l) (l = 1, . . . , r). (4.3)

The simultaneous vanishing of these polynomialsfl then defines the complete intersection
Calabi–Yau manifoldV ⊂ XΣ∗, or in other words, the∆l are the Newton polyhedra forfl.
Similarly, the∇l are the Newton polyhedra forV ∗.

4.1.1 The Cayley trick

To compute the cohomology of a complete intersection, we canuse the Cayley–trick. The affine
case is treated in [52]: let{f1, . . . , fr} be a system of nondegenerate Laurant polynomials. They
define a complete intersectionY = Z1 ∩ · · · ∩Zr in thed–dimensional algebraic torusT . Now
add a set of Lagrange multipliers{λ1, . . . , λr} and consider the hypersurfaceZF ⊂ T × Cr

defined by the equation

F (λ, z) = λ1f1 + · · ·+ λrfr − 1 = 0. (4.4)

Restrict the projectionπ : T×Cr → T toZF . If a pointz belongs toY equation (4.4) obviously
has no solution and the fiberπ−1(z) is empty. On the other hand ifz /∈ Y the fiber is an affine
linear subspaceCr−1 ⊂ Cr. Using the fact that theE–polynomial [52]

E(u, v) =
∑

p,q

hp,q(−1)p+qupvq (4.5)

of a bundle that is locally trivial in the Zariski topology isthe product of theE–polynomial of
the base space and that of the fiber we get:

E(ZF ; u, v) = E(T \ Y ; u, v) E(Cr−1; u, v). (4.6)

NowE(Cr−1; u, v) = (uv − 1)(r−1), E(T ; u, v) = (uv)d, andE(T \ Y ; u, v) = E(T ; u, v) −
E(Y ; u, v), so we end up with

E(Y ; u, v) = (uv)d − E(ZF ; u, v)(uv − 1)(1−r). (4.7)
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This result was generalized to relate a complete intersection V = D1 ∩ · · · ∩ Dr in a d–
dimensional toric varietyX to a hypersurfaceY in the projective bundleP(E) = P(O(D1) ⊕
· · ·⊕O(Dr)) overX [30,32]: letπ : P(E) → X be the natural projection. Thenπ∗(OP(E)(1)) =
O(D1) ⊕ · · · ⊕ O(Dr) and every global section ofOP(E)(1)) corresponds to global sections
(s1, . . . , sr) of O(D1) ⊕ · · · ⊕ O(Dr). Again one can show that

P(E) − Y → X −D1 ∩ · · · ∩Dr (4.8)

is a locally trivialCr−1 bundle in the Zariski topology and hence

H i
c(X −D1 ∩ · · · ∩Dr) ≃ H i+2(r−1)

c (P(E) − Y). (4.9)

Now we extend the latticesM,N to M̄ = Zr⊕M, N̄ = Zr⊕N , respectively, and define the
d̄ = d + r–dimensional reflexive Gorenstein coneC of indexr corresponding to the complete
intersection as1

C = {(λ1, . . . , λr, λ1x1 + · · ·+ λrxr) ∈ M̄R : λi ∈ R≥, xi ∈ ∆i, i = 1, . . . r}. (4.10)

The support ofC can be identified with the set of global sections ofO(D1) ⊕ · · · ⊕ O(Dr).
The string–theoretic Hodge numbers of the complete intersection V are then related via the
Cayley trick to those ofProj(C[C ∩ M̄ ]) and can be computed from the combinatorial data of
the reflexive pair of Gorenstein conesC,C∗ [32,34]:

E(V ; u, v) =
∑

(−1)p+q hpq up vq =
∑

I=[x,y]

(−)ρxtρy

(uv)r
S(Cx,

v

u
)S(C∗

y , uv)BI(u
−1, v).

(4.11)
In this formulax, y label facesC∗

x of dimensionρx of C∗ andCx denotes the dual face of
the dual coneC. The intervalI = [x, y] labels all cones that are faces ofC∗

y containingC∗
x.

The polynomialsBI(u, v) encode the combinatorics of the face lattice [32]. The polynomials
S(C∗

x, u) = (1 − u)ρx
∑

n≥0 u
nln(C

∗
x) of degreeρx − 1 are related to the numbersln(C∗

x) of
lattice points at degreen in C∗

x and hence to the Ehrhart polynomial [53] of the Gorenstein
polytope generatingCx [32].

In the case of hypersurfaces,r = 1, it is known [29] that the Picard number can also be
computed with the formula

h11 = l(∆∗) − 1 − d−
∑

codim(Θ∗)=1

l∗(Θ∗) +
∑

codim(Θ∗)=2

l∗(Θ∗)l∗(Θ) (4.12)

whereΘ andΘ∗ are faces∆ and∆∗, respectively.l(Θ) is the number of lattice points of a
faceΘ, andl∗(Θ) the number of its interior points. This formula has a simple interpretation
(see also [45]): The principal contributions come from the toric divisorsDi = {zi = 0}

1nC is defined uniquely by the conditions〈ei, nC〉 = 1 for the generators ofei of Zr and〈x, nC〉 = 0 ∀ x ∈
MR. The dual Gorenstein coneC∗ is given by the dual partitionΠ∗(∇) = {∇1, . . . ,∇r}.
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that correspond to points in∆∗ different from the origin. There ared linear relations among
these divisors. The first sum corresponds to the subtractionof interior points of facets. The
corresponding divisors of the ambient space do not intersect a generic Calabi–Yau hypersurface.
Lastly, the bilinear terms in the second sum can be understood as multiplicities of toric divisors
so that their presence indicates that only a subspace of the cohomology (i.e. the Kähler moduli
space) can be analyzed with toric methods.

Unfortunately, the general formula (4.11) does not lend itself to a similar interpretation in
any known way.2 As for hypersurfaces, interior points of facets of∆∗ never contribute divisors
to a toric Calabi–Yau, but explicit computations of intersection rings show that for complete
intersections it may happen that even for verticesρi the corresponding divisorDi does not
intersect[V ] =

⋂r
l=1D0,l, where

D0,l =
∑

i∈El

Di (4.13)

corresponds to thelth equation of the Calabi–Yau varietyV . A simple example is the blowup
by a non–intersecting divisor of the degree (3,4) CICY inP5

111112 with Hodge numbers (1,79)
that is discussed in [34]. It is very important to find a more explicit formula for the Picard
number of a complete intersection that allows for an interpretation in terms of the multiplicities
of divisorsDi after restriction to the Calabi–Yau. There is a good chance that such a formula
exists: While intersection numbers depend on the triangulation of the fan we observed in many
examples that these multiplicities are independent of the triangulation and thus should depend
only on the combinatorics of the data of the polytope that enter (4.11).

4.2 Resolution of singularities

It is known that the points on the polyhedron∆∗ are in general not sufficient to give a smooth
ambient space [54, 55]. In addition, one may have to take intoaccount certain points in degree
greater than one, i.e. points in(k∆∗\(k−1)∆∗)∩N (k > 1), in order to resolve all singularities.
In this section, we give a general discussion of these points, in particular in the context of
constructing smooth complete intersection CY spaces.

Recall that a toric ambient space is smooth if its fan is simplicial and unimodular, i.e. if
all its cones are simplicial and unimodular. Suppose we haveadded all the lattice points in the
polyhedron∆∗ and determined one of the possible star triangulations of this set of points.

A star triangulation is a triangulationT for which all simplices contain the origin of∆∗. In
other words, each simplexσ ∈ T determines a pointed coneCσ, i.e. a cone over a facet of∆∗

whose apex is the origin. If there is a simplex, sayσ, with Vol (σ) > 1, then the corresponding
coordinate patchUσ = SpecC[σ∨ ∩M ] of the toric variety will be singular.

2There are, however, more suggestive formulas forh11 in special cases [31].
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Idea of adding one extra points• at
layer two in order to triangulate the
simplex σ̄ ⊂ N ′

R
with Vol (σ̄) =

2Vol (σ) > 2 (this is only necessary
if d > 3).

The general procedure to resolve this singular-
ity is to subdivideσ by adding lattice points on the
polyhedron. But since we already have added all
these points, the next best thing one can do is to add
points at distance two, i.e. points inCσ ∩2∆∗∩N .
We then replace the simplexσ by a double pyra-
mid σ̄ over the corresponding facet of∆∗ whose
apices are the origin and the extra point, and with
Vol (σ̄) = 2 Vol (σ). We then have to find a tri-
angulation ofσ̄ such that all simplices have unit
volume. If such a point were to lie in the interior of
Cσ, triangulatinḡσ would divide it intod simplices
of integral volume.

This is not always possible, and if it is not, the
corresponding point will lie in a face of2∆∗ whose
codimension is at least one. In this case, there must
be at least one other singular simplex, sayσ′, adja-
cent toσ, such that there is aτ = σ ∩ σ′ 6= ∅. The
existence ofσ′ is independent of the star triangula-
tion of ∆∗. We can get an upper bound on the codi-
mension ofτ as follows: Any two–dimensional
simplex without additional points has volume one,
therefore three–dimensional simplices in a star triangulation of ∆∗ have the same property, due
to the Gorenstein condition. Hence codimτ < d− 3.

Before we can analyze this situation in more detail, we have to find these singular cones.
At this point it is helpful to recall the notion of a circuit (3.1.15), which gives us an easy way
to find simplices of the triangulation of∆∗ whose volume is larger than one, and have to be
subdivided: they correspond to simplices with|cm| > 1.

We will discuss the cased = 5 in more detail since it is most relevant to the examples in the
later sections. IfVol (σ) < 5, then we cannot dividēσ into d = 5 integral parts. Therefore we
already know that the extra point will lie precisely in codimension one, and that there will be
another singular simplex. Let{ρ∗1, . . . , ρ

∗
4} be the set of vertices generating the four dimensional

simplexτ . Then the extra pointρ∗r lying in layerk must be of the form:

p =
4∑

1

aiρ
∗
i ,

4∑

1

ai = k, ai > 0 (i = 1, . . . , 4). (4.14)

If k = 2, i.e. the extrapoint is in the interiour of2τ , we can discuss the following situations:

Casek = 2 and Vol (σ)) = 2:

We can use the extra pointρ∗1 = 1
2

∑4
i=1 ρ

∗
i .
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Casek = 2 and Vol (σ)) = 3:

In this situation we have to add two points at layer two. This can be seen as follows: The
generators ofτ are: 



ρ∗1 ρ∗2 ρ∗3 ρ∗4
1 1 1 1
1 0 1 0
0 1 1 0
0 0 3 0



.

That this choice is unique (up to a basis transformation) follows from the Gorenstein condition
(the entries of the first line are all equal to one), and the fact that in three dimensions there is
only one simplex without any extra points and volume three. Condition (4.14) withr = 2 gives
pricisely two interiour points at layer two:

ρ∗r,q =
1

3
(q(ρ∗1 + ρ∗2) + (3 − q)(ρ∗3 + ρ∗4)) q = 1, 2.

Now we have to triangulate(τ̄ , A), with A = {ρ∗1, . . . , ρ
∗
4, ρ

∗
r,1, ρ

∗
r,1, 0}. We can choose the

following basis of affine relations:

L =

(
1 1 1 1 −1 −1 −2
1 1 −1 −1 −3 3 0

)

.

The columns{b1, . . . , b7} of this matrix are the generators of the secondary fan. It hasfive
cones of maximal dimensions, corresponding to the five coherent triangulations, and five rays
correspondig to the circuits. There is one unique star triangulation related to the cone〈b1, b3〉.
According to proposition (3.1.14) we find eight simplices inthis triangulation dual to the cham-
bers:

〈b1, b3〉, 〈b1, b4〉, 〈b2, b3〉, 〈b2, b4〉,
〈b1, b5〉, 〈b2, b5〉, 〈b3, b6〉, 〈b4, b6〉.

Since all coefficients in the circuits relating two of these simplices are plus or minus one
we see that they all have the same volume. Thusτ̄ has volume eight and is devided into eight
simplices, each having volume one.

Casek = 2 and Vol (σ)) > 3:

The cases where the volumeV is greater than three can be treated in a similar way. Generically,
these three dimensional simplices are of the form:

(
1 0 1 0
0 1 1 0
0 0 V 0

)

.

However, there are dimensions where other joices are possible. For example in dimension
five we have in addition:
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(
1 0 1 0
0 1 2 0
0 0 5 0

)

.

If V = 7 in turns out that there are even two non–standard simplices.If V is greater than
five the extra point can also lie in the interior ofσ and we have to study triangulations of four
dimensional simplices. A more detailed discussion ofV ∈ 4, 5 can be found in [35].

It is clear that all the points in the polyhedron∆∗ must be affine linear combinations of the
vertices belonging to one setEr. This follows immediatly from the properties of the integral
piecewise linear functions used in the definition of the nef–partition given in section 4. Points
in the Gorenstein cone belonging to layerr > 1 are in generalnot a sum ofr lattice points of
layer two. However, since theDr are lattice points, the values of the piecewise linear functions
used in the definition (4.1.1) of a nef–partition are integral. Therefore, (4.13) becomes

D0,l =
∑

ρ∗i ∈El

Di +
∑

q

cr,q,lDr,q, (4.15)

where the second sum is over the extra points, and the coefficients are integers and satisfy∑r
l=1 cr,q,l = k. For example, in the cased = 5 andr = 2, i.e. CY threefolds, andVol (σ) = 2

only an even number of theρ∗i can belong to oneEl, and therefore(cr,1, cr,2) is either(2, 0),
(1, 1), or (0, 2) (we dropped the indexq = 1).

One last point concerns the toric quotients of section 4.3. If the variety is a quotient, the
volumina of all the simplices will be multiples of the indexN ′ : N0. In this case it turns out
that we can work on the covering space and need only to resolvethe singularities there.

4.3 Free quotients

We now come to the discussion of toric CY spaces with non–trivial fundamental groups. We
mainly restrict our attention to the situation where they arise from free quotients coming from
group actions that correspond to lattice quotients. We callsuch quotientstoric. LetN ′ be the
sublattice ofN that is generated by the lattice vectors inΣ∗(1), and letΣ∗′ be the fan obtained
from Σ∗ by relating everything to the latticeN ′. ThenXΣ∗ = XΣ∗′/G is a quotient ofXΣ∗′ by
a finite abelian groupG isomorphic toN/N ′ that acts by multiplication with phasesωαi on the
homogeneous coordinateszi. Hereω is a|G|th root of unity. We will denote such group actions
by (α1, . . . , αn)/|G|, where

∑n
i=1 αi = 0 mod |G|.

To see how this comes about we note that the ring of regular functions on an affine coordi-
nate patchUσ of XΣ∗ is spanned by the monomials

∏
z<m,ρi>
i , wherem ∈ σ∨ ∩M is a vector

in the dual latticeM = Hom(N,Z). If we change from the latticeN ′ to the finer latticeN then
we have to exclude all monomials corresponding to vectorsm ∈ M ′ that do not belong to the
sublatticeM ⊂ M ′. Thus there are no more functions available to distinguish points inXΣ∗′

that live on orbits ofG (in turn, this can be used to defineG). The quotientXΣ∗ = XΣ∗′/G
is never free for a toric variety [25]. If, however, a (Calabi–Yau) hypersurface or complete
intersection does not intersect the set of fixed points then we get a manifold with nontrivial
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fundamental groupπ1 isomorphic toG. This is the case for CY 3-folds if the refinement of the
lattice does not lead to additional lattice points of∆∗. For a given pair of reflexive polytopes,
the dual of the latticeM ′ that is spanned by the vertices of∆ is the finest latticeN ′ with respect
to which the polytope is reflexive. If the latticeN0 that is spanned by the vertices of∆∗ is a
proper sublattice of the latticeN ′ then any subgroup ofN ′/N0 corresponds to a different choice
of theN lattice and hence to a different toric CY hypersurface:

〈{ρ∗i }〉 N0
� � //

��

N
� � //

��

N ′

Hom( ,C∗)

��
M0

oo ? _M oo ? _M ′ 〈{ρi}〉.

There is thus only a finite number of lattices that have to be checked to find all toric free
quotients.

Some well–known examples are the freeZ5 quotient of the quintic and the freeZ3 quotient
of the CY hypersurface inP2 × P2. For both cases cyclic permutation of the coordinates of the
projective spaces defines another free group action of the same order that commutes with the
toric quotient, leading to Euler numbers 8 and 18, respectively. These free “double quotients”
are, however, not toric in the sense that the resulting manifold is not a CICY in a toric variety.
Analyzing the complete list of 473’800’776 reflexive polytopes for CY hypersurfaces [56–58]
one finds 14 more examples of toric free quotients [33]: The elliptically fiberedZ3 quotient of
the degree9 surface inP4

11133, whose group action on the homogeneous coordinates is given
by the phases(1, 2, 1, 2, 0)/3, and 13 elliptic K3 fibrations where the lattice quotient hasindex
2. Among the latter there is theZ2 quotient of(P1)4 with phases(0, 1

2
) on each factor which

admits an additionalZ2 freely acting on the CY hypersurface by simultaneous exchange of the
coordinates of allP1 factors. Models of a similar type are currently studied because of their
promising phenomenlogical properties [59,60].

The condition that∆∗ ∩ N and ∆∗ ∩ N ′ coincide is sufficient for a free quotient of a
CICY with dimension up to 3 because the singularities of a maximal crepant resolution are at
codimension 4 and can be avoided by a generic choice of the defining equations. It is, however,
not necessary: Divisors corresponding to interior points of facets of∆∗ do not intersect the CY
and hence do not kill the fundamental group if they are generated by a refinement of theN
lattice.

An analysis of the complete lists of reflexive polytopes withup to 4 dimensions shows
that the only case where the weaker condition is relevant forhypersurfaces is that of the torus.
In that case a freeZ3 quotient inP2, and a freeZ2 in P2

112 and inP1 × P1 can be realized
torically in the obvious way. Taking a product with a (toric)K3 this can be used to construct
CICYs at codimension 2 with first Betti numberb1 = 2. The resulting Hodge numbers are
h11 = 13 for theZ2 quotients andh11 = 9 in case ofZ3; the simplest examples areP2 × P3

1122

with group action(0, 1, 2; 0, 1, 0, 2)/3 for Z3, andP2
112 × P3 with phases(0, 1, 1; 0, 1, 0, 1)/2

or P1 × P1 × P3 with phases(0, 1; 0, 1; 0, 1, 0, 1)/2 for Z2. These Hodge numbers have also
been obtained for Landau–Ginzburg orbifold models [61], where the valuesh11 = 3, 5, 9, 13
were found forh01 = 1 [58, 61]. One might expect that the models with3 and5 would require
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a larger order of the free group action. It was shown, however, in [61] that the 1–forms in
Landau–Ginzburg models can only arise if the model factors intoT 2 ×K3. Moreover, the twist
that reduces the Picard number must act with unit determinant on theT 2 and hence must agree
with the freeZ3 on the elliptic curve inP2 or with the freeZ2 on P2

112 that we already know
from the other examples. Only the K3s can be realized in different ways. Indeed, analyzing the
lists of [61] we found several realizations of these Hodge numbers with K3s that correspond the
generalized Calabi–Yau varieties in the sense of [30,38] like the cubic inP5, where aZ3–twist
with phases(1, 1, 1, 0, 0, 0)/3 and a free action on the torus leads toh11 = h12 = 3, and the
degree 12 hypersurface inP5

334446, where aZ2 with phases(0, 0, 0, 0, 1, 1)/2 and a free action
on the torus inP112 leads toh11 = h12 = 5. For all of these models a mirror construction is
available both in the CFT framework [62, 63] and, more geometrically, in terms of reflexive
Gorenstein cones [30].

There are many more examples of toric free quotients for CICYs with codimensionr > 1,
some of which will play a role later on. In that case a group mayact freely under even weaker
conditions because even divisors that correspond to vertices may not intersect the CY. But with
the present state of the art this requires a case by case analysis of the intersection ring. For
Calabi–Yau 4–folds, on the other hand, the above criterion for a free quotient is no longer
sufficient because the codimensions of the singularities inthe ambient space may be too small
to avoid them by an appropriate choice of the hypersurface equations. There are many examples
where this happens.3

4.4 Fibrations

We will now discuss some properties of fibrations. Again, we restrict ourselves to the situation
where the combinatorial data of the polytopes contain the relevant information. For (non–toric)
K3 surfaces and Calabi–Yau 3–folds there exists a criterionby Oguiso for the existence of
elliptic and K3 fibrations in terms of intersection numbers [64]. We will state it in Section 4.8.1.
Like the latter, fibration properties thus depend on the triangulation, or in other words, on the
choice of the phase in the extended Kähler moduli space.

For toric Calabi–Yau spaces there is, however, a more directway to search for fibrations that
manifest themselves in the geometry of the polytope and to single out appropriate triangulations
[57, 65–67]. These fibrations descend from toric morphisms of the ambient space [23, 68]: Let
Σ andΣb be fans inN andNb, respectively, and letφ : N → Nb be a lattice homomorphism
that induces a map of fansφ : Σ → Σb such that for each coneσ ∈ Σ there is a coneσb ∈ Σb

3Free quotients can be constructed easily with PALP [33]. To find all candidates among quotients of the sextic
4–fold one can use the following commands (zbin.aux is an auxiliary file storing polytopes on sublattices)
$ cws.x -w5 6 6 -r | class.x -f -sv -po zbin.aux
$ class.x -b -pi zbin.aux | class.x -sp -f
and obtains the N–lattice polytopes in a basis where the lattice quotient is diagonal.
$ class.x -b -pi zbin.aux | class.x -sp -f|cws.x -N -f | poly.x -fg
displays weight systems and Hodge data. This yields 6 candidates for freeZ3 quotients. They are, however, all
singular, as the Euler numbers are bigger than 1/3 of those ofthe respective covering spaces.
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that contains the image ofσ 4. Then there is aT–equivariant morphism̃φ : VΣ → VΣb
and the

latticeNf for the fibers is the kernel ofφ in N .

0 // Nf
i // N

φ // Nb
// 0

Hom( ,C∗)

��
0 Mf

oo M
πoo Mb

oo 0oo

For our construction of a fibered Calabi–Yau variety we require the existence of a reflexive
section∆∗

f ⊂ ∆∗ of the polytope∆∗ ⊂ NR. The toric morphismφ is then given by the
projection along the linear space spanned by∆∗

f andNb is defined as the image ofN in the
quotient spaceNR/〈∆

∗
f 〉R. In order to guarantee the existence of the projection we choose a

triangulation of∆∗
f and then extend it to a triangulation of∆∗. For each such choice we can

interpret the homogeneous coordinates that correspond to rays in∆∗
f as coordinates of the fiber

and the others as parameters of the equations and hence as moduli of the fiber space. Reflexivity
of the fiber polytope∆∗

f ensures that the fiber also is a CICY because a nef–partition of ∆∗

automatically induces a nef–partition of∆∗
f . This follows immediately from the definition by

restriction of the convex piecewise linear functions defining the partition to(Nf )R
.

For hypersurfaces the geometry of the resulting fibration has been worked out in detail
in [67]. The codimensionrf of the fiber generically coincides with the codimensionr of the
fibered space also for complete intersections. Forr > 1 it may happen, however, thatΣ1

f does
not intersect one (or more) of theEl’s, in which case the codimension decreases. An example
of that type is the model

P

(
2 2 2 4 1 1 0
0 0 0 4 1 1 2

)[
8
8

4
0

]
/ Z2 : 1 1 0 1 1 0 0 (4.16)

with h11 = 3 andh12 = 43, which is a freeZ2 quotient of a blowup ofP5
222411 with the

position of the additional vertexρ∗7 = −1
2
(4ρ∗4 + ρ∗5 + ρ∗6) given by the second linear relation

(the bottom line in the parenthesis). (This notation will beexplained in more detail in the
next section.) This polytope has one nef–partition withE1 = {ρ∗3, ρ

∗
4, ρ

∗
5, ρ

∗
6, ρ

∗
7} andE2 =

{ρ∗1, ρ
∗
2}. The corresponding bidegrees are seperated by a vertical line in the bracket (they

are given by the sums of the gradings of the homogeneous coordinates that correspond to the
vertices that belong toEl). The codimension two fiber polytope∆∗

f that is spanned byρ∗4, . . . , ρ
∗
7

has all of its vertices inE1 so that we obtain a K3 fibration with the generic fiber being a
degree 8 hypersurface inP3

4112 instead of an elliptic codimension two fiber that would naively
be expected.

In our searches for fiber spaces with certain properties we mostly restricted attention to the
generic case wherer = rf . We also analyzed the intersection numbers of many spaces and
found no example where a fibration has no toric realization, provided that the possible change
of the codimension is taken into account. There are, however, cases where the fibration does

4For example, the projectionZ2 → Z sending(x, y) 7→ x for the Hirzebruch surfaceFa (example 3.1.4)
fulfills this condition if and only ifa = 0.
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not lift to a toric morphism of the ambient space. An example is the polytope (4.40) which will
be discussed in section 4.8.2.

4.5 The (2,30) example

In this section we will discuss a set of examples of CICYs in detail. We will exhibit their
non–trivial fundamental group, their fibrations, and theirpartitions.

In our analysis of the geometry and of applications of complete intersections it was natural
to start with models with a small numberh11 of Kähler moduli. In this realm it is quite likely
that our lists of toric CICYs is fairly complete, at least forcodimension two. Among the one–
parameter models we found only two new Hodge numbers, namelyh12 = 25 for the freeZ3

quotient of the degree (3,3) CICY inP5 andh12 = 37 for the freeZ2 quotient of the degree
(4,4) CICY inP5

111122. The Picard–Fuchs equations of the respective universal covers were both
analysed in [69].

We therefore turn to the list of 2–parameter examples, the first of which have Hodge num-
bers (2,30). They will serve as our main examples in this and the next section.5 In the appendix
we compile a brief overview of toric CICYs with smallh11.

There are three different polytopes which allow for codimension two complete intersections
with Hodge numbers (2,30). These have eight or nine verticesand no additional boundary
points. In a convenient basis the coordinates of the vertices of the first of these polytopes are
given by the column vectors

∆∗
(A) {ρ

∗
i } =





1 0 0 0 −2 1 −1 −1
0 1 0 0 −1 1 −1 0
0 0 1 0 −1 1 −1 0
0 0 0 1 −1 0 0 0
0 0 0 0 0 2 −2 0




.

(4.17)

If the number of vertices is close to the simplex case it is most economical to describe a poly-
tope in a coordinate independent way by the linear relationsamong the vertices. This data is
sufficient if the latticeN is generated by the vertices. Otherwise it has to be supplemented by
an abelian group action that defines the lattice. The toric variety corresponding to the polytope
∆∗

(A), generalizing the notationPnw or Pn(w) in the simplex case, is thus

P∆∗
(A)

= P

(
2 1 1 1 1 0 0 0
0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 1

)
/ Z2 : 1 1 1 0 0 1 0 0. (4.18)

The lines in the parenthesis indicate the linear relations among the vertices. The first two tell us
that the toric variety corresponds to a product spaceP4

21111 × P1, while the third linear relation
ρ∗1 + ρ∗8 = 0 amounts to a blow–up ofP4

21111 by the last vertexρ∗8. Finally, the group action

5The first hypersurfaces example (2,29) is the freeZ3 quotient of the degree (3,3) hypersurface inP2 × P2.
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indicates that the latticeN is not generated by the vertices alone. It requires, as an additional
generator, the lattice point1

2
(ρ∗1 + ρ∗2 + ρ∗3 + ρ∗6), i.e. the linear combination of vertices that

corresponds to the phases of theZ2 action on the homogeneous coordinates.
The coordinates displayed in eq. (4.17), with the last line divisible by two for all lattice

points, shows that the CICY is a free quotient. The group action can be recovered by finding an
integer linear combinationρ∗ of the column vectors with coefficients in1

2
Z whose last coordi-

nate is odd (thus refining the lattice). The resulting generator for theZ2 action is unique only up
to linear combinations with the weight vectors modulo 2, which corresonds to a different choice
ρ∗ → ρ∗ + ∆ρ∗ with ∆ρ∗ = 1

2
(ρ∗2 + ρ∗3 + ρ∗4 + ρ∗5) = −ρ∗1,

1
2
(ρ∗6 + ρ∗7) = 0 or 1

2
(ρ∗1 + ρ∗8) = 0.

Next, we have to look at the possible nef–partitions for∆∗
(A). It turns out that, up to symme-

tries,6 there is a unique nef–partition, given byE1 = {ρ∗1, ρ
∗
2, ρ

∗
4, ρ

∗
8} andE2 = {ρ∗3, ρ

∗
5, ρ

∗
6, ρ

∗
7}

with the Hodge numbers (2,30). This leads to the partitioning 6 = 4 + 2, 2 = 2 + 0 and
2 = 2 + 0 of the total degrees of the complete intersectionV into multidegrees. We will
augment the previous notation by a bracket indicating thesemultidegrees and write

V(A) = P

(
2 1 1 1 1 0 0 0
0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 1

)[
4
2
2

2
0
0

]
/ Z2 : 1 1 1 0 0 1 0 0. (4.19)

In general these degrees do not specify the partition uniquely. We observed, however, in all ex-
amples that equal multidegrees of different partitions always lead to the same Hodge numbers.
The Z2 quotient now indicates that the latticeM is replaced by the sublattice corresponding
to monomials that are invariant under the given phase symmetry. Since this quotient does not
lead to additional lattice points in∆∗

(A) the corresponding group action is free on the CICY, i.e.
π1(V ) = Z2.

In the present example the ambient space is a product space with aP1 factor. The CICY is,
nevertheless, a nontrivial K3–fibration overP1 because the coefficients of the equations defining
the K3 fiberVf depend on the coordinates of the base. The K3 family containing the generic
fibers is obtained by dropping the second line and the columnscorresponding toρ∗6 andρ∗7,

Vf = P

(
2 1 1 1 1 0
1 0 0 0 0 1

)[
4
2

2
0

]

.

(4.20)

Note that theZ2 quotient does not change the fiber lattice because it also acts onP1, effectively
dividing the base by 2. Over the two fixed–points on the base weobtain, however, an Enriques
fiber. (SinceK3 only admits freeZ2 quotients and since the group action on the baseP1 always
has fixed points, a free quotient of aK3 fibration can only have order 2.) The induced nef–
partition is obtained by droppingρ∗6 andρ∗7 from E2. It does, of course, lead to the bi–degrees
of the divisors given in (4.20).

The lines in the parenthesis of our notation for toric varieties, as in (4.18), (4.19), or (4.20),
generate the cone of non–negative linear relations among the points inN . We will often call

6The symmetry group has order 16 and is generated by the transpositionsρ∗2 ↔ ρ∗3, ρ∗4 ↔ ρ∗5, ρ∗6 ↔ ρ∗7 and by
the exchange(ρ∗2, ρ

∗

3) ↔ (ρ∗4, ρ
∗

5).



4.5 The (2,30) example 57

themweight vectors. The definition of the polytope only requires the linear relations among the
vertices (and possibly the group action defining a sublattice). For the discussion of fibrations
and other geometrical data it is, however, often convenientto include the linear relations among
all lattice points of∆∗. When the partitioning of the total degreed =

∑
wi of a weight vector

by the nef–partition is specified as(−d1,−d2;w1, . . . , wN) with d = d1 + d2 we may also call
themcharge vectorsbecause this is the data that characterizes part of the gauged linear sigma
model realization of these geometries [37]. Note that for the definition of the polytope and for
the degree data of the nef–partition, it is sufficient to givethe charge vectors that correspond
to the linear relations among the vertices. A more redundantdescription may, nevertheless,
be useful to make fibrations or non–free lattice quotients visible. A complete definition of the
model, on the other hand, may require a resolution of singularities through triangulations and
the inclusion of additional points. In the weighted projective case the (single) weight vector
coincides with the generator of the Mori cone of the ambient space. In general, however, the
Mori cone will be larger than the cone that is spanned by the charge vectors.

The other realizations of the (2,30) model are

V(B) = P

(
2 1 1 1 1 0 0 0
2 2 1 0 1 1 1 0
1 0 0 0 0 0 0 1

)[
4
4
2

2
4
0

]
/ Z2 : 1 1 1 0 0 1 0 0 (4.21)

with nef–partitionsE1∪E2 = {ρ∗1, ρ
∗
3, ρ

∗
5, ρ

∗
8}∪{ρ

∗
2, ρ

∗
4, ρ

∗
6, ρ

∗
7}, {ρ∗1, ρ

∗
3, ρ

∗
4, ρ

∗
7, ρ

∗
8}∪{ρ

∗
2, ρ

∗
5, ρ

∗
6},

or {ρ∗1, ρ
∗
2, ρ

∗
4, ρ

∗
8} ∪ {ρ∗3, ρ

∗
5, ρ

∗
6, ρ

∗
7} and

V(C) = P




2 1 1 1 1 0 0 0 0
2 2 1 0 1 1 1 0 0
1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1







4
4
2
0

2
4
0
2


 / Z2 : 1 1 1 0 0 1 0 0 0 (4.22)

with partitionsE1∪E2 = {ρ∗1, ρ
∗
3, ρ

∗
4, ρ

∗
7, ρ

∗
8}∪{ρ

∗
2, ρ

∗
5, ρ

∗
6, ρ

∗
9} or{ρ∗1, ρ

∗
3, ρ

∗
5, ρ

∗
8}∪{ρ

∗
2, ρ

∗
4, ρ

∗
6, ρ

∗
7, ρ

∗
9}.

The polytope∆∗
(B) for V(B) has the same “K3 fiber” polytope as∆∗

(A), but the two points above
and below the fiber–hyperplane are shifted along the fiber as can be seen by the non–zero en-
tries (2, 2, 1, 0, 1) in the second line, below the weights of the fiber. The ambientspace looks,
at first sight, like a non–trivial fibration over theP1 with homogeneous coordinates(x6 : x7).
This is, however, not true because the lineρ∗6ρ

∗
7 now intersects the fiber hyperplane outside the

convex hull of the other lattice points. This line thus becomes an edge of any star triangulation
of ∆∗

(B) so that the points in the intersectionD6 ∩ D7, which have homogeneous coordinates
x6 = x7 = 0, have no image in the baseP1.

We will see in the next section thatV(A) andV(B) are nevertheless diffeomorphic and that
their Picard–Fuchs equations are related by a change of variables. In particular, alsoV(B) is a
K3 fibration. This is only possible ifD6 ∩ D7 does not intersect the CICY (as is indeed the
case).

The polytope∆∗
(C) is similar to∆∗

(B) except for an additional blowup of the fiber polytope
with an exceptional divisorD9 that, as we will see in section 4.8.2, does not intersect the CY
threefold. The additional point does, however, make the K3 fibration manifest, because∆∗

(C),f

is again reflexive.
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In the next section we will discuss in more detail how different partitions or different poly-
topes leading to CICYs with the same topological data may be related.

4.5.1 Construction the nef–partition out of the Newton polytopes

It is instructive to see how the nef–partition for∆∗
(A) can be obtained from the Newton polytopes

of the degree (4,0) and (2,2) polynomials in the double coverof the ambient space. In order to
arrive at the polytope (4.17) we observe that the ambient space of the double cover is closely
related to the product spaceP4

21111 × P1. We thus start with the Newton polytopê∆ of a degree
(6,2) equation in that space. It has 10 vertices corresponding to the monomials

x3
0y

2
j , x

6
i y

2
j with 1 ≤ i ≤ 4, 0 ≤ j ≤ 1,

wherexi andyj are the homogeneous coordinates inP4
21111 andP1, respectively. The degree

(4,0) and (2,2) polynomials correspond to the Newton polytopes

∆̂1 = 〈x2
0, x

4
i 〉, ∆̂2 = 〈x0y

2
j , x

2
i y

2
j 〉

so that∆̂ = ∆̂1 +∆̂2. TheZ2 quotient acting with signs(−−−++,−+) kills the two vertices
x3

0y
2
j and generates 9 additional ones:

x3
0y0y1, x

2
0x

2
i y

2
j with 1 ≤ i ≤ 4, 0 ≤ j ≤ 1. (4.23)

The resulting polyhedron is not reflexive, has 196 points, 17vertices and 9 facets, but can be
made reflexive by dropping the vertexx3

0y0y1. This yields a polyhedron∆(A) with 195 points
and 16 vertices that possesses a nef–partition with Hodge numbersh11 = 2 andh21 = 30 (up
to automorphisms there is only one additional nef–partition whose Hodge numbers areh11 = 4
andh21 = 44). The dual polyhedron∆∗

(A) has 9 points and (in an appropriate basis) the 8
vertices given in eq. (4.17). The linear relations are2ρ∗1 + ρ∗2 + ρ∗3 + ρ∗4 + ρ∗5 = 0 = ρ∗6 + ρ∗7 and
the facet equation corresponding to the last vertexρ∗8 = −ρ∗1 is the one that eliminatesx3

0y0y1

and makes∆(A) reflexive.
The nef–partition ofV(A) is now constructed from the Newton polyhedra∆̂i as follows:

In order to get∆(A) = ∆1 + ∆2 we drop the pointx0y0y1 (which becomes a vertex on the
sublattice) from∆̂2 and obtain

∆1 = 〈x2
0, x

4
i 〉, ∆2 = 〈x2

i y
2
j 〉.

With v0 = x2
0, vi = x4

i andwij = x2
i y

2
j we thus find∆(A) = ∆1 + ∆2 = 〈v0wij, viwij〉 for the

decomposition of the 8+8=16 vertices of∆(A). Shifting∆1 (∆2) by subtracting the exponent
vectors ofx0x1x3x4 (x2y0y1) and dropping the redundant exponents ofx4 andy1 we obtain the
vertex–matrices

∆σ
1 =





1 −1 −1 −1 −1
−1 −1 −1 3 −1

0 4 0 0 0
−1 −1 3 −1 −1

0 0 0 0 0




,

∆σ
2 =





0 0 0 0 0 0 0 0
2 0 0 2 0 0 0 0

−1 1 −1 −1 −1 −1 −1 1
0 0 0 0 2 0 2 0
1 1 1 −1 1 −1 −1 −1




.
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with σT1 = (1, 1, 0, 1, 0), σT2 = (0, 0, 1, 0, 1) and∆σ
l ∼ ∆l − σl. The shifted Newton polytopes

∆σ
i can be separated by a hyperplane,〈ρ,Dσ

1 〉 ≤ 0 ≤ 〈ρ,Dσ
2 〉, with ρ = (2, 1, 0, 1, 0). The

points ofDσ
1 and those ofDσ

2 on that hyperplane have no common non–zero coordinates, which
implies that∆σ

1∩∆σ
2 = {0} and thus establishes the nef–property. (Up to symmetries of∆̂ there

is only one other choice of integral shift vectorsσi with ∆σ
1∩∆σ

2 = {0} andσ1+σ2 = (1, . . . , 1),
which leads to the same nef–partition). Converting to the basis

B =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 1 1 0 2




of theZ2 quotient of the original lattice we find the nef–partition∆
(A)
l = B−1∆σ

l ,

E∗
1 =





1 −1 −1 −1 −1
−1 −1 −1 3 −1

0 4 0 0 0
−1 −1 3 −1 −1

0 −1 1 −1 1




,

E∗
2 =





0 0 0 0 0 0 0 0
2 0 0 2 0 0 0 0

−1 1 −1 −1 −1 −1 −1 1
0 0 0 0 2 0 2 0
0 0 1 −1 1 0 0 −1




,

which is dual to the partition

E1 =





1 0 0 −1
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0




,

E2 =





0 −2 1 −1
0 −1 1 −1
1 −1 1 −1
0 −1 0 0
0 0 2 −2




,

(4.24)

of the convex hull∆∗
(A) = 〈∇1,∇2〉 = 〈E1, E2〉.

4.6 The geometry of toric CICYs

It is well–known that the same Hodge numbers can come from different polyhedra and even at
different codimensions, so it is important to identify constructions that actually give equivalent
CYs. First note that any hypersurface or complete intersection can be reconstructed at higher
codimension: Just multiply with an interval[−1, 1] and take the corresponding trivial nef–
partition. 7 A less trivial redundancy is due to partitions where one of the ∆i consists of a
single vertex, sayρ∗1: In that case the nef condition implies that the projection of ∆∗ along
ρ∗1 is reflexive. Moreover, the CY is given by the intersection ofthe toric divisorD1 with the
remaining divisor(s) defined by the partition of the vertices. SinceD1 can only intersect the
toric divisors that correspond to points bounding the reflexive projection alongV1 we conclude
that we can construct the same CY variety in the ambient spacethat is given by that projection of
∆∗. In this section we discuss for some examples how CICYs coming from different polytopes
and/or from different nef–partitions can be related.

7In the formulas for the Hodge numbers [32] this leads to a doubling because a quadratic equation inP1 is
solved by two points.
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4.7 Equivalence of different nef–partitions

As our example for different nef–partitions we have chosen one of the nine polytopes in our list
of models with Hodge numbers (2,44),

P

(
4 2 2 2 1 1 0
1 0 0 0 0 0 1

)[
8
2

4
0

]
/ Z2 : 1 1 1 0 1 0, (4.25)

and its double cover, which we will relate to two different hypersurface polytopes. The polytope
∆ of the quotient and its dual∆∗ have(P V , P

∗
V ∗) = (23210, 97) pointsP and verticesV .

The polytope for the double cover has(46110, 97), so that theZ2 quotient is free (the number
P ∗ of points in∆∗ does not change). This model is again a K3 fibration, but this time the
fiber polytope has an additional vertex, namelyρ∗8 = 1

2
(ρ∗5 + ρ∗6), which is a lattice point on

an edge of∆∗. Anticipating the structure of the nef–partitions, the corresponding relation
2ρ∗1 + ρ∗2 + ρ∗3 + ρ∗4 + ρ∗8 = 0 shows that the fiber is againVf in (4.20). Up to permutation
symmetries this polyhedron only admits two nef–partitions, {ρ∗1, ρ

∗
4, ρ

∗
5, ρ

∗
6, ρ

∗
7} ∪ {ρ∗2, ρ

∗
4} and

{ρ∗1, ρ
∗
3, ρ

∗
4, ρ

∗
7} ∪ {ρ∗2, ρ

∗
5, ρ

∗
6}. Both lead to the same partitioning of the degrees,12 = 8 + 4

and2 = 2 + 0, as indicated above. Note that non–vertices always belong to one of the∇l’s of
a partition.8 In our example this implies thatρ∗5 andρ∗6 always have to belong to the same∇l.
More cases with Hodge numbers (2,44) will be discussed in Section 4.8.3.

Since the reflexivity constraint on∇1 + ∇2 is weaker on a sublattice all of our partitions
must lift to the double cover, but additional ones can show up. Indeed, up to automorphisms, we
find a total of nine nef–partitions with four different degrees and three different sets of Hodge
numbers:

P

(
4 2 2 2 1 1 0
1 0 0 0 0 0 1

)[
8
2

4
0

]
2,86

−168

{ρ∗1, ρ
∗

2, ρ
∗

5, ρ
∗

6, ρ
∗

7} ∪ {ρ∗3, ρ
∗

4}
{ρ∗1, ρ

∗

2, ρ
∗

3, ρ
∗

7} ∪ {ρ∗4, ρ
∗

5, ρ
∗

6},
(4.26)

P

(
4 2 2 2 1 1 0
1 0 0 0 0 0 1

)[
8
1

4
1

]
2,86

−168

{ρ∗2, ρ
∗

3, ρ
∗

4, ρ
∗

5, ρ
∗

6, ρ
∗

7} ∪ {ρ∗1}
{ρ∗1, ρ

∗

2, ρ
∗

3} ∪ {ρ∗4, ρ
∗

5, ρ
∗

6, ρ
∗

7}
{ρ∗1, ρ

∗

2, ρ
∗

5, ρ
∗

6} ∪ {ρ∗3, ρ
∗

4, ρ
∗

7},

(4.27)

P

(
4 2 2 2 1 1 0
1 0 0 0 0 0 1

)[
6
1

6
1

]
3,69

−132

{ρ∗1, ρ
∗

5, ρ
∗

6} ∪ {ρ∗2, ρ
∗

3, ρ
∗

4, ρ
∗

7}
{ρ∗1, ρ

∗

2} ∪ {ρ∗3, ρ
∗

4, , ρ
∗

5, ρ
∗

6ρ
∗

7},
(4.28)

P

(
4 2 2 2 1 1 0
1 0 0 0 0 0 1

)[
10
2

2
0

]
3,99

−192

{ρ∗1, ρ
∗

3, ρ
∗

4, ρ
∗

5, ρ
∗

6, ρ
∗

7} ∪ {ρ∗2}
{ρ∗1, ρ

∗

2, ρ
∗

3, ρ
∗

4, ρ
∗

7} ∪ {ρ∗5, ρ
∗

6}.
(4.29)

For the double cover we thus find two trivial partitions, for which we can construct the cor-
responding hypersurfaces: It is quite easy to work this out in terms of the weight data: A
projection alongρ∗1, as required by the third partition in (4.27), just amounts to dropping that
vertex from the linear relations. Sinceρ∗7 = −ρ∗1 the last vertex is projected onto the origin and
we find the weighted projective spaceP4

22211[8], whose degree 8 hypersurface indeed has Hodge

8 The piecewise linear functionsψl defining the nef–partition are integral on lattice points with values0 or 1
on the vertices. The facets of∆∗ thus cannot contain lattice points with other values.
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data (2,86). For the trivial partition in (4.29) we project alongρ∗2 and find the CY hypersurface

P

(
4 2 2 1 1 0
1 0 0 0 0 1

)[
10
2

]
, again with the expected Hodge numbers (3,99).

We also observe that the partitioning indeed fixes the Hodge numbers, i.e. equal charge
vectors always lead to the same spectrum. This could be expected because for weighted projec-
tive intersections the degrees contain all information. How this result comes about in the toric
context will be seen explicitly in the examples below. The converse is, however, not true: The
first two partitions with Euler numberχ = −168 are the ones that survive theZ2 quotient, but
there is now a different realization of the same Hodge numbers. The difference in the charge
vectors is, however, only due to the contribution ofρ∗7 and it turns out that the corresponding
divisorD7 does not intersect the CICY. All spaces with equal Hodge numbers turn out to be
topologically equivalent so that there do not seem to be any phase boundaries associated with a
transition among the respective partitions.

4.8 Equivalence of different polyhedra: the (2,30) model

We now take the main example introduced in section 4.5 and show that the three different
modelsV(A), V(B), andV(C) are topologically equivalent.

4.8.1 The first realisation of the (2,30) model

We first discuss the modelV(A) in detail. Recall that the intersection ring of the complete
intersection CY is obtained as the quotient of the intersection ring of the ambient toric variety
by the ideal generated by the linear relations among the points, and by the Stanley–Reisner
ideal. The latter is obtained from the primitive collections which are collections of vertices
which do not form a cone but any proper subset forms a cone [46]. In this example these
primitive collections can easily be seen in the geometry of the polyhedron∆∗

(A). As discussed
in section 4.5, the section in the latticeN that corresponds to the K3 fiber is a blowup ofP4

21111

by the vertexρ∗8 = −ρ∗1, hence it is a double pyramid over the tetrahedron〈ρ∗2, ρ
∗
3, ρ

∗
4, ρ

∗
5〉.

This implies the relationsD1 · D8 = 0 = D2 · D3 · D4 · D5 because the respective vertices
never can belong to the same cone of any (triangulated) fan over the polyhedron. The complete
polyhedron is a double pyramid over that 4–dimensional double pyramid. Asρ∗6 + ρ∗7 = 0 this
leads to the additional relationD6 · D7 = 0, which completes the generators of the Stanley–
Reisner ideal. The polyhedron is simplicial and has the 16 facets1̂82̂3456̂7, where a hat above a
sequence of numbers indicates to take all simplices that arise by dropping one of the respective
vertices. The linear equivalences (up to principal divisors) follow from the lines of (4.17) and
we find altogether

D1 ∼ 2D5 +D8, D2 ∼ D3 ∼ D4 ∼ D5, D6 ∼D7, (4.30)

D1 ·D8 = 0, D2 ·D3 ·D4 ·D5 = 0, D6 ·D7 = 0. (4.31)
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According to the nef–partition (4.24) the complete intersection V(A) is given byD0,1 · D0,2

(cf. (4.13)) with
D0,1 = D1 +D2 +D4 +D8 ∼ 2D1,
D0,2 = D3 +D5 +D6 +D7 ∼ 2D2 + 2D6,

(4.32)

so thatD8 does not intersect the Calabi–Yau and the Kähler moduli correspond to the volumes
of, for example,D3 andD6.

The unique star triangulation of the simplicial polytope (4.17) fixes the toric intersection
numbers and therefore the Mori cone of the ambient spaceP∆∗

(A)
. We determine this Mori cone

as
l̂(1) = (0, 0, 0, 0, 0, 1, 1, 0),
˜̂
l(2) = (0, 1, 1, 1, 1, 0, 0,−2),

l̂(3) = (1, 0, 0, 0, 0, 0, 0, 1) .

(4.33)

As mentioned above the divisorD8 of P∆∗
(A)

does not intersect the complete intersection. All
other divisors descend to divisors on the hypersurface. Theentries in the Mori vectors are the
intersections of the curvesc(a), which have positive volume inside the Kähler cone, with the
corresponding divisor. The Mori vectors of the complete intersection must therefore have a
zero in the eighth entry. Besidesl̂(1) there is the unique minimal length combinationl(2) =
˜̂
l(2) + 2l̂(3) = (2, 1, 1, 1, 1, 0, 0, 0) with this property. We drop the eighth entry and add the
negative value of the intersection of thec(a) withD0,1 andD0,2 as the first entries (these numbers
correspond to the negative degrees in the charge vectors). Thus we get the Mori vectors for the
complete intersectionV(A)

l(1) = (−4,−2; 2, 1, 1, 1, 1, 0, 0),
l(2) = ( 0,−2; 0, 0, 0, 0, 0, 1, 1) .

(4.34)

(in the present example they coincide with the charge vectors because, dropping the non–
intersecting vertex, the ambient space is a product of weighted projective spaces, but generically
the Mori vectors span a larger cone). This way of summarizingthe Mori generators becomes
particularly useful, when we discuss the Picard–Fuchs system.

It is convenient to summarize all the relevant information for V(A) in the following table:

c(1) c(2)

D0,1 1 0 0 0 0 0 0 −4 0
D0,2 0 1 0 0 0 0 0 −2 −2
D1 1 0 1 0 0 0 0 2 0 2H
D2 1 0 0 1 0 0 0 1 0 H
D3 0 1 0 0 1 0 0 1 0 H
D4 1 0 0 0 0 1 0 1 0 H
D5 0 1 −2 −1 −1 −1 0 1 0 H
D6 0 1 1 1 1 0 2 0 1 L
D7 1 0 −1 −1 −1 0 −2 0 1 L

(4.35)

On the left–hand side of the vertical line we have listed fromtop to bottom the pointsρ∗i of
the polyhedron∆∗, where the first two entries refer to the nef–partitionEl, l = 1, 2, and the
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next five entries are their coordinates inN = Z5. Together they form the coordinates of the
generators of the 7–dimensional Gorenstein coneΓ(∆∗) that was defined below (4.11). To each
pointρ∗i we have associated the corresponding divisorDi. The first two rows, i.e.D0,1 andD0,2

correspond to the interior point appearing once in either partition. The two columns labeled by
c(a) on the right–hand side of the vertical line denote the Mori generators. Its entries are the
intersection numbers of the restrictions of the divisorsDi to V with the curvesc(a). The data
only refer to the CY manifold, i.e. we dropped the non–intersecting divisors and the curves that
do not descend to the complete intersection.

Let us denote the independent divisors of the complete intersection byH andL. In our
example we can chooseH = D3D0,1D0,2 andL = D6D0,1D0,2, as is indicated on the right
in (4.35). The classical intersection numbers are defined as

κa,b,c =

∫

V

Ja ∧ Jb ∧ Jc = Da ∩Db ∩Dc, (4.36)

whereJa ∈ H2(V,Z) andDa ∈ H4(V,Z). Here,J1 andJ2 are the Kähler forms dual to
H andL, respectively. They can be easily evaluated from the intersections onP∆(A)

, e.g.
D1D2D3D4D6 = Vol (〈ρ∗1, ρ

∗
2, ρ

∗
3, ρ

∗
4, ρ

∗
6〉) = 2, and the relations in (4.30) and (4.31). The fact

that we are dealing with a freeZ2 quotient is accounted for by a division by 4. Therefore, the
intersection numbers are

κ1,1,1 = κ1,1,2 = 2,
κ1,2,2 = κ2,2,2 = 0 .

(4.37)

According to Oguiso [64], a CY threefold admits aK3–fibration if there exists an effective
divisorL such that

L · c ≥ 0 for all curvesc L2 ·D = 0 for all divisorsD. (4.38)

Therefore, we conclude from (4.37) the geometry of the CY spaceV(A) is a fibration withJ1

the Kähler class of the fiber andJ2 the Kähler class of the base. This is in agreement with the
purely combinatorial argument in (4.20). Normally, one expects in such cases the fiber to be
K3 and

∫
V
H2J2 = 24 [64, 70, 71]. That is because the integral ofJ2 over the baseP1 gives 1,

the rest of the integral extends over the fiber and yields
∫

K3 H2 = 24. Instead one has here

H2L =

∫

V

H2J2 = 12, H2H =

∫

V

H2J1 = 20 , (4.39)

which indicates that theZ2 quotient has divided the volume of theP1 by two. Indeed, we know
that the model is a freeZ2 quotient of an ordinary K3 fibration, which might be represented as
the complete intersection of degree(4, 0) and(2, 2) in P4

21111×P1 with Euler numberχ = −112
and the samel(a) vectors as in (4.34). Now recall our extensive discussion ofthe properties of
V(A) in section 4.5. With the homogeneous coordinatesxi andyj , respectively, the polynomials
f1 andf2 are

f1 = x2
0 + x4

1 + x4
2 + x4

3 + x2
4 + . . .

f2 = x2
0(y

2
0 + y0y1 + y2

2) + . . .
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For any choice(y0 : y1) in P1 the fiber is the complete intersection K3Vf . TheZ2 acts on
the coordinates by(x0, x1, x2, x3, x4; y0, y1) → (−x0, x1,−x2, x3,−x4; y0,−y1). Hence theP1

gets folded with fixpoints(1 : 0) and(0 : 1), which explains the division of
∫
V
H2Ja by2, while

theZ2-action leads to an Enriques fiber over the fixed points in the base. Note that, therefore,
only Z2 quotients can act freely on K3 fibered Calabi–Yau manifolds.

4.8.2 Other realisations of the (2,30) model

One difficulty with complete intersection realisations is ahigh redundancy in the description
of a given family of Calabi–Yau spaces. For example, we know from section 4.5 that there
are two more polyhedra with three and two nef–partitions respectively, which lead to complete
intersections with Hodge numbers(2, 30). In addition, these polyhedra admit two and five
different star triangulations respectively, which could potentially lead to different large volume
phases of the families.

To settle the question about equivalences we will follow thetopological classification of
real six manifolds by C.T.C. Wall [72]. Specialized to Calabi–Yau manifolds it states that two
manifoldsV andV ′ are of the same topological type if, beside the Hodge numbers, the triple
intersection numbers

∫
V
Ja ∧ Jb ∧ Jc and the integrals

∫
V
H2Ja are the same in a suitable basis

of Ja.
We find no counterexample to the statement that families witha large volume limit of the

same topological type have the same Gromov–Witten invariants, but the toric mirror may have
a different natural parametrisation of the complex structure variables, which leads to different
Picard–Fuchs equations and mirror maps.

We first consider the second realisation of the Hodge numbers(2,30),V(B). In this case the
dual polyhedron∆∗

(B) has vertices

∆∗
(B) {ρ

∗
i } =





1 0 0 0 −2 1 −1 −1
0 1 0 0 −1 1 −2 0
0 0 1 0 −1 1 −1 0
0 0 0 1 −1 0 1 0
0 0 0 0 0 2 −2 0





(4.40)

and admits the three nef–partitions given below eq. (4.21).In order to find the triangulations
we observe that the shift ofρ∗7, as compared to its position in∆∗

(A), moves the intersection point

of the lineρ∗6ρ
∗
7 with the fiber hyperplane through the facet[1345] of ∆∗

f till it reaches the linear

span of[3458] outside of that facet of the fiber polytope. This kills the 4 simplices[1̂83456̂7]

of ∆∗
(A) and replaces them by the 3 triangles[13̂4567] and by the 16th facet[345678]. The

vertices of the non–simplicial facet form a circuit,ρ∗3 + 2ρ∗4 + ρ∗5 = ρ∗6 + ρ∗7 + 2ρ∗8, for which
we introduce the short hand notation〈314251|617182〉. It indicates the labelsm of the involved
verticesρ∗m and, as subscripts, their coefficientscm in the linear relation (3.1.15). Therefore, it
can be triangulated in the two different ways:[3̂45678] or [3456̂78], so that we find two different
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triangulations with 18 simplices:

T1 = {[1̂823̂456̂7], [1̂83̂4567]},

T2 = {[1̂823̂456̂7], [13̂4567], [3456̂78]}.
(4.41)

Since we deal with a freeZ2 quotient, the volume of each simplex is divisible by two. Because
of the coefficient 2 ofρ∗4 andρ∗8 in the circuit the simplices that do not contain one of these
vertices, i.e. [35678] ∈ T1 and [34567] ∈ T2, have volume 4. We thus need to resolve the
singularities of the ambient space by adding points at higher degree, following the general
discussion given in Section 4.2. From that we expect anothersimplex of volume 4, sharing a
facet, which has to be the same for both triangulations. The only possibility is[13567], which
indeed has volume 4. The additional point in degree two, which resolves all singularities is
ρ∗r = 1

2
(ρ∗3 + ρ∗5 + ρ∗6 + ρ∗7). The corresponding triangulations are

T1 = {[1̂823̂456̂7], [1̂83̂5467], [1̂83̂567r]},

T2 = {[1̂823̂456̂7], [14673̂5], [34586̂7], [1̂43̂567r]}.
(4.42)

The linear relations are

D6 ∼ D7, D1 ∼ 2D5 +D8 +Dr,
D3 ∼ D5 ∼ D4 +D6 ∼ D2 −D6 −Dr.

(4.43)

For the first two nef–partitions in (4.21), the face〈3, 5, 6, 7〉 belongs to both sets of vertices,
therefore (4.15) becomes for the first nef–partition

D0,1 = D1 +D3 +D5 +D8 +Dr ∼ 2D1,
D0,2 = D2 +D4 +D6 +D7 +Dr ∼ 2D2.

(4.44)

The second nef–partition is analogous and yields the same result. For the third one, however,
this face lies entirely in the second set of vertices, so that

D0,1 = D1 +D2 +D4 +D8 ∼ 2D1,
D0,2 = D3 +D5 +D6 +D7 + 2Dr ∼ 2D2.

(4.45)

yields again the same result. Since the triangulations are in general independent of the nef–
partition, we can discuss them for a single nef–partition, say, the first one. The Stanley–Reisner
ideal, of course, always contains the generatorD1·D8 because antipodal points can never belong
to the same simplex. The divisorD8 thus never intersects the Calabi–Yau manifoldV(B), whose
first defining equation is a section ofO(D0,1) = O(2D1). Furthermore, sinceρ∗2 andρ∗r never
belong to the same simplex, the divisorDr coming from the blow–up of the ambient space
never intersectsV(B) because its second defining equation is a section ofO(D0,2) = O(2D2).
Otherwise it depends on the triangulation, and we find, usingsimilar arguments, from (4.42)

ISR(T1) = {D1D8, D2D6D7, D3D4D5,
D3D5D6D7, D2Dr, D4Dr},

ISR(T2) = {D1D8, D2D6D7, D6D7D8, D1D3D4D5, D2D3D4D5,
D3D5D6D7, D2Dr, D8Dr, D1D4Dr}.

(4.46)
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Note that the first lines in (4.46) correspond to the Stanley–Reisner ideal of the unresolved toric
varietyP∆∗

(B)
. Next, we determine the Mori cone of the resolved ambient space and find

l̂T1 =




0 1 0 −1 0 1 1 0 0
0 0 1 0 1 1 1 0 −2
1 0 0 0 0 0 0 1 0
0 0 0 1 0 −1 −1 −1 1



,

l̂T2 =




1 0 0 1 0 −1 −1 0 1
0 1 1 1 1 0 0 −2 0
0 0 −1 −1 −1 0 0 1 1
0 0 1 0 1 1 1 0 −2



.

SinceD8 andDr do not intersect the Calabi–Yau space, we consider the linear combinations of
the vectors above for which the eighth and the ninth entry vanishes, and adding the intersections
of −D0,l with c(a) as before, we get for both triangulations the two Mori generators

l̃(1) = (−4, 0; 2, 0, 1, 2, 1,−1,−1, 0, 0),
l(2) = ( 0,−2; 0, 1, 0,−1, 0, 1, 1, 0, 0) .

(4.47)

Now we have to check that the curves which bound the corresponding Kähler cones inP∆∗
(B)

descend to the Calabi–Yau spaceV(B). As mentioned above these curves have intersection

c(a) ·Di = l
(a)
i . In particularc(1) has negative intersection with bothD6 andD7. Negative inter-

section numbers indicate that the curves are actually contained in the corresponding divisors.
Since by (4.46),D6D7 = 0 on the Calabi–Yau space, we conclude thatc(1) does not descend
to V(B). For this reason the Mori cone must become smaller and the Kähler cone becomes
bigger due to the absence of the bounding curve inV(B). The minimal positive integer linear
combination of̃l(1) andl(2) without two negative entries isl(1) = l̃(1) + l(2)

l(1) = (−4,−2; 2, 1, 1, 1, 1, 0, 0, 0, 0),
l(2) = ( 0,−2; 0, 1, 0,−1, 0, 1, 1, 0, 0) .

(4.48)

We can then pickH = D3D0,1D0,2 andL = D6D0,1D0,2 and observe exactly the same classical
intersections as in (4.37) and (4.39). According to the theorem of Wall the Calabi–Yau mani-
folds are then of the same topological type. It turns out thatthe world sheet instanton numbers
on both Calabi–Yau spaces are the same. However, as we will see in section 4.9.1, the slightly
different vectorsl(i) lead to a different parametrization of the complex structure moduli space.
Since these arguments used only the triangulations, which are independent of the nef–partition,
they show that the other two nef–partitions lead to the same topological type of the Calabi–Yau
space.

The third model with Hodge numbers(2, 30) has the dual polyhedron

∆∗
(C) {ρ

∗
i } =





1 0 0 0 −2 1 −1 −1 0
0 1 0 0 −1 1 −2 0 −1
0 0 1 0 −1 1 −1 0 0
0 0 0 1 −1 0 1 0 0
0 0 0 0 0 2 −2 0 0





(4.49)
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Figure 4.1: Secondary fan of the facet[3456789] of ∆∗
(C) with circuits relating its triangulations.

and admits the two nef–partitions given below (4.22). The star triangulations of∆∗
(C) again

contain the twelve simplices[1̂823̂456̂7] of ∆∗
(A), but now there are 5 additional facets, namely

the two simplices[1356̂79], and the facets[143̂5679] and [3456789]. The circuitρ∗6 + ρ∗7 =
ρ∗4 + ρ∗9 shows that the additional vertexρ∗9 restores the possibility of a fibered ambient space.
Namely, if we triangulate this circuit as[46̂79], we avoid the edgeρ∗6ρ

∗
7. The triangulations of

∆∗
(C) that are consistent with the fibration are easily found by triangulating the reflexive section

∆∗
(C),f , which is spanned byρ∗1, . . . , ρ

∗
5, ρ

∗
8, ρ

∗
9. Its single non–simplicial facet,[34589], yields

a circuit〈314151|8291〉. One triangulation,[3̂4589], leads to a regular ambient space while the
other contains the simplex[3459] of volume 2. In the 4–dimensional ambient space of the fiber
we expect a resolution of the singularity by a point in degree2 in the interior of the cone.
Indeed,ρ∗r = 1

2
(ρ∗3 + ρ∗4 + ρ∗5 + ρ∗9) is a lattice point (which actually is identical to the point

ρ∗r that resolved the singularities in the previous example). Extending these subdivisions to a
triangulation of the complete polytope we thus obtain the first two triangulationsT2 andT1

below.T2 is regular whileT1 requires the subdivision of the two triangles[34596̂7] throughρ∗r .
The complete set of triangulations can be found by constructing the secondary fan 3.1.14

for the facet [3456789]: LetA denote the matrix consisting of the coordinates of the respective
verticesρ∗3, . . . , ρ

∗
9 and compute its Gale transform (see definition 3.1.12):

B =

(
1 1 1 0 0 −2 −1
0 −1 0 1 1 0 −1

)

,

(4.50)

which is the transpose of its kernel, i.e.ABT = 0, where we have chosen the two circuits
〈314151|8291〉 and〈6171|4191〉 as generators of the kernel. The rays of the secondary fan are
generated by the column vectors ofB, which we label by the respective vertices of∆∗

(C). The
triangulationsTi can then be read off as indicated in the figure of the secundaryfan 4.1.

As an example considerT4, where these complements are{48, 39, 49, 59}, yielding the
triangulation{[35679], [3̂45678]}. Adjacent triangulations are connected by (bistellar flipsfor)
circuits involving, on either side, vertices that can form astrictly convex cone with the ray that
separates the corresponding phases (see Proposition 2.12 in chapter 7 of [47]).
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A triangulation of[3456789] induces a triangulation of the other two non–simplicial facets
[143̂5679]. Writing the triangulations as a union of the simplices of the big facet[3456789],
simplices of the induced triangulations of the circuits[143̂5679], and simplical facets of∆∗

(C),
respectively, we obtain:

T1 = {[3456̂78̂9]} ∪ {[143̂56̂79]} ∪ {[1̂823̂456̂7], [1356̂79]},

T2 = {[3̂456̂789]} ∪ {[143̂56̂79]} ∪ {[1̂823̂456̂7], [1356̂79]},

T3 = {[3̂54̂9678], [356̂789]} ∪ {[14̂93̂567]} ∪ {[1̂823̂456̂7], [1356̂79]},

T4 = {[3̂45678], [35679]} ∪ {[14̂93̂567]} ∪ {[1̂823̂456̂7], [1356̂79]},

T5 = {[3456̂78], [35679]} ∪ {[14̂93̂567]} ∪ {[1̂823̂456̂7], [1356̂79]}.

T2 andT3 have 24 regular simplices. The triangulationsT1, T4 andT5 have 22 simplices, two of
which have volume 2. Inspection of the coefficients in the circuits connecting the phases shows
that these are[34596̂7], [35674̂9] and[35674̂9], respectively, so that the refinement induced by
adding

ρ∗r = 1
2
(ρ∗3 + ρ∗4 + ρ∗5 + ρ∗9) = 1

2
(ρ∗3 + ρ∗5 + ρ∗6 + ρ∗7) (4.51)

resolves the singularities in all cases. Note that star triangulations are refinements of the poly-
hedral subdivision induced by the cones over the facets of∆∗. Figure 4.1 is therefore a face of
the complete secondary fan that describes all triangulations of∆∗

(C) (see Theorem 2.4 in chapter
7 of [47]). We list here the data for the ambient space only fortwo triangulations,T2 andT1.
ForT2 we do not needρ∗ρ Therefore, the linear relations are

D6 ∼ D7, D1 ∼ 2D5 +D8, D2 −D6 −D9 ∼ D3 ∼ D4 +D6 ∼ D5, (4.52)

and the Stanley-Reisner ideal is

ISR(T2) = {D1D8, D2D9, D6D7, D3D4D5}. (4.53)

The Mori generators associated to the triangulationT2 are

l̂T2 =




0 1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1 0
0 0 1 1 1 0 0 −2 −1
0 0 0 −1 0 1 1 0 −1



.

(4.54)

The complete intersectionV(C) for the first nef–partition below (4.22) is defined by

D0,1 = D1 +D3 +D4 +D7 +D8,
D0,2 = D2 +D5 +D6 +D9.

(4.55)

ForT1 the linear relation involveρ∗ρ

D6 ∼ D7, D1 ∼ 2D5 +D8 +Dρ, D2 −D6 −D9 −Dρ ∼ D3 ∼ D4 +D6 ∼ D5, (4.56)
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and so does the Stanley-Reisner ideal

ISR(T1) = {D1D8, D1Dρ, D2D9, D2Dρ, D6D7, D8D9, D8Dρ, D1D3D4D5, (4.57)

D2D3D4D5, D3D4D5D9}. (4.58)

The Mori generators become accordingly

l̂T1 =




0 1 1 1 1 0 0 −2 0 0
1 0 0 0 0 0 0 0 −1 1
0 0 1 1 1 0 0 0 1 −2
0 0 −1 −1 −1 0 0 1 0 1
0 0 0 −1 0 1 1 0 −1 0



.

(4.59)

The complete intersection for the first nef–partition below(4.22) is defined by

D0,1 = D1 +D3 +D4 +D7 +D8 +Dρ,
D0,2 = D2 +D5 +D6 +D9 +Dρ.

(4.60)

We find for all triangulations (and all partitions) thatD8 andD9 do not intersect the Calabi-Yau
spaceV(C). Taking linear combinations for which the corresponding components of the Mori
vectors vanish and going to a basis where curves onV bound the Kähler cone yields again

l(1) = (−4,−2; 2, 1, 1, 1, 1, 0, 0, 0, 0, 0),
l(2) = ( 0,−2; 0, 1, 0,−1, 0, 1, 1, 0, 0, 0) .

(4.61)

With H = D3D0,1D0,2 andL = D6D0,1D0,2 we find the same intersections as (4.37) and
(4.39). The same conclusions arise for the other star triangulations.

To summarize all representations of the (2,30) model, be it different polyhedra, different
nef–partitions, or different triangulations, are equivalent. Some of them exhibit however differ-
ent parametrisations of the complex moduli space of the mirror.

4.8.3 A selection of other models

In this section we will present a few more codimension two complete intersection CY man-
ifolds, but without going into so much detail as in the last section. The selection contains
manifolds with the next smallest Hodge number after (2,30):These are (2,36) and (2,44). The
latter is particularly interesting since it has realizations as both a simply connected space and a
freeZ2 quotient.

In Section 4.7 we mentioned that there are nine polyhedra admitting nef–partitions giving
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Hodge numbers (2,44). The CICYs obtained from these polyhedra are

V1(27212, 87) ∼ P

(
2 1 1 1 1 0 0
0 1 1 3 3 2 2

)[
4
6

2
6

]

,

(4.62)

V2(29413, 98) ∼ P

(
2 1 1 1 1 0 0 0
0 1 1 1 3 2 2 0
0 0 0 0 1 0 0 1

)[
4
4
0

2
6
2

]

,

(4.63)

V3(29816, 98) ∼ P

(
2 1 1 3 1 0 0 0
0 1 1 3 3 2 2 0
0 0 0 1 0 0 0 1

)[
6
6
2

2
6
0

]

,

(4.64)

V4(23210, 97) ∼ P

(
2 1 1 1 1 0 0 0
4 2 2 2 0 1 1 0
1 0 0 0 0 0 0 1

)[
4
8
2

2
4
0

]
/ Z2 : 1 1 0 1 0 1 0 0, (4.65)

V5(23212, 98) ∼ P

(
2 1 1 1 1 0 0 0
2 1 1 0 0 1 1 0
1 0 0 0 0 0 0 1

)[
4
4
2

2
2
0

]
/ Z2 : 1 1 0 1 0 1 0 0. (4.66)

V4 is the same variety as the one given in (4.25). The other 4 polytopes yield blow-ups of the
ambient spaces ofV1, V3, V4 andV5, respectively. These blow-ups are obtained by adding a
vertex in the definition of the ambient spaces in (4.62) to (4.66) an additional column(0, 0, 0)T

and an additional row. This row has zeros everywhere except for a one at both the entries
corresponding to the vertex in bold face and the new vertex. The linear relation corresponding
to this row describes theP1 resulting from the blow-up. Only the blow-up of the ambient space
of V3 descends to the complete intersection.

Some of the nine polytopes admit several nef–partitions and/or several triangulations. Sim-
ilar to the(2, 30) example, it turns out that for a given polytope there is only one topologically
inequivalent manifold. This justifies the notation in (4.62) to (4.66). A representative will be
given below.

V2, V4, V5, as well as the blow-up ofV3, have reflexive hyperplane sections of codimension
one, and hence admit K3 fibrations (or aZ2 quotient thereof in the cases ofV4 orV5). In addition
V3 itself also admits a K3 fibration, which however does not comefrom a toric morphism in
the ambient space. In fact,V3 and its blow-up are related in the same manner asV(B) andV(C)

discussed in Section 4.5.

Two out of the nine polytopes have lattice points which are not vertices. These are related
to the ambient spaces ofV4 and its blowup. In fact, there is only one such lattice point,namely
ρ∗5 = 1

2
(ρ∗6 + ρ∗7). This can be seen by subtracting twice the (redundant) first weight vector

from the second one. We included that point to make the K3 fiberof V4 visible, although it
is redundant for the characterization of the polytope. Finally, it turns out thatV4 andV5 are
topologically equivalent, for the same reason asV(A) andV(B) in Section 4.8 were equivalent,
cf. also the discussion below (4.22). Note thatV4 andV5 are freeZ2 quotients.

We summarize the reduced data forV1 to V4 in the same way as we did forV(A) in (4.35),
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together with the intersection numbers and the linear forms:

V1 :

c(1) c(2)

D0,1 1 0 0 0 0 0 0 −4 0
D0,2 0 1 0 0 0 0 0 −2 −2
D1 0 1 1 0 0 0 0 2 0
D2 1 0 0 1 0 0 0 1 0
D3 0 1 0 0 1 0 0 1 0
D4 1 0 0 0 0 1 0 1 0
D5 0 1 −2 −1 −1 −1 0 1 0
D6 1 0 0 0 0 0 1 0 1
D7 0 1 3 1 1 0 −1 0 1

κ111 = 1, κ112 = 3, κ122 = 7, κ222 = 11,

H2J1 = 22, H2J2 = 50.

V2 :

c(1) c(2)

D0,1 1 0 0 0 0 0 0 −4 0
D0,2 0 1 0 0 0 0 0 −2 −2
D1 0 1 1 0 0 0 0 2 0
D2 1 0 0 1 0 0 0 1 0
D3 0 1 0 0 1 0 0 1 0
D4 1 0 0 0 0 1 0 1 0
D5 0 1 −2 −1 −1 −1 0 1 0
D6 1 0 0 0 0 0 1 0 1
D7 0 1 3 1 1 1 −1 0 1
D8 0 1 2 1 1 1 0 0 1

κ111 = 2, κ112 = 4, κ122 = 0, κ222 = 0,

H2J1 = 32, H2J2 = 24.

V3 :

c(1) c(2)

D0,1 1 0 0 0 0 0 0 −4 0
D0,2 0 1 0 0 0 0 0 −2 −2
D1 0 1 1 0 0 0 0 2 0
D2 1 0 0 1 0 0 0 1 0
D3 0 1 0 0 1 0 0 1 0
D4 1 0 0 0 0 1 0 1 0
D5 0 1 −2 −1 −1 −3 0 1 0
D6 1 0 0 0 0 0 1 0 1
D7 0 1 3 1 1 3 −1 0 1
D8 0 1 0 0 0 −1 0 0 1

κ111 = 1, κ112 = 2, κ122 = 0, κ222 = 0,

H2J1 = 22, H2J2 = 24.
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V4 :

c(1) c(2)

D0,1 1 0 0 0 0 0 0 −4 0
D0,2 0 1 0 0 0 0 0 −2 −2
D1 0 1 1 0 0 0 0 2 0
D2 1 0 0 1 0 0 0 1 0
D3 0 1 0 0 1 0 0 1 0
D4 1 0 0 0 0 1 0 1 0
D5 0 1 −2 −1 −1 −1 0 1 0
D6 1 0 1 1 0 1 2 0 1
D7 0 1 −5 −3 −2 −3 −2 0 1
D8 0 1 −1 0 0 0 0 0 1

κ111 = 4, κ112 = 2, κ122 = 0, κ222 = 0,

H2J1 = 28, H2J2 = 12.

There are three polyhedra yielding nef–partitions with Hodge numbers (2,36). The first
polyhedron admits two star triangulations, one with 12 and one with 10 simplices, both of
which are not unimodular. We have to add four and five points indegree two, respectively.
After going through the procedure explained in detail in Section 4.8.2 we can describe the
(reduced) data as follows

c(1) c(2)

D0,1 1 0 0 0 0 0 0 −2 −2
D0,2 0 1 0 0 0 0 0 −2 −2
D1 0 1 1 0 0 0 0 0 1
D2 0 1 0 1 0 0 0 −1 2
D3 1 0 0 0 1 0 0 1 0
D4 0 1 0 0 0 1 0 1 1
D5 1 0 0 1 1 1 2 1 1
D6 1 0 −1 −3 −3 −4 −4 0 1
D7 0 1 0 0 −1 −1 −1 2 −2

All divisors of the ambient space in degree one descend to theCalabi-Yau threefold and the flop
in the ambient space is also realized in the complete intersection CY. The family contains two
large volume limits of different topological type. The intersections numbers are

κ111 = 2, κ112 = 2, κ122 = 2, κ222 = 1,

H2 · J1 = 20, H2 · J2 = 22.

4.9 Periods and Picard–Fuchs equations for toric CICYs

We start our discussion with the construction of the fundamental period of a toric CICY. A
natural generalization of (3.54) is:

〈g,Ω〉 =
1

(2πi)d

∫

γ

(
r∏

l=1

λ
(l)
0

f (l)

)
dt1
t1

∧ · · · ∧
dtd
td
, (4.67)
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with the Laurant polynomials

f (l) =
∑

m∈∆0
l

λmt
m = λ0,l +

∑

m∈∆0
l \{0}

λmt
m ∈ L(∆l) (l = 1, . . . , r). (4.68)

Here,∆0
l is a list of the ’relevant’ lattice points of∆l. In the hypersurface case we introduced

the notion of a projective subdivisions (Definition 3.2.2) to exclute all interior points of facets
of ∆l. Now even divisors corresponding to vertices do not intersect, so we have to exclude
additional points, which can be found after performing a careful analysis of the intersection
ring. We assume that the first element of the∆0

l always corresponds to the origin. We now use
the expansions

λ0,l

f (l)
=

1

1 −
∑

m∈∆0
l
\{0}

λm(−λ0,l)−1tm
=

∞∑

K(l)=0


 ∑

m∈∆0
l \{0}

λm(−λ0,l)
−1tm



K(l)

,

(4.69)

and do further expansion of the expressions(. . . )K
(l)

, where the powerslm of the monomials
tm are partitions ofK(l):

−l0,l := K(l) =
∑

m∈∆0
l
\{0}

lm. (4.70)

It is clear that the integral in equation (4.67) gets a non–zero contribution if and only if the
vectors

l = (l0,1, . . . , l0,r; l1, . . . , ls) with s+ r =

r∑

l=1

#∆0
l and li ∈ Z≥ (4.71)

are relations of∆0
C ∩ M̄ , the set of relavant points of the support∆C ∩ M̄ , whereC ⊂ M̄R is

the Gorenstein cone of the nef–partitionΠ(∆) = {∆1, . . . ,∆r} (∆0
C ∩ M̄ is constructed by the

lattice points of∆0
l × el (l = 1, . . . , r)). Thus we get:

〈g,Ω〉 =
∑

l1,...,ls

(−l0,1)! . . . (−l0,r)!

l1! . . . ls!
(−λ0,1)

l0,1 . . . (−λ0,r)
l0,rλl11 . . . λ

ls
s , (4.72)

where the sum runs over all relationsl of the form (4.71). If we define theA asA = ∆0
C , it

is clear that the operators from theA–system in definition 3.2.1, after multiplying them with
(λ0,1 . . . λ0,r)

−1, annihilate the fundamental period (4.72). Again, we choose a basis

l(a) = (l
(a)
0,1 , . . . , l

(a)
0,r ; l

(a)
1 , . . . , l(a)s ), for a = 1, . . . , h (4.73)

for the Mori generators and introduce torus invariant(z)–coordinates:

za =
r∏

l=1

λ0,l
l
(a)
0,l

s∏

i=1

λi
l
(a)
i . (4.74)
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Writing eachl as
∑h

a=1 nal
(a), we end up with:

〈g,Ω〉 =
∑

n1,...,nh



∏r

l=1

(
−
∑h

a=1 nal
(a)
0,l

)
!

∏s
j=1

(∑h
a=1 nal

(a)
j

)
!

h∏

a=1

(
(−1)

Pr
l=1 l

(a)
0,l za

)na


 . (4.75)

Note that we have to restrict the sum over the integersna to those linear combinations of the
relations that are of the form (4.71). Once we have determined the fundamental period (4.75)
and the PF operators, we can determine the YCs and the mirror map in the same way as for
toric hypersurfaces. We give an explicit example of a toric CICY:

4.9.1 Periods, Picard–Fuchs equations, and instanton numbers of the (2,30)
model

VA from section 4.8.1

We start with the first realization of the (2,30) model. Sincewe want to compute the periods
of the mirror, we have to swtich to theN–lattice. In section 4.8.1 we found out thatD8 (cor-
responding toρ∗8) does not intersect the CY. The polytope∆∗ has only vertices, so the relevant
points are:

∇0
1 = {0, ρ∗1, ρ

∗
2, ρ

∗
4} and ∇0

2 = {0, ρ∗3, ρ
∗
5, ρ

∗
6, ρ

∗
7}. (4.76)

Thus the polytope∆0
C∗ ∩ M̄ is:

∆0
C∗ ∩ M̄ =





1 0 1 1 0 1 0 0 0
0 1 0 0 1 0 1 1 1
0 0 1 0 0 0 −2 1 −1
0 0 0 1 0 0 −1 1 −1
0 0 0 0 1 0 −1 1 −1
0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 2 −2




,

(4.77)

with a basis of relations (4.34):

l // i //

a
��

l(1) = (−4,−2; 2, 1, 1, 1, 1, 0, 0)
l(2) = ( 0,−2; 0, 0, 0, 0, 0, 1, 1).

m̄
//

Equation (4.75) gives the fundamental period:

y0 = 〈g,Ω〉 =
∑

n1,n2≥0

zn1
1 zn2

2

(4n1)!(2(n1 + n2))!

(n1!)4(2n1)!(n2!)2
, (4.78)
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with

z1 =
λ2

1λ2λ3λ4λ5

λ4
0,1λ

2
0,2

and z2 =
λ6λ7

λ2
0,2

. (4.79)

The logarithmic derivatives are related by:

δ1 = 2δz1 δ2 = δz1 δ3 = δz1 δ4 = δz1 δ5 = δz1 δ6 = δz1 δ7 = δz1
δ0,1 = −4δz1 δ0,2 = −2δz1 − 2δz2.

(4.80)

Now recall the definition of the�l–operators:

�l =
∏

lm̄>0

∂lm̄m̄ −
∏

lm̄<0

∂−lm̄m̄ l ∈ Λ (4.81)

of anA–system (see definition 3.2.1), which have to be rescaled as in the hypersurface case
(equation (3.46)). In our example they are:

�1 =
(
∂2

1∂2∂3∂4∂5 − ∂4
0,1∂

2
0,2

)
(λ0,1λ0,2)

−1 , (4.82)

�2 =
(
∂6∂7 − ∂2

0,2

)
(λ0,1λ0,2)

−1 . (4.83)

Multiplying �1 with z1λ5
0,1λ

3
0,2 and�2 with z2λ0,1λ

3
0,2 from the left gives:

�1 = (δ2
1 − δ1)δ2δ3δ4δ5 − z1λ

5
0,1λ

3
0,2(λ

−1
0,1δ0,1)

4(λ−1
0,2δ0,2)

2(λ0,1λ0,2)
−1,

�2 = δ6δ7 − z2λ
3
0,2(λ

−1
0,2δ0,2)

2λ−1
0,2. (4.84)

After inserting form (4.80) for the logarithmic derivatives and repeated application of (3.44) we
end up with:

�1 = (4δ2
z1
− 2δz1)δ

4
z1
− z1(4δz1 + 4)(4δz1 + 3)(4δz1 + 2)(4δz1 + 1)

(2δz1 + 2δz2 + 1)(2δz1 + 2δz2 + 2),

�2 = δ2
z2 − z2(2δz1 + 2δz2 + 1)(2δz1 + 2δz2 + 2). (4.85)

In order to reduce this system it is useful to push thezis through the derivatives. This can be
done by using the identity

ziδzj
= (δzj

− δij)zi, (4.86)

and we end up with:

�1 = 2(2δ2
z1
− δz1)δ

4
z1
− 16δz1(4δz1 − 1)(2δz1 − 1)(4δz1 − 3)(2δz1 + 2δz2 − 1)(δz1 + δz2)z1,

�2 = δ2
z2
− (2δz1 + 2δz2 − 1)(δz1 + δz2)z2. (4.87)

These operators can be reduced by defining the operators�̃1 and�̃2:

�̃1 =
�1 − 2δz1(2δz1 − 1)δ2

z1�2

−2δz1(2δz1 − 1)(δz1 + δz1)
, (4.88)

�̃2 = �2, (4.89)
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and a complete set of PF operators is given by:

�̃1 = δ2
z1

(δz2 − δz1) + (2δz1 + 2δz2 − 1)(8(4δz1 − 1)(4δz1 − 3)z1 − 2δ2
z1
z2)

�̃2 = δ2
z2
− (2δz1 + 2δz2 − 1)(δz1 + δz2)z2.

(4.90)

The YCs are now easily obtained from the system (4.90) in the same way as for a toric hyper-
surface:

K(111) = 2
1 + a− b

a3∆1

, K(112) = 2
1 − a+ b

a2b∆1

,

K(122) = 2
3 − a+ b

ab∆1∆2
, K(222) = 2

1 − a+ b(6 + b− a)

b2∆1∆2
2

,

(4.91)

where we performed a linear transformation on the coordinates(zi):
(
a
b

)
=

(
256 0

0 4

)(
z1
z2

)

.

(4.92)

∆i are the discriminants:

∆1 = (1 − a)2 − b(2 + 2a− b), ∆2 = 1 − b. (4.93)

The two lorarithmic solutions can be obtained from the Frobenius method (3.60). The calcula-
tion is straight foward and even simplyer as in the example atthe end of chapter 3, because wo
do not perform a distinction of cases. Inserting the mirror map into equation (3.64) gives the
instanton corrected YCs of the mirror. For the present example, the integral expansion of the
instanton contribution (3.65) with respect to(d1, d2) yields:

d1 d2 = 0 1 2 3 4 5 6

0 8
1 384 1088 384
2 4688 117088 247680 117088 4688
3 146816 12092928 84309504 148640576 84309504 12092928 146816
4 5462064 1205851824 20072874752 86051357872 135328662848 86051357872 20072874752

VC from section 4.8.2

As we mentioned before the large complex structure variables defined by the polyhedron can
differ even for topologically equivalent families. In particular, the Picard-Fuchs equations for
the variables(z̃1, z̃2) defined by (4.61) are formally different from (4.90), namely

�1 = δ2
z̃1

(δz̃1 − δz̃2) − 8(4δz̃1 − 3)(4δz̃1 − 1)(2δz̃1 + 2δz̃2 − 1)z̃1

�2 = δ2
z̃2 − 2(δz̃1 − δz̃2 + 1)(2δz̃1 + 2δz̃2 − 1)z̃2.

(4.94)
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The derivation is the same as in section 4.9.1 with the Mori vectors (4.61):

l // i //

a
��

l(1) = (−4,−2; 2, 1, 1, 1, 1, 0, 0)
l(2) = ( 0,−2; 0, 1, 0,−1, 0, 1, 1).

m̄
//

The triple intersections of this model are:

K(111) = 2
1 + ã

ã3∆̃1

, K(112) = 2
1 − ã

ã2b̃∆̃1

K(122) = 2
1 + ã

ãb̃∆̃1∆̃2

, K(222) = 2
1 − ã

b̃2∆̃1∆̃2

(4.95)

with

∆̃1 = (1 − ã)2 − 4ãb̃, ∆̃2 = 1 + b̃. (4.96)

The coordinates(ã, b̃) are related to(z̃1, z̃2) by the same transformation as in equation (4.92).
As the A-models are topologically equivalent we should find arational transformation of vari-
ables preserving the large complex structure limit(z1 = 0, z2 = 0) 7→ (z̃1 = 0, z̃2 = 0) and
identifying (4.90) with (4.94). To find this transformationwe make the following ansatz:

∆1(a, b)

P (a, b)
= ∆̃1(ã, b̃) and

∆1(a, b)

P (a, b)
= ∆̃1(ã, b̃), (4.97)

whereP (a, b) is some rational function. Solving for̃a andb̃ gives:

b̃ =
−1 − P + b

P
,

ã =
−4 − 2P + 4b± 2

√
4(−1 + b)2 − P (−3 + a2 + 2b+ b2 − 2a(1 + b))

2P
.

This transformation is rational if and only if we can get rid of the squareroot. Setting

P = −(b− 1)2 (4.98)

completes the square in the expression under the squarerootand we find (for the plus sign in
(4.98)): (

ã

b̃

)
=

(
1

1−b
0

0 1
1−b

)(
a
b

)

.

(4.99)

This phenomenon is not special to complete intersections, it can also occur for hypersur-
faces. For example, the degree 12 hypersurface in the resolved weighted projective space
P4

1,2,2,3,4 and

P

(
2 1 1 1 1 1 0
1 2 1 1 1 0 1

)[
6
6

]
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yield topologically equivalent Calabi-Yau hypersurfaceswith h1,1 = 2 andh2,1 = 74, but
different Mori cones. The corresponding polyhedra correspond to different blowups of the same
simplex associated toP4

1,1,1,1,2, and the Picard-Fuchs equations as well as the triple intersections
can be mapped onto each other in a similar way. As an other example, the well-studied two-
parameter modelP4

1,1,2,2,6[12] also has a cousin which is

P

(
4 1 1 1 1 1 0
1 4 1 1 1 0 1

)[
8
8

]

.

It is easy to read off from the weight vectors that both polyhedra come from two different blow-
ups ofP4

1,1,1,1,4. We observe that in all these examples the number of verticesand points of∆
is the same, while a single vertex is added to the simplex∆∗.



Appendix A

Computer programs

The programnef.x calculates nef–partitions of arbitrary codimension for reflexive polytops
and computes the cohomological data. The softwarecws.x creates weight systems and is
also able to combine them. This is very useful for constructing certain toric ambient spaces,
especially fibrations.gen.x is under development and transforms Gorenstein polytopes for a
generalized CY into those arising from a nef–partition.nef.x andcws.x are already imple-
mented into the PALP package [33] for testing.
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A.1 The program nef.x

A.1.1 help listing for nef.x
$ nef.x -h

This is ‘nef.x’: calculates hodge numbers of nef-partition s.
Usage: nef.x -<options>
Options:

-h print this information.
-f or - use as filter; otherwise parameters denote I/O files.
-N starting-poly is in N-lattice (default is M).
-H gives full list of hodge numbers.
-Lv prints L vector of vertices (in N-lattice).
-Lp prints L vector of points (in N-lattice).
-p prints only partitions, no Hodge numbers.
-D calculates also direct products.
-P calculates also projections.
-t full time info.
-cCODIM codimension (default = 2).
-Fcodim fibrations up to codim (default = 2).

Input: degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’
or ‘d np’ or ‘np d’ (d=Dimension, np=#[points]) and

(after newline) np*d coordinates.
Output: as specified by options.

A.1.2 extended (experimental) options for nef.x
$ nef.x -x

This is extended help for ‘‘./nef.x’’:
-y print poly/CWS in M lattice if it has nef-partitions.
-S information about #points calculated in S-poly.
-T checks Serre-duality.
-s don’t remove symmetric nef-partitions.
-n prints poly only if it has nef-partitions.
-v prints vertices and #points of starting-poly in one

line. With the following option the output is limited
by #points:

-uPOINTS ... upper limit of #points (default = POINT_Nmax).
-lPOINTS ... lower limit of #points (default = 0).

-m starts with [d w1 w2 ... wk d=d_1 d_2 (Minkowski sum).
-R prints vertices of starting-poly if it is

not reflexive.
-V prints vertices of poly (in N-lattice).
-Q only direct products (up to lattice quotient).
-gNUMBER prints points of Gorenstein poly in N-lattice.
-dNUMBER prints points of Gorenstein poly in M-lattice.

If NUMBER = 0 ... no 0/1 info.
If NUMBER = 1 ... no redundant 0/1 info (=default).
If NUMBER = 2 ... full 0/1 info.

-M print VPM of gore polytopes.



A.2 The program cws.x 81

A.2 The program cws.x

A.2.1 help listing for cws.x
$ cws.x -h

This is ‘cws.x’: create weight systems and combined weight s ystems.
Usage: cws.x -<options>; the first option must be ‘w’, ‘c’,
‘i’,or ‘h’.
Options:

-h print this information.
-w# [L H] make IP weight systems for #-dimensional polytopes .

For #>4 the lowest and highest degrees L<=H are required.
-r/-t make reflexive/transversal weight systems (optiona l).

-c# make combined weight systems for #-dimensional polytop es.
For #<=4 all relevant combinations are made by default,
otherwise the following option is required:

-n[#] followed by the names wf_1 ... wf_# of weight files
currently #=2,3 are implemented.

[-t] followed by # numbers n_i specifies the CWS-type, i.e.
the numbers n_i of weights to be selected from wf_i.
Currently all cases with n_i<=2 are implemented.

-i compute the polytope data M:p v [F:f] N:p [v] for all IP
CWS, where p and v denote the numbers of lattice points
and vertices of a dual pair of IP polytopes; an entry
F:f and no v for N indicates a non-reflexive ‘dual pair’.

-f use as filter; otherwise parameters denote I/O files

A.2.2 extended (experimental) options for cws.x
$ cws.x -x

This is ‘cws.x’: -x gives undocumented extensions:
-ip printf PolyPointList.
-id printf dual PolyPointList.
-N make CWS for PPL in N lattice.
-p# [infile1] [infile2] makes cartesian product

of Vertices. # dimensions are identified.
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A.3 The program gen.x

A.3.1 help listing for gen.x
$ gen.x -h

This is ‘gen.x’: computing splits of generalized CYs.
Usage: gen.x [-<Option-string>] [in-file [out-file]]
Options (concatenate any number of them into <Option-strin g>):

h print this information. | p print input (gen) poly.
f use as filter. | l print input (gen) poly
s no hodge calculation. | + weights.
L print split poly + nef | d print dual (M) input

info + L info. | (gen) poly.
P print split poly. | t show transformations for
r print index x input | split.

poly.

Input: degrees and weights ‘d1 w11 w12 ... d2 w21 w22 ...’
or ‘d np’ or ‘np d’ (d=Dimension, np=#[points]) and

(after newline) np*d coordinates
Output: as specified by options

A.3.2 extended (experimental) options for gen.x
$ gen.x -x

Testing options:
x print this information. | c[r] (needs points in
W print weight if poly | N-lattice as input):

has full dimension. | print poly if it has diff.
r print r x input-poly | splits.

(r=index). | s print poly if it splits.
M print pairing matrix | m print poly if it has mult.

of gen. polys. | splits.
| a print all different splits.



Appendix B

Cohomological results

B.1 Toric Calabi-Yau spaces with small Picard numbers

In this appendix we compile the Hodge data withh11 ≤ 3 that have been obtained for weighted
projective spaces and more general toric ambient spaces. The results are complete for hyper-
surfaces and they are probably (at least almost) complete for codimension 2:

H:(1,h12) weighted projective toric
hypersurfaces: 101 103 145 149 21
codimension 2: 61 73 79 89 129 25 37

H:(2,h12) weighted projective toric
hypersurfaces: 74 86 95 106 122 128 132 27229 38 83 84 90 92 102 116 120 144
codimension 2: 62 68 (83 84 90) 30 36 44 50 54 56 58 59 60 64

66 70 72 76 77 78 80 82 100 112

H:(3,h12) weighted projective toric
hypersurfaces: 66 69 75 87 99 103 105 43 45 51 57 59 63 65 67 71 72 73 76 77 78 79 81

123 131 165 195 231 243 83 84 85 89 91 93 95 107 111 115 119 127 141
codimension 2: 47 55 61 87 (45 51 57 67 23 24 27 29 31 33 35 37 39 41 42 44 48 49 50

71 77 81 83 89 91 93 111) 52 53 54 56 58 60 62 64 68 70 80 101 113

Complete intersections in products of projective spaces were enumerated completely for
arbitrary codimension many years ago [73]. The relevant Hodge data from [74] are

6573 89 101 forh11 = 1,

46 475055 56 58 59 62 64 66 68 72 76 77 83 86 forh11 = 2,

27 31 33 3536 37 3839 4041 43-4546 47-61 63 66 69 72 75 forh11 = 3.

Bold-face numbers are those values ofh12 that do not occur in the above tables. As a check
for the completeness of our results we used the lists that areavailable at [75] to verify that
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the missing values indeed require codimension 3 or more. Possible representations of minimal
codimension are

P
7[2 2 2 2] ≡ P (1 1 1 1 1 1 1 1) [2 2 2 2]1,65−128

i.e. 4 quartics inP7 for the example with Picard number 1, and

P2

P5

[
2 1 0 0
1 1 2 2

]2,46

−88

,
P2

P4

[
2 1 0
1 1 3

]2,47

−90

,
P3

P3

[
2 1 1
1 2 1

]2,55

−106

,

P2

P2

P2

[
2 1 0
1 1 1
0 1 2

]3,36

−66

,
P2

P2

P3

[
2 1 0 0
1 0 1 1
0 1 2 1

]3,38

−70

,
P1

P2

P3

[
1 1 0
1 0 2
1 2 1

]3,40

−74

,
P1

P2

P3

[
1 1 0
2 0 1
1 2 1

]3,46

−86

for h11 = 2 andh11 = 3, respectively.

B.2 Free quotients of elliptic K3 fibrations

In this appendix we present the Hodge data and some polytopesthat we found for freeZ2

quotients of elliptic K3 fibrations.

Among all Calabi–Yau hypersurfaces in toric varieties there are 16 polytopes that corre-
spond to free quotients. This can be compatible with a K3 fibration only for Z2 quotients
because the action on the baseP1 always has fixed points and the K3 fibers only admit a free
Z2 action. The well-known example of the freeZ5 quotient of the quintic has no fibration. The
two Z3 examples are elliptic. The remaining 13 polytopes have fundamental groupZ2 and are
elliptic-K3 fibrations. The Hodge data of these manifolds and of their double covers are

h11 h12 [χ] double cover
3 43 [ -80] 3 83 [-160]
3 59 [-112] 3 115 [-224]
3 75 [-144] 4 148 [-288]

h11 h12 [χ] double cover
4 28 [ -48] 4 52 [ -96]
4 36 [ -64] 4 68 [-128]
4 44 [ -80] 5 85 [-160]

h11 h12 [χ] double cover
5 29 [ -48] 7 55 [ -96]

At codimension 2 we found 72 polytopes with nef partitions and elliptic K3 structure that
corresond to a free quotient. In 3 cases the lattice quotientactually corresponds to aZ4 quotient,
but only theZ2 refinement of the lattice is compatible with the nef partition.
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h11 h12 [χ] double cover
3 23 [-40] 3 43 [-80]
3 27 [-48] 3 51 [-96]
3 29 [-52] 3 55 [-104]
3 31 [-56] 3 59 [-112]
3 33 [-60] 4 64 [-120]
3 39 [-72] 4 76 [-144]

6 24 [-36] 10 46 [-72]
6 26 [-40] 9 49 [-80]

h11 h12 [χ] double cover
4 22 [-36] 5 41 [-72]
4 24 [-40] 5 45 [-80]
4 26 [-44] 6 50 [-88]
4 36 [-64] 6 70 [-128]
4 42 [-76] 5 41 [-152]
4 58 [-108] 6 114 [-216]

7 19 [-24] 11,35 [-48]

h11 h12 [χ] double cover
5 25 [-40] 7 47 [-80]
5 27 [-44] 8 52 [-88]
5 29 [-48] 6 54 [-96]
5 33 [-56] 7 63 [-112]
5 35 [-60] 7 67 [-120]
5 41 [-72] 8 80 [-144]

8 14 [-12] 13 25 [-24]

The hypersurface with Hodge data (3,43) and the complete intersection (4,36) are discussed in
Section 4.8.3.

A surprise in view of the Heterotic-Type II anomaly conditions [76], [77] is the small num-
ber of hypermultiplets even for small numbers (likeh11 = 3) of vectors. Some of the corre-
sponding polytopes are

P
3,23
−40

(
1 1 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

)[
2
2
0

2
0
2

]
/ Z2 : 1 1 1 0 1 0 1 0,

P
3,27
−48 (2 2 1 1 1 1) [4 4] / Z4 : 0 2 2 1 3 0,

P
3,29
−52

(
2 2 1 0 2 1 0
0 0 0 1 0 0 1

)[
4
2

4
0

]
/ Z2 : 1 0 1 1 1 0 0,

P
3,31
−56

(
0 2 1 1 0 2 2
1 1 0 0 1 1 0

)[
4
2

4
2

]
/ Z2 : 1 1 1 0 0 0 1,

P
3,33
−60

(
2 2 1 2 0 1 0 0
1 1 0 2 1 0 1 0
0 0 0 1 0 0 0 1

)[
4
4
2

4
2
0

]
/ Z2 : 1 0 1 1 1 0 0 0,

P
3,39
−72

(
0 2 1 4 2 2 1 0
1 1 0 1 0 1 0 0
0 0 0 1 0 0 0 1

)[
8
2
2

4
2
0

]
/ Z2 : 1 1 1 0 1 0 0 0,

P
4,22
−36

(
2 2 1 0 1 2 0 0
0 0 1 2 1 2 2 0
0 0 0 1 0 0 0 1

)[
4
4
2

4
4
0

]
/ Z2 : 0 1 1 1 0 1 0 0,

P
4,24
−40

(
2 2 1 0 0 2 1 0
1 1 0 1 1 0 0 0
0 0 0 1 0 0 0 1

)[
4
2
2

4
2
0

]
/ Z2 : 1 0 1 1 0 1 0 0,

P
4,26
−44

(
2 2 1 1 0 0 0 2
1 1 0 0 0 1 1 0
0 0 0 0 1 0 0 1

)[
4
2
2

4
2
0

]
/ Z2 : 0 1 1 0 1 1 0 0.
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