
Chapter 8

Scattering Theory

I ask you to look both ways. For the road to a knowledge of

the stars leads through the atom; and important knowledge

of the atom has been reached through the stars.

-Sir Arthur Eddington (1882 - 1944)

Most of our knowledge about microscopic physics originates from scattering experiments.

In these experiments the interactions between atomic or sub-atomic particles can be measured.

This is done by letting them collide with a fixed target or with each other. In this chapter we

present the basic concepts for the analysis of scattering experiments.

We will first analyze the asymptotic behavior of scattering solutions to the Schrödinger equa-

tion and define the differential cross section. With the method of partial waves the scattering

amplitudes are then obtained from the phase shifts for spherically symmetric potentials. The

Lippmann–Schwinger equation and its formal solution, the Born series, provides a perturbative

approximation technique which we apply to the Coulomb potential. Eventually we define the

scattering matrix and the transition matrix and relate them to the scattering amplitude.

8.1 The central potential

The physical situation that we have in mind is an incident beam of particles that scatters at

some localized potential V (~x) which can represent a nucleus in some solid target or a particle in a

colliding beam. For fixed targets we can usually focus on the interaction with a single nucleus.

In beam-beam collisions it is more difficult to produce sufficient luminosity, but this has to

be dealt with in the ultrarelativistic scattering experiments of particle physics for kinematic
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reasons.1 We will mostly confine our interest to elastic scattering where the particles are not

excited and there is no particle production. It is easiest to work in the center of mass frame,

where a spherically symmetric potential has the form V (r) with r = |~x|. For a fixed target

experiment the scattering amplitude can then easily be converted to the laboratory frame for

comparison with the experimental data. Because of the quantum mechanical uncertainty we can

only predict the probability of scattering into a certain direction, in contrast to the deterministic

scattering angle in classical mechanics. With particle beams that contain a sufficiently large

number of particles we can, however, measure the probability distribution (or differntial cross

section) with arbitrary precision.

8.1.1 Differential cross section and frames of reference

Imagine a beam of monoenergetic particles being scattered by a target located at ~x = 0. Let

the detector cover a solid angle dΩ in direction (θ, ϕ) from the scattering center. We choose a

coordinate system

~x = (r sin θ cosϕ, r sin θ sinϕ, r cos θ), ~kin =

√
2mE

~
~e3 (8.2)

so that the incoming beam travels along the z-axis. The number of particles per unit time

entering the detector is then given by NdΩ. The flux of particles F in the incident beam is

defined as the number of particles per unit time, crossing a unit area placed normal to the

direction of incidence. To characterize the collisions we use the differential scattering cross-

section
dσ

dΩ
=
N

F
, (8.3)

which is defined as the ratio of the number of particles scattered into the direction (θ, ϕ) per

unit time, per unit solid angle, divided by the incident flux. The total scattering cross-section

σtot =

∫ (
dσ

dΩ

)
dΩ =

∫ 2π

0

dϕ

∫ π

0

dθ sin θ
dσ

dΩ
(8.4)

is defined as the integral of the differential scattering cross-section over all solid angles. Both

the differential and the total scattering cross-sections have the dimension of an area.

Center-of-Mass System. As shown in fig. 8.1 we denote by ~p1 and ~p2 the momenta

of the incoming particles and of the target, respectively. The center of mass momentum is

~pg = ~p1 + ~p2 = ~p1L with the target at rest ~p2L = 0 in the laboratory frame. As we derived

1 Using the notation of figure 8.1 below with an incident particle of energy E1 = Ein =
√
c2~p 2

1L +m2
1c

4

hitting a target with mass m2 at rest in the laboratory system the total energy

E2 = c2(p1L + p2L)2 = (E1 +m2c
2)2 − c2~p 2

1L = m2
1c

4 +m2
1c

4 + 2Einm2c
2 (8.1)

available for particle production in the center of mass system is only E ≈
√

2Einm2c2 for Ein ≫ m1c
2,m2c

2.
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Figure 8.1: Scattering angle for fixed target and in the center of mass frame.

in section 4, the kinematics of the reduced 1-body problem is given by the reduced mass

µ = m1m2/(m1 +m2) and the momentum

~p =
~p1m2 − ~p2m1

m1 +m2

. (8.5)

Obviously ϕ = ϕL, while the relation between θ in the center of mass frame and the angle θL

in the fixed target (laboratory) frame can be obtained by comparing the momenta ~p′1 of the

scattered particles. With pi = |~pi| the transversal momentum is

p′1L sin θL = p′1 sin θ. (8.6)

The longitudinal momentum is ~p′1 cos θ in the center of mass frame. In the laboratory frame we

have to add the momentum due to the center of mass motion with velocity ~vg, where

~p1L = ~p1 +m1~vg = ~pg = (m1 +m2)~vg ⇒ m2~vg = ~p1. (8.7)

Restricting to elastic scattering where |~p1
′| = |~p1| we find for the longitudinal motion

p′1L cos θL = p′1 cos θ +m1vg
el.
= p′1(cos θ +

m1

m2

) (8.8)

We hence find the formula

tan θelasticL =
sin θ

cos θ + τ
with τ =

m1

m2

=
min

mtarget

(8.9)

for the scattering angle in the laboratory frame for elastic scattering. According to the change

of the measure of the angular integration the differential cross section also changes by a factor

(
dσ

dΩ

)

L

(θL(θ)) =

∣∣∣∣
d(cos θ)

d(cos θL)

∣∣∣∣
dσ

dΩ
(θ) =

(1 + 2τ cos θ + τ 2)3/2

|1 + τ cos θ|
dσ

dΩ
(θ) (8.10)

where we used cos θL = 1/
√

1 + tan2 θ = (cos θ + τ)/
√

1 + 2τ cos θ + τ 2.

8.1.2 Asymptotic expansion and scattering amplitude

We now consider the scattering of a beam of particles by a fixed center of force and let m denote

the reduced mass and ~x the relative coordinate. If the beam of particles is switched on for a

long time compared to the time one particle needs to cross the interaction area, steady-state
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conditions apply and we can focus on stationary solutions of the time-independent Schrödinger

equation [
− ~2

2m
∆ + V (~x)

]
u(~x) = Eu(~x), ψ(~x, t) = e−iωtu(~x). (8.11)

The energy eigenvalues E is related by

E =
1

2
m~v2 =

~p2

2m
=

~2~k2

2m
(8.12)

to the incident momentum ~p, the incident wave vector ~k and the incident velocity ~v. For

convenience we introduce the reduced potential

U(~x) = 2m/~2 · V (~x) (8.13)

so that we can write the Schrödinger equation as

[∇2 + k2 − U(~x)]u(~x) = 0. (8.14)

For potentials that asymptotically decrease faster then r−1

|Vas(r)| ≤ c/rα for r →∞ with α > 1, (8.15)

we can neglect U(~x) for large r and the Schrödinger equation reduces to the Helmholtz equation

of a free particle

[∆ + k2]uas(~x) = 0. (8.16)

Potentials satisfying (8.15) are called finite range. (The important case of the Coulomb potential

is, unfortunately, of infinite range, but we will be able to treat it as the limit α → 0 of the

finite range Yukawa potential e−αr/r.) For large r we can decompose the wave function into a

part uin describing the incident beam and a part usc for the scattered particles

u(~x) → uin(~x) + usc(~x) for r →∞. (8.17)

Since we took the z-axis as the direction of incidence and since the particles have all the same

momentum p = ~k the incident wave function can be written as

uin(~x) = ei
~k·~x = eikz, (8.18)

where we were free to normalize the amplitude of uin since all equations are linear.

Far from the scattering center the scattered wave function represents an outward radial flow

of particles. We can parametrize it in terms of the scattering amplitude f(k, θ, ϕ) as

usc(~x) = f(k, θ, ϕ)
eikr

r
+O(

1

rα
), (8.19)
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where (r, θ, ϕ) are the polar coordinates of the position vector ~x of the scattered particle. The

asymptotic form uas of the scattering solution thus becomes

uas = (ei
~k·~x)as + f(k, θ, ϕ)

eikr

r
. (8.20)

The scattering amplitude can now be related to the differential cross-section. From chapter 2

we know the probability current density for the stationary state

~j(~x) =
~

2im
(ψ∗~∇ψ − ψ~∇ψ∗) =

~

m
Re (u∗~∇u) (8.21)

with the gradient operator in spherical polar coordinates (r, θ, ϕ) reading

~∇ = ~er
∂

∂r
+ ~eθ

1

r

∂

∂θ
+ ~eϕ

1

r sin θ

∂

∂ϕ
. (8.22)

For large r the scattered particle current flows in radial direction with

jr =
~k

mr2
|f(k, θ, ϕ)|2 +O(

1

r3
). (8.23)

Since the area of the detector is r2dΩ the number of particles NdΩ entering the detector per

unit time is

NdΩ =
~k

m
|f(k, θ, ϕ)|2dΩ. (8.24)

For |ψin(~x)|2 = 1 the incoming flux F = ~k/m = v is given by the particle velocity. We thus

obtain the differential cross-section

dσ

dΩ
= |f(k, θ, ϕ)|2 (8.25)

as the modulus squared of the scattering amplitude.

8.2 Partial wave expansion

For a spherically symmetric central potential V (~x) = V (r) we can use rotation invariance to

simplify the computation of the scattering amplitude by an expansion of the angular dependence

in spherical harmonics. Since the system is completely symmetric under rotations about the

direction of incident beam (chosen along the z-axis), the wave function and the scattering

amplitude do not depend on ϕ. Thus we can expand both u~k(r, θ) and f(k, θ) into a series of

Legendre polynomials, which form a complete set of functions for the interval −1 6 cos θ 6 +1,

u~k(r, θ) =
∞∑

l=0

Rl(k, r)Pl(cos θ), (8.26)

f(k, θ) =
∞∑

l=0

(2l + 1)fl(k)Pl(cos θ), (8.27)
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where the factor (2l + 1) in the definition of the partial wave amplitudes fl(k) corresponds to

the degeneracy of the magnetic quantum number. (Some authors use different conventions,

like either dropping the factor (2l + 1) or including an additional factor 1/k in the definition

of fl.) The terms in the series (8.26) are known as a partial waves, which are simultaneous

eigenfunctions of the operators L2 and Lz with eigenvalues l(l + 1)~2 and 0, respectively. Our

aim is now to determine the amplitudes fl in terms of the radial functions Rl(k, r) for solutions

(8.27) to the Schrödinger equation.

The radial equation. We recall the formula for the Laplacian in spherical coordinates

∆ =
1

r2

∂

∂r

(
r2 ∂

∂r

)
− L

2

~2r2
with − L

~2
=

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2
(8.28)

With the separation ansatz

uElm(~x) = REl(r)Ylm(θ, ϕ) (8.29)

for the time-independent Schrödinger equation with central potential in spherical coordinates

{
− ~2

2m

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
− L

2

~2r2

]
+ V (r)

}
u(~x) = Eu(~x), (8.30)

and L2Ylm(θ, ϕ) = l(l + 1)~2Ylm(θ, ϕ) we find the radial equation

(
− ~2

2m

(
d2

dr2
+

2

r

d

dr

)
+
l(l + 1)~2

2mr2
+ V (r)

)
REl(r) = EREl(r). (8.31)

and its reduced form

(
d2

dr2
+

2

r

d

dr
− l(l + 1)

r2
− U(r) + k2

)
Rl(k, r) = 0 (8.32)

with k =
√

2mE/~2 and the reduced potential U(r) = (2m/~2)V (r).

Behavior near the center. For potentials less singular than r−2 at the origin the behavior

of Rl(k, r) at r = 0 can be determined by expanding Rl into a power series

Rl(k, r) = rs
∞∑

n=0

anr
n. (8.33)

Substitution into the radial equation (8.32) leads to the quadratic indicial equation with the

two solutions s = l and s = −(l + 1). Only the first one leads to a non-singular wave function

u(r, θ) at the origin r = 0.

Introducing a new radial function R̃El(r) = rREl(r) and substituting into (8.31) leads to

the equation (
− ~2

2m

d2

dr2
+ Veff (r)

)
R̃El(r) = ER̃El(r) (8.34)
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which is similar to the one-dimensional Schrödinger equation but with r ≥ 0 and an effective

potential

Veff = V (r) +
l(l + 1)~2

2mr2
(8.35)

containing the repulsive centrifugal barrier term l(l+ 1)~2/2mr2 in addition to the interaction

potential V (r).

Free particles and asymptotic behavior. We now solve the radial equation for V (r) = 0

so that our solutions can later be used either for the representation of the wave function of a free

particle at any radius 0 ≤ r <∞ or for the asymptotic form as r →∞ of scattering solutions

for finite range potentials. Introducing the dimensionless variable ρ = kr with Rl(ρ) = REl(r)

for U(r) = 0 the radial equation (8.31) turns into the spherical Bessel differential equation
[
d2

dρ2
+

2

ρ

d

dρ
+

(
1− l(l + 1)

ρ2

)]
Rl(ρ) = 0, (8.36)

whose independent solutions are the spherical Bessel functions

jl(ρ) = (−ρ)l
(

1

ρ

d

dρ

)l
sin ρ

ρ
(8.37)

and the spherical Neumann functions

nl(ρ) = −(−ρ)l
(

1

ρ

d

dρ

)l
cos ρ

ρ
. (8.38)

Their leading behavior at ρ = 0,

lim
ρ→0

jl(ρ) →
ρl

1 · 3 · 5 · . . . · (2l + 1)
, (8.39)

lim
ρ→0

nl(ρ) → −1 · 3 · 5 · . . . · (2l − 1)

ρl+1
(8.40)

can be obtained by expanding ρ−1 sin ρ and ρ−1 cos ρ into a power series in ρ. In accord with our

previous result for the ansatz (8.33) the spherical Neumann function nl(ρ) has a pole of order

l + 1 at the origin and is therefore an irregular solution, whereas the spherical Bessel function

jl(ρ) is the regular solution with a zero of order l at the origin. The radial part of the wave

function of a free particle can hence only contain spherical bessel functions Rfree
El (r) ∝ jl(kr).

8.2.1 Expansion of a plane wave in spherical harmonics

In order to use the spherical symmetry of a potential V (r) we need to expand the plane wave

representing the incident particle beam in terms of spherical harmonics. Since ei
~k·~x is a regular

solution to the free Schrödinger equation we can make the ansatz

ei
~k·~x =

∞∑

l=0

+l∑

m=−l
clmjl(kr)Ylm(θ, ϕ), (8.41)
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where the radial part is given by the spherical Bessel functions with constants clm that have

to be determined. Choosing ~k in the direction of the z-axis the wave function exp(i~k · ~r) =

exp(ikr cos θ) is independent of ϕ so that only the Ylm with m = 0, which are proportional to

the Legendre polynomials Pl(θ), can contribute to the expansion

eikr cos θ =
∞∑

l=0

aljl(kr)Pl(cos θ). (8.42)

With ρ = kr and u = cos θ this becomes

eiρu =
∞∑

l=0

aljl(ρ)Pl(u). (8.43)

One way of determining the coefficients al is to differentiate this ansatz with respect to ρ,

iueiρu =
∑

l

al
djl
dρ
Pl. (8.44)

The left hand side of (8.44) can now be evaluated by inserting the series (8.43) and using the

recursion relation

(2l + 1)uPm
l = (l + 1−m)Pm

l+1 + (l +m)Pm
l−1 (8.45)

of the Legendre polynomials for m = 0. This yields

i

∞∑

l=0

aljl

(
l + 1

2l + 1
Pl+1 +

l

2l + 1
Pl−1

)
=

∞∑

l=0

alj
′
lPl (8.46)

and, since the Legendre polynomials are linearly independent, for the coefficient of Pl

alj
′
l = i

(
l

2l − 1
al−1jl−1 +

l + 1

2l + 3
al+1jl+1

)
. (8.47)

The derivative j′l can now be expressed in terms of jl±1 by using the recursion relations

jl−1 =

(
d

dρ
+
l + 1

ρ

)
jl =

1

ρl+1

d

dρ
(ρl+1jl) (8.48)

and

(2l + 1)jl = ρ[jl+1 + jl−1], (8.49)

which imply

j′l = jl−1 −
l + 1

ρ
jl = jl−1 −

l + 1

2l + 1
(jl+1 + jl−1) =

l

2l + 1
jl−1 −

l + 1

2l + 1
jl+1 (8.50)

[the equations (8.48-8.50) also holds for the spherical Neumann functions nl]. Substituting this

expression for j′l into eq. (8.47) we obtain the two equivalent recursion relations

al
2l + 1

= i
al−1

2l − 1
and

al
2l + 1

= −i al+1

2l + 3
(8.51)
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as coefficients of the independent functions jl−1(ρ) and jl+1(ρ), respectively. These relations

have the solution al = (2l + 1)ila0. The coefficient a0 is obtained by evaluating our ansatz at

ρ = 0: Since jl(0) = δl0 and P0(u) = 1 eq. (8.43) implies a0 = 1, so that the expansion of a

plane wave in spherical harmonics becomes

eikr cos θ =
∞∑

l=0

(2l + 1)iljl(kr)Pl(cos θ). (8.52)

Using the addition theorem of spherical harmonics

2l + 1

4π
Pl(cosα) =

+l∑

m=−l
Y ∗
lm(θ1, ϕ1)Ylm(θ2, ϕ2) (8.53)

with α being the angle between the directions (θ1, ϕ1) and (θ2, ϕ2) this result can be generalized

to the expansion of the plane wave in any polar coordinate system

ei
~k·~x = 4π

∞∑

l=0

+l∑

m=−l
iljl(kr)Y

∗
lm(θ~k, ϕ~k)Ylm(θ~x, ϕ~x), (8.54)

where the arguments of Y ∗
lm and Ylm are the angular coordinates of ~k and ~x, respectively.

8.2.2 Scattering amplitude and phase shift

The computation of the scattering data for a given potential requires the construction of the

regular solution of the radial equation. In the next section we will solve this problem for the

example of the square well, but first we analyse the asymptotic form of the partial waves in

order to find out how to extract and interpret the relevant data.

For large r we can neglect the potential U(r) and it is common to write the asymptotic form

of the radial solutions as a linear combination of the spherical Bessel and Neumann functions

Rl(k, r) = Bl(k)jl(kr) + Cl(k)nl(kr) +O(r−α) (8.55)

with coefficients Bl(k) and Cl(k) that depend on the incident momentum k. Inserting the

asymptotic forms

jl(kr) =
1

kr
sin

(
kr − lπ

2

)
+O(

1

r2
), (8.56)

nl(kr) = − 1

kr
cos

(
kr − lπ

2

)
+O(

1

r2
), (8.57)

we can write

Ras
l (k, r) =

1

kr

[
Bl(k) sin

(
kr − lπ

2

)
− Cl(k) cos

(
kr − lπ

2

)]
(8.58)

= Al(k)
1

kr
sin

(
kr − lπ

2
+ δl(k)

)
(8.59)
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where

Al(k) = [B2
l (k) + C2

l (k)]
1/2 (8.60)

and

δl(k) = − tan−1[Cl(k)/Bl(k)]. (8.61)

The δl(k) are called phase shifts. We will see that they are real functions of k and completely

characterize the strength of the scattering of the lth partial wave by the potential U(r) at the

energy E = ~2k2/2m. In order to relate the phase shifts to the scattering amplitude we now

insert the asymptotic form of the expansion (8.52) of the plane wave

ei
~k~x =

∞∑

l=0

(2l + 1)iljl(kr)Pl(cos θ). (8.62)

→
∞∑

l=0

(2l + 1)il(kr)−1 sin

(
kr − lπ

2

)
Pl(cos θ). (8.63)

into the scattering ansatz (8.20)

uas~k (r, θ)→ ei
~k~x + f(k, θ)

eikr

r
. (8.64)

With sin x = (eix−e−ix)/(2i) and the partial wave expansions (8.26)–(8.27) of u(~x) and f(θ, ϕ)

we can write the radial function Rl(k, r), i.e. the coefficient of Pl(cos θ), asymptotically as

Ras
l (k, r) = (2l + 1)il(kr)−1 sin

(
kr − lπ

2

)
+

2l + 1

r
eikrfl(k) (8.65)

=
2l + 1

2ikr

(
il
(
eikr

il
− e−ikr

(−i)l
)

+ 2ikeikrfl

)
(8.66)

Rewriting (8.59) in terms of exponentials

Ras
l (k, r) =

Al
2ikr

(
ei(kr+δl)

il
− e−i(kr+δl)

(−i)l
)

(8.67)

comparison of the coefficients of e−ikr implies

Al(k) = (2l + 1)ileiδl(k). (8.68)

The coefficients of eikr/(2ikr) are (2l + 1)(1 + 2ikfl) and Ale
iδl/il, respectively. Hence

fl(k) =
e2iδl(k) − 1

2ik
=

1

k
eiδl sin δl. (8.69)

The scattering amplitude

f(k, θ) =
∞∑

l=0

(2l + 1)fl(k)Pl(cos θ) =
1

2ik

∞∑

l=0

(2l + 1)(e2iδl − 1)Pl(cos θ) (8.70)
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hence depends only on the phase shifts δl(k) and the asymptotic form of Rl(k, r) takes the form

Ras
l (k, r) = − 1

2ik
Al(k)e

−iδl(k)
[
e−i(kr−lπ/2)

r
− Sl(k)

ei(kr−lπ/2)

r

]
(8.71)

where we defined

Sl(k) = e2iδl(k). (8.72)

Sl is the partial wave contribution to the S-matrix, which we will introduce in the last section of

this chapter. Reality of the phase shift |Sl| = 1 expresses equality of the incoming and outgoing

particle currents, i.e. conservation of particle number or unitarity of the S matrix. For inelastic

scattering we could write the radial wave fuction as (8.71) with Sl = sle
iδl for sl ≤ 1 describing

the loss of part of the incoming current into inelastic processes like energy transfer of particle

production. (The complete scattering matrix, including the contribution of inelastic channels,

would however still be unitary as a consequence of the conservation of probability.)

The optical theorem. The total cross section for scattering by a central potential can be

written as

σtot =

∫
|f(k, θ)|2dΩ = 2π

∫ +1

−1

d(cos θ)f ∗(k, θ)f(k, θ). (8.73)

Using (8.70) and the orthogonality property of the Legendre polynomials

∫ +1

−1

d(cos θ)Pl(cos θ)Pl′(cos θ) =
2

2l + 1
δll′ (8.74)

we find

σtot =
∞∑

l=0

4π(2l + 1)|fl(k)|2 =
∞∑

l=0

σl with σl =
4π

k2
(2l + 1) sin2 δl. (8.75)

Since (8.69) implies Im fl = k|fl|2 we can set θ = 0 in (8.70) and use the fact that Pl(1) = 1 to

obtain the optical theorem

σtot =
4π

k
Imf(k, θ = 0), (8.76)

The optical theorem can be shown to hold also for inelastic scattering with σtot = σel + σinel.

The proof relates the total cross section to the interference of the incoming with the forward-

scattered amplitude so that (8.76) is a consequence of the unitarity of the S-matrix [Hittmair].

8.2.3 Example: Scattering by a square well

The centrally symmetric square well is a potential for which the phase shifts can be calculated

by analytical methods. Starting with the radial equation (8.32) and the reduced potential

U(r) =

{
−U0, r < a (U0 > 0)

0, r > a,
(8.77)
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we can write the radial equation inside the well as
[
d2

dr2
+

2

r

d

dr
− l(l + 1)

r2
+K2

]
Rl(k, r) = 0 for r < a (8.78)

with K2 = k2 + U0. Inside the well the regular solution is thus

Rin
l (K, r) = Nl jl(Kr), r < a (8.79)

where Nl is related to the exact solution in the exterior region

Rext
l (k, r) = Bl(k)[jl(kr)− tan δl(k)nl(kr)], r > a (8.80)

by the matching condition at r = a. Continuity of R and R′ at r = a hence implies

Nl jl(Ka) = Bl(jl(ka)− tan δl nl(ka)), (8.81)

KNl j
′
l(Ka) = kBl (j

′
l(ka)− tan δl n

′
l(ka)) . (8.82)

The ratio of these two equations yields an equation for tan δl(k) whose solution is

tan δl(k) =
kj′l(ka)jl(Ka)−Kjl(ka)j′l(Ka)
kn′

l(ka)jl(Ka)−Knl(ka)j′l(Ka)
(8.83)

with K =
√
k2 + U0.

In the low energy limit k =
√

2mE/~ → 0 we can insert the leading behavior jl(ρ) ∝ ρl

and nl(ρ) ∝ ρ−l−1, and thus for the derivatives j′l(ρ) ∝ ρl−1 and n′
l(ρ) ∝ ρ−l−2, to conclude that

tan δl(k) goes to zero like a constant times kl/k−l−1 = k2l+1. In this limit the cross section,

σl ∝ k4l, (8.84)

is dominated by l = 0 so that the scattering probability approximately goes to a θ-independent

constant. With

j0(ρ) = sin ρ
ρ
, n0(ρ) = − cos ρ

ρ
, j′0(ρ) = ρ cos ρ−sin ρ

ρ2
, n′

0(ρ) = ρ sin ρ+cos ρ
ρ2

(8.85)

and the abbreviations x = ka, X = Ka we find

tan δ0 = ((x cosx−sinx) sinX−sinx(X cosX−sinX))/(xX)
(x sinx+cosx) sinX+cosx(X cosX−sinX))/(xX)

= x cosx sinX−X sinx cosX
x sinx sinX+X cosx cosX

. (8.86)

Dividing numerator and denominator by cosx cosX we obtain the result

tan δ0(k) =
k tan(Ka)−K tan(ka)

K + k tan(ka) tan(Ka)
. (8.87)

For k → 0 we observe that tan δ0 becomes proportial to k. The limit

as = − lim
k→0

tan δ0(k)

k
(8.88)
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is called scattering length and it determines the limit of the partial cross section

σ0 =
4π

k2
sin2 δ0 =

4π

k2

1

1 + cot2 δ0(k)

k→0−→ 4πa2
s. (8.89)

For the square well we find

as =

(
1− tan(a

√
U0)

a
√
U0

)
a, (8.90)

The coefficient of the next term of the expansion

k cot δ0(k) = − 1

as
+

1

2
r0k

2 + · · · (8.91)

defines the effective range r0. This definition of the scattering length as and the effective range

r0 can be used for all short-range potentials.

Another exactly solvable potential is the hard-sphere potential

U(r) =

{
+∞, r < a,

0, r > a,
(8.92)

for which the total cross section can be shown to obey

σ(k) →
{

4πa2, k → 0,
2πa2, k ≫ 1/a.

(8.93)

For k → 0 the scattering length as hence coincides with a and the cross section is 4 times

the classical value. For ka ≫ 1 the wave lengths of the scattered particles goes to 0 and one

might naively expect to observe the classical area a2π. The fact that quantum mechanics yield

twice that value is in accord with refraction phenomena in optics and can be attributed to

interference between the incoming and the scattered beam close to the forward direction. This

effect is hence called refraction scattering, or shadow scattering.

8.2.4 Interpretation of the phase shift

For a weak and slowly varying potential we may think of the phase shift as arising from the

change in the effective wavelength k ∼
√

2m(E − V (x))/~ due to the presence of the potential.

For an attractive potential we hence expect an advanced oscillation and a positive phase shift

δl > 0, while a repulsive potential should lead to retarded oscillation and a negative phase

shift δl < 0. Comparing this expectation with the result (8.90) for the square well and using

tanx ≈ x + 1
3
x3 for small U0 we find as ≈ −1

3
a3U0 so that indeed the scattering length (8.88)

becomes negative and the phase shift δ0 positive for an attractive potential U0 > 0. It can also

be shown quite generally that small angular momenta dominate the scattering at low energies

and that the partial cross sections σl are negligible for l > ka where a is the range of the

potential.
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Figure 8.2: Z boson resonance in e+e− scattering at LEP and light neutrin number.

As we increase the energy the phase shift varies and the partial cross sections

σl(E) =
4π

k2
(2l + 1) sin2 δl =

4π

k2
(2l + 1)

1

1 + cot2 δl
(8.94)

go through maxima and zeros as the phase shift δl goes through odd and even multiples of π,

respectively. For small energies the single cross section σ0 dominates so that we can get minima

where the target becomes almost transparent. This is called Ramsauer-Townsend effect.

A rapid move of the phase shift through an odd multiple of π, i.e.

cot δl ≈
(
(n+ 1

2
)π − δl

)
≈ ER − E

Γ(E)/2
+O(ER − E)2 for δl ≈ (n+ 1

2
)π (8.95)

with Γ(ER) small at the resonance energy ER, leads to a sharp peak in the cross section with an

angular distibution characteristic for the angular momentum chanel l. This is called resonance

scattering and described by the Breit-Wigner resonance formula

σl(E) =
4π

k2
(2l + 1)

Γ2/4

(E − ER)2 + Γ2/4
. (8.96)

A resonance can be thought of as a metastable bound state with positive energy whose lifetime

is ~/Γ. For a sharp resonance the inverse width Γ−1 is indeed related to the dwelling time of

the scattered particles in the interaction region. Note that σmax at a resonance is determined

by the momentum k of the scattered particles and not by properties of the target. A striking

example of a resonance in particle physics is the peak in electron-positron scattering at the

Z-boson mass which was analyzed by the LEP-experiment ALEPH as shown in fig. 8.2. Since

the Z boson has no electric charge but couples to the weakly interacting particles its lifetime is

very sensitive to the number of light neutrinos, which are otherwise extremely hard to observe.

This experiment confirmed with great precision the number Nν = 3 of such species, which is

also required for nucleosynthesis, about one second after the big bang, to produce the right

amount of helium and other light elements as observed in the interstellar gas clouds.
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Resonances can be interpreted as poles in the scattering amplitudes that are close to the

real axis (with the imaginary part related to the lifetime). Poles on the positive imaginary axis,

on the other hand, correspond to bound states for the potential V (x). The information of the

number of such bound states is also contained in the phase shift. For the precise statement we

fix the ambiguity modulo 2π in the definition (8.61) of δl by requiring continuity. The Levinson

theorem then states that

δl(0)− δl(∞) = nl π for l > 0, (8.97)

where nl denotes the number of bound states with angular momentum l [Chadan-Sabatier].

The theorem also holds for l = 0 except for a shift nl → nl+
1
2

in the formula (8.97) if there is a

so-called bound state a zero energy with l = 0. While we consider in this chapter the problem of

determining the scattering data from the potential, in inverse problem of obtaining information

on the potential from the scattering data is physically equally important, but mathematically

quite a bit more complicated. Inverse scattering theory has been a very active field of research

in the last decades with a number of interesting interrelations to other fields like integrable

systems [Chadan-Sabatier].

8.3 The Lippmann-Schwinger equation

We can use the method of Green’s functions to solve the stationary Schrödinger equation (8.14)

(∇2 + k2)u(~x) = U(~x)u(~x). (8.98)

Using the defining equation of the Green’s function for the Helmholtz equation

(∇2 + k2)G0(k, ~x, ~x
′) = δ(~x− ~x′) (8.99)

we can write down the general solution of equation (8.98) as a convolution integral

u(~x) = uhom(~x) +

∫
G0(k, ~x, ~x

′)U(~x′)u(~x′) d3x′ (8.100)

where uhom is a solution of the homogenous Schrödinger equation

(∇2 + k2)uhom(~x) = 0. (8.101)

We will see that the scattering boundary condition (8.20) is equivalent to taking uhom(~x) to be

an incident plane wave

uhom(~x) = φ~k(~x) ≡ ei
~k~x (8.102)

if G0 = Gret
0 is the retarded Green’s function. The existence of solutions to the homogeneous

equation is of course related to the ambiguity of G0, as we will see explicitly in the following

computation.
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Since (8.99) is a linear differential equation with constant coefficients we can determine the

Green’s function by Fourier transformation. Because of translation invariance

G0(k, ~x, ~x
′) = G0(k, ~R) with ~R = ~x− ~x′, (8.103)

hence

G0(k, ~x− ~x′) =
1

(2π)3

∫
ei
~K·~R g̃0(k, ~K)d ~K (8.104)

δ(~x− ~x′) =
1

(2π)3

∫
ei
~K·~Rd ~K. (8.105)

Substituting the Fourier representations into the defining equation of the Green’s function

(8.99) we find that

g̃0(k, ~K) =
1

k2 −K2
. (8.106)

Since g̃0 has a pole on the real axis we give a small imaginary part to k and define

G±
0 (k, ~x, ~x′) =

1

(2π)3

∫
ei
~K·(~x−~x′)

k2 −K2 ± iεd
~K. (8.107)

Let (K,Θ,Φ) be the spherical coordinates of ~K and let the z-axis be along ~R = ~x− ~x′. Then

G±
0 (k, ~R) =

1

(2π)3

∫ ∞

0

dKK2

∫ π

0

dΘ sin Θ

∫ 2π

0

dΦ
eiKR cos Θ

k2 −K2 ± iε. (8.108)

Performing the angular integrations and observing that the integrand is an even function of K

we can extend the integral from −∞ to +∞ and obtain

G±
0 (k, ~R) =

1

8π2iR

∫ +∞

−∞

K(eiKR − e−iKR))

k2 −K2 ± iε dK. (8.109)

With the partial fraction decomposition 1
k2−K2 = − 1

2K

(
1

K−k + 1
K+k

)
we can split the integral

into two parts

G0(k,R) =
i

16π2R
(I1 − I2), (8.110)

with

I1 =

∫ +∞

−∞
eiKR

(
1

K − k +
1

K + k

)
dK (8.111)

I2 =

∫ +∞

−∞
e−iKR

(
1

K − k +
1

K + k

)
dK (8.112)

The integrals can now be evaluated using the Cauchy integral formula if we close the integration

path with a half-circle in the upper or lower complex half-plane, respectively, so that the

contribution from the arcs at infinity vanish. The ambiguity of the Green’s function arises

from different choices of the integration about the poles of the integrand on the real axis, and

different pole prescriptions obviously differ by terms localized at K2 = k2 and hence by a
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ReK
ImK
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P

Figure 8.3: (a) The contour (P+C1) for calculating the integral I1 by avoiding the polesK = ±k
and closing via a semi-circle in infinity. (b) the contour for calculating the integral I2.

superposition of plane wave solutions to the homogeneous equation. The integration contour

in the complex K-plane shown in fig. 8.3 corresponds to a small positive imaginary part of k

and hence to G+
0 . Since eiKR vanishes on C1 and e−iKR vanishes on C2 we find

I1 = 2πieikR (8.113)

I2 = −2πieikR (8.114)

With a similar calculation for k → k − iε the Green’s function in the original variables ~x and

~x′ becomes

G±
0 (k, ~x, ~x′) = − 1

4π

±eik|~x−~x′|
|~x− ~x′| . (8.115)

so that G+
0 = Gret

0 corresponds to retarded boundary conditions. With U = 2m
~2 V we can now

write the integral equation for the wave function as

u~k(~x) = ei
~k·~x − m

2π~2

∫
eik|~x−~x

′|

|~x− ~x′|V (~x′)u~k(~x
′)d~x′. (8.116)

This integral equation is known as the Lippmann-Schwinger equation for potential scattering.

It is equivalent to the Schrödinger equation plus the scattering boundary condition (8.20).
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We can now relate this integral representation to the scattering amplitude by considering

the situation where the distance of the detector r → ∞ is much larger than the range of the

potential to which the integration variable ~x′ is essentially confined so that r′ ≪ r. Hence

|~x− ~x′| =
√
r2 − 2~x~x′ + r′2 = r − ~x~x′

r
+O(

1

r
). (8.117)

Since ~x points in the same direction (θ, ϕ) as the wave vector ~k′ of the scattered particles we

have ~k′ = k~x/r for elastic scattering and hence

eik|~x−~x
′|

|~x− ~x′| −−−→r→∞

eikr

r
e−i

~k′·~x′ + · · · , (8.118)

where terms of order in 1/r2 have been neglected. Substituting this expansion into the Lippmann-

Schwinger equation we find

u~k(~x) −−−→r→∞
ei
~k·~x − 1

4π

eikr

r

∫
e−i

~k′·~x′U(~x′)u~k(~x
′)d~x′. (8.119)

Comparing with the ansatz (8.20) we thus obtain the integral representation

f(k, θ, φ) = − 1

4π

∫
e−i

~k′·~xU(~x)u~k(~x)d~x

= − 1

4π
〈φ~k′|U |u~k〉 = − m

2π~2
〈φ~k′|V |u~k〉 (8.120)

for the scattering amplitude, where 〈φ~k′| = e−i
~k′·~x and |φ~k′〉 = ei

~k′·~x = (2π)3/2|k′〉.

8.4 The Born series

The Born series is the iterative solution of the Lippmann-Schwinger equation by the ansatz

u(~x) =
∞∑

n=0

un(~x) for u0(~x) = φ~k(~x) = ei
~k·~x, (8.121)

which yields

u1(~x) =

∫
G+

0 (k, ~x, ~x′)U(~x′)u0(~x
′) d~x′, (8.122)

...

un(~x) =

∫
G+

0 (k, ~x, ~x′)U(~x′)un−1(~x
′)d~x′, (8.123)

so that the nth term un is formally of order O(V n). It usually converges well for weak potentials

or at high energies. Insertion of the Born series into of the formula (8.120) yields

f = − 1

4π
〈φ~k′|U + UG+

0 U + UG+
0 UG

+
0 U + · · · |φ~k〉 (8.124)
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and keeping only the first term we obtain the (first) Born approximation

fB = − 1

4π
〈φ~k′|U |φ~k〉. (8.125)

to the scattering amplitude.

Phase shift in Born approximation. The Lippmann Schwinger equation (8.116) can

also be analysed using partial waves. We assume that our potential is centrally symmetric and

expand the scattering wave function u~k in Legendre polynomials (see equation (8.26)). With

the normalisation

Rl(k, r) −−−→
r→∞

jl(kr)− tan δl(k)nl(kr) (8.126)

−−−→
r→∞

1

kr

[
sin

(
kr − lπ

2

)
+ tan δl(k) cos

(
kr − lπ

2

)]
, (8.127)

we find that each radial function satisfies the radial integral equation

Rl(k, r) = jl(kr) +

∫ ∞

0

Gl(k, r, r
′)U(r′)Rl(k, r

′)r′2dr′, (8.128)

where

Gl = kjl(kr<)nl(kr>) with r< ≡ min(r, r′) and r> ≡ max(r, r′) (8.129)

is the partial wave contribution to the Green’s function

eik|~x−~x
′|

|~x− ~x′| = ik

∞∑

l=0

(2l + 1) jl(kr<)
(
jl(kr>) + inl(kr>)

)
Pl(cos θ). (8.130)

We solve this equation by iteration, starting with R
(0)
l (k, r) = jl(kr). When we analyse equation

(8.128) for r →∞ we obtain the integral representation

tan δl(k) = −k
∫ ∞

0

jl(kr)U(r)Rl(k, r)r
2dr. (8.131)

Substituting the iteration for Rl into the integral equation yields a Born series whose first term

tan δBl (k) = −k
∫ ∞

0

[jl(kr)]
2U(r)r2dr. (8.132)

is the first Born approximation to tan δl.

Total scattering cross section in first Born approximation. With the wave vector

transfer

~q = ~k − ~k′ (8.133)



CHAPTER 8. SCATTERING THEORY 154

the first Born approximation of the scattering amplitude can be written as the Fourier transform

fB = − 1

4π

∫
ei~q·~xU(~x)d~x (8.134)

of the potential. For elastic scattering with k = k′ and ~k · ~k′ = k2 cos θ we find

q = 2k sin
θ

2
, (8.135)

with θ being the scattering angle. For a central potential it is now useful to introduce polar

coordinates with angles (α, β) such that ~q is the polar axis. We thus find that

fB(q) = − 1

4π

∫ ∞

0

drr2U(r)

∫ π

0

dα sinα

∫ 2π

0

dβeiqr cosα

= −1

2

∫ ∞

0

drr2U(r)

∫ +1

−1

d(cosα)eiqr cosα

= −1

q

∫ ∞

0

r sin(qr)U(r)dr (8.136)

only depends on q(k, θ). The total cross-section in the first Born approximation hence becomes

σBtot(k) = 2π

∫ π

0

|fB(q)|2 sin θdθ =
2π

k2

∫ 2k

0

|fB(q)|2qdq (8.137)

where we used the differential dq = k cos θ
2
dθ of (8.135) and sin θ dθ = 2 sin θ

2
cos θ

2
dθ = q

k
dq
k
.

8.4.1 Application: Coulomb scattering and the Yukawa potential

Since the Coulomb potential has infinite range we apply the Born approximation to the Yukawa

potential

U(r) = C
e−αr

r
= C

e−r/a

r
with a = α−1, (8.138)

which can be regarded as a screened Colomb potential. At the end of the calculation we can

then try to send the screening length a→∞. For the Born approximation (8.136) we obtain

fB = −1

q

∫ ∞

0

r sin(qr)
C

r
e−αrdr = −C

q
Im

∫ ∞

0

eiqr−αrdr = −C
q

Im
1

α− iq = − C

α2 + q2
(8.139)

and the corresponding differential cross section

dσB

dΩ
=

C2

(α2 + q2)2
(8.140)

of the Yukawa potential.

The Coulomb potential. The electrostatic force between charges QA and QB corresponds

to the potential

VCoulomb(r) =
QAQB

4πε0

1

r
(8.141)
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which corresponds to

C =
2m

~2

QAQB

4πε0

(8.142)

but obviously violates the finite range condition. Nevertheless, there is a finite limit α→ 0 for

which we obtain the scattering amplitude fB = −C/q2 and the differential cross-section in first

Born approximation as

dσBc
dΩ

=
C2

q4
=
( γ

2k

)2 1

sin4(θ/2)
=

(
QAQB

4πε0

)2
1

16E2 sin4(θ/2)
(8.143)

where

γ =
QAQB

(4πε0)~v
=
C

2k
(8.144)

is a dimensionless quantity.� This result for the differential cross-section for scattering by a Coulomb potential is iden-

tical with the formula that Rutherford obtained 1911 by using classical mechanics.� The exact quantum mechanical treatment of the Coulomb potential yields the same result

for the differential cross-section. The scattering amplitude fc however differs by a phase

factor. It can be shown that

fc = − γ

2k sin2(θ/2)

Γ(1 + iγ)

Γ(1− iγ)e
−iγ log[sin2(θ/2)] (8.145)

where Γ denotes the Gamma-function [Hittmair].� The Rutherford differential cross-section scales with the energy E at all angles by the

factor (QAQB/16πε0E)2 so that the angular distribution is independent of the energy.� The phase correction in (8.145) becomes observable in the scattering of identical particles

due to interference terms. This will be discussed in chapter 10.

8.5 Wave operator, transition operator and S-matrix

In this section we introduce the scattering matrix S and relate it to the scattering amplitude

via the transition matrix T . We start with the observation that the Greens function G±
0 can be

interpreted as the inverse of E −H0 ± iε up to a factor 2m
~2 . Indeed, with k =

√
2mE

~2 and the

free Hamiltonian H0 = − ~2

2m
∆ we find for a momentum eigenstate with ~p |K〉 = ~ ~K|K〉 that

(E −H0)|K〉 =
~2

2m
(k2 −K2)|K〉 (8.146)

so that

lim
ε→0

1

E −H0 ± iε
=

2m

~2
G±

0 (8.147)
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follows by Fourier transformation and regularization with a small imaginary part of the energy.

More explicitly, the matrix elements of the operator (E −H0 ± iε)−1 in position space are

〈x| 1

E −H0 ± iε
|x′〉 = 〈x| 1

E −H0 ± iε

∫
d3K|K〉〈K|x′〉 (8.148)

=

∫
d3K 〈x| 1

~2

2m
(k2 −K2)± iε

|K〉 e
−i ~K~x′

(2π)3/2
(8.149)

=
2m

~2

∫
d3K

(2π)3

ei
~K(~x−~x′)

k2 −K2 ± iε =
2m

~2
G±

0 (~x− ~x′). (8.150)

With z = E ± iε this is proportional to the resolvent Rz(H0) = (H0 − z)−1 of H0, which is a

bounded operator for ε > 0. The Lippmann–Schwinger equation can now be written as

|u±〉 = |u0〉+
1

E −H0 ± iε
V |u±〉 (8.151)

where |u+〉 corresponds to the scattering solution with retarded boundary conditions.

Wave operator and transition matrix. The Born series for the solutions of (8.151) is

|u±〉 = |u0〉+
∞∑

n=1

(
1

E −H0 ± iε
V )n|u0〉 (8.152)

In order to sum up the geometric operator series we use the matrix formula

1 + 1
A
V + ( 1

A
V )2 + . . . = (1− 1

A
V )−1 = ( 1

A
(A− V ))−1 = (A− V )−1A

= 1
A−V (A− V + V ) = 1 + 1

A−V V (8.153)

for A = E −H0 ± iε. Since A − V = E −H ± iε with H = H0 + V the Born series can thus

be summed up in terms of the resolvent of the full Hamiltonian

|u±〉 = |u0〉+
1

E −H ± iεV |u0〉 = Ω±|u0〉, (8.154)

where we introduced the wave operator or M/oller operator

Ω± = 1 +
1

E −H ± iεV (8.155)

which maps plane waves |u0〉 to exact stationary scattering solution |u0〉 → |u±〉 = Ω±|u0〉. If

we insert this representation for the scattering solution into the formula (8.120) we need to be

careful about the normalization of the wave function. In the present section we prefer to work

with momentum eigenstates normalized as 〈~k′|~k〉 = δ3(~k′ − ~k) which yield a factor (2π)3 as

compared to the plane waves e±ikx with normalized amplitude |φk(x)| = 1. We hence obtain

f = −2π2〈~k′|U |u+〉 = −4π2m

~2
〈~k′|V Ω+|k〉 (8.156)

for the scattering amplitude, which suggests to define the transition operator T as

T := V Ω+ = V (1 + 1
E−H+iε

V ) = (1 + V 1
E−H+iε

)V = Ω†
−V (8.157)
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so that

f(k, θ, ϕ) = −4π2m

~2
〈k′|T |k〉 (8.158)

with (θ, ϕ) corresponding to the direction of ~k′.

The S–matrix. The idea behind the definition of the scattering matrix in terms of the

wave operator is that the incoming scattering state Ω+|k〉 is reduced by the measurement in

the detector to a state that is a plane wave in the asymptotic future and hence, as an exact

solution to the Schrödinger equation, corresponds to advanced boundary conditions Ω−|k′〉.
Since (Ω−|k′〉)† = 〈k′|Ω†

− the scattering amplitude should correspond to the matrix element

〈k′|S|k〉 in the momentum eigenstate basis. Hence we define

〈k′|S|k〉 = 〈k′|Ω†
−Ω+|k〉 ⇒ S = Ω†

−Ω+. (8.159)

It can be shown that this definition of the S-matrix agrees with the limit

S = lim
t1→+∞
t0→−∞

UI(t1, t0) (8.160)

of the time evolution operator in the interaction picture [Hittmair], which implies unitarity.

Unitarity of the S-matrix. We first prove that Ω± are isometries, i.e. that the wave

operators preserve scalar products. It will then be easy to directly show that SS† = S†S = 1.

For this we introduce a more abstract notation with a complete orthonormal basis 〈u0
i |u0

j〉 = δij

of free energy eigenstates |u0
i 〉 with H0|u0

i 〉 = Ei|u0
i 〉 and the corresponding exact solutions

|u±i 〉 = Ω±|u0
i 〉, H|u±i 〉 = Ei|u±i 〉, (8.161)

for which we compute

〈u+
i |u+

j 〉 = 〈u+
i |u0

j〉+ 〈u+
i |

1

Ej −H + iε
V |u0

j〉 (8.162)

= 〈u+
i |u0

j〉+
1

Ej − Ei + iε
〈u+

i |V |u0
j〉. (8.163)

Hermitian conjugation of the Lippmann–Schwinger equation implies, on the other hand,

〈u+
i |u0

j〉 = 〈u0
i |u0

j〉+ 〈u+
i |V

1

Ei −H0 − iε
|u0
j〉 (8.164)

= 〈u0
i |u0

j〉+
1

Ei − Ej − iε
〈u+

i |V |u0
j〉 (8.165)

Hence 〈u+
i |u+

j 〉 = 〈u0
i |u0

j〉 = δij and by complex conjugation 〈u−i |u−j 〉 = δij.

In contrast to the finite-dimensional situation the isometry property of Ω± does not imply

unitarity because an isometry in an infinite-dimensional Hilbert space does not need to be

surjective. Indeed, the maps Ω± send plane waves, which form a complete system, to scattering
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states, which are not complete if the potential V supports bound states. More explicitly, we

can write

Ω± = Ω±
∑

i

|u0
i 〉〈u0

i | =
∑

i

|u±i 〉〈u0
i |. (8.166)

Hence

Ω†
±Ω± =

∑

ij

|u0
i 〉〈u±i |u±j 〉〈u0

j | =
∑

ij

|u0
i 〉δij〈u0

j | = 1 (8.167)

Ω±Ω†
± =

∑

ij

|u±i 〉〈u0
i |u0

j〉〈u±j | =
∑

i

|u±i 〉〈u±i | = 1− Pb.s. (8.168)

where Pb.s. is the projector to the bound states. If the potential V has negative energy solu-

tions these states cannot be produced in a scattering process and are hence missing from the

completeness relation in the last sum. Combining these results unitarity of the S matrix

S†S = Ω†
+Ω−Ω†

−Ω+ = Ω†
+(1− Pb.s.)Ω+ = Ω†

+Ω+ = 1 (8.169)

SS† = Ω†
−Ω+Ω†

+Ω− = Ω†
−(1− Pb.s.)Ω− = Ω†

−Ω− = 1 (8.170)

is established.

Relating the S-matrix to the transition matrix. In order to derive the relation

between S and T we write the S-matrix elements Sij as

Sij = 〈u−i |u+
j 〉 = 〈u+

i |u+
j 〉+ (〈u−i | − 〈u+

i |) |u+
j 〉. (8.171)

With 〈u+
i |u+

j 〉 = δij and

〈u−i | = 〈u0
i |Ω†

− = 〈u0
i |(1 + V

1

Ei −H + iε
), (8.172)

〈u+
i | = 〈u0

i |Ω†
+ = 〈u0

i |(1 + V
1

Ei −H − iε
). (8.173)

we obtain

Sij = δij + 〈u0
i |V (

1

Ei −H + iε
− 1

Ei −H − iε
)|u+

j 〉. (8.174)

Since H|u+
j 〉 = Ej|u+

j 〉 and

lim
ε→0

(
1

z − iε −
1

z + iε
) = 2πi δ(z) (8.175)

we conclude Sij = δij − 2πiδ(Ei − Ej)〈u0
i |V |u+

j 〉 and hence

Sij = δij − 2πiδ(Ei − Ej)Tij. (8.176)

The non-relativistic dispersion E = (~k)2/2m implies δ(Ei − Ej) = m
~2k
δ(ki − kj) so that

〈k′|S|k〉 = δ3(~k − ~k′) +
i

2πk
δ(k − k′)f(~k′, ~k). (8.177)

Partial wave decomposition on the energy shell [Hittmair] then leads to Sl = e2iδl = 1− 2πiTl.


