
Chapter 3

Formalism and interpretation

Gott würfelt nicht mit dem Universum!

Albert Einstein

Ich denke nicht, dass es unsere Aufgabe ist dem Herrgott

Vorschriften zu machen ...

Niels Bohr

The theory of quantum electrodynamics describes Nature as ab-

surd from the point of view of common sense. And it agrees fully

with the experiment. So I hope you can accept Nature as She is -

absurd.

Richard P. Feynman, “QED”

The mathematical formalism of quantum theory, which we want to develop in this chapter,

is based on the fact that the solutions of the Schrödinger equation form a Hilbert space, i.e.

a vector space that is complete with respect to the norm defined by an inner product. All

equations of the theory can be interpreted in terms of operators, i.e. linear maps on this

space. This point of view is useful for theoretical as well as for practical reasons. As an

example, we will solve the Schrödinger equation for the harmonic oscillator purely algebraically

by introducing creation and annihilation operators. Along the way we will discuss the axioms

and the interpretation of quantum mechanics, derive the general uncertainty relation, and

develop new concepts and computational tools like the Heisenberg picture and density matrices.
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3.1 Linear algebra and Dirac notation

The Schrödinger equation is a linear homogeneous differential equation. Its set of solutions

therefore forms a vector space H over the complex numbers, because linear combinations of

solutions with complex coefficients are again solutions. But this vector space is, in general, infi-

nite dimensional. We should hence also admit infinite linear combinations so that convergence

properties of such infinite sums have to be considered. The notion of convergence is based on

a measure ||v|| for the length of a vector, where a sequence is called convergent if the distance

between its members and its limit vector goes to 0. The length ||v|| has to be positive and is

required to satisfy the triangle inequality ||v+w|| ≤ ||v||+ ||w||. It is called a norm on a vector

space if it scales linearly according to ||αv|| = |α| ||v||, where |α| is the modulus of the complex

number α ∈ C. A vector space with such a norm, a normed space, is called Banach space if it

is complete (i.e. if it contains the limits for all Cauchy sequences, where a Cauchy sequence is

a sequence for which the distances between its elements converge to 0).

Observables in quantum mechanics, like momentum or energy, are given by linear operators,

i.e. by linear maps, which are the analogues of matrices in finite-dimensional spaces. Many of

the concepts and tools of linear algebra can be extended to infinite-dimensional linear spaces.

This is the subject of the mathematical discipline of functional analysis [Reed,Kreyszig].

Hilbert spaces: In quantum mechanics there is a natural norm, namely the square root

of the integral of the probability density of a wave function ψ(x) at some given time t,

||ψ|| =
√
Q with Q =

∫

R3

d3x |ψ(x)|2 (3.1)

(as we have shown it is time–independent for solutions of the Schrödinger equation). This norm

has the additional property that it can be defined in terms of an inner product (ϕ, ψ) by

||ψ|| =
√

(ψ, ψ) with (ϕ, ψ) =

∫

R3

d3x ϕ∗(x)ψ(x). (3.2)

An inner product (ϕ, ψ) is semi-bilinear and symmetric up to complex conjugation,

(ϕ, αψ1 + βψ2) = α(ϕ, ψ1) + β(ϕ, ψ2), (ϕ, ψ) = (ψ, ϕ)∗, (3.3)

where semi-bilinear means linear in the second entry and anti-linear in the first,

(αϕ1 + βϕ2, ψ) = α∗(ϕ1, ψ) + β∗(ϕ2, ψ). (3.4)

as implied by eq. (3.3).

Note that anti-linearity (i.e. the complex conjugation of scalar coefficients) for the first

entry is necessary because strict bilinearity would be inconsistent with positivity of the norm



CHAPTER 3. FORMALISM AND INTERPRETATION 39

||ψ||2 = (ψ, ψ) ≥ 0. To see this compare ||(iψ)||2 = (iψ, iψ) with ||(ψ)||2. A Banach space

whose norm is defined by (3.2) in terms of a positive definite inner product (ϕ, ψ) is called a

Hilbert space. The standard Hilbert space H of quantum mechanics is the space of complex-

valued square-integrable functions ψ(x) ∈ H = L2(R3), where the letter L stands for Lebesgue

integration (which has to be used to make the space complete).1 This is an ∞-dimensional

vector space.

Let us pretend for a while that our Hilbert space is a finite-dimensional complex vector

space. We will introduce a number of concepts like commutators and exponentiation of linear

operators. The definitions will be straightforward for (finite-dimensional) matrices, but the

same calculus can then be used for linear operators in Hilbert spaces. Refinements that are

needed for the infinite-dimensional situation will then be discussed later on.

In linear algebra each vector space V automatically provides us with another linear space,

called the dual space V dual, which consists of the linear maps w ∈ V dual from vectors v ∈ V to

numbers w(v) ∈ C. The numbers w(v) are real for real and complex for complex vector spaces,

respectively. We can think of vectors v ∈ V as column vectors and of dual vectors w ∈ V dual

as line vectors, so that their product, the duality bracket 〈w, v〉 ≡ w(v) is a number. If we

introduce a basis ei of V we can write each vector v as a unique linear combination v = viei and

each co-vector w = wje
j is a sum of the elements of the dual basis ej, which has upper indices

and is defined by 〈ej, ei〉 = δji . Evaluation of w on v by linearity thus implies the formula

〈w, v〉 ≡ w(v) = wj〈ej, ei〉vi = wjv
j, with w = wje

j, v = viei, 〈ej, ei〉 = δji . (3.5)

If we now make a change of basis êi = Gi
jej then the components of vectors transform with

the inverse transposed matrix, and the same is true for the dual basis vectors êj:

v = viei = v̂iêi, êi = Gi
jej ⇒ v̂i = vk(G−1)k

i = (G−1T )ikv
k, (3.6)

δji = 〈ej, ei〉 = 〈êj, êi〉, êi = Gi
jej ⇒ êj = el(G−1)l

j = (G−1T )j le
l. (3.7)

Co-vectors w ∈ V dual, on the other hand, transform in the same way as the elements ei of the

basis, ŵj = Gj
lwl, and also have the same index position. They are therefore called covariant

vectors. It might be tempting to identify contravariant vectors v ∈ V (column vectors, with

upper indices, transforming like the dual basis êj) and covariant vectors w ∈ V dual (line vectors,

with lower indices, transforming like the original basis) by transposition. Indeed this is possible

in Euclidean space if we restrict ourselves to use orthonormal bases, because then the matrix

G for the change of basis has to be orthogonal G = G−1T so that upper and lower indices

transform in the same way. In other situations, like in the Minkowski space of special relativity

1 Riemann integration would define a pre-Hilbert space or inner product space, whose Cauchy sequences need
not converge. Such spaces can always be completed to Hilber spaces similarly to the completion of Q to R.
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(where the metric is not positive definite) or in quantum mechanics, where the inner product

is semi-bilinear, it is important to distinguish between the two kinds of vectors.2

Dirac notation: Dirac introduced a very elegant and efficient notation for the use of linear

algebra in quantum mechanics that is also called bra-ket notation because products are written

by a bracket 〈. . .〉 as in eq. (3.8). We introduce bra-vectors 〈w| and ket-vectors |v〉, which are

just the co- and contravariant vectors 〈w| ≡ w ∈ V dual and |v〉 ≡ v ∈ V , respectively. Their

duality pairing can be written as a bra-ket product,

〈w, v〉 = wiv
i = 〈w| · |v〉 ≡ 〈w|v〉. (3.8)

The Dirac notation is basis independent. Instead of using vector components vi with respect

to some predefined basis ei we will rather identify a state vector by specifying its physical

properties, i.e. by the quantum numbers of the state of the physical system which it describes.

For the energy eigenfunctions of the harmonic oscillator we can write, for example,

un(x) ≡
∣∣E = ~ω0(n+ 1

2
)
〉
≡ |En〉 ≡ |n〉, (3.9)

where it is sufficient to characterize the state by the number n = 0, 1, . . . if it is clear from the

context what quantum number we are referring to. The bra-ket notation is sufficiently flexible

to allow us to write as much (or as little) information as we need. Note, however, that even

a complete set of quantum numbers, which by definition uniquely defines the physical state of

the quantum system, fixes the wave function only up to an overall phase. Bra- and ket-vectors,

accordingly, are determined by the quantum numbers only up to a phase |n〉′ = eiρ|n〉 and

〈n|′ = e−iρ〈n|. It is important not to change the implicit choice of that phase during the course

of a calculation! Observable quantities will then be independent of such choices.

The inner product allows us to define a natural map from V to its dual by inserting an

element v into the first position of the inner product. For |v〉 ∈ V the Hermitian conjugate

vector 〈v| ∈ V dual is defined by

|v〉† ≡ 〈v| ∈ V dual such that 〈v|u〉 = (v, u) for all u ∈ V. (3.10)

Since the inner product is positive definite this conjugation is a bijective map from V to V dual

(this is also true for infinite-dimensional Hilbert spaces), but it is an “anti-isomorphism” and

not an isomorphism because it is “anti-linear”

(
α|v〉+ β|w〉

)†
= α∗〈v|+ β∗〈w|. (3.11)

Linearity can be achieved by an additional complex conjugation so that V dual is isomorphic

to the complex conjugate space V ∗, while V can be identified with its Hermitian conjugate

2 In solid state physics the same distinction has to be made between the lattice Λ of atoms in a crystal and
the reciprocal lattice Λdual of wave vectors; if Λ becomes finer then the reciprocal lattice becomes coarser.
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V ∼= V † ≡ (V dual)∗. We will henceforth use these identifications and the antilinear map

|v〉 → |v〉† = 〈v| ∈ V dual, which corresponds to the equation 〈v, u〉 ≡ 〈v|u〉 = (v, u). For column

vectors |v〉 the Hermitian conjugate is the line vector 〈v| with complex conjugate entries. For

wave functions |ψ〉 = ψ(x, t) it is the complex conjugate function 〈ψ| = |ψ〉† = ψ∗(x, t).

3.2 Operator calculus

The components vi of a vector v in an arbitrary basis can be obtained by evaluation of the dual

basis vi = ei(v) = 〈ei, v〉 because ei(v) = ei(vjej) = vjei(ej) = vjδij = vi. For an orthonormal

basis (ei, ej) = δij we observe that |ei〉† = 〈ei| = 〈ei|, i.e. the Hermitian conjugate vector |ei〉†

coincide with the dual basis 〈ei| and

|v〉 = viei = |ei〉〈ei|v〉 =
∑

i

|ei〉〈ei|v〉, (3.12)

where we have chosen, for later convenience, to use Einstein’s summation convention only for

contractions of upper and lower indices. Since the identity (3.12) holds for all v we get a

representation of the unit matrix, or identity operator1 =
∑

i

|ei〉〈ei| =
∑

i

Pi with Pi = |ei〉〈ei|. (3.13)

Orthonormal bases are thus characterized by the two equations

〈ei|ej〉 = δij orthonormality, (3.14)
∑

i

|ei〉〈ei| = 1 completeness. (3.15)

Pi is the (orthogonal) projector onto the direction of the basis vector |ei〉. As an example we

consider the standard basis of C3,

e1 =

(
1
0
0

)
, e2 =

(
0
1
0

)
, e3 =

(
0
0
1

)
. (3.16)

The orthogonality relation reads

〈e1|e1〉 = (1, 0, 0) ·
(

1
0
0

)
= 1, 〈e1|e2〉 = (1, 0, 0) ·

(
0
1
0

)
= 0, . . . (3.17)

and the projectors

|e1〉〈e1| =




1
0
0


 · (1, 0, 0) =




1 0 0
0 0 0
0 0 0


, |e2〉〈e2| =




0 0 0
0 1 0
0 0 0


, |e3〉〈e3| =




0 0 0
0 0 0
0 0 1


 (3.18)
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add up to the completeness relation

∑

i

|ei〉〈ei| = 1. (3.19)

While the product 〈v|w〉 of a covector and a vector yields a complex number, the tensor product

|w〉〈v| is a matrix of rank 1 that is sometimes called dyadic product.

For a linear transformation v → Av the components Aij of the matrix representation

vi → Aijv
j can be obtained by sandwiching the operator A between basis elements. For

an orthonormal basis 〈ei|ej〉 = δij we can use the Kronecker–δ to pull all indices down so that

the entries (elements) of the matrix Aij = ei(Aej) in Dirac notation become

Aij = 〈ei|A|ej〉. (3.20)

In quantum mechanics the numbers 〈v|A|w〉 are hence called matrix elements even for arbi-

trary bra- and ket-vectors v and w. The normalized diagonal term

〈A〉v =
〈v|A|v〉
〈v|v〉 (3.21)

is called expectation value of the operator A in the state |v〉, where the denominator can

obviously be omitted if and only if |v〉 is normalized 〈v|v〉 = 1.

Hermitian conjugation. If we apply a linear transformation v → Av to a vector v and

evaluate a covector w, i.e. multiply with w from the left, the resulting number is

〈w,Av〉 = wiA
i
j v

j = 〈w| · A|v〉. (3.22)

But we might just as well first perform the sum over i in wiA
i
j and then multiply the resulting

bra-vector 〈w|A, with the ket-vector |v〉 from the right. In the language of linear algebra this

defines the transposed map AT on the dual space V dual, which can be written as a matrix

multiplication wj → (AT )j
iwi with the transposed matrix AT . Using the non-degenerate inner

product we can define the Hermitian conjugate A† of the linear operator A by

(A†v, w) ≡ (v, Aw) ∀ v, w ∈ V. (3.23)

Using (ϕ, ψ) = (ψ, ϕ)∗ we obtain the matrix elements

〈v|A|w〉 = 〈A†v|w〉 = (〈w|A†v〉)∗ ⇒ 〈w|A†|v〉 = 〈v|A|w〉∗. (3.24)

For an orthonormal basis |ei〉 the compoments become

(A†)ij = 〈ei|A†|ej〉 = 〈ej|A|ei〉∗ = A∗
ji, (3.25)
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so that Hermitian conjugation is transposition combined with complex conjugation of the matrix

elements. Like transposition, Hermitian conjugation reverses the order of a product of matrices

(AB)† = B†A† and

(α〈ϕ|A . . . B|ψ〉)∗ = (α〈ϕ|A . . . B|ψ〉)† = α∗〈ψ|B† . . . A†|ϕ〉 (3.26)

because Hermitian conjugation of a number is just complex conjugation.

An operator is called self-adjoint or symmetric or Hermitian3 if A† = A. Consider a nor-

malized eigenvector |ai〉 for the eigenvalue ai of a self-adjoint operator

A|ai〉 = ai|ai〉 ⇒ 〈ai|A† = 〈ai|a∗i , ai = 〈ai| · (A|ai〉) = 〈ai| · (A†|ai〉) = (〈ai|A†) · |ai〉 = a∗i ,

(3.27)

i.e. all eigenvalues are real, and hence

0 = 〈ai|(A† − A)|aj〉 = 〈ai|A† · |aj〉 − 〈ai| · A|aj〉 = (ai − aj)〈ai|aj〉 (3.28)

so that eigenvectors for different eigenvalues ai 6= aj are orthogonal 〈ai|aj〉 = 0.

Self-adjoint operators and spectral representation. The importance of self-adjoint

operators A = A† in quantum mechanics comes from the fact that they are exactly the operators

for which all expectation values are real,4

(〈ϕ|A|ψ〉)∗ = 〈ψ|A†|ϕ〉 = 〈ψ|A|ϕ〉 ⇒ 〈ψ|A|ψ〉 ∈ R, (3.32)

as we require for observable quantities. Hermitian matrices can be diagonalized and have

real eigenvalues. Eigenvectors for different eigenvalues are orthogonal. In case of degenerate

eigenvalues, i.e. eigenvalues with multiplicity greater than 1, a basis of eigenvectors for the

3 For infinite-dimensional Hilbert spaces there is a subtle difference between the definitions of symmetric
and self-adjoint operators, respectively, because due to convergence issues an operator may only be defined on
a dense subset of H (see below). Hermitian is used synonymical with symmetric by most authors.

4 To see that Hermiticity is also necessary for real expectation values we bring A to Jordan normal form
and assume that there is a non-trivial block A =

(
a 1
0 a

)
with basis vectors |e1〉 =

(
1
0

)
and |e2〉 =

(
0
1

)
, i.e.

A|e1〉 = a|e1〉, A|e2〉 = |e1〉+ a|e2〉. (3.29)

Reality of (ai, Aai) = ai(ai, ai) = ai||ai||2 for eigenvectors |ai〉 implies reality of all eigenvalues ai. For |ψ〉 =
α|e1〉+ β|e2〉 we find

〈ψ|A|ψ〉 = (α∗〈e1|+ β∗〈e2|) ((αa+ β)|e1〉+ β a|e2〉)
= a

(
|α|2||e1||2 + |β|2||e2||2 + α∗β(e1, e2) + αβ∗(e2, e1)

)
+ |β|2(e2, e1) + α∗β||e1||2 (3.30)

which cannot be real for all α if β 6= 0. Real expectation values hence imply diagonalizability. It remains to
show that eigenvectors for different eigenvalues are orthogonal. We consider |ϕ〉 = α|ai〉+ β|aj〉 and compute

〈ϕ|A|ϕ〉 = (α∗〈ai|+ β∗〈aj |) (ai α|ai〉+ aj β|aj〉 = real + aj(α
∗β(ai, aj)) + ai(α

∗β(ai, aj))
∗, (3.31)

which cannot be real for ai 6= aj and arbitrary α, β unless (ai, aj) = 0. We conclude that a matrix A with real
expectation values is diagonalizable with real eigenvalues and orthogonal eigenspaces, and hence is Hermitian.
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respective eigenvalue can be orthonormalized by the Gram-Schmidt algorithm and the

resulting vectors have to be distinguished by additional “quantum numbers” li in |ai, li〉 with li =

1, . . . , Ni. The li have to be summed over in the completeness relation. For Hermitian matrices

we thus can construct an orthonormal basis of eigenvectors A|ai〉 = ai|ai〉 with 〈ai|aj〉 = δij,

or, more precisely,

A|ai, li〉 = ai|ai, li〉 with 〈ai, li|aj, kj〉 = δijδlikj
(3.33)

in the degenerate case. Using the completeness relation this implies the spectral representation

A =
∑

i,li

A |ai, li〉〈ai, li| =
∑

i,li

ai |ai, li〉〈ai, li| =
∑

i

ai Pi, (3.34)

where

Pi =

Ni∑

li=1

|ai, li〉〈ai, li| (3.35)

is the orthogonal projector onto the eigenspace for the eigenvalue ai.

Unitary, traces and projection operators. We have seen that Hermitian matrices

provide us with orthonormal bases of eigenvectors. A matrix U is called unitary if U †U =

UU † = 1 or U † = U−1. Different orthonormal bases {|ai〉} and {|bj〉} are related by a unitary

transformation Uij = 〈ai|bj〉 because

|bj〉 = (
∑
i

|ai〉〈ai|) |bj〉 =
∑
i

|ai〉Uij, ⇒ Uij(U
†)jk =

∑

j

〈ai|bj〉 · 〈bj|ak〉 = 〈ai|1|ak〉 = δik,

(3.36)

where we used the completeness relation. In other words, the inverse change of basis is given

by 〈bj|ak〉 = 〈ak|bj〉∗ = (Ukj)
∗ = (U †)jk = U−1

jk .

Projection operators in quantum mechanics are always meant to be orthogonal projec-

tions and they are characterized by the two conditions

P = P † and P 2 = P. (3.37)

It follows from our previous considerations that projectors satisfy these equations. In turn,

Hermiticity P = P † implies the existence of a spectral representation Pi =
∑

i λi|λi〉〈λi| and

P 2 = P implies λ2
i = λi so that all eigenvalues are either 0 or 1. Hence Pi =

∑′ |λi〉〈λi| is

a sum of projectors |λi〉〈λi| onto one-dimensional subspaces spanned by |λi〉 where the sum
∑′ extends over the subset of basis vectors with eigenvalue 1. While the eigenvectors for a

degenerate eigenvalue ai of a matrix A in the spectral representation (3.34) are only defined up

to a unitary change of basis of the respective eigenspace, the projector Pi =
∑

li
|ai, li〉〈ai, li|

onto such an eigenspace is independent of the choice of the orthonormal eigenvectors |ai, li〉.

The axioms of quantum mechanics imply that measurements of the observable corresponding

to a self-adjoint operator A yield the eigenvalue ai with probability P(ai) = |〈ψ|ai〉|2 if the state
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of the system is described by the normalized vector |ψ〉 ∈ H. The resuling expectation value,

i.e. the mean value 〈A〉 =
∑
aiP(ai) of the measured values weighted by their probabilities, is

in accord with the definition (3.21) because the spectral representation of A implies

〈ψ|A|ψ〉 = 〈ψ|
∑

i

ai|ai〉〈ai| |ψ〉 =
∑

ai |〈ψ|ai〉|2. (3.38)

The trace of a matrix is the sum of its diagonal elements and can be written as

trA =
∑

i

Aii =
∑

i

〈ei|A|ei〉 (3.39)

for any orthonormal basis |ei〉. An important property of traces is their invariance under cyclic

permutations,

tr(AB) = tr(BA) ⇒ tr(A1A2 . . . Ar−1Ar) = tr(Ar A1A2 . . . Ar−1). (3.40)

Probabilities and expectation values can be written in terms of traces and projection operators,

which often simplifies calculations. Insertion of the definition Pi = |ai〉〈ai| shows that

〈ai|A|ai〉 = tr(PiA) = tr(APi), ⇒ P(ai) = 〈ψ|Pi|ψ〉 = tr(PiPψ), (3.41)

where Pψ = |ψ〉〈ψ| projects onto the one-dimensional space spanned by the normalized state

vector |ψ〉. The second formula P(ai) = tr(PiPψ) also holds for the probability of the mea-

surement of the degenerate eigenvalue ai if we use the projector Pi =
∑

li
|ai, li〉〈ai, li| onto the

complete eigenspace.

Commutators and anti-commutators. The commutator [A,B] of two operators is

defined as the difference between the two compositions AB ≡ A ◦B and BA ≡ B ◦ A,

[A,B] = AB −BA ⇒ [A,B] = −[B,A]. (3.42)

In the finite dimensional case it is just the difference between the matrix products AB and BA.

We will often be in the situation that we know the commutators among a basic set A,B, . . . of

operators, like the position operator Xi = xi and the momentum operator Pi = ~

i
∂
∂xi

[Xi, Pj] = i~δij. (3.43)

This can be verified by application to an arbitrary wave function

[Xi, Pj]|ψ〉 = (XiPj−PjXi)ψ(x) = ~

i
(xi∂jψ(x)−∂j(xiψ(x)) = −~

i
(∂jxi)ψ(x) = i~δij|ψ〉. (3.44)

If we want to compute commutators for composite operators like the Hamilton operator H =
1

2m
P 2 + . . . one should then always use the identities

[A,BC] = [A,B]C +B[A,C], [AB,C] = [A,C]B + A[B,C] (3.45)
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rather than inserting and evaluating all the terms on a wave function and trying to recombine

the result to an operator expression. (3.45) is easily verified by expanding the definitions

[A,BC] = ABC −BCA, [A,B]C +B[A,C] = (AB −BA)C +B(AC − CA) (3.46)

and similarly for [AB,C]. These identities can be memorized as the Leibniz rule for the action

of [A, ∗] on a product BC and a similar product rule for the action of [∗, C] on the product

AB “from the right”. This “Leibniz rule” also holds for the action of [A, ∗] on a commutator

[B,C] and for the action of [∗, C] on [A,B]

[A, [B,C]] = [[A,B], C] + [B, [A,C]], [[A,B], C] = [[A,C], B] + [A, [B,C]]. (3.47)

Each of these equations is equivalent to the Jacobi identity

[A, [B,C]] + [C, [A,B]] + [B, [C,A]] = 0, (3.48)

which states the sum over the cyclic permutations of ABC in a double commutator is zero.

This is again easily verified by expanding all terms

A(BC−CB)−(BC−CB)A+B(CA−AC)−(CA−AC)B+C(AB−BA)−(AB−BA)C = 0.

(3.49)

The equivalence of the “product rule” (3.47) with the Jacobi identity follows from the antisym-

metry of the commutator [A,B] = −[B,A].

Similarly to the commutator we can define the anti-commutator

{A,B} = AB +BA ⇒ {A,B} = {B,A}. (3.50)

For two Hermitian operators A = A† and B = B† the commutator is anti-Hermitian and the

anti-commutator is Hermitian,

[A,B]† = (AB −BA)† = B†A† − A†B† = BA− AB = −[A,B], (3.51)

{A,B}† = (AB +BA)† = B†A† + A†B† = BA+ AB = {A,B}. (3.52)

Since iC is Hermitian if C is anti-Hermitian the decomposition

AB = 1
2
(AB +BA) + 1

2
(AB −BA) = 1

2
{A,B}+ 1

2
[A,B] (3.53)

of an operator product AB as a sum of a commutator and an anti-commutator corresponds to

a decomposition into real and imaginary part for products of Hermitian operators.

Complete systems of commuting operators. We show that two self-adjoint operators

A and B commute AB = BA if and only if they can be diagonalized simultaneously. Since
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diagonal matrices commute, it is clear that [A,B] = 0 if there exists a basis such that both

operators are diagonal. In order to proof the “only if” we assume that [A,B] = 0 and that A

has been diagonalized. Then B must be block-diagonal because

0 = 〈ai|[A,B]|aj〉 = 〈ai|AB −BA|aj〉 = (ai − aj)〈ai|B|aj〉 (3.54)

so that all matrix elements of B between states with different eigenvalues of A vanish. B can

now be diagonalized within each block, by a change of basis that does not mix eigenstates for

different eigenvalues of A and hence does not spoil the diagonalization of A. It is clear from the

proof that the proposition extends to an arbitrary number of mutually commuting operators.

Moreover, we see that any set of mutually commuting operators can be extended to a complete

set in the sense that the simultaneous diagonalization uniquely fixes the common normalized

eigenvectors up to a phase (just add an operator that lifts the remaining degeneracies within

the common eigenspaces of the original set). The set of all eigenvalues (ai, bj, ck, . . .) of such a

complete system A,B,C, . . . thus completely characterizes the state |ai, bj, ck, . . .〉 of a quantum

system.

Functions of operators. If we consider the position vector ~x of a particle as a vector of

operators ~X then the potential V (X) = V (x) can be a complicated function of operators Xi.

If such a function is analytic f(x) =
∑∞

n=0 cnx
n then the corresponding function of operators

can be defined by the power series expansion

f(x) =
∑

cnx
n ⇒ f(A) =

∑
cnA

n. (3.55)

For matrices the series always converges if the radius r of convergence of the Taylor series is

infinite. If 0 < r <∞ then f(O) can be defined by analytic continuation of its matrix elements.

Of particular importance is the exponential function

eA =
∞∑

n=0

1

n!
An = lim

n→∞
(1 +

1

n
A)n, (3.56)

which usually appears if we are interested in the finite form of infinitesimal transformations.

For example, the infinitesimal time evolution of the wave function is given by the Schrödinger

equation

∂t|ψ(x, t)〉 =
1

i~
H|ψ(x, t)〉 ⇒ |ψ(x, t0 + δt)〉 = (1 +

δt

i~
H +O(δt2))|ψ(x, t0)〉 (3.57)

For a time-independent Hamiltonian H we obtain, after n infinitesimal time steps δt = (t−t0)/n
with n→∞,

|ψ(x, t)〉 = U(t− t0)|ψ(x, t0)〉, U(t− t0) = e−
i
~
(t−t0)H . (3.58)
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U(t) is called time evolution operator. It is, actually, a one-parameter family of operators

satisfying U(t1)U(t2) = U(t1 + t2) and ∂tU(t) = − i
~
HU(t) with U(0) = 1.

For operators A,B the product of exponentials is not the exponential of the sum if the

operators do not commute. The correction terms are expressed by the Baker–Campbell–

Hausdorff formula

eA eB = eA+B+ 1
2
[A,B]+ 1

12
([A,[A,B]]−[B,[A,B]])+ multiple commutators (3.59)

(for a proof consider example (1.21) in [Grau]). In many applications the double commutators

[A, [A,B]] and [B, [A,B]] vanish or are proportional to 1 so that the series terminates after

a few terms. In particular, since A and −A commute, the exponential of an anti-Hermitian

operator iA is unitary,

A = A† ⇒ (eiA)† = e−iA = (eiA)−1. (3.60)

The Hamilton operator of a quantum system has to be self-adjoint because it corresponds to the

energy, which is an observable.5 Time evolution is hence described by a unitary transformation

U(t) = U †(−t). We have already checked this in chapter 2 by showing that 〈ψ|ψ〉 is preserved

under time evolution for a nonrelativistic electron in an electromagnetic field. But the present

discussion is more general. Another important formula

eλABe−λA = B +
∞∑

n=1

λn

n!
[A,B](n) = B + λ[A,B] +

λ2

2
[A, [A,B]] + . . . (3.61)

with [A,B]1 = [A,B] and [A,B](n+1) = [A, [A,B](n)] desribes the “conjugation” UB U−1 of an

operator B by the exponential U = eλA of λA.6

Arbitrary functions of Hermitian operators can be defined via their spectral representation,

A = A† =
∑

ai |ai〉〈ai| ⇒ f(A) =
∑

f(ai) |ai〉〈ai| (3.62)

For analytic functions f this coincides with the power series (3.55), as is easily checked in a

basis where A is diagonal. The definition (3.55) only makes sense for analytic functions, but it

has the advantage that it does not require diagonalizability. With (3.62), on the other hand,

even the Heaviside step function θ(A) of an operator A makes sense.

Tensor products: If we have a quantum system that is composed of two subsystems,

whose states are described by |i〉 ∈ V1 with i = 1, . . . , I and |m〉 ∈ V2 with 1 ≤ m ≤ M , then

5 In certain contexts, like the description of particle decay, it may nevertheless be useful to consider Hamilton
operators with an imaginary part.

6 Conjugation of operators corresponds to a change of orthonormal bases |e〉 → U |e〉, for which the dual
basis transforms as 〈e| → U†〈e| = U−1〈e|.
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the states of the composite systems are superpositions of arbitrary combinations

|i,m〉 ≡ |i〉 ⊗ |m〉, 1 ≤ i ≤ I, 1 ≤ m ≤M (3.63)

of the independent states in the subsystems. The vector space V1⊗V2 describing the composite

system is called tensor product and it consists of linear combinations

|w〉 =
I∑

i=1

M∑

m=1

wim |i,m〉 ∈ V1 ⊗ V2 (3.64)

with an arbitray matrix wim of coefficients. Its dimension dim(V1 ⊗ V2) = I ·M is the product

of the dimensions of the factors V1 and V2. The Dirac notation is particularly useful for such

composite systems because we just combine the respective quantum numbers into a longer ket-

vector. It is a simple fact of linear algebra that generic vectors in a tensor product cannot be

written as a product

|w〉 =
∑

wim |i,m〉 6= |v1〉 ⊗ |v2〉 (3.65)

for any |v1〉 =
∑
ci|i〉 and |v2〉 =

∑
dm|m〉 because this is only possible if the coefficient matrix

factorizes as wim = cidm and hence has rank 1. In quantum mechanics non-product states like

(3.65) are often called entangled states. They play an important role in discussions about the

interpretation of quantum mechanics like in the EPR paradoxon (see below).

The inner product on the tensor product space is defined by

〈i,m|j, n〉 = 〈i|j〉 · 〈m|n〉 (3.66)

for product states and extended by semi-bilinearity to V1 ⊗ V2. In the product basis |i,m〉
operators on a tensor product space also have double-indices

|i,m〉 → Oi,m;j,n |j, n〉 (3.67)

Such operators will often correspond to the combined action of some operator O(1) on V1 and

O(2) on V2, like for example the rotation of the position vector of the first particle and the

simultaneous rotation of the position vector of the second particle for rotating the complete

system. In that situation the trace of the product operator factorizes into a product of traces

Oi,m;j,n = O(1)
ij ⊗O(2)

mn ⇒ trOi,m;j,n =
∑
im

Oi,m;i,m =
∑
i

O(1)
ii

∑
m

O(2)
mm = trO(1) · trO(2). (3.68)

As an example consider O(1) =

(
a b
c d

)
and O(2) =

(
e f
g h

)
for V1 = V2 = C2. In the basis

e1 = |11〉, e2 = |12〉, e3 = |21〉 and e4 = |22〉 of the product space the product operator

corresponds to the insertion of the second matrix into the first,

(
a b
c d

)
⊗
(
e f
g h

)
=

(
aO(2) bO(2)

cO(2) dO(2)

)
=




ae af be bf
ag ah bg bh
ce cf de df
cg ch dg dh


 . (3.69)

The Dirac notation is obviously more transparent than this. It is easy to verify (3.68) for (3.69).
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3.3 Operators and Hilbert spaces

Recall that the normalizable solutions ψ(x, t) of the Schrödinger equation form an inner product

space, i.e. a vector space with a positive definite semi-bilinear product

〈ψ|ϕ〉 =

∫
d3xψ∗(x, t)ϕ(x, t). (3.70)

Inner product spaces are also called pre-Hilbert spaces. Such a space is called Hilbert space if

it is complete with respect to the norm

||ψ|| =
√
〈ψ|ψ〉, (3.71)

i.e. if every Cauchy sequence converges. Cauchy sequences are sequences ψn with the property

that for every positive number ε there exists an integer N(ε) with

||ψm − ψn|| < ε ∀m,n > N(ε). (3.72)

Pre-Hilbert spaces can be turned into Hilbert spaces by a standard procedure called completion,

which amounts to adding the missing limits. The standard Hilbert space of quantum mechanics

is the space of square integrable functions called

L2(R3). (3.73)

The letter L stands for Lesbeques integration, which has to be used because Riemann’s definition

of integration only works for a restricted class of square-integrable functions
∫
|ψ2| < ∞ that

is not complete and the Lesbeques integral can be regarded as the result of the completion.7 A

Hilbert space basis is a set of vectors |ei〉 with some (possibly not countable) index set I such

that every vector |ψ〉 ∈ H can be written as a convergent infinite sum

|ψ〉 =
∞∑

n=1

cn|ein〉 (3.74)

for a sequence cn of coefficients and a sequence in of indices i ∈ I and hence of basis vectors

|ein〉 taken from the complete set of basis elements |ei〉. A Hilbert space is called separable if

there exists a countable basis, i.e. if we can take the index set to be I = N. All Hilbert spaces

that we need in this lecture will be separable.

7 For example, the integral of the function IQ(x) that is 1 for rational numbers and 0 for irrational numbers
x is 0 for Lesbeques integration, because Q is countable so that IQ is the limit of a Cauchy sequence of function
with only finitely many values different from 0. But the Riemann integral does not exist.
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3.3.1 Inequalities

In this section we derive three inequalities that hold in any Hilbert space. Let us denote the

vectors as f, g, h, . . . ∈ H. The orthogonal projection of f onto g is the vector |g〉 〈g|f〉〈g|g〉 with the

projection vector

|h〉 = |f〉 − |g〉〈g|f〉〈g|g〉 (3.75)

orthogonal to |g〉 since 〈g|h〉 = 0. Now we use the defining equation of |h〉 to obtain the

Pythagorean theorem

‖f‖2 = 〈f |f〉 =

(
〈h|+ 〈g|〈g|f〉〈g|g〉

)(
|h〉+ |g〉〈g|f〉〈g|g〉

)
= ‖h‖2 +

|〈g|f〉|2
〈g|g〉 (3.76)

Since ‖h‖2 ≥ 0 we see that:

‖f‖2 ≥ |〈g|f〉|
2

‖g‖2 (3.77)

and we obtain the Schwartz inequality

‖f‖‖g‖ ≥ |〈g|f〉| (3.78)

which will later be used in the derivation of Heisenberg’s uncertainty relation.

More generally, we can consider a set g1, . . . , gn of orthonormal vectors 〈gi, gj〉 = δij and

write f as a sum of orthogonal projections |gi〉〈gi|f〉 and the difference vector

|h〉 = |f〉 −
n∑

i=1

|gi〉〈gi|f〉, (3.79)

which is orthogonal to the linear subspace spanned by the |gi〉. The Pytagorean theorem thus

becomes

||f ||2 =
n∑

i=1

|〈gi|f〉|2 + ||h||2 (3.80)

and the Bessel inequality

||f ||2 ≥
n∑

i=1

|〈gi|f〉|2 (3.81)

follows from positivity of ||h||2. For a Hilbert space basis gi, i ∈ N the norm of h thus has to

converge to 0 monotonously from above for n→∞.

The norm of |f〉+ |g〉 is

‖f + g‖2 = 〈f + g|f + g〉 = ‖f‖2 + ‖g‖2 + 〈f |g〉+ 〈g|f〉 (3.82)

Since we can write the last two terms as

〈f |g〉+ 〈g|f〉 = 〈f |g〉+ (〈f |g〉)∗ = 2Re〈f |g〉 ≤ 2|Re〈f |g〉| ≤ 2|〈f |g〉| (3.83)
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we can use the Schwartz inequality in this relation and obtain

‖f + g‖2 ≤ ‖f‖2 + ‖g‖2 + 2||f || ||g|| (3.84)

whose square root yields the triangle inequality

‖f + g‖ ≤ ‖f‖+ ‖g‖, (3.85)

which shows that the definition (3.71) of the norm in inner product spaces makes sense.

3.3.2 Position and momentum representations

As compared to matrices in finite-dimensional vector spaces we will encounter two kinds of

complications for operators in Hilbert spaces. Consider, for example, the Hamilton operator

for the potential well. For negative energies we obtained a discrete spectrum of bound states.

But for free electrons there are no normalizable energy eigenstates and normalizable wave

packets are superpositions of states with a continuum of energy values. Hence, the spectrum

of self-adjoint operators will, in general, consist of a discrete part and a continuum without

normalizable eigenstates. Moreover, the eigenvalues may not even be bounded, which leads to

additional complications.

As an example we first consider the momentum operator P = ~

i
∂
∂x

. Working, for simplicity,

in one dimension we define

|px〉 =
1√
2π~

e
i
~
px, P |px〉 = p|px〉, (3.86)

where the argument x of the wave function is indicated as a subscript of the eigenvalue p if

necessary. The normalization of the momentum eigenstates |p〉 have been chosen such that

〈p′|p〉 =
1

2π~

∫
dx e

i
~
(p−p′)x = δ(p′ − p), (3.87)

where we used
∫
dx eikx = 2πδ(k). In three dimensions |~p〉 = |p1〉 ⊗ |p2〉 ⊗ |p3〉 so that

|~p
~x
〉 =

1

(2π~)3/2
e

i
~
~p~x and 〈~p ′|~p〉 = δ3(~p ′ − ~p). (3.88)

The product

〈p|ψ〉 =
1√
2π~

∫
dx e−

i
~
pxψ(x) = ψ̃(p) (3.89)

yields the Fourier transform8 of the wave function and the validity of the formula for the Fourier

representation
∫
dp |px〉〈p|ψ〉 =

1√
2π~

∫
dp e+ i

~
px〈p|ψ〉 =

1√
2π~

∫
dp e+ i

~
pxψ̃(p) = ψ(x), (3.90)

8 The extra factor 1/
√

~ in the normalization, as compared to the conventions in section 2, is due the
rescaled argument p = ~k of the Fourier transform.
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which holds for all ψ ∈ L2(R), implies the spectral representation

∫
dp |px〉〈px′| = 1

x,x′ = δ(x− x′), (3.91)

but now with the sum over eigenvalues with normalizable eigenstates replaced by an integral

over the continuum of eigenvalues with non-normalizable eigenfunctions. The spectral repre-

sentation thus becomes

P = P1 =

∫
dpP |p〉〈p| =

∫
dp p |p〉〈p|. (3.92)

For more general self-adjoint operators like the Hamilton operator of the potential well we

hence anticipate a spectral representation that will combine a sum over bound state energies

with an integral over continuum states.

Similarly to the momentum operator we can now introduce a basis of eigenstates for the

position operator X, where we would like to have

X|x〉 = x|x〉 with

∫
dx |x〉〈x| = 1 and 〈x|x′〉 = δ(x− x′). (3.93)

But what are the wave functions ψx(x
′) corresonding to these states? Since X|x〉 = x|x〉 the

wave function ψx(x
′) of the state |x

x′〉 should vanish for x′ 6= x and hence be proportional to

δ(x′ − x), i.e. ψx(x
′) = cδ(x′ − x). This ansatz satisfies (3.93) if we choose the prefactor c = 1

so that ψx(x
′) = 〈x|x′〉. This should not come as a surprise if we recall from section 3.1 that

we can obtain the components vi of a vector v = viei by evaluation of the dual basis vectors

vi = ei(v) and that the bra-vectors obtained by Hermitian conjugation of an orthonormal basis

provide the dual basis. Hence, for an arbitrary state |ψ〉 ∈ H the products

ψ(x) = 〈x|ψ〉, ψ(p) = 〈p|ψ〉 (3.94)

are the wave functions ψ(x) in position space and ψ(p) in momentum space, respectively.

We hence regard |ψ〉 ∈ H as an abstract vector in Hilbert space independently of any

choice of basis and write 〈x|ψ〉 = ψ(x) for the position space wave function and 〈p|ψ〉 = ψ(p) for

the wave function in the momentum space basis |p〉. The “unitary matrix” 〈x|p〉 for the change

of basis from position space to momentum space |p〉 =
∫
dx |x〉〈x|p〉 and its inverse 〈p|x〉 are

〈x|p〉 =
1√
2π~

e
ipx
~ , 〈p|x〉 =

1√
2π~

e−
ipx
~ . (3.95)

Since the spectra of eigenvalues of P and X and the corresponding “matrix indices” p and x

are continuous, matrix multiplication amounts to integration and the change of basis becomes

ψ(p) = 〈p|ψ〉 = 〈p|1|ψ〉 = 〈p|
(∫
dx |x〉〈x|

)
|ψ〉 =

∫
dx〈p|x〉 ψ(x), (3.96)
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which is nothing but a Fourier transformation.

The basis independence of the integrated probability density ||ψ||2 = 〈ψ|ψ〉
∫
dx |ψ(x)|2 =

∫
dx 〈ψ|x〉〈x|ψ〉 =

∫
dx 〈ψ|

∫
dp |p〉〈p| |x〉〈x|

∫
dp′ |p′〉〈p′| |ψ〉

=
∫
dp
∫
dp′ 〈ψ|p〉

∫
dx 〈p|x〉〈x|p′〉 〈p′|ψ〉 =

∫
dp 〈ψ|p〉〈p|ψ〉 =

∫
dp |ψ(p)|2 (3.97)

expresses the unitarity
∫
dp 〈p|x〉〈x|p′〉 = δ(p− p′) of the matrix 〈x|p〉 of the change of basis. In

Fourier analysis (3.97) is called Parseval’s equation.

The matrix elements of X and P are now easily evaluated in position space

〈x′|X|x〉 = x δ(x− x′), 〈x′|P |x〉 =
~

i

∂

∂x
δ(x− x′), (3.98)

and in momentum space

〈p′|P |p〉 = p δ(p− p′), 〈p′|X|p〉 = −~

i

∂

∂p
δ(p− p′), (3.99)

which shows that X = −~

i
∂
∂p

and P = p in momentum space. The generalizations of these

formulas to three dimensions are obvious.

3.3.3 Convergence, norms and spectra of Hilbert space operators

Having gained some intuition about spectra and eigenbases of Hilbert space operators we are

now turning to general definitions and results. Already for the case of a discrete spectrum,

like in the Harmonic oscillator for which eletrons are always bound, it is clear that the spectral

decompositon of the identity 1̂ = lim
n→∞

n∑

i=1

|ei〉〈ei| (3.100)

requires some notion of convergence for sequences of operators in order to be able to define

infinite sums as limits of finite sums.

For sequences of Hilbert space vectors there are, in fact, two different notions of convergence:

The obvious one, which we used for the definition of completeness, is called strong convergence:

|ψn〉 −→ |ψ〉 if lim
n→∞

||ψn − ψ|| = 0 strong limit. (3.101)

A second notion of convergence, which is called weak because it is always implied by strong

convergence (see section 4.8 of [Kreyszig]), only requires that all products with bra-vectors

converge:

|ψn〉 weak−→ |ψ〉 if lim
n→∞
〈ϕ|ψn〉 = 〈ϕ|ψ〉 ∀ 〈ϕ| ∈ Hdual weak limit. (3.102)
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An example of a sequence that weakly converges to 0 but that is divergent in the strong sense

is the sequence {en} of basis vectors of a Hilbert space basis: A sequence pointing into the

infinitely many directions of a Hilbert space with constant length 1 does not converge (in the

norm) because the distance ||en − em|| between any two elements of such a sequence is always√
2. But the scalar products 〈ϕ|en〉, which are the expansion coefficients of 〈ϕ| in the basis

{〈en|}, have to converge to 0 because of Bessels inequality.

Convergence of operators: For us, Hilbert space operators are always meant to be linear

O(α|ϕ〉+ β|ψ〉) = αO|ϕ〉+ βO|ψ〉 ∈ H. (3.103)

These operators are important in quantum mechanics because they correspond to observables.

We now have two options: Every real measurement has a bounded set of possible results. For

example, we can never measure the position of a particle, say, behind the Andromeda nebula,

because our particle detector has a finite size. We could hence simply restrict the concept of an

observable to bounded operators, which are quite well-behaved. But, like for wave packets and

plane waves, it is much more convenient to work with unbounded operators like the position

operator X rather than with more realistic approximations of this operators.

We hence first define the concept of the norm of an operator, which we can think of as the

modulus |λ| of the largest eigenvalue λ:

‖O‖ = supp
ψ 6=0

(‖Oψ‖
‖ψ‖

)
. (3.104)

In this definition we have to use the suppremum instead of the maximum because in the infinite-

dimensional case the maximum may not exist and the suppremum (which is the smallest upper

bound) may be infinite 0 ≤ ‖O‖ ≤ ∞. Considering a sequence ψn of localized waves packets

for electrons whose distance from the earth increases, say, linearly with n, it is clear that X is

unbounded ||X|| =∞, and similarly one can show that the momentum P is also unbounded.

An operator is called bounded if ||O|| < ∞. Bounded operators O : V → W can, in fact,

be defined for any normed spaces V and W . For two such operators we can consider linear

combinations defined by

(αO1 + βO2)|ψ〉 = αO1|ψ〉+ βO2|ψ〉 ∈ W for |ψ〉 ∈ V, (3.105)

so that the set of all bounded operators B(V,W ) again forms a vector space. With the operator

norm defined by (3.104) the normed space B(V,W ) is complete and hence a Banach space. In

this statement we refer to the strongest notion of convergens, which is called uniform conver-

gence or convergence in the norm. For operators there are, however, even two different weaker

notions of convergence: A sequence of operators On : V → W is said to be:
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lim
n→∞

‖On −O‖ = 0, (3.106)� strongly convergent if (Onψ) converges strongly in W for every ψ ∈ V , i.e.

lim
n→∞

‖Onψ −Oψ‖ = 0 ∀|ψ〉 ∈ V (3.107)� weakly convergent if (Onψ) converges weakly in W for every ψ ∈ V , i.e.

lim
n→∞

|〈φ|Onψ〉 − 〈φ|Oψ〉| = 0 ∀ |ψ〉 ∈ V and ∀ 〈φ| ∈ W dual, (3.108)

where O denotes the limit operator O : V → W . The notions of strong and weak operator

convergence make perfect sense also for unbounded operators, and, moreover, On −O may be

bounded and uniformely convergent even if the operators On and O are unbounded.

Spectra and resolvents of operators. Naively we think of the spectrum of an operator

as the set of eigenvalues λ of the matrix A, which coincides with the values λ for which

Aλ = A− λ1 (3.109)

is not invertible so that detAλ = 0. In that case there exists an eigenvector |aλ〉 with

Aλ |aλ〉 = 0 ⇔ A |aλ〉 = λ |aλ〉. (3.110)

The generalization to infinite dimensions is based on this fact and defines the spectrum as the

set of complex numbers λ ∈ C for which Aλ is not invertible.

We have to take into account one further complication: For unbounded operators A it may

happen that they are only defined on a subset of the Hilbert space vectors. As an example

consider the position operator X and the wave function ψ(x) = θ(x)/
√

1 + x2 where the step

function θ(x) is 1 for x > 0 and 0 for x < 0. The integral
∫
|ψ|2 =

∫∞
0

dx
(1+x2)

= π
2

exists, but

〈ψ|X|ψ〉 =
∫∞
0

x dx
1+x2 diverges. Hence xψ(x) 6∈ H = L2(R) and we have to restrict the domain

of definition of X to a subset DX ⊂ H if we want X to be an operator with values in H.

We hence consider operators A : DA −→ H with domain of definition DA ⊆ H and assume

that DA is dense in H, which means that every vector |ψ〉 ∈ H can be obtained as a limit of a

sequence ψn ∈ DA of vectors in the domain of definition.9 We now define the resolvent Rλ, if

it exists, as the inverse of Aλ = A− λ1, i.e.

Rλ = A−1
λ (3.111)

9 For the position operator X we can take the sequence ψn(x) = θ(n− |x|) · ψ(x).
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with RλAλ = 1 on DA. The resolvent Rλ hence is a linear operator from the range of Aλ to the

domain of Aλ. It does not exist if and only if there exists a vector |ψ〉 ∈ DA with Aλ|ψ〉 = 0.

In that case |ψ〉 is an eigenvector of A with eigenvalue λ.

A complex number λ ∈ C is called a regular value if the resolvent Rλ exists as a bounded

operator and λ is called spectral value otherwise. The set of regular values is called resolvent

set ρ(A) ⊂ C and its complement σ(A) = C−ρ(A) is called spectrum of the operator A. The

spectrum σ(A) consists of three disjoint parts:� The point spectrum or discrete spectrum σp(A) is the set of values λ such that Rλ

does not exist. σp(A) is the set of eigenvalues of A (with normalizable eigenstates; this

corresponds to the bound state energies for the Hamilton operator).� The continuous spectrum σc(A) is the set of values λ such that Rλ exists and is

defined on a set which is dense is H, but is not bounded (for the Hamilton operator this

corresponds to the energies of scattering states).� The residual spectrum σr(A) is the set of λ such that Rλ exists but the domain of

definition is not dense in H.

We thus obtain a decomposition of the complex plane as a disjoint union of four sets C =

ρ(A) ∪ σp(A) ∪ σc(A) ∪ σr(A). From the definition it follows that the resolvent set is open and

one can show that the resolvent Rλ is an (operator valued) holomorphic function on ρ(A), so

that methods of complex analysis can be used in spectral theory [Reed]. In finite dimensional

cases the spectrum of a linear operator is a pure point spectrum, i.e. σc(A) = σr(A) = ∅. For

self-adjoint operators it can be shown that the residual spectrum is empty σr(A) = ∅.

3.3.4 Self-adjoint operators and spectral representation

A densely defined Hilbert space operator A is called symmetric (or Hermitian) if its domain

of definition is contained in the domain of definition of the adjoint operator10

DA ⊆ DA† and 〈Aϕ|ψ〉 = 〈ϕ|Aψ〉 ∀ϕ, ψ ∈ DA. (3.112)

A symmetric operator is called self-adjoint if DA = DA† .

The difference between symmetric and self-adjoint hence is based on the domain of def-

inition. If the domain of definition DA† of the adjoint operator A†, which is defined by

〈A†ϕ|ψ〉 = 〈ϕ|Aψ〉, is smaller than DA, then we first have to restict the definition of A to

10It can be shown that DA† consists of all vectors ϕ ∈ H for which (|〈Aψ|ϕ〉|) / (||ψ||) is (uniformly) bounded
for all ψ ∈ DA with |ψ〉 6= 0; see e.g. section VIII.1 of [Reed].
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a subset of DA, which will at the same time increase DA† . If A thus becomes (or already is) a

symmetric operator then we can ask the question whether it is possible to extend DA such that

A becomes self-adjoint. This question has been answered by a theorem first stated (for second

order differential operators) by Weyl in 1910, and generalized by John von Neumann in 1929:

Self-adjoint extension of operators: The existence of a self-adjoint extension depends on

the so-called deficiency indices n± of A, which are the dimensions of the eigenspaces N± of A†

for some fixed positive and negativ imaginary eigenvalues ±iε, respectively,

A†ψ = ±iεψ, ε > 0, (3.113)

where one may set, for example, ε = 1. Depending on these indices there are three cases:� If n+ =n−=0 then the operator A is already self-adjoint.� If n+ =n−≥1 then A is not self-adjoint but admits infinitely many self-adjoint extensions.� If n+ 6=n− then a self-adjoint extension of A does not even exist.

A detailed discussion of simple examples for these situations can be found in a paper by Bon-

neau, Faraut and Valent.11

Spectral theorem. The content of the spectral theorem is that self-adjoint operators

A are essentially multiplication operators in an appropriate eigenbasis, i.e. there exists a

decomposition of unity as a sum of projection operators with the direction of the projections

aligned with the eigenspaces of A,1 =
∑

i

Pi, A =
∑

i

ai Pi. (3.114)

In the infinite-dimensional case of self-adjoint operators in Hilbert spaces the first complication

is that the spectrum may consist of discrete and continuous parts, so that the sum has to be

generalized to an operation that can at the same time describe sums and integrals. This is

achieved by the Riemann-Stilties integral, which allows to assign different weights to different

parts of the integration intervall. Assume that µ(x) is a monotonously increasing function

with only isolated discontinuities. Then we think of the mass density given by the derivative

dµ = µ′ dx which has (positive) δ-function like concentrations at the discontinuities of µ and

the Riemann–Stiltjes integral for smooth functions can be written as

∫ b

a

f(x) dµ(x) =

∫ b

a

f(x)µ′(x) dx (3.115)

11 G. Bonneau, J. Faraut, G. Valent, Self-adjoint extensions of operators and the teaching of quantum
mechanics, Am.J.Phys. 69 (2001) 322 [http://arxiv.org/abs/quant-ph/0103153]
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where we include, by convention, the contribution of δ-functions located at the upper integration

limit ∫ b

a

f(x) dµ(x) = lim
ε→0+

∫ b+ε

a

f(x) dµ(x) (3.116)

and accordingly drop point-like contributions at the lower limit to make the whole integral

additive for intervals. The extension of the definition of the integral for non-smooth integrands

f(x) then proceeds like for the case of Riemann integration by taking limits of upper and lower

bounds. Using the methods of measure theory this can be generalized to the (Lesbeques–)

Stiltjes integral, allowing general measurable functions to be integrated.

The application of Stiltjes integration to spectral theory introduces the concept of a spectral

family {Eλ} associated with an operator A, which is the one-parameter family of sums/integrals

of the projectors for all spectral values up to a certain number λ ∈ R. At first we assume that A

is bounded, so that its spectrum is contained in an interval λ ∈ [a, b]. Eλ grows monotonically

in λ and is a family of projectors that is continuous from above, i.e. one can show [Kreyszig]

∀ν ≥ λ : Eν ≥ Eλ, (3.117)

∀λ < a : Eλ = 0, (3.118)

∀λ > b : Eλ = 1, (3.119)

lim
ν→λ+

Eν = Eλ. (3.120)

The theorem of Stone then asserts that a bounded self-adjoint operator A has the

spectral representation

A =

∫ b

a−
λ dEλ (3.121)

for a spectral family Eλ, where the Riemann–Stiltjes integral is uniformly convergent (with

respect to the operator norm). The lower limit a− indicates that we have to include the

δ-function contribution at λ = a if a is part of the discrete spectrum.

Unbounded and unitary operators.12 The spectral theorem can now be extended to

unbounded operators using the Cayley transformation to a unitary operator

U = (A− i1)(A+ i1)−1 (3.122)

where the resolvent (A+ i1)−1 exists as a bounded operator because the spectrum of A is real.

The spectral decomposition for unitary operators follows from the fact that we can de-

compose them into a commuting set of self-adjoint operators V = 1
2
(U + U †) = V † and

12 The most general family of operators for which a spectral decomposition exists are the normal operators,
defined by the equation NN† = N†N , i.e. N commutes with its adjoint, which obviously covers both the
self-adjoint and the unitary case. Normal operators can also be characterized by the fact that they are unitarily
diagonalizable.
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W = 1
2i

(U − U †) = W † which commute because

U = V +iW, UU † = U †U ⇒ V 2−i(VW−WV )+W 2 = V 2+i(VW−WV )+W 2 (3.123)

so that VW −WV = 0. Hence they have a spectral decomposition with a common spectral

family. Putting together real and imaginary part of the eigenvalues of U we find

U =

π∫

−π

eiθdEθ. (3.124)

The spectrum is located on the unit circle and the convergence of the integral is again uniform.

For unbounded operators A the Cayley transform can now be inverted with the formula

A = i(1+ U)(1− U)−1 (3.125)

and we obtain

A =
π∫

−π
tan
(
θ
2

)
dEθ =

∞∫
−∞

λ dFλ (3.126)

with the appropriate change of measure density in the spectral family. Since the spectrum can

be unbounded the Stiltjes integral is now defined in the sense of strong operator convergence.

3.4 Schrödinger, Heisenberg and interaction picture

We now return to the issue of time dependence in quantum mechanics, which we described so

far by the time dependence of states

ψ(x, t) = 〈x|ψ(t)〉 ∈ L2(R3) for t ≥ t0, (3.127)

i.e. by time-dependent vectors in Hilbert space that are determined by some initial condition

ψ(x, t0) at an initial time and by solving the Schrödinger equation for later times. Since the

map ψ(x, t0)→ ψ(x, t) is linear it defines a linear operator U(t, t0)

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 (3.128)

called time evolution operator. More precisely U(t, t0) is a family of operators depending

on two parameters, the initial time t0 and the final time t, where we can also consider t < t0

by solving the Schrödinger equation backwards in time. If we choose some orthonormal basis

|ei(t0)〉 at an initial time then |ei(t)〉 also forms an orthonormal basis at later times: The

normalization 〈ei(t)|ei(t)〉 = 〈ei(t0)|ei(t0)〉 = 1 expresses the conservation of probability, and

orthogonality at later times follows from the general fact that conservation of norms implies

conservation of scalar products: Since

||e1 + e2||2 = 〈e1 + e2|e1 + e2〉 = ||e1||2 + ||e2||2 + 〈e1|e2〉+ 〈e2|e1〉
||e1 + ie2||2 = 〈e1 + ie2|e1 + ie2〉 = ||e1||2 + ||e2||2 + i〈e1|e2〉 − i〈e2|e1〉.

(3.129)



CHAPTER 3. FORMALISM AND INTERPRETATION 61

the scalar product 〈e1|e2〉 can be reconstructed from the norm by solving the equations (3.129)

for 〈e1|e2〉 and 〈e2|e1〉, which become complex conjugates of one another because their sum

is real and their difference imaginary. We conclude that orthonormal bases stay orthonormal

(and complete) during time evolution, so that the time evolution operator U(t, t0) amounts to

a change of basis and hence is a unitary operator U † = U−1.

Inserting the definition (3.128) into the Schrödinger equation

i~
∂

∂t
|ψ(t)〉 = H|ψ(t)〉 (3.130)

and using ∂
∂t
|ψ(t0)〉 = 0 we obtain

i~

(
∂

∂t
U

)
|ψ(t0)〉 = HU |ψ(t0)〉. (3.131)

Since this relation has to hold for all |ψ(t0)〉 it implies the operator differential equation

i~
∂U

∂t
= HU. (3.132)

If the Hamiltonian does not explicitly depend on time this equation can be solved formally and

we obtain

U(t, t0) = U(t− t0) = e−
i
~
H(t−t0), (3.133)

which only depends on the time difference t− t0.

The Heisenberg picture. With the time evolution operator we can now write expectation

values of operators as

〈A〉 = 〈ψ(t)|A|ψ(t)〉 = 〈ψ(t0)|U †AU |ψ(t0)〉
= 〈ψ(t0)|AH |ψ(t0)〉 with AH(t) = U †(t)AU(t) (3.134)

where we assume that A does not explicitly depend on time.

So far we discussed quantum mechanics in terms of the so-called Schrödinger picture, in

which the time dependence of the system is governed by the Schrödinger equation for a time

dependent wave function and operators are time independent, at least if the apparatus is not

moved and if there are no other external sources of time dependence,

|ψS(t)〉 ≡ |ψ(t)〉, AS ≡ A. (3.135)

But since all observable quantities in quantum mechanics can be expressed in terms of expec-

tation values, eq. (3.134) shows that we can take a different point of view and interpret the

time evolution as acting on the operators according to

AH(t) = U †(t, t0)A(t0)U(t, t0) (3.136)
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while the states do not change

|ψH(t)〉 = |ψ(t0)〉. (3.137)

The description of quantum mechanics in terms of AH(t) and |ψH〉 is called Heisenberg pic-

ture, whereas the descrition in terms of AS and |ψS(t)〉 is called Schrödinger picture and our

definitions imply

〈A〉 = 〈ψS(t)|AS|ψS(t)〉 = 〈ψH |AH(t)|ψH〉 (3.138)

where the two pictures are related by a unitary transformation

|ψS(t)〉 = U |ψH〉 , |ψH〉 = U †|ψS(t)〉 (3.139)

AS = UAH(t)U † , AH(t) = U †ASU (3.140)

with U = e−
i
~
H(t−t0) if H is time-independent.

While the Schrödinger picture seems to be more intuitive at first glance, the Heisenberg

picture shows a formal similarity with classical mechanics: Since ∂tU = − i
~
HU and ∂tU

† =
i
~
U †H the infinitesimal time evolution of the Heisenberg operators is

∂AH
∂t

=
∂U †

∂t
AS U + U †

≡0︷︸︸︷
∂AS
∂t

U + U †AS
∂U

∂t
(3.141)

= i
~
(U †HSASU − U †ASHSU) (3.142)

= i
~

(
(U †HSU)(U †ASU)− (U †ASU)(U †HSU)

)
, (3.143)

where we inserted 1 = UU †. We thus obtain Heisenberg’s equation of motion

∂AH
∂t

=
i

~
[HH , AH ], (3.144)

which has a formal similarity to Hamilton’s equations of motion ḟ = {H, f}PB for phase space

functions f(p, q), or ∂pi

∂t
= {H, pi}PB = (−∂H

∂qi
) and ∂qi

∂t
= {H, qi}PB = ∂H

∂pi
for coordinates and

momenta; {· · · }PB denotes the Poisson bracket. This analogy is the starting point for the

general quantization rules of Hamiltonian systems.

The interaction picture (or Dirac picture) combines elements of the Schrödinger picture

and of the Heisenberg picture so that states and operators both become time dependent. It is

the starting point for approximation techniques and useful if we can write the Hamitonian as

a sum of a simple (exactly solvable) time-independent part H0 and a (small) time-dependent

perturbation V (t),

H(t) = H0 + V (t). (3.145)

The idea is to put the simple part of the time evolution into the time dependence of opera-

tors AI(t), thereby obtaining a modified Schrödinger equation for the time evolution of states,
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which only leads to a relatively small time dependence of |ψI(t)〉 due to a possibly compli-

cated but weak interaction term V (t). The interaction picture is thus defined by the unitary

transformation

|ψI(t)〉 = U †
0(t)|ψS(t)〉, AI(t) = U †

0(t)AS U0(t) (3.146)

with

U0(t) = e−
i
~
(t−t0)H0 (3.147)

so that

〈A〉 = 〈ψS(t)|AS|ψS(t)〉 = 〈ψI(t)|AI(t)|ψI(t)〉 (3.148)

The Schrödinger equation in the interaction picture is now obtained by evaluating

i~
∂

∂t
|ψI(t)〉 = i~

∂

∂t

(
e

i
~
H0(t−t0)|ψS(t)〉

)
= −U †

0(t)H0|ψS(t)〉+ i~U †
0(t)

∂

∂t
|ψS(t)〉 (3.149)

= U †
0(t) (−H0 +H0 + V (t)) |ψS(t)〉 = U †

0(t)V (t)U0(t) U
†
0(t)|ψS(t)〉, (3.150)

where we used the Schrödinger equation ∂t|ψS(t)〉 = − i
~
(H0 + V (t))|ψS(t)〉, so that

i~
∂

∂t
|ψI(t)〉 = VI(t)|ψI(t)〉 (3.151)

Replacing H by H0 and U by U0 in the derivation of Heisenberg’s equation of motion we obtain

the operator equation of motion

∂AI(t)

∂t
=
i

~
[H0,I(t), AI(t)] (3.152)

in the interaction picture. The time evolution operator UI(t) = U †
0(t)U(t)U0(t) in the interaction

picture desribes the time evolution of the states |ψI(t)〉 = UI(t, t0)|ψI(t0)〉 and hence satisfies

the equation of motion

i~
∂UI
∂t

= VI(t)UI . (3.153)

In many situations UI(t) can only be computed by approximation procedures.

3.5 Ehrenfest theorem and uncertainty relations

In this section we want to improve our understanding of the relation between quantum mechan-

ics and classical mechanics. The content of the Ehrenfest theorem is that expectation values of

observables obey classical equations of motion. Heisenberg’s uncertainty relation, on the other

hand, implies limitations to the validity of classical concepts.

Let us compute the time evolution

d

dt
〈A〉 =

∂〈ψ|
∂t

A|ψ〉+ 〈ψ|∂A
∂t
|ψ〉+ 〈ψ|A∂|ψ〉

∂t
(3.154)
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of the mean value of an observable A in the Schrödinger picture. The Schrödinger equation

yields

d

dt
〈A〉 = 〈∂A

∂t
〉+ i

~
〈Hψ|A|ψ〉 − i

~
〈ψ|A|Hψ〉 = 〈∂A

∂t
〉+ i

~
〈ψ|H A − AH|ψ〉 (3.155)

so that
d

dt
〈ψ|A|ψ〉 = 〈ψ|∂A

∂t
|ψ〉+ i

~
〈ψ| [H,A] |ψ〉 (3.156)

The Ehrenfest theorem states that the mean values of certain quantum mechanical

operators obey the classical relations.

As an example let us compute the time evolution d
dt
〈Xi〉 of the position operator Xi, which

is time independent ∂X
∂t

in the Schrödinger picture. We first have to compute the commutator

of X with the Hamiltonian H = 1
2m
PjPj + V (~x).

[H,Xi] =
1

2m
[PjPj, Xi] +

≡0︷ ︸︸ ︷
[V (~x), Xi] =

1

2m
(Pj[Pj, Xi] + [Pj, Xi]Pj) =

1

2m
2
~

i
Pi. (3.157)

Inserting this result into the formula (3.156) for the mean value of an operator we obtain

d

dt
〈Xi〉 =

1

m
〈Pi〉. (3.158)

This is the quantum analogue of the classical equation pi = mdxi

dt
. Similarly we can compute

the time evolution for the momentum operator. Inserting [H,Pi] = −~

i
∂
∂xi
V (~x) into (3.156) we

obtain
d

dt
〈Pi〉 = −〈∂iV (~x)〉, (3.159)

which corresponds to Newton’s equation of motion ~̇p = −
→
∇ V (~x).

Heisenberg’s uncertainty relation. Let 〈A〉 and 〈B〉 be the expectation values of two

Hermitian operators A and B in some normalized state |ψ〉 ∈ H. The uncertainty ∆A is defined

by

(∆A)2 =
〈
A2
〉
−
〈
A
〉2

=
〈
(δA)2

〉
with 〈A〉 ≡ 〈ψ|A|ψ〉, δA = A− 〈A〉1. (3.160)

For the operators δA = A − 〈A〉 and δB = B − 〈B〉, which describe the deviation of the

oberservables A and B from their mean values, we consider the states

|χ〉 = δA |ψ〉 and |ϕ〉 = δB |ψ〉 (3.161)

whose norms are equal to the uncertainties

〈χ|χ〉 = 〈ψ|(δA)2|ψ〉 = (∆A)2, 〈ϕ|ϕ〉 = 〈ψ|(δB)2|ψ〉 = (∆B)2, (3.162)
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and which satisfy the Schwartz inequality

〈χ|χ〉〈ϕ|ϕ〉 ≥ |〈χ|ϕ〉|2. (3.163)

Putting everything together we obtain the inequality

(∆A)2(∆B)2 = 〈ψ|(δA)2|ψ〉〈ψ|(δB)2|ψ〉 ≥ |〈ψ|(δA) (δB)|ψ〉|2 = |〈δAδB〉|2. (3.164)

Now we write the operator in the last term as δA δB = 1
2
[δA, δB]+ 1

2
{δA, δB} and consider the

commutator [δA, δB]. Since 〈A〉 and 〈B〉 are scalars that commute with everything we observe

[δA, δB] = [A− 〈A〉1 , B − 〈B〉1] = [A,B]. (3.165)

Since a commutator of Hermitian operators is anti-Hermitian its expectation value is imaginary.

Anti-commutators of Hermitian operators, on the other hand, are Hermitian and thus have real

expectation values. Hence

〈δAδB〉 =
1

2
〈{δA, δB}〉+ 1

2
〈[δA, δB]〉 =

1

2
〈{δA, δB}〉+ 1

2
〈[A,B]〉 (3.166)

decomposes the expectation value into its real and its imaginary part, so that its squared

modulus becomes

|〈δAδB〉|2 =
1

4
|〈[A,B]〉|2 +

1

4
|〈{δA, δB}〉|2 ≥ 1

4
| 〈[A,B]〉 |2. (3.167)

Combining this estimate with the inequality (3.164) we find

〈(δA)2〉〈(δB)2〉 ≥ 1

4
| 〈[A,B]〉 |2 (3.168)

and by taking positive square roots on both sides we find the general form of Heisenberg’s

uncertainty relation

∆A∆B ≥ 1

2
|〈[A,B]〉| (3.169)

which establishes a lower bound on the product of uncertainties of two operators in terms of the

expectation value of their commutator. The two respective observables can hence be measured

simultaneously with arbitrary precission only if the operators commute, or, more precisely, if

their commutator has vanishing expectation value. We should stress that this uncertainty is

not simply a problem of measurement but rather an intrinsic property of quantum mechanics.

Uncertainty of position and momentum. For the most famous example of an uncer-

tainty relation we insert the commutator between position and momentum and obtain

[Pj, Xi] =
~

i
δij ⇒ (∆Xi)(∆Pj) ≥

~

2
δij. (3.170)

so that position and momentum in the same direction cannot be measured simultaneously with

arbitrary precision.13

13 For states of minimal uncertainty ∆X∆P = ~
2 the two inequalities (3.164) and (3.167) have to be equalities,

which requires that δX|ψ〉 and δP |ψ〉 are proportional and that δXδP+δPδX have vanishing expectation value.
It is easy to check that this can only be the case for Gaussian wave packets.
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Uncertainty of time and energy. If we consider the form of a plane wave ψ = e
i
~
(~p~x−Et)

we might expect that there exists an uncertainty between energy and time analogous to the

one between momentum and position. There exists, however, no time operator in quantum

mechanics and hence no uncertainty relation involving t in the literal sense.

Uncertainty relations of the extected type do exist, however, if we think of time in terms of

time measurements, like for example the time of the detection of a particle. Such a measurement

always involves the observation of a change in time of the value of some observable A and the

uncertainty of time would be the time that it takes for this change to become larger than the

intrinsic uncertainty of that observable,

∆tA =
∆A

| d
dt
〈A〉| . (3.171)

Since time evolution is generated by the Hamilton operator an uncertainty relation for ∆tA can

now be obtained as an consequence of the uncertainty relation between A and H,

∆A∆E ≥ 1

2
|〈[H,A]〉|. (3.172)

If we combine this with the equation of motion (3.156) of the expectation value for a time-

independent observable A,
d

dt
〈A〉 =

i

~
〈[H,A]〉, (3.173)

we obtain ∆A∆E ≥ ~

2

∣∣ d
dt
〈A〉
∣∣ and hence the uncertainty relation

∆tA ·∆E ≥
~

2
, (3.174)

which is exactly of the form that we had hoped for. It is hence not possible to simultaneously

measure the energy of a particle and time of its detection with arbitrary precision.

3.6 Harmonic oscillator and ladder operators

Using the operator calculus we now determine the energy spectrum of the harmonic oscillator by

purely algebraic calculations. We begin by introducing dimensionless position and momemtum

operators

X =

√
mω0

~
X, P =

1√
m~ω0

P (3.175)

so that

H =
~ω0

2
(P2 + X 2). (3.176)

Classically we can factorize x2 + p2 = (x + ip)(x − ip) as a product of complex conjugate

numbers. Analogously, we introduce the non-Hermitian ladder operators

a =
1√
2
(X + iP), a† =

1√
2
(X − iP) (3.177)
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with

X =

√
~

2mω0

(
a† + a

)
, P = i

√
m~ω0

2

(
a† − a

)
. (3.178)

Since [P ,X ] = 1
i

the commutator becomes [a, a†] = 1
2
[X + iP ,X − iP ] = 0 + 1

2
+ 1

2
+ 0 = 1, i.e.

[a, a†] = −[a†, a] = 1. (3.179)

With the quantum mechanical relation

X 2 + P2 =
1

2

(
(a† + a)2 − (a† − a)2

)
= a†a+ aa† = 2a†a+ 1 (3.180)

we thus obtain

H = ~ω0

(
a†a+

1

2

)
= ~ω0

(
N +

1

2

)
, (3.181)

where we defined the occupation number operator

N = a†a. (3.182)

This operator is positive, i.e. all its expectation values are positive, because

〈ψ|N |ψ〉 = (〈ψ|a†)(a|ψ〉) = || (a|ψ〉) ||2 ≥ 0 (3.183)

is the squared norm of the vector a|ψ〉. Consequently all expectation values of H, and hence

all energy eigenvalues E, are bounded from below by

E ≥ 1

2
~ω0. (3.184)

1
2
~ω0 is called zero-point energy of the harmonic oszillator.

Creation and annihilation of energy. Since H = ~ω0(N + 1
2
) the energy spectrum can

now be computed by solving the eigenvalue problem for the occupation number operator

N|n〉 = n|n〉 ⇒ H|n〉 = ~ω0(n+ 1
2
)|n〉. (3.185)

In order to solve this equation we compute the commutators

[N , a] = [a†, a]a = −a, [N , a†] = a†[a, a†] = a†, (3.186)

where we evaluated [a†a, a] = a†[a, a] + [a†, a]a = [a†, a]a = −a using the “Leibniz rule” (3.45).

These commutation relations show that a† (a) increases (decreases) the occupation number by

one and, accordingly, the energy by ~ω0 because

N|n〉 = n|n〉 ⇒
{
N
(
a†|n〉

)
= ([N , a†] + a†N )|n〉 = (1 + n)

(
a†|n〉

)

N
(
a|n〉

)
= ([N , a] + aN ) |n〉 = (−1 + n)

(
a|n〉

) (3.187)
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(where we used the identity XY = [X,Y ] + Y X). Thus a† and a are called creation and

annihilation operator, respectively. Their collective name is “ladder operators” because

they bring us up and down the ladder of energy levels. More precisely, since (3.187) implies

that a|n〉 and a†|n〉 have occupation numbers n±1, these states must be proportional to |n±1〉

a†|n〉 = cn+|n+ 1〉, a|n〉 = cn−|n− 1〉. (3.188)

Assuming that all states are normalized 〈n|n〉 = 1 we can now compute the normalization

factors cn±. Since norms are computed by multiplication with the Hermitian conjugate states,

a |n〉 = cn− |n− 1〉 conj.−→ 〈n| a† = c∗n− 〈n− 1|, (3.189)

a† |n〉 = cn+ |n+ 1〉 conj.−→ 〈n| a = c∗n+ 〈n+ 1|, (3.190)

the eigenvalue equation a†a|n〉 = N|n〉 = n|n〉 implies

〈n+ 1|n+ 1〉 =
1

|cn+|2
〈n|a a†|n〉 =

1

|cn+|2
( 〈n|a†a|n〉+ 1) =

n+ 1

|cn+|2
= 1, (3.191)

〈n− 1|n− 1〉 =
1

|cn−|2
〈n|a†a|n〉 =

n

|cn−|2
= 1, (3.192)

so that

cn+ =
√
n+ 1, cn− =

√
n, (3.193)

where the phase ambiguity of the eigenvectors |n〉 has been used to choose cn± positive real.

Quantization of occupation number and energy. Now we are ready to determine the

eigenvalues n. We assume that at least one eigenstate |n〉 exists for some eigenvalue n ∈ R,

which has to be non-negative n ≥ 0 because of the positivity (3.183) of N . Now we act on this

state k times with the annihilation operator a and obtain

a|n〉 =
√
n |n− 1〉, (3.194)

a2|n〉 =
√
n(n− 1) |n− 2〉, (3.195)

. . .

ak|n〉 =
√
n(n− 1) . . . (n− k + 1) |n− k〉. (3.196)

We thus find new energy eigenstates with occupation numbers n− 1, n− 2, . . . However, this

procedure has to terminate because otherwise we would be able to construct energy eigenstates

for arbitrary n − k, which turns negative for k > n in contradiction to the positivity of the

operator N . Hence there must exist a positive integer K for which aK |n〉 = 0. Choosing K

minimal, so that aK−1|n〉 6= 0, we conclude that a|n−K+1〉 = 0 and hence 〈n−K+1|a†a|n−
K+1〉 = n−K+1 = 0. In other words, if a|n′〉 = 0 the normalization factor cn′− must vanish,

which is the only possibility to avoid the existence of an energy eigenstate with eigenvalue
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n′ − 1. We conclude that each energy eigenvalue n must be a non-negative integer. Moreover,

eq. (3.196) shows that the minimal energy state has occupation number n = 0, and by acting

with creation operators on the ground state |0〉,

(a†)n|0〉 =
√
n! |n〉 (3.197)

we conclude that all energy eigenstates with nonnegative integer occupation number indeed

exist. We thus recover the result

En = ~ω0(n+
1

2
) with n = 0, 1, 2, . . . (3.198)

of our analytical treatment of the Harmonic oscillator. Moreover, the ground state |0〉 satisfies

the first order differential equation a|0〉 = (X + iP)|0〉 = 0, which is easily solved yielding

the Gaussian wave function found in section 2. The wave functions with positive occupation

numbers are

un(x) = 〈x|n〉 =
1√
n!

(a†)nu0(x) (3.199)

and can be evaluated by repeated application of the differential operator a†.

3.6.1 Coherent states

Coherent states are, by definition, eigenstates of the annihilation operator

a|λ〉coh = λ|λ〉coh. (3.200)

They exist for all complex numbers λ ∈ C and are unique up to normalization. This can be

verified by inserting the ansatz |λ〉 =
∑∞

n=0 cn|n〉 in terms of energy eigenstates |n〉 into the

eigenvalue equation (3.200). With the choice c0 = 1 the resulting recursion relation is solved

by

|λ〉coh =
∞∑

n=0

λn√
n!
|n〉 = eλa

†|0〉. (3.201)

It will usually be sufficient to distinguish coherent states |λ〉coh from energy eigenstates |n〉 by

the use of Greek letters for the eigenvalues of a. The eigenstate property of eλa
†|0〉 can be

verified directly,

a(eλa
†|0〉) = eλa

†
(e−λa

†
aeλa

†
)|0〉 = eλa

†
(a+ λ)|0〉 = λ(eλa

†|0〉), (3.202)

where we used a|0〉 = 0 and the formula

eλABe−λA = B +
∞∑

n=1

λn

n!
[A,B]n, [A,B]n+1 = [A, [A,B]n], (3.203)
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with [A,B]1 = [A,B]. Since [a†, a] = −1 all higher commutators vanish.

Scalar products among coherent states can be computed directly from the series expansion

or with the Baker-Campbell-Hausdorff formula

〈λ|µ〉 = 〈0|eλ∗aeµa†|0〉 = 〈0|eµa†eλ∗µ[a,a†]eλ
∗a|0〉 = eλ

∗µ (3.204)

where we used that eq. (3.59) implies eAeB = eBeAe[A,B] if all double-commutators of A and B

vanish, as is the case for A = λ∗a and B = µa† because [a, a†] = 1. We also used eλ
∗a|0〉 = |0〉

(because only the first term of the series is nonzero) and the Hermitian conjugate formula

〈0|eµa† = 〈0|. Eigenstates of a for different eigenvalues are not orthogonal and the eigenvalues

are neihter quantized nor required to be real (which is o.k. because a is not self-adjoint). For

normalized coherent states we thus find the formula e−
1
2
|λ|2eλa

†|0〉.

The time evolution of coherent states is easily calculated by using the expansion in terms

of energy eigenstates,

|λ〉(t) = e−
i
~
Ht(

∞∑

n=0

λn√
n!
|n〉) =

∞∑

n=0

λn√
n!
e−i(n+ 1

2
)ω0t|n〉 = e−i

ω0
2
t|λ(t)〉, λ(t) = e−iω0tλ. (3.205)

Up to an unobservable phase factor the time evolution thus corresponds to a rotation of the

eigenvalue λ(t) = e−iω0tλ in the complex plane. In fact, the probability density of 〈λ|λ〉(t) is

given by a Gaussian distribution with minimal uncertainty ∆X∆P = ~/2 and constant shape,

whose mean value oscillates with the classical frequency ω0, explaining the name coherent state.

This can be shown by computing the wave function in configuration space ψλ(x) = 〈x|λ〉, which

satisfies the first order differential equation

(a− λ)ψλ(x) =
1√
2

(
αx+

1

α
∂x −

√
2λ

)
ψλ(x) = 0 with α =

√
mω0

~
. (3.206)

With the ansatz ψλ(x) = e−Ax
2+Bx−C we find αx − 1

α
(2Ax − B) −

√
2λ = 0 so that A = α2/2

and B =
√

2αλ. A coherent state hence is a Gaussian wave packet of the form

ψλ(x) = Nλ e
−α2

2

“

x−
√

2λ
α

”2

(3.207)

with constant width ∆X = 1√
2α

whose expectation value 〈X〉 =
√

2
α

Reλ(t), according to eq.

(3.205), oscillates about the origin with the classical frequence ω0. It is straightforward to

verify that coherent states have minimal uncertainty.14 Hence they are the quantum analogue

14 For Gaussian wave packets of the form u(x) = e−Ax2+Bx−C normalization requires ReC = (Re B)2

4 Re A −
1
4 log 2 Re A

π and the expectation values and uncertainties of X and P are

〈X〉 =
1

2

ReB

ReA
, ∆X =

1

2
√

ReA
, 〈P 〉 = ~

Im(A∗B)

ReA
, ∆P =

~ |A|√
ReA

. (3.208)

They have minimal uncertainty ∆X∆P = ~/2 exactly if A is real (normalizability or course requires ReA > 0).
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of a classical particle oscillating in a harmonic potential, which avoids the spreading of wave

packets that we observed for free particles. Like harmonic potentials in classical physics, the

harmonic oscillator is ubiquitous in quantum physics. In the quantum (field) theory of many

particle systems the ladder operators will create and annihilate particles. In quantum optics

the particles are the photons of momentum ~k and polarization ~ε, created and annihilated by

a†~ε(
~k) and a~ε(~k), respectively. Coherent states are thus very useful in laser physics.

3.7 Axioms and interpretation of quantum mechanics

3.7.1 Mixed states and the density matrix

We already learned that expectation values of operators A for a system whose state is described

by a vector |ψ〉 ∈ H can be computed by traces

tr(PψA) = tr
(
|ψ〉〈ψ|A

)
=
∑

i〈ai| (|ψ〉〈ψ|A
)
|ai〉 =

∑
i ai |〈ai|ψ〉|

2 =
∑

i pai
ai = 〈A〉ψ (3.209)

where pai
= |〈ai|ψ〉|2 is the probability to measure the eigenvalue ai and Pψ = |ψ〉〈ψ| is the

projector onto the state |ψ〉. In practice we may only have incomplete information about the

state of a system. If we consider, for example, an unpolarized or partially polarized electron

beam then we have a reasonably well-defined velocity, but for the spin polarization we only

have a classical probability distribution. Such systems are said to be in a mixed state: Let

{pi} with
∑

i

pi = 1 (3.210)

describe classical probabilities pi for a system to be in the quantum states |ψi〉. Then

expectation values have to be computed as quantum mechanical expectations weighted by

classical probabilities,

〈A〉 =
∑

i pi〈ψi|A|ψi〉 =
∑

i pi tr (Pψi
A) = tr (

∑
i piPψi

A) (3.211)

which motivates the definition of the density matrix or density operator as

ρ =
∑

i

pi Pψi
=
∑

i

|ψi〉pi〈ψi| ⇒ 〈A〉ρ = tr(ρA). (3.212)

Like projectors, density matrices are self-adjoint, but in general ρ2 6= ρ. Density matrices are

instead characterized by positivity and unit trace: Since classical probabilities are nonnegative

pi ∈ R≥0 ⇒ ρ = ρ† ≥ 0, tr ρ =
∑

pi = 1. (3.213)

Every quantum mechanical system can hence be described by a density matrix. The system is

in a pure state if ρ = Pψ is the projector onto a Hilbert space vector |ψ〉 ∈ H because then all
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eigenvalues and hence all probabilities are equal to 0 or 1 so that all remaining uncertainties

have a quantum mechanical origin. This leads to the following criterion

ρ2 = ρ ⇔ pure state

ρ2 6= ρ ⇔ mixed state.
(3.214)

The spectral representation implies that every matrix obeying ρ = ρ† ≥ 0 and tr ρ = 1 is of the

form ρ =
∑

i piPei
for some orthonormal basis {ei} and can hence be interpreted as the density

matrix for some (pure or) mixed state of the quantum mechanical system under consideration.

Using the Schrödinger equation ∂t|ψ〉 = 1
~i
H|ψ〉 for ρ =

∑
i pi|ψi〉〈ψi| we find the time

evolution equation

∂tρ = − i
~
[H, ρ] (3.215)

for the density operator ρ = ρS in the Schrödinger picture. This looks similar to Heisenberg’s

equation of motion (3.144), but mind the opposite sign! Like states |ψ〉H , density matrices

ρH are time-independent in the Heisenberg representation so that expectation values of time-

independent operators evolve according to

∂t〈A〉ρ = tr ρ̇SAS = tr ρHȦH , (3.216)

where the second equality can be checked using tr([H, ρ]A) = tr(HρA − ρHA) = tr(ρAH −
ρHA) = − tr(ρ[H,A]), which follows from cyclicity of the trace.

Density matrices are particularly useful for quantum statistics because, for example, a

Boltzmann distribution can be described by the operator

ρT = e−
H
kT /Z(T ), Z(T ) = tr(e−

H
kT ) (3.217)

with partition function Z(T ), which is very handy for formal calculations.

3.7.2 Measurements and interpretation

In the canonical formulation of classical mechanics the state of a particle is specified at any time t

by a pair of dynamical variables, the canonical momentum ~p(t) and the generalized coordinate

~q(t). The time evolution is governed by Hamilton’s equations of motion (which are related

to the Euler-Lagrange equations of the Lagrange formalism by a Legendre transformation).

In contrast, quantum mechanics is defined by the following five axioms, which we already

mentioned in chapter 2, but which we now discuss in more detail (in a slightly modified version).� Postulate 1: State of a system

A (pure) state of a quantum system is completely specified at any time t by a vector |ψ(t)〉
in a Hilbert space H.
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To every measurable quantity, called observable or dynamical variable, there corresponds

a self-adjoint linear operator A, whose eigenvectors form a complete basis. Operators Bk

and Cl that correspond to canonically conjugate variables, like the positions Xi and the

canonical momenta Pj, obey the canonical commutation relations

[Bk, Cl] = ~

i
δkl1. (3.218)

The operator algebra defined by this equation is called Heisenberg algebra.� Postulate 3: Measurements and eigenvalues of operators

The measurement of an observable is related to the action of the corresponding operator

A on a state vector |ψ(t)〉 as follows. The only possible result of a measurement is given

by one of the eigenvalues an of the operator A. If the result of the measurement of A

is an then the state of the system immediately after the measurement is given by the

eigenstate |an〉; this is often called the collapse of the wave function. If the eigenvalue an

is degenerate, the new state of the system is proportional to the projection of the state

|ψ〉 onto the eigenspace of the eigenvalue an,

|ψ〉after = cn Pan |ψ(t)〉 with Pan =
∑

i |ani〉〈ani| (3.219)

and normalization factor cn = 1/
√
| tr(PψPan)|, where |ani〉 is an orthonormal basis of

the eigenspace with eigenvalue an. If the system has been in a pure state before the

measurement it will continue to be so after the measurement. If, on the other hand,

the system originally is in a mixed state, appropriate measurements can be performed

to remove all classical uncertainties and to prepare a pure state. If the eigenvalue an is

nondegenerate then a single measurement of an is sufficient for this purpose.� Postulate 4: Probabilistic outcome of measurements

When measuring an observable A of a system in a state vector |ψ〉, the probability of

obtaining one of the nondegenerate eigenvalues an of the corresponding operator A is

given by

p(an) =
|〈an|ψ〉|2
〈ψ|ψ〉 . (3.220)

In the case of m-fold degenerate eigenvalues an the formula has to be generalized to

p(an) =
m∑

j=1

|〈anj|ψ〉|2
〈ψ|ψ〉 = trPanPψ. (3.221)

If the system is already in an eigenstate of A then a measurement of A yields the cor-

responding eigenvalue with probability p(an) = 1. For continuous parts of the spectrum
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probabilities have to be replaced by probability densities with obvious modifications of the

corresponding formulas. For the position operator X this implies, in particular, Born’s

probabilistic interpretation of the wave function.� Postulate 5: Time evolution of a system

The time evolution of a quantum mechanical system is determined by the Schrödinger

equation

i~
∂

∂t
|ψ(t)〉 = H|ψ(t)〉, (3.222)

where H is the Hamiltonian operator corresponding to the total energy of the system.

3.7.3 Schrödinger’s cat and the Einstein-Podolsky-Rosen argument

The probabilistic interpretation of Schrödinger’s wave function by Max Born spawned a long

and controversial discussion about the proper interpretation of quantum mechanics, which was

most vigorous in the 1930s but is still going on. The probabilistic Copenhagen interpretation

was named after the affiliation of its most prominent proponent Niels Bohr, who emphasized

the role of an “intelligent” or “conscious” observer inducing the collapse of the wave function

by his or her measurement activities. This somewhat extreme point of view was rediculed by

Einstein, who asked whether the moon would still be there when he does not look at it, and

by the famous story of Schrödingers cat, sitting in a closed box with a radioactive devices that

triggers the killing of the cat on the random event of a nuclear decay. The wave function of the

cat would hence be a coherent superposition

ψcat = ca(t)ψalive + cd(t)ψdead (3.223)

possibly long after the cat was actually killed (in the original version of the story by poisoning).

The collapse of the wave function would only occur when the box is opened by a human

being. In more recent years the role of the observer has been replaced by the concept of

decoherence, which amounts to a progressive loss of quantum mechanical interference patterns

due to many small interactions of a particle with its environment like, for example, with a system

in thermal equilibrium. A decoherence theorem was proven by Hepp, Lieb, et al. in 1982. In

particular, decoherence is not certain itself so that there only exists a certain probability for

this effect, which gets very close to one in macroscopic systems. In 1986 Asher Perez showed

that the interaction of a quantum mechanical system with a chaotic system may also trigger

the collapsing of the wave function. A very recommendably discussion of decoherence and of

interpretations of quantum mechanics like Everett’s many worlds can be found in the article

100 Years of the Quantum by Tegmark and Wheeler.15

15 Max Tegmark and John Archibald Wheeler: http://arxiv.org/abs/quant-ph/0101077.
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u
⊗ |vt〉| − vt〉 ⊗ |↑↓〉−|↓↑〉√

2

~α↑
~β↑

Figure 3.1: Bohm’s version of the EPR experiment with the decay of a singlet state and spin
measurements in directions ~α and ~β.

EPR-paradox and Bell’s inequalities. In their famous 1935 article Einstein, Podolsky

and Rosen tried to argue that quantum mechanics must be incomplete in the sense that there

exist hidden variables that have to be supplemented to the quantum mechanical information

of the wave function and that would, after all, remove any uncertainties except for classical

probabilities due to inclomplete information about the state of a system. This paradox was

the pinnacle of a long discussions over quantum theory between Albert Einstein and Niels

Bohr, and it became a standard setup on the basis of which questions about the interpretation

of quantum mechanics can be translated into experimentally testable predictions. Actually,

what we will discuss is a simplified version of EPR due to David Bohm, who avoided a techni-

cally complicated discussion of position and momentum measurements by considering, instead,

discrete spin degrees of freedom.

In Bohm’s version of EPR we consider a system consisting of two spin-1
2

particles in a

singlet state (i.e. the total angular momentum is zero), for which the spin degrees of freedom

are described by the wave function

|χ〉 =
1√
2

(
| ↑↓ 〉 − | ↓↑ 〉

)
, (3.224)

as we will learn in detail in chapter 5. If the two particles break up in a decay process, as shown

in figure 3.1, the spin degrees of freedom continue to be described by the non-product wave

function (3.224) until a measurement is carried out. This phenomenon is called entanglement.

The spin measurement in direction ~α for the left-moving particle will always result in either

spin-up or spin-down, both with a probability of 1
2
. The paradox situation, which EPR pointed

out, is that conservation of angular momentum implies that the result of a spin-measurement

for the second particle will immediately be influenced by the result of the first measurement.

If the first particle shows spin-up then we know that, when measured with respect to the same

direction ~α, the second particle will always have spin-down (and vice versa).

According to the Copenhagen interpretation of quantum mechanics the result of one mea-

surement is governed by “objective” randomness. But this means that the result of the first

measurement has to affect the second one, immediately and regardless of the distance. This,

so the conclusion of EPR, would be in contradiction to causality in special relativity where
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θ

π/2 π

P (~α|~β)
1

~α↑
~β↑

θ

Figure 3.2: Classical (dashed line) and quantum mechanical conditional probabilities in EPR.

information can propagate only at the speed of light. The only way out seemed to be the

existence of “hidden variables” which supplement the information contained in the wave func-

tion and which determine the results of future measurement. The particles would then know

already right after the decay where the spin should point when measured and they would carry

along this information until it is detected, thus removing the probabilistic aspects of quantum

mechanics. This type of hypothetical hidden information is called local hidden variables.

However, as Bohr pointed out the argumentation of EPR is not conclusive. Special relativity

does not forbid all kinds of velocities larger than c, and while the outcome of the spin measur-

ment of the second particle is instantly influenced by the result of the first, this cannot be used

to transmit information with a velocity v > c and hence does not contradict special relativity.

Nevertheless, the phenomenon is astounding and hence called spooky interaction at a distance.

In 1932 John von Neumann gave a mathematical proof that hidden variables could not

exist. However his assumptions were criticised as being too restrictive. Decisive progress only

came with John Bell in 1964, who generalized the setup of the EPR paradox by measuring

the probabilities for spin up or spin down in diffent directions ~α and ~β for the two decay

products, respectively. Bell showed that any classical probabilities due to incomplete knowledge

of the values of local hidden variables obey certain constraints, known as Bell’s inequalities.

Essentially, the probability to find spin-up in direction ~α for particle 1 under the condition of

finding spin-direction ~β for particle 2 whould have to be linear in the angle enclosed by the

vectors ~α and ~β,

PCL(~α|~β) = θ/π where cos θ = ~α~β, (3.225)

as illustrated in figure 3.2. This is clearly distinct from the quantum mechanical correlation

PQM(~α|~β) =
1

2
(1− ~α~β), (3.226)

which will be computed in chapter 5. Quantum correlations can hence be significantly stronger

than allowed by local hidden variables. For the EPR setup the maximal violation of Bell’s

inequalities occurs for the angle θ = 3
4
π, as can be seen in figure 3.2. Experimental results

clearly confirm the predictions of quantum mechanics.


