
Chapter 9

Symmetries and transformation groups

When contemporaries of Galilei argued against the heliocentric world view by pointing out that

we do not feel like rotating with high velocity around the sun he argued that a uniform motion

cannot be recognized because the laws of nature that govern our environment are invariant under

what we now call a Galilei transformation between inertial systems. Invariance arguments have

since played an increasing role in physics both for conceptual and practical reasons.

In the early 20th century the mathematician Emmy Noether discovered that energy con-

servation, which played a central role in 19th century physics, is just a special case of a more

general relation between symmetries and conservation laws. In particular, energy and momen-

tum conservation are equivalent to invariance under translations of time and space, respectively.

At about the same time Einstein discovered that gravity curves space-time so that space-time

is in general not translation invariant. As a consequence, energy is not conserved in cosmology.

In the present chapter we discuss the symmetries of non-relativistic and relativistic kine-

matics, which derive from the geometrical symmetries of Euclidean space and Minkowski space,

respectively. We decompose transformation groups into discrete and continuous parts and study

the infinitesimal form of the latter. We then discuss the transition from classical to quantum

mechanics and use rotations to prove the Wigner-Eckhart theorem for matrix elements of tensor

operators. After discussing the discrete symmetries parity, time reversal and charge conjugation

we conclude with the implications of gauge invariance in the Aharonov–Bohm effect.
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9.1 Transformation groups

Newtonian mechanics in Euclidean space is invariant under the transformations

gv(t, ~x) = (t, ~x+ ~vt) Galilei transformation, (9.1)

gτ,~ξ(t, ~x) = (t+ τ, ~x+ ~ξ) time and space translation, (9.2)

gO(t, ~x) = (t,O~x) rotation or orthogonal transformation, (9.3)

where O is an orthogonal matrix O·OT = 1. In special relativity the structure of the invariance

group unifies to translations xµ → xµ + ξµ and Lorentz transformations

xµ → Lµνx
ν , LTgL = g with gµν =

0

B

B

@

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

1

C

C

A

(9.4)

which leave x2 = xµxµ invariant. A transformation under which the equations of motion

of a classical system are invariant is called a symmetry. Transformations, and in particular

symmetry transformations, are often invertible and hence form a group under composition.1

Infinitesimal transformations. For continuous groups, whose elements depend continu-

ously on one or more parameters, it is useful to consider infinitesimal transformations. Invari-

ance under infinitesimal translations, for example, implies invariance under all translations. For

the group O(3) ≡ O(3,R) of real orthogonal transformations in 3 dimensions this is, however,

not true because O · OT = 1 only implies detO = ±1 and transformations with a negative

determinant detO = −1, which change of orientation, can never be reached in a continuous

process by composing small transformations with determinant +1. The orthogonal group O(3)

hence decomposes into two connected parts and its subgroup SO(3,R) of special orthogonal

matrices R (special means the restriction to detR = 1) is the component that contains the

identity. In three dimensions every special orthogonal matrix corresponds to a rotation R~α

about a fixed axis with direction ~α by an angle |α| for some vector in ~α ∈ R3. Obviously any

such rotation can be obtained by a large number of small rotations so that

R~α = (R 1
n
~α)
n = limn→∞(1+ 1

n
δR~α)

n = exp(δR~α) (9.5)

where we introduced the infinitesimal rotations

δR(~α)xi = εijkαjxk = δR(~α)ikxk, δR(~α)ik = εijkαj. (9.6)

Like for the derivative f ′ of a function f in differential calculus, an infinitesimal transformation

δT is the linear term in the expansion T (εα) = 1 + εδT (α) + O(ε2) and hence is linear and

1 Since translations g~ξ and orthogonal transformations gO do not commute they generate the Euclidean

group E(3) as a semidirect product, each of whose elements can be written uniquely as a composition gO ◦ g~ξ.
Lorentz transformations and translations in Minkowski space similarly generate the Poincaré group.
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obeys the Leibniz rule for products and the chain rule for functions,2

δT (f · g) = δT (f) · g + f · δT (g), δT (f(x)) =
df(x)

dxi
δT (xi) (9.7)

In accord with (9.6) the infinitesimal form δR of an orthogonal transformation RRT = 1 is given

by an antisymmetric matrix since (1+ εδR)(1+ εδRT ) = 1+ ε(δR+ δRT ) +O(ε2). Similarly,

the infinitesimal form δU = iH of a unitary transformation UU † = 1 is antihermitian

U = 1+ ε iH +O(ε2), UU † = 1 ⇒ H = H†. (9.8)

In turn, exp(iH) is unitary if H is Hermitian. The advantage of infitesimal transformations is

that they just add up for combined transformations,

T1T2 = 1+ ε(δT1 + δT2) +O(ε2). (9.9)

In particular, an infinitesimal rotation about an arbitrary axis ~α can be written as a linear

combination of infinitesimal rotations about the coordinate axes

δR(~α) = αjδRj, (δRj)ik = δR(~ej)ik = εijk. (9.10)

Since the finite transformations are recovered by exponentiation the Baker–Campbell–Hausdorff

formula

eA eB = eA+B+ 1
2
[A,B]+ 1

12
([A,[A,B]]−[B,[A,B]])+ multiple commutators (9.11)

shows that a nonabelian group structure of finite transformations corresponds to nonvanishing

commutators of the infinitesimal transformations. In the following an infintesimal transforma-

tion will not always be indicated by a variation symbol, but it should be clear from the context

which transformations are finite and which are infinitesimal.

Discrete transformations As we observed for the orthogonal group, invariance under

infinitesimal transformations only implies invariance for the connected part of a transformation

group and a number of discrete “large” transformations, which cannot be obtained by com-

bining many small transformations, may have to be investigated seperately. In nonrelativistic

mechanics the relavant transformations are time reversal T : t → −t and parity P : ~x → −~x,
which is equivalent to a reflecion ~x→ ~x−2~n(~x·~n) at a mirror with normalized orthogonal vector

~n combined with a rotation R(π~n) about ~n by the angle π. In 1956 T.D. Lee and C.N. Yang

came up with the idea that an apparent problem with parity selection rules in neutral kaon

decay might be due to violation of parity in weak interactions and they suggested a number of

experiments for testing the conservation of parity in weak processes. By the end of that year

2 Linear transformations obeying the Leibniz rule on some associative algebra, like the commutative alge-
bra of functions in classical mechanics or the noncommutative algebras of matrices or operators in quantum
mechanics are called derivations.
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Madame C.S. Wu and collaborators observed the first experimental signs of parity violation in

β-decay of polarized 60Co. This experimental result came as a great surprise because parity

selection rules had become a standard tool in atomic physics and parity conservation was also

well established for strong interactions.

In the relativistic theory there is another discrete transformation, called charge conjuga-

tion, which amounts to the exchange of particles and anti-particles. The combination CP of

parity and charge conjugation turns out to be even more natural than parity alone, and CP

is indeed conserved in many weak processes. But in 1964 it was discovered that CP is also

violated in the neutral kaon system.3 In 1967 Sakharov showed that CP-violation, in addition

to thermal non-equilibrium and the existence of baryon number violating processes, is one of

the three conditions for the possibility of creating matter in the universe. Invariance under the

combination CPT of all three discrete transformations of relativistic kinematics, can be shown

to follow from basic axioms of quantum field theory, and indeed no CPT violation has ever

been observed.

Active and passive transformations. A transformation like, for example, a translation

~x → ~x′ = ~x + ~ξ can be interpreted in two different ways. On the one hand, we can think

of it as a motion where a particle located at the position ~x is moved to the position with

coordinates ~x′ with respect to some fixed frame of reference. Such a motion is often called an

active transformation. On the other hand we can leave everything in place and describe the

same physical process in terms of new coordinates x′. The resulting coordinate transformation

is often called a passive transformation. Active and passive transformation are mathematically

equivalent in the sense that the formulas look identical. If we physically move our experiment

to a new lab, however, our instruments may be sufficiently sensitive to detect the change of

the magnetic field of the earth or of other environmental parameters that are not moved in an

active transformation of the experiment. If we also move the earth and its magnetic field, then

it is most likely that we are still in our old lab and that all that happened was a change of

coordinates.

If we simultaneously perform an active and a passive transformation then a scalar quantity

like a wave function ψ(x) does not change its form so that

ψ(x) = ψ′(x′), x′ = Rx ⇒ ψ′(x) = ψ(R−1x). (9.12)

Quantum mechanics has its own way of incorporating this relation into its formalism. Since a

symmetry transformation has to preserve scalar products we consider unitary transformations

3 Since quarks have both weak and strong interactions, it is still mysterious why CP violation does not also
affect the strong interactions. This is known as the strong CP problem. Its only proposed explanation so far
has been the Peccei-Quinn symmetry, which postulates a new particle called axion. If they exist, axions might
contribute to the observed dark matter in the universe.
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R† = R−1 in Hilbert space. Hence

(Rψ)(x) = 〈x|R|ψ〉 = 〈R†x|ψ〉 = 〈R−1x|ψ〉 = ψ(R−1x), (9.13)

in accord with (9.12). For discrete symmetries also anti-unitary maps are possible, as will be

the case for time reversal and charge conjugation.

9.2 Noether theorem and quantization

Canonical mechanics. For a dynamical system with Lagrange function L = L(qi, q̇i, t) Hamil-

ton’s principle of least action states that the functional

φ(γ) =

∫ t1

t0

dtL(qi, q̇i, t) (9.14)

has to be extremal among all paths γ = {q(t)} with fixed initial point qi(t0) and fixed final

point qi(t1). Since δq̇i = d
dt
δqi the variation can be written as

δφ =

∫ t1

t0

dt

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i
)

=

∫ t1

t0

dt

(
(
∂L

∂qi
− d

dt

∂L

∂q̇i
)δqi +

d

dt
(
∂L

∂q̇i
δqi)

)
. (9.15)

Due to the boundary conditions the variation δqi(t) is zero at the initial and at the final time

so that the surface term
∫
dt d

dt
( ∂L
∂q̇i δq

i) = ( ∂L
∂q̇i δq

i)|t1t0 vanishes. Extremality of the action δφ = 0

for all variations is hence equivalent to the Euler-Lagrange equations of motion

δL

δqi
= 0 with

δL

δqi
≡ ∂L

∂qi
− d

dt

∂L

∂q̇i
=
∂L

∂qi
− ṗi (9.16)

where we introduced the variational derivative δL
δqi of L and the canonical momentum pi ≡ ∂L

∂q̇i .

The space parametrized by the canonical coordinates qi is called configuration space.

By Legendre transformation with respect to q̇i we obtain the Hamilton function

H(pi, q
i, t) =

∑
piq̇

i − L(qi, q̇i, t) with pi =
∂L

∂q̇i
, (9.17)

as a function of the momenta pi and the coordinates qi, which together parametrize the phase

space. Since the inverse Legendre transformation is given by eliminating the momenta pi from

the equation q̇i = ∂H/∂pi(p, q) the Hamiltonian equations of motion

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
(9.18)

are equivalent to the Euler-Lagrange equations. The equations (9.18) can also be obtained

directly as variational equations δL̃/δpi = 0 and δL̃/δqi = 0 of the first order Lagrangian

L̃(q, q̇, p) = q̇ipi − H(p, q). Infinitesimal time evolution, as any infinitesimal transformation,
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obeys the Leibniz rule for products and the chain rule for phase space functions f(q, p, t), for

which we admit an explicit time dependence. Regarding f as a function of time on a classical

trajectory we hence obtain

ḟ =
∂f

∂qi
q̇i +

∂f

∂pi
ṗi + ∂tf = {H, f}PB + ∂tf (9.19)

where we defined the Poisson brackets

{f, g}PB ≡
∑

i

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi
∂g

∂pi

)
(9.20)

for arbitrary phase space functions f(p, q) and g(p, q).

The Noether theorem. An infinitesimal transformation qi → qi+δ̂qi with δ̂qj = f j(qi, q̇i)

is a symmetry of a dynamical system with Lagrange function L(qi, q̇i) if δ̂L = K̇ is a total time

derivative because a total derivative does not contribute to the variation (9.15) and hence

leaves the equations of motion invariant. The Noether theorem states that these infinitesimal

symmetries are in one-to-one correspondence with constants of motion Q, which are also called

conserved charges or first integrals. More explicitly, a symmetry δ̂q with δ̂L = K̇ implies that

Q = δ̂qipi −K (9.21)

is a constant of motion. In turn, if some phase space function Q(qi, q̇i) is a constant of motion

for all classical trajectories then its time derivative is a linear combination of the equations of

motion Q̇ =
∑

i ρ
i δL
δqi . The transformation δ̂qi = −ρi(qj, q̇j) is then a symmetry of the Lagrange

function, i.e. δ̂L = K̇ with K = δ̂qipi −Q.

Remarks: A constant of motion is only constant for motions that obey the equations of motion!

It is important to discern identities and dynamical equations. For a constant of motion Q̇ = 0

is a consequence of the equations of motion. This implies that there is an identity Q̇ =
∑

i ρ
i δL
δqi

that holds for arbitrary functions qi(t) and not only for solutions to δL
δqi = 0. A symmetry

transformation δ̂qi (like e.g. a translation) does not have to vanish at an initial or final time!

Proof: According to (9.15) the equation

δL =
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i ≡ δL

δqi
δqi +

d

dt
(
∂L

∂q̇i
δqi) (9.22)

is an identity for an arbitrary variation. δ̂L = K̇ hence implies

δL

δqi
δ̂qi +

d

dt
(piδ̂q

i) = K̇. (9.23)

The theorem follows by subtracting the time derivative d
dt

(piδ̂q
i) from this equation. �

Hamiltonian version. Coordinate transformations in phase space (p, q) → (p′, q′) with

functions p′(p, q) and q′(p, q) that leave the form of the Poisson brackets invariant are called
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canonical transformations. It can be shown that infinitesimal canonical transformations δ̂ can

be written in terms of a generating function Q(p, q) as

δ̂qi = {Q, qi}PB, δ̂pi = {Q, pi}PB. (9.24)

For a fixed phase space function Q the map g → {Q, g}PB is linear and obeys the Leibniz

rule, as required for an infinitesimal transformation. In the canonical formalism a symmetry

transformation is, by definition, a canonical transformation {Q, .}PB with some generating

function Q(p, q) that leaves the Hamilton function invariant {Q,H}PB = 0. This makes the

Noether theorem quite trivial, because {Q,H}PB = −{H,Q}PB = −Q̇ = 0 is at the same time

the condition for Q to be a constant of motion.

The equivalence of the Hamiltonian and the Lagrangian definition of a symmetry, as well

as the equality of the Noether charges Q, can be seen by computing a variation δ̂ of the first

order Lagrangian L̃ = q̇ipi −H,

δ̂(q̇ipi −H) = δ̂q̇i pi + q̇iδ̂pi − δ̂H (9.25)

=
d

dt
(δ̂qi pi)− δ̂qiṗi + q̇iδ̂pi − ∂qiHδ̂qi − ∂pj

Hδ̂pj, (9.26)

which can only be equal to K̇(p, q) if d
dt

(K−piδ̂qi) = q̇i∂qi(K−piδ̂qi)+ ṗi∂pi
(K−piδ̂qi) is equal

to −δ̂qiṗi + q̇iδ̂pi so that δ̂ is a canonical transformation

δ̂qi =
∂Q

∂pi
and δ̂pi = −∂Q

∂qi
⇒ δ̂f = {Q, f}PB (9.27)

with generating function Q = piδ̂q
i − K. The last two terms in (9.26), which do not contain

time-derivatives and hence have to cancel each other, now combine to δ̂H = {Q,H} = 0. We

thus have shown that the Noether charge Q, when expressed as a function of the canonical

coordinates qi and pi, is the generating function for the transformation δ̂.

Quantization. Since {pi, xj}PB = δij in classical mechanics and [Pi, Xj] = ~

i
δij in quantum

mechanics canonical quantization replaces Poisson brackets of conjugate phase space variables

by i
~

times the commutator of the corresponding operators,

{pi, xj}PB = δij =
i

~
[Pi, Xj]. (9.28)

For the generating functions of infinitesimal transformations this amounts to

δ̂qi = {Q, qi}PB → δ̂ ~X =
i

~
[Q, ~X]. (9.29)

Note that Poisson brackets and commutators both are antisymmetric, satisfy the Jacobi-

Identity, and obey the Leibniz rule for each of its two arguments, so that {Q, .}PB and [Q, .]
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both qualify as inifinitesimal transformations. Moreover, the real variation δ̂qi of the real co-

ordinate qi naturally leads to the anti-Hermitian operator i
~
Q so that the finite transformation

exp( i
~
Q) becomes a unitary operator. More precisely, one has to be careful about possible

ordering ambiguities if Q(qi, pi) is a composite operator. It is always possible to choose Q

Hermitian (for example by Q→ 1
2
(Q+Q†), or by Weyl ordering). In quantum mechanics it is

usually also possible of find a proper quantum version of the symmetry generators, but for an

infinite numbers of degrees of freedom quantum violations of classical symmetries, which are

called anomalies, can be unavoidable and may lead to important restrictions for the structure

of consistent theories.4

Energy, momentum and angular momentum. As an example we now compute the

generators of translations and rotations. Under a time translation δ̂qi = q̇i of an autonomous

system the Lagrange function transforms into its time derivative δ̂L = K̇ = L̇, so that the

corresponding Noether charge Q = δ̂qipi − K = q̇ipi − L agrees with the Hamilton function.

This proves the equivalence of time independence and energy conservation. Uppon quantization

(9.29) we find
d

dt
~X =

i

~
[H, ~X], (9.30)

which is Heisenberg’s equation of motion for the position operator ~X. Canonical quantization

hence naturally leads to the Heisenberg picture. The corresponding time evolution of the wave

function in the Schrödinger picture is given by the Schrödinger equation d
dt
|ψ〉 = −~

i
H|ψ〉.

The generator of a translation δ̂i~x = ~ei into the coordinate direction ~ei is the momentum

pi because δ̂iL = 0, hence K = 0, and δ̂ixjpj = ~ei~p = pi for a translation invariant Lagrange

function. Under rotations a centrally symmetric action is also strictly invariant δ̂~αL = K̇ = 0.

A rotation about the xj-axis is given by δ̂~x = δRej
~x. With (9.10) we have δ̂xi = εijkxk and

thus obtain the corresponding Noether charge

Lj = δ̂xipi − 0 = εijkxkpi = εjkixkpi (9.31)

or ~L = ~x×~p in accord with the usual definition of angular momentum. The results are collected

in the following table.

Symmetry Noether charge infinitesimal transformation

time evolution Hamiltonian H d
dt
|ψ〉 = − i

~
H|ψ〉

translation momentum Pi −~∇|ψ〉 = − i
~
~P |ψ〉

rotation orbital angular momentum Li δRα|ψ〉 = − i
~
~α~L|ψ〉

4 In the standard model of particle interaction, for example, cancellation of certain anomalies between
quarks and leptons is indespensible for the consisteny of the theory, while the anomalay in baryon number
conservation is in principle observable and enables proton decay, one of Sakharov’s conditions for the creation
of matter. Anomalies are also the origin of the space-time dimension 10 in superstring theory.
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For finite transformations U = exp(− i
~
H) is the time evolution operator and exp(− i

~
~a~P )ψ(x)

yields the Taylor series expansion of ψ(~x − ~a) in the translation vector ~a. For infinitesimal

rotations

δR~αψ(x) ≡ − i
~
~α~Lψ(x) = − i

~
αiεijkxj

~

i
∇kψ(x) = −εijkαjxk∇iψ(x), (9.32)

in accord with (9.13).

Transformation of operators. A unitary transformation |ψ〉 → T |ψ〉 of states implies

that the respective transformation of operators O is

|ψ〉 → T |ψ〉 ⇒ O → TOT † (9.33)

because matrix elements should not change if we apply both transformations simultaneously.

Since TOT−1 = (1+ εδT )O(1− εδT ) +O(ε2) = 1+ ε[δT,O] +O(ε2) the infinitesimal version

of this correspondence is

|ψ〉 → δT |ψ〉 ⇒ δO = [δT,O]. (9.34)

By the active–passive equivalence, an operator transformation O → TOT † can hence be re-

placed by the inverse transformation of states, projectors and density matrices

|ψ〉 → T †|ψ〉 ⇒ Pψ → T †PψT and ρ→ T †ρT with Pψ = |ψ〉〈ψ|, (9.35)

which transforms expectation values trPψO → tr(T †PψT )O = trPψ(TOT †) in the same way.

These rules hold for all unitary transformations and not only for symmetry transformations!

9.3 Rotation of spins

If we consider the total angular momentum operator ~J = ~L + ~S for a particle with spin ~S we

obtain its finite rotations by

e−
i
~
~α ~J = e−

i
~
~α~Le−

i
~
~α~S (9.36)

because the orbital angular momentum and the spin operator commute. The former operator

is responsible for the shift in the position resulting from the rotation while the latter rotates

the orientation of the spin. The operator exp(− i
~
~α~S) is hence called the rotation operator in

spin space, and it is often sufficient to study its action if the spin orientation rather than the

precise position of the particle is relevant for a computation. In the basis |s, µ〉 where S2 and

Sz are diagonal we have

S±|s, µ〉 = ~
√

(s∓ µ)(s± µ+ 1) |s, µ± 1〉 and Sz|s, µ〉 = ~µ |s, µ〉 (9.37)
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with S± = Sx ± iSy or Sx = 1
2
(S+ + S−) and Sy = 1

2i
(S+ − S−).

Spinors. For spin s = 1
2

the wave function in the Sz-basis (9.37) can be written as

ψ(x) ≡ ψ+(x) |↑〉+ ψ−(x) |↓〉 ≡
(
ψ+(x)
ψ−(x)

)
(9.38)

with | ↑〉 = |1
2
, 1

2
〉 =

(
1
0

)
and | ↓〉 = |1

2
,−1

2
〉 =

(
0
1

)
and the spin operator becomes ~S = ~

2
~σ in

terms of the Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
with

σiσj = δij + iεijkσk
trσi = 0

. (9.39)

Since (~σ~α)2 = αiαjσiσj = αiαjδij1 = α21 exponentiation of δR~α|ψ〉 = − i
~
~α~S|ψ〉 = − i

2
~α~σ|ψ〉

yields the finite spin rotations

Rα = e−
i
2
~α~σ = 1 cos

α

2
− i ~eα~σ sin

α

2
with α = |~α| and ~eα = ~α/α, (9.40)

which leave the position invariant but mix the spin-up and the spin-down components of the

wave function. We observe that a rotation by an angle α = 2π transforms |ψ〉 → −|ψ〉. This

strange behavior of spinors is not inconsistent because ±|ψ〉 only differ by a phase and hence

represent the same physical state of the system and cannot be distinguished by any observable.

Phases do become observable, however, in interference pattens. The change of sign for a rotation

by 2π has indeed been verified experimentally with neutrons interferometry by H. Rauch et al.

in 1975, who achieved destructive interference between coherent neutron rays whose spins were

rotated by a relative angle 2π.

Remark: The projector Π|↑,~n〉 onto a state with spin up in the direction of a unit vector

~n can be obtained by an active rotation R~α of | ↑〉〈↑ | = 1
2
(1 + σz) with ~α = α

sinα
~ez × ~n for

cosα = nz,

R~α = (1+nz)1+inyσx−inxσy√
2(1+nz)

, Π|↑,~n〉 ≡ |↑, ~n〉〈↑, ~n| = R~α
1+σz

2
R†
~α = 1

2
(1+ ~n~σ). (9.41)

Without lengthy calculation the result directly follows from the fact that ~n~σ = 2
~
~n~S has eigen-

values ±1 on states with spin component ±~

2
in the direction ~n.

Vectors. For spin s = 1 the analog of the Pauli matrices can again be obtained from (9.37)

with Sx = 1
2
(S+ + S−) and Sy = 1

2i
(S+ − S−),

S(1)
x =

~√
2




0 1 0
1 0 1
0 1 0


 S(1)

y =
~

i
√

2




0 1 0
−1 0 1

0 −1 0


 S(1)

z = ~




1 0 0
0 0 0
0 0 −1


. (9.42)

In order to relate the spherical basis |1,m〉 to the standard vector basis ~ei we start with

~ez = |1, 0〉 (9.43)
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because ~ez is an eigenvector of the infinitesimal rotation δR~ez about the z-axis with eigenvalue

0. Evaluating S± = Sx ± iSy on |1, 0〉 = ~ez we find

S±|1, 0〉 = ~
√

(1∓ 0)(1± 0 + 1)|1,±1〉 =
√

2~|1,±1〉 !
= (Sx±iSy)~ez = −~

i
(−~ey±i~ex) (9.44)

because − i
~
Si generates an infinitesimal rotation about ~ei. Equality of these expressions implies

|1,±1〉 = ∓ 1√
2
(~ex ± i~ey). (9.45)

The spherical components V
(1)
q of a vector ~V in the Sz-basis |1,m〉 are hence defined by

V
(1)
0 = Vz, V

(1)
±1 = ∓ 1√

2
(Vx ± iVy). (9.46)

Since V
(1)
1 W

(1)
−1 + V

(1)
−1 W

(1)
1 = −VxWx − VyWy the scalar product of two vectors becomes

~V · ~W =
1∑

q=−1

(−1)q V (1)
q W

(1)
−q (9.47)

in the spherical basis. As the matrices S
(1)
i in (9.42) neither anticommute nor square to 1 there

is no simple analog of the formula (9.40) for finite rotations exp(− i
~
~α~S(1)). A general formula

for arbitrary spin is known, however, if we represent the rotation in terms of the Euler angles.

General representation of the rotation group. Every rotation in R3 can be written as

a combination of a rotation by an angle γ about the z-axis followed by a rotation by β about

the y-axis and a rotation by α about the z-axis. The angles (α, β, γ) are called Euler angles

(see appendix A.10 in [Grau]) and the corresponding rotation operator is

R = e−
i
~
Jzα · e− i

~
Jyβ · e− i

~
Jzγ. (9.48)

Since Jz|j,m〉 = ~m|j,m〉 the matrix elements of this operator in an eigenbasis of J2 and Jz

can be written as

〈j,m′|R|j,m〉 = e−im
′α〈j,m′|e− i

~
Jyβ|j,m〉 e−imγ (9.49)

For the non-diagonal rotation operator about the y axis we define

d
(j)
m′m(β) = 〈j,m′|e− i

~
Jyβ|j,m〉 (9.50)

Without proof we state the formula

d
(j)
m′m(β) = (−1)m

′−m

√
(j −m′)!(j +m′)!

(j −m)!(j +m)!
sinm

′−m
(
β

2

)
cosm

′+m

(
β

2

)
Pm′−m,m′+m
j−m′ (cos β)

(9.51)

where P r,s
n (ξ) are the Jacobi polynomials, which can be defined by [Grau, A2]

P r,s
n (ξ) = (n+r)!

(n−r)!
(

1+ξ
2

)2
F
(
−n,−n− s, r + 1; ξ+1

ξ−1

)
(9.52)

=
(−1)n

2n n!
(1− ξ)−r(1 + ξ)−s

dn

dξn

(
(1− ξ)n+r(1 + ξ)n+s

)
(9.53)
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in terms of the hypergeometric function F .

SO(3) and SU(2). The tensor product 〈ϕ| ⊗ |ψ〉 of two spinors corresponds to a 2 × 2

matrix with 4 degrees of freedom, which we expect to contain a scalar and vector. Since the

three traceless Pauli matrices and the unit matrix together form a basis for all 2× 2 matrices

〈ϕ| ⊗ |ψ〉 can be written as linear combinations of

〈ϕ|1|ψ〉 and 〈ϕ|~σ|ψ〉. (9.54)

These matrix elements indeed transform as a skalar and a vector, respectively, since

δRα(〈ϕ|σi|ψ〉) = − i
2
αj(〈ϕ|σiσj − σjσi|ψ〉) = − i

2
αj〈ϕ|2iεijkσk|ψ〉 = αjεijk〈ϕ|σk|ψ〉 (9.55)

and δRα(〈ϕ|ψ〉) = i
2
(〈ϕ|ασ)|ψ〉− i

2
〈ϕ|(ασ|ψ〉) = 0. Since ~α~σ is an arbitrary traceless Hermitian

matrix the exponential A = exp(− i
2
~α~σ) is a arbitrary special unitary matrix A ∈ SU(2) which

can be written as

SU(2) ∋ A =

(
a b
c d

)
, AA† = A

(
a∗ c∗

b∗ d∗

)
= 1 ⇒ |a|2 + |b|2 = 1

ca∗ + db∗ = 0
. (9.56)

The last equation implies c = − b∗

a∗d so that detA = 1 = ad− bc = d
a∗ (aa

∗ + bb∗) = d
a∗ . We thus

obtain d = a∗, c = −b∗ and

A =

(
a b
−b∗ a∗

)
with |a|2 + |b|2 = 1. (9.57)

As a manifold SU(2) is therefore a 3-sphere with radius 1 in R4 whose coordinates are the real

and imaginary parts of a and b. For finite transformations the spinor rotation |ψ〉 → A|ψ〉 leads

to the vector rotation

〈ϕ|σi|ψ〉 → 〈ϕ|A†σiA|ψ〉 =
∑

k

Rik(A)〈ϕ|σk|ψ〉. (9.58)

The equation

A†σiA = Rik(A)σk (9.59)

hence defines a map from A ∈ SU(2) to a rotation R(A) ∈ SO(3). This map is two-to-one

because A and −A lead to the same rotation. This should not come as a surprise because we

already know that a rotation by 2π, which is the identity in SO(3), reverses the sign of a spinor.

A and −A are antipodal points of the S3 that represents SU(2). We can therefore think of

SO(3) as the 3-sphere with antipodal points identified and SU(2) is a smooth double cover of

the rotation group. The mathematical reason for the existence of spinor representations of the

rotation group is the fact that SO(3) admits an unbranched double-cover and hence admits so

called projective or ray representations where a full rotation gives back the original state only

up to a phase factor. Such objects would be forbidden in classical mechanics, but in quantum

mechanics a physical state is not represented by a unique vector |ψ〉 ∈ H but rather by a “ray”

of vectors λ|ψ〉 with λ 6= 0.
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9.3.1 Tensor operators and the Wigner Eckhart theorem

Vector and tensor operators are collections of operators labelled by vector or tensor indices that

transform accordingly under rotations,

[Ji, Vj] = i~εijlVl, [Ji, Tjl] = i~εijmTml + i~εilnTjn, . . . (9.60)

The number of indices is the order k of the tensor. Since

~J · (T |ψ〉) = [ ~J, T ] · |ψ〉+ T · ~J |ψ〉 (9.61)

the action of a general vector operator is like an addition of an angular momentum j = 1 as far

as the properties under rotations are concerned. For a vector operator (9.46) we already know

that

[
Jz, V

(1)
q

]
= q~V (1)

q (9.62)
[
J±, V

(1)
q

]
=

√
2− q(q ± 1)~V

(1)
q±1 (9.63)

For higher order k > 1 a general tensor decomposes into irreducible parts that are connected

by the ladder operators. An irreducible tensor operator T kq of the order k is defined by the

following commutation relations,

[
Jz, T

(k)
q

]
= ~qT (k)

q , (9.64)
[
J±, T

(k)
q

]
=

√
k(k + 1)− q(q ± 1)~T

(k)
q±1, (9.65)

where k and q are the analogues of the eigenvalues l and m of the spherical harmonics and

q = −k, . . . , k labels the 2k + 1 spherical components of the irreducible tensor operator T (k).

A tensor operator Til of order 2, for example, has nine elements. Since two spins j1 = j2 = 1

add up to spin j ≤ 2 we expect Til to contain irreducible tensors of order 0, 1 and 2. In this

example it is easy to guess that the scalar is the trace T (0) = δilTil, while the 3 vector degrees of

freedom are found by anti-symmetrization T
(1)
i = 1

2
εijlTjl. This leaves the traceless symmetric

part T
(2)
il = 1

2
(Til + Tli)− 1

3
δilT

(0) to represent the 5 components of the irreducible operator of

order 2. The proof of this is analogous to the addition of angular momenta. One first writes

the tensor Til in spherical coordinates with i → q1 and l → q2. Then the highest component

must be T
(2)
2 = T+1,+1 (think of Til as ViWl, then T

(2)
2 = V

(1)
+1 W

(1)
+1 ). The remaining components

T
(2)
q are then obtained by acting with J−.

The Wigner-Eckhart theorem: In a basis |α, j,m〉 of eigenvectors of J2 and Jz the

matrix elements of an irreducible tensor operator of order k are of the form

〈α, j,m|T (k)
q |α′, j′,m′〉 = 〈j′,m′, k, q|j,m, 〉〈α, j||T (k)||α′j′〉 (9.66)

where
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(k)
q ),� 〈α, j||T (k)||α′j′〉 . . . reduced matrix element(independent of m, m′, q),� α . . . represents all other quantum numbers.

The Wigner-Eckhart theorem thus factorizes the matrix representation of T
(k)
q into a geometric

part, which is given by the Clebsch-Gordon coefficients, and a constant, called reduced matrix

element, which does not depend on the magnetic quantum numbers.

Proof: For the proof we consider the (2k + 1)(2j′ + 1) vectors

T (k)
q |α′, j′,m′〉 (q = −k, ..., k; m′ = −j′, ..., j′) (9.67)

and their linear combinations

|σ, j′′,m′′〉 =
∑

q,m′

T (k)
q |α′, j′,m′〉〈j′,m′, k, q|j′′,m′′〉, (9.68)

where σ contains j′ and α′ as well as further quantum numbers that characterize T (k). The

crucial point is that the collections |σ, j′′,m′′〉 of (2k + 1)(2j′ + 1) states for fixed σ and for

|m′′| ≤ j′′ ≤ j′ + k indeed transform according to the irreducible spin-j′′ representations, as

is suggested by the notation. This follows from (9.61) and the definitions of tensor operators

and Clebsch-Gordon coefficients. Since the latter form a unitary matrix we can invert this

transformation and obtain

T (k)
q |α′, j′,m′〉 =

∑

j′′,m′′

|σ, j′′,m′′〉〈j′′,m′′|j′,m′, k, q〉. (9.69)

If we now multiply this equation with 〈α, j,m| we get

〈α, j,m|T (k)
q |α′, j′,m′〉 =

∑

j′′,m′′

〈α, j,m|σ, j′′,m′′〉〈j′′,m′′|j′,m′, k, q〉 (9.70)

= 〈α, j,m|σ, j,m〉〈j,m|j′,m′, k, q〉 (9.71)

with 〈α, j,m|σ, j,m〉 ≡ 〈α, j||T (k)||α′, j′〉 because 〈α, j,m|σ, j′′,m′′〉 is 0 except for j = j′′ and

m = m′′. The scalar product 〈α, j,m|σ, j,m〉 does not depend on m, as can be shown by

insertion of [J+, J−] = 2J3, and its dependence on j′ and T (k) is implicitly contained in σ. �

As an application we consider the spherical harmonics Y
(k)
q ≡ Ykq with angular momentum

k, operating on wave functions by multiplication,

〈α, j,m|Y (k)
q |α′, j′,m′〉 = δαα′〈j′,m′, k, q|j,m〉〈j||Yk||j′〉. (9.72)

The reduced matrix element is

〈j||Yk||j′〉 = 〈j, 0, k, 0|j′, 0〉
√

(2j + 1)(2k + 1)

(2j′ + 1)
(9.73)

(see [Messiah] II, appendix C).
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9.4 Symmetries of relativistic quantum mechanics

In chapter 7 we introduced the Dirac equation

i~ψ̇ = Hψ, H = cαi(Pi −
e

c
Ai) + βmc2 + eφ (9.74)

with 4-component spinors ψ and Hermitian 4× 4 matrices β and αi with 2× 2 block entries

β =
(1 0

0 −1), αi =
(

0 σi

σi 0

)
(9.75)

which satisfy the anticommutation relations {αi, αj} = δij14×4, {αi, β} = 0, and β2 = 14×4. In

the relativistic notation we distinguish upper and lower indices µ = 0, . . . , 3 and combine space-

time coordinates, scalar and vector potential, and energy-momentum to 4-vectors according to

xµ = (ct, ~x), ∂µ = (
1

c
∂t, ~∇), Aµ = (φ, ~A), pµ = (

1

c
E, ~p). (9.76)

After multiplication with β/~c from the left and with the correspondence rule pµ → i~∂µ the

Dirac equation (9.74) becomes 5

(
iγµ∂µ −

e

~c
γµAµ −

c

~
m
)
ψ(t, ~x) = 0, (9.77)

where we introduce the four matrices γµ = (β, β~α), which are unitary (γµ)† = (γµ)−1 and

satisfy the Clifford algebra

{γµ, γν} = 2gµν , with γµ = gµνγ
ν (9.78)

so that (γ0)2 = 1 = −(γi)2 and different γ’s anticommute γµγν = −γνγµ if µ 6= ν. The four

matrices γµ are the relativistic analog of the three Pauli matrices σi. Since relativistic spinors

have 4 components (describing the spin-up and the spin-down degrees of freedom of particles

and antiparticles) the γµ are 4× 4 matrices. Their unitarity implies that only γ0 is Hermitian

while the three matrices γi are anti-Hermitian, which can be expressed in the formula

(γµ)† = (γµ)−1 = γ0γµγ0. (9.79)

Explicitly the Dirac matrices read

γ0 =
(1 0

0 −1), γi =
(

0 σi

−σi 0

)
[Pauli representation]. (9.80)

Matrix representations γµ of the Clifford algebra (9.78) are far from unique, but it can be shown

that all unitary representations are related by unitary similarity transformations γµ → UγµU−1.

For concrete calculations it is usually much better to use the algebraic relations (9.78–9.79) than

to use an explicit form of the γ-matrices.6

5 In quantum electrodynamics it is common to introduce Feynman’s slash notation a/ ≡ γµaµ [read: a-slash]
for contractions of vectors with γ matrices and to set ~ = c = 1 so that the Dirac operator reads (i∂/− eA/−m)

and a/
2

= a214×4, which generalizes the nonrelativistic formula (~v~σ)2 = v212×2.
6 For certain applications particular representations may, however, be useful: The Pauli representation is

convenient for taking the non-relativistic limit (see chapter 7). In a Majorana representation all γµ are imaginary

γ0 =

(
σ2 0
0 σ2

)
, γ1 =

(
iσ1 0
0 iσ1

)
, γ2 =

(
0 iσ3

iσ3 0

)
, γ3 =

(
iσ3 0
0 −iσ3

)
[Majorana] (9.81)
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9.4.1 Lorentz covariance of the Dirac-equation

We want to show now that the Dirac equation (9.77) retains its form under a Lorentz trans-

formation x′µ = Lµνx
ν . For given Lµν we expect the Dirac spinor ψ to transform linearly

ψ′(x′) = Λ(L)ψ(x) with some 4 × 4 matrix Λ depending on L. Note that we always use a

matrix notation and never write explicit indices for spinors ψ and their linear transformations

by multiplications with γ-matrices, which are four 4 × 4 matrices acting by matrix multipli-

cation on 4-component spinors but labeled by a Lorentz vector index µ. One should not be

confused by the coincidence that spinors and vectors have the same number of components in

4 dimensions. They nevertheless transform differently under Lorentz transformations!7

For simplicity we consider the free Dirac equation with Aµ = 0. Inserting

x′ν = Lνµx
µ ⇒ ∂µ =

∂

∂xµ
=
∂x′ν

∂xµ
∂

∂x′ν
= Lνµ

∂

∂x′ν
= Lνµ∂

′
ν and ψ = Λ−1ψ′ (9.83)

into the equation (iγµ∂µ − c
~
m)ψ = 0 we obtain

(iγµLνµ∂
′
ν − c

~
m)Λ−1ψ′ = 0. (9.84)

This transforms into (iγν∂′ν − c
~
m)ψ′ = 0 by multiplication with Λ from the left provided that

ΛγµLνµΛ
−1 = γν or

Λ−1γµΛ = Lµνγ
ν . (9.85)

This is the relativistic version of the equation (9.59) and defines the spinor transformation Λ(L)

in terms of a Lorentz transformation L. Like in the non-relativistic case ±Λ correspond to the

same Lµν so that the spin group is a double cover of the Lorentz group. The condition (9.85)

also guarantees covariance of the interacting Dirac equation (9.77) because the gauge potential

Aµ transforms like the gradient ∂µ.

Finite transformations Λ(L) can be obtained by exponentiation of infinitesimal ones,

Lµν = δµν + ωµν +O(ω2) ⇒ ωµν = gµρω
ρ
ν = −ωνµ. (9.86)

Similarly to the electromagnetic field strength Fµν = −Fνµ, which contains the electric and

the magnetic fields as 3-vectors, the antisymmetric tensor ωµν contains infinitesimal spacial

so that the free Dirac equation becomes real. Weyl representations are block-offdiagonal

γ0 =

(
0 11 0

)
, γi =

(
0 σi

−σi 0

)
[Weyl representation] (9.82)

decomposing the massless Dirac equations into two-component equations for left- and right-handed particles.
7 We already know that spinors in 3 dimensions have 2 compoments, while vectors have 3 components; in

higher dimensions d > 4, on the other hand, it can be shown that the number of components of spinors grows
like 2d/2, which is much larger than the number d of vector components.
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rotations δR~ρ about an axis ~ρ

δR~ρ x
i = εijkρ

jxk = ωikx
k ⇒ ωjk = ρiεijk (9.87)

and infinitesimal boosts ωi0 = vi/c in the direction of a velocity vector ~v, whose finite form for

~v = v~ex is

Lµν =




γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1


 with γ =

1√
1− β2

and β =
v

c
. (9.88)

With the ansatz Λ(L) = 1+ 1
2
ωµνΣ

µν +O(ω2) the defining equation Λ−1γρΛ = Lρνγ
ν becomes

1
2
ωµν [γ

ρ,Σµν ] = ωρνγ
ν = gρµωµνγ

ν ⇒ 1
2
[γρ,Σµν ] = 1

2
(gρµγν − gρνγµ) (9.89)

whose solution can be guessed to be of the form Σµν = a[γµ, γν ]. Since [γµ, γν ] = 2γµγν − 2gµν1
and

[γρ,Σµν ] = 2a[γρ, γµγν ] = 2a({γρ, γµ}γν − γµ{γρ, γν}) = 4a(gρµγν − γµgρν) (9.90)

equation (9.89) is indeed solved for a = 1
4

and the solution can be shown to be unique. Hence

Σµν = 1
4
[γµ, γν ]. (9.91)

For an alternative derivation of the relativistic spin operator Sµν = −~

i
Σµν we write the spin

operator Si for spacial rotations, which has already been determined in chapter 7, in a Lorentz

covariant form. We recall the formula

[H,Li] = −i~cεijkαjPk = −[H,Si], for Si =
~

4i
εijkαjαk =

~

2

(
σi 0
0 σi

)
(9.92)

from which we concluded that ~J = ~L+ ~S is the conserved angular momentum and ~S is the spin.

With ~ρ~S = ~

4i
ρiεijkαjαk = − ~

4i
ρiεijkγ

jγk we conclude that an infinitesimal rotation ωjk = ρiεijk

should be given by

δψ = − i
~
~ρ~Sψ = 1

4
ωjkγ

jγkψ = 1
2
ωijΣ

ijψ, (9.93)

which indeed is the specialization of our previous result to spacial rotations ωi0 = 0, ωjk = ρiεijk.

9.4.2 Spin and helicity

A covariant description of the spin of a relativistic particle can be given in terms of the Pauli-

Lubanski vector

Wα = −1

2
εαβγδJ

βγP δ with ε0123 = 1 = −ε0123 (9.94)

where Jµν = xµP ν − xνP µ + Sµν is the total angular momentum. By evaluation in the center

of mass frame it can be shown that the eigenvalues of W 2 = W µWµ are

W 2 = −m2c2~2 s(s+ 1) (9.95)
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(without proof). For massless particles, however, W 2 = 0 so that s cannot be determined

by W ! The physical reason for this problem is that massless particles can never be in their

center of mass frame. In fact, the spin quantum number j refers to the rotation group SO(3)

which cannot be used to classify massless particles exactly because of the non-existence of a

center of mass frame (indeed, if photons could be described by spin j = 1, then the magnetic

quantum number would have three allowed values; but we know that photons only have the

two tranversal polarizations).

The intrinsic angular momentum of massless particles therefore has to be described by a

different conserved quantity. Equation (9.92) implies that ~p · ~S is a constant of motion

[~p · ~S, H] = 0. (9.96)

If p = |~p| 6= 0, which is always the case for massless particles, we can define the helicity

sp =
~p · ~S
p

, (9.97)

which is the spin component in the direction of the velocity of the particle. For solutions of

the Dirac equation its eigenvalues can be shown to be sp = ±~/2. For a given momentum a

Dirac particle can have two different helicities for positive-energy and two different helicities for

negative energy solutions, so that the four degrees of freedom describe particles and antiparticles

of both helicities. For the massless neutrinos, however, only positive helicity (left-handed)

particles and negative helicity (right-handed) anti-particles exist in the standard model of

particle interactions. The massless photons with sp = ±~ and the gravitons with sp = ±2~ are

their own antiparticles and they exist with two rather than 2sp + 1 polarizations.

9.4.3 Dirac conjugation and Lorentz tensors

If we try to construct a conserved current jµ = (cρ,~j), which satisfies the continuity equation

ρ̇ + div~j = 0 and thus generalizes the probability density current of chapter 2, it is natural to

consider the quantity ψ†γµψ, which however is not real

(ψ†γµψ)∗ = (ψ†γµψ)† = ψ†(γµ)†ψ 6= ψ†γµψ (9.98)

because the γµ is anti-Hermitian for µ 6= 0. It can, hence, also not transform as a 4-vector

because Lorentz transformations would mix the real 0-component with the imaginary spacial

components.

An appropriate real current can be constructed by replacing the Hermitian conjugate ψ† by

the Dirac conjugate spinor

ψ = ψ†γ0, jµ = ψγµψ. (9.99)
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Now we can use eq. (9.79) and find

(jµ)∗ = (ψ†γ0γµψ)† = ψ†(γµ)†γ0ψ = ψ†γ0γµψ = jµ (9.100)

so that jµ is indeed real.

The reason for introducing the Dirac conjugation can also be seen by computing the Lorentz

transform of ψ†,

〈ψ′| = 〈ψ|Λ†, Λ† 6= Λ−1. (9.101)

Considering infinitesimal transformations we observe that the non-unitarity of Λ again has its

origin in the non-Hermiticity γµ and thus again can be compensated by conjugation with γ0.

(1+
1

8
ωµν [γ

µ, γν ]

)†
= 1+

1

8
ωµν([γ

µ, γν ])† = 1+
1

8
ωµν [(γ

ν)†, (γµ)†] = 1− 1

8
ωµν [(γ

µ)†, (γν)†]

= γ0(1− 1

8
ωµν [γ

µ, γν ])γ0 = γ0

(1+
1

8
ωµν [γ

µ, γν ]

)−1

γ0 +O(ω2). (9.102)

and hence for finite transformations

Λ† = γ0Λ−1γ0 (9.103)

Λ is unitary for purely spacial rotations, but for Lorentz boosts it is not. For the Lorentz

transformation of the Dirac adjoint spinor (9.103) implies

ψ′ = Λψ ⇒ ψ ′ = ψ†Λ†γ0 = ψ†γ0Λ−1 = ψΛ−1 (9.104)

so that (ψψ)′ = ψψ is a scalar and the current jµ transforms as a Lorentz vector,

(jµ)′ = ψΛ−1γµΛψ = Lµνψγ
νψ = Lµνj

ν . (9.105)

The divergence of the current jµ = ψγµψ can now be computed using the Dirac equation (9.77)

and its conjugate

0 = ψ†
(
(−i←−∂ µ − e

~c
A
µ
)(γµ)† − c

~
m
)
γ0 = ψ

(
(−i←−∂ µ − e

~c
A
µ
)γµ)− c

~
m
)
, (9.106)

where ψ†←−∂ µ ≡ ∂µψ
†. For the divergence of the current jµ we thus obtain

∂µ(ψγ
µψ) = (∂µψγ

µ)ψ + ψ(γµ∂µψ)

=
(
ψ(i e

~c
A
µ
γµ + i c

~
m)
)
ψ + ψ

(
(−i e

~c
A
µ
γµ − i c

~
m)ψ

)
= 0, (9.107)

which establishes the continuity equation ∂µj
µ = 0.

Lorentz tensors. Similarly to eq. (9.105) we can compute the Lorentz transformation for

the insertion of a product of γ-matrices,

(ψγµ1 . . . γµkψ)′ = ψΛ−1γµ1ΛΛ−1γµ2Λ . . .Λ−1γµkΛψ = Lµ1
ν1 . . . L

µk
νk
ψγν1 . . . γνkψ (9.108)
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The expectation values ψγµ1 . . . γµkψ hence transform as Lorentz tensors of order k. Since

γµγν =
1

2
[γµ, γν ] +

1

2
{γµ, γν} =

1

2
[γµ, γν ] + gµν1 (9.109)

every index symmetrization reduces the number of γ-matrix factors by two so that irreducible

tensors are completely antisymmetric in their indices µi. In 4 dimensions we can antisymmetrize

in at most 4 indices. The complete set of irreducible Lorentz tensors is listed in table 9.1 (we

avoid the customary sympols Aµ ≡ Ṽ µ for the axial vector and P ≡ S̃ for the pseudoscalar to

avoid confusion with with gauge potentials and parity).

Lorentz tensor
(

4
k

)
C P T CPT

Scalar S = ψψ 1 S S S S

Vector V µ = ψγµψ 4 −V µ Vµ Vµ −V µ

Antisym. tensor T µν = i
2
ψ[γµ, γν ]ψ 6 −T µν Tµν −Tµν T µν

Axial vector Ṽ µ = i
3!
εµνρσψγνγργσψ 4 Ṽ µ −Ṽµ Ṽµ −Ṽ µ

Pseudo scalar S̃ = ψγ0γ1γ2γ3ψ 1 S̃ −S̃ −S̃ S̃

Table 9.1: Lorentz tensors of order k with
(

4
k

)
components and their CPT transformation.

The total number of components is
∑d

k=0

(
d
k

)
= 2d = 16 and it can be shown that the

antisymmetrized products of γ matrices are linearly independent.8 They hence form a basis

of all 16 linear operators in the 4-dimensional spinor space. This is the relativistic analog of

the fact that the Pauli-matrices together with the unit matrix form a basis for the operators

in the 2-dimensional spinor space of nonrelativistic quantum mechanics. The transformation

properties under the discrete symmetries C, P and T are indicated in the last columns of

table 9.1 and will be discussed in the next section.

9.5 Parity, time reversal and charge-conjugation

The nonrelativistic kinematics is invariant under the discrete symmetries parity P~x = −~x and

time reversal Tt = −t.

Parity. In quantum mechanics the classical action P~x = −~x of partity is implemented by

a unitary operator P in Hilbert space transforming |ψ〉 → P|ψ〉 and hence

P~x = −~x ⇒ P ~X P† = − ~X, P ~P P† = −~P . (9.110)

8 The proof of linear independence uses the lemma that all products of γ matrices that differ from ±1 are
traceless. A spinor in d dimensions has 2[d/2] components ([d/2] is the greatest integer smaller or equal to d/2).
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While coordinates and momenta are (polar) vectors, i.e. odd under parity, the angular momen-

tum ~x× ~p is a pseudo vector, or axial vector), i.e. even under parity

L = ~x× ~p ⇒ P~LP† = ~L, P ~S P† = ~S (9.111)

Electromagnetic and strong interactions, as well as gravity, preserve parity. The form of the

Maxwell equations implies that the electric field is a vector while the magnetic field transforms

as an axial vector

P ~E P† = − ~E, P ~B P† = ~B. (9.112)

In the relativistic notation Aµ → Aµ, i.e. A0 is parity even and the vector potential ~A is parity

odd. The spin-orbit coupling ~L~S and the magnetic coupling ~B(~L+2~S) are axial-axial couplings

and hence allowed by parity, while ~E~S would be a vector-axial coupling and is hence forbidden

by parity. The parity of the spherical harmonics is

P|Ylm〉 = (−1)l |Ylm〉 (9.113)

which is the basis for parity selections rules in atomic physics.

Parity is violated in weak interactions, as was first observed in the radioactive β-decay of

polarized 60Co. Since spin is parity-even the emission probability has to be the same for the

angles θ and π−θ if parity is conserved. But experiments show that most electrons are emitted

opposite to the spin direction θ > π/2.

Time reversal. For a real Hamiltonian the effect of an inversion of the time direction can

be compensated in the Schrödinger equation by complex conjugation of the wave fuction

t→ t′ = −t ⇒ i~
∂

∂t′
ψ∗ = i~

∂

−∂tψ
∗ = Hψ∗. (9.114)

Time reversal therefore is implemented in quantum mechanics by an anti-unitary operator

T ψ(t, ~x) = ψ∗(−t, ~x) ⇒ 〈T ϕ|T ψ〉 = 〈ϕ|ψ〉∗, T α|ψ〉 = α∗T |ψ〉 (9.115)

which implies complex conjugation of scalar products but leaves the norms
√
〈ψ|ψ〉 invariant.

For antilinear operators Hermitian conjugation can be defined by 〈ϕ|T †|ψ〉 = 〈ψ|T |ϕ〉. Anti-

unitary is then equivalent to antilinearity and T T † = 1. Since velocities and momenta change

their signs under time inversion we have

T Xi T −1 = Xi, T Pi T −1 = −Pi (9.116)

The above formulas are compatible with the canonical commutation relations

T [Pi, Xj]T −1 = [−Pi, Xj] = −~

i
δij = T ~

i
δijT −1. (9.117)
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Invariance of the Maxwell equations under time reversal implies

T ~E T −1 = ~E, T ~B T −1 = − ~B, T A0 T −1 = A0, T ~A T −1 = − ~A (9.118)

so that gauge potentials transforms in the same way Aµ → Aµ as under parity. In fundamental

interactions violation of time reversal invariance has only been observed for weak interactions.

9.5.1 Discrete symmetries of the Dirac equation

In addition to parity and time reversal the relativistic theory has another discrete symmetry,

called charge conjugation, which is the exchange of particles and anti-particles.

Parity. Invariance of the Dirac equation under the parity transformation ~x→ −~x implies

that (iγµ∂′µ −m)ψ′(x′) = 0 should be equivalent to (iγµ∂µ −m)ψ(x) = 0 for ψ′ = Pψ, hence

P−1

(
i

(
γ0 ∂

∂x0
+ γi

∂

∂(−xi)

)
−m

)
Pψ = (iγµ

∂

∂xµ
−m)ψ (9.119)

which implies

P−1γ0P = γ0, P−1γiP = −γi ⇒ P |ψ〉 = γ0 |ψ〉. (9.120)

Equation (9.119) actually fixes the action of the unitary parity operator P on spinors only up

to an irrelevant phase factor and we followed the usual choice.

Charge conjugation. According to Dirac’s hole theory exchange of particles and anti-

particles should reverse the signs of electric charges and hence the sign of the gauge potential

C ~E C−1 = − ~E, C ~B C−1 = − ~B, C Aµ C−1 = −Aµ. (9.121)

The derivation of the action of C on spinor starts with the observation that the relative sign

between the kinetic and the gauge term is reversed in the conjugated Dirac equation (9.106).

Transposition of that equation yields
(
(−γµ)T (i∂µ + e

~c
A
µ
)− c

~
m
)
ψ
T

= 0. (9.122)

This lead to the condition

C−1 (−γµ)T C = γµ ⇒ C ψ = iγ2γ0 ψ
T

= iγ2ψ∗ (9.123)

in the standard representation9 (9.80). Charge conjugation is hence an anti-unitary operation.

Since iγ2 =
(

0 iσ2

−iσ2 0

)
=
(

0 −ε
ε 0

)
with ε =

(
0 −1
1 0

)
charge conjugation exchanges positive

and negative energy solutions and their chiralities.

9 While P = γ0 is representation independent the explicit form of the antilinear operators C and T in terms
of γ-matrices depends on the representation used for
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Time reversal. The complex conjugate Dirac equation for t′ = −t is (−iγµ∗∂′µ−m)ψ∗ = 0.

With the ansatz T |ψ〉 = B|ψ∗〉 this implies

B−1(−iγµ∗)B = iγ0γµγ0 ⇒ B = iγ1γ3, T |ψ〉 = iγ1γ3|ψ∗〉 (9.124)

in the standard representations (with the customary choice of the phase).

The transformation properties for the Lorentz tensors that follow from the formulas (9.120,

9.123, 9.124) for the P , C and T are listed in table 9.1. The CPT theorem states that the com-

bination of these three discrete transformations is a symmetry in every local Lorentz-invariant

quantum field theory. The proof is based in the fact that all Lorentz tensors of order k (the

complete set of fermion bilinears in table 9.1 as well as scalar fields and gauge fields Aµ) trans-

form with a factor (−1)k under CPT and that Lorentz invariant interaction terms have no free

Lorentz indices. Violation of time reversal invariance thus becomes equivalent to CP violation,

which was first observed in 1964.10

9.6 Gauge invariance and the Aharonov–Bohm effect

An important aspect of the electromagnetic interaction with quantum particles is the fact that

the interaction term in the Dirac equation

(γµ(i∂µ − e
~c
A
µ
)− c

~
m)ψ = 0, (9.127)

10 CP-violation in kaon decay is observed as follows [Nachtmann]. The theory of strong interactions implies
that nucleons like the proton |p〉 = |uud〉 with mp = 938MeV and the neutron |n〉 = |udd〉 with mn = 940MeV
consist of three quarks, while mesons like the pions |π+〉 = |ud〉, |π−〉 = |du〉 with mπ± = 140MeV and
|π0〉 = (|uu〉−|dd〉)/

√
2 with mπ0 = 135MeV consist of a quark and an anti-quark. The K mesons |K+〉 = |us〉,

|K−〉 = |su〉 = with mK± = 494MeV and |K0〉 = |ds〉, |K0〉 = |sd〉 with mK0 = 498MeV contain the somewhat
heavier strange quark s and hence can decay by weak interactions.

Now the states |K0〉 = C|K0〉 and |K0〉 = C|K0〉 are each others antiparticles and both are observed to be
parity odd P|K0〉 = −|K0〉 (according to the parity conserving strong processes in which they are created).
The neutral K-mesons can only decay by weak interactions,

|K0〉, |K0〉 → π+π−, π0π0, π+π−π0, π0π0π0, π±e∓ν, π±µ∓ν. (9.125)

which break parity as well as charge conjugation. If we assume that weak interactions preserve the combination
CP then the CP eigenstates

|K0
(±)〉 = 1√

2
(|K0〉 ∓ |K0〉, CP|K0

(±)〉 = ±|K0
(±)〉 → |KS〉 ≡ |K0

(+)〉, |KL〉 ≡ |K0
(−)〉 (9.126)

can only decay into CP eigenstates. In particular, |KS〉 (S=short lived, with τs = 0.89 · 10−10s) can decay into
two pions (a CP -even state because l = 0 by angular momentum conservation), while |KL〉 (L=long lived, with
τL = 5.18 · 10−8s) can only have the less likely 3-particle decays. But |KL〉 is observed to decay into two pions
with a probability of about 0.3%. Moreover, the 3-particle decay of |KL〉 producing a positively charged lepton
is observed to be 0.66% more likely than its decay into the CP conjugate states containing an electron e− or a
muon µ−.
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electron source

magnetic flux

Figure 9.1: In the modified double slit experiment proposed by Aharonov and Bohm one
observes a shift of the interference pattern proportional to the magnetic flux
although the electrons only move in field-free regions.

like in the Schrödinger equation, explicitly depends on the gauge potential Aµ, which is not

observable because the electromagnetic fields Fµν = ∂µAν − ∂νAµ are invariant under Aµ →
A′
µ = Aµ − ∂µΛ. We already noticed in chapter 2 that the complete wave equation is invariant

under this gauge transformation if we simultaneoly change the equally unobservable phase of

the wave function

A′
µ = Aµ − ∂µΛ(t, ~x) ⇒ ψ′ = e

ie
~c

Λψ (9.128)

because

(i∂µ − e
~c
A′
µ
)e

ie
~c

Λ = e
ie
~c

Λ(i∂µ − e
~c
A
µ
). (9.129)

In the nonrelativistic limit this gauge invariance, split into space and time components, is

inherited to the Schrödinger equation.

In 1959 Y. Aharonov and D. Bohm made the amazing prediction of an apparent action

at a distance due to the form of the gauge interaction, which was experimentally verified by

R.C. Chambers in 1960. This phenomenon is also used for practical applications like SQIDS

(superconducting quantum interference devices) and it implies flux quantization in supercon-

ductors [Schwabl].

The experimental setup is a modification of the double slit experiment as shown in figure 9.1

where a magnetic flux is put between the two electron beams. For an infinitely long coil the

B-field is confined inside the coil so that the flux lines cannot reach the domain where the

electrons move. Nevertheless, a flux φB =
∫
~Bd~S between the two rays leads to a relative

phase shift

δ(arg(ψ1)− arg(ψ2)) =
e

~c
φB (9.130)

and hence to a shift in the interference pattern on the screen behind the slits.

In the Aharonov–Bohm experiment all electromagnetic fields are static. In a domain without

magnetic flux ~B = ~∇ × ~A = 0 the vector potential ~A is curl-free and hence can locally (in a

contractible domain) be written as a divergence ~A = ~∇Λ(~x). This can be considered as a gauge
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transform of the special solution ~A = 0. The “potential” Λ for the vector potential ~A = gradΛ

can be computed as a line integral Λ(x) =
∫ x
x0

~A · d~s, which is invariant under continuous

deformations of the path as long as we stay in regions without magnetic flux. The computation

of the phase shift (9.130) now uses this fact to relate the wave functions ψ
(0)
i of the coherent

electron beams in the double slit experiment without magnetic field, which are solutions to the

Schrödinger equation with ~A = 0, to the wave functions ψ
(B)
i by gauge transformations. For

each of the two beams the trajectories Ci belong to a contractible domain so that we can choose

a gauge

Λi(~x) =

∫

Ci(x)

~A · d~s ⇒ ψ
(B)
i (~x) = ψ

(0)
i (~x) e

ie
~c

Λi(~x), (9.131)

where the contour Ci(x) starts at the electron source and extends along Ci to the position of the

electron. Since the initial points of the paths Ci at the electron source and their final points at

the screen where the interference is observed are the same for both paths the difference between

the phase shifts is

e

~c

(∫

C2

~A · d~s−
∫

C1

~A · d~s
)

=
e

~c

∮
~A·d~s =

e

~c

∫
(∇× ~A) d~S =

e

~c

∫
~B d~S =

e

~c
φB, (9.132)

where Stockes’ theorem has been used to convert the circle integral extending along the closed

path C2−C1 into a surface integral over a surface enclosed by the beams. This surface integral
∫

(∇ × ~A)d~S measures the complete magnetic flux between the beams. This completes the

derivation of the phase shift (9.130). Since the gauge transformation is the same for the Dirac

equation and for the Schrödinger equation the relativistic and the nonrelativistic calculations

are identical.


