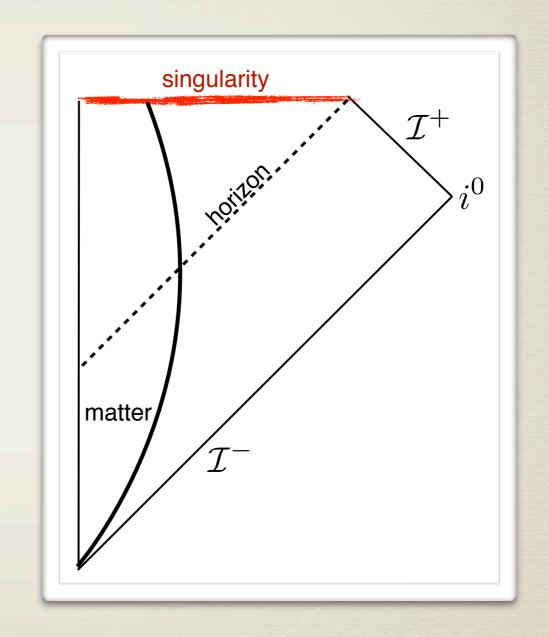
12 July, 2011 CERN

Constraints on a Fine-Grained AdS/CFT Correspondence

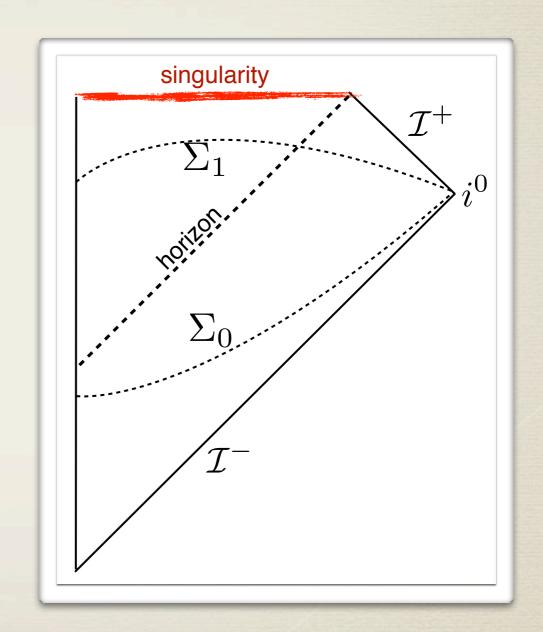
arXiv:0903.4437 (MG, Giddings, Penedones)

arXiv:0904.3544 (MG, Giddings)


arXiv:1106.3553 (MG, Giddings)

Overview

- * Black hole evaporation
- * The AdS/CFT correspondence
- * Scattering in the large R limit
 - * Necessity of wavepackets
 - * Construction
 - * Singularity structure
- * Limits on locality
 - * Can we do better?
- * Understanding Bulk Unitarity
- * Conclusions & Open Questions


Evaporating Black Holes

- * Classically, everything that falls in is lost forever.
- * Hawking: Black holes aren't completely black.
- ★ Hawking Radiation ⇒ black holes evaporate.

Evaporating Black Holes

- * State on Σ_0 can be pure.
- * Locality \Rightarrow trace over sub-sector of Σ_{I} inside horizon \Longrightarrow mixed state outside.
- * Pure state evolving into mixed state violates unitarity.

Evaporating Black Holes

- * 3 Possible Resolutions:
 - * Non-Unitary evolution $\rho \mapsto \$\rho$
 - * Remnants

 Black hole only evaporates to Planck scale
 - * Non-locality

Non-Unitary Evolution?

$$\rho \mapsto \$\rho$$

- * Information transfer requires energy.
- ***** Information loss ↔ energy loss.
- * Virtual effects ⇒ Planck-scale energy non-conservation.
- * Banks, Peskin, Susskind (1984):
 Nonunitarity \Rightarrow thermal bath at T M_P

Remnants?

* Long lived Planck-scale remnant: if remnant decays and information gets out, takes $t_{\rm decay} = \frac{S^2}{M_P}$

* Form black holes from arbitrarily many initial states, so arbitrarily many remnant species ⇒ arbitrarily large production cross-section.

Non-Locality?

- * Physical observables must be gauge invariant.
- * In gravity, this means observables must be diffeomorphism invariant.
- * There are no diffeomorphism invariant local observables in gravity. (Torre 1993)

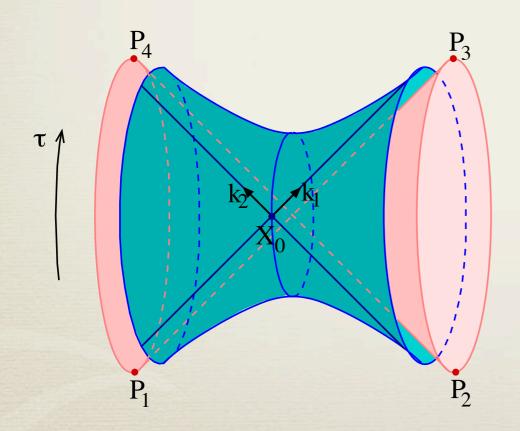
$$\delta \mathcal{O}(x) = \epsilon^{\mu} \nabla_{\mu} \mathcal{O}(x)$$

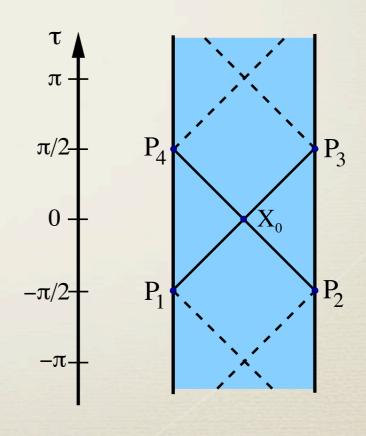
Holographic Principle

- * Hints that locality should be given up.
 - * BH Entropy grows with bounding area, not volume.
 - * Bousso (1999): trying to access too many states in a fixed volume → black hole formation.
- * Look for a non-local formulation of Quantum Gravity.
- * Area law ⇒ should look for a theory in one fewer dimensions.

AdS/CFT

* Quantum Gravity in asymptotically Anti-de Sitter space (AdS) is conjectured to be dual to a Conformal Field Theory (CFT) living on the boundary. (Maldacena 1997)


$$\left\langle \exp\left(i\int_{\partial AdS} \alpha_{\phi} \mathcal{O}_{\phi}\right) \right\rangle_{CFT} = Z_{S} \left[\alpha_{\phi}\right]$$


* Operator insertions in the CFT ↔ boundary conditions for fields in AdS.

AdS Geometry

$$* ds^{2} = \frac{R^{2}}{\cos^{2} \rho} \left(-d\tau^{2} + d\rho^{2} + \sin^{2} \rho \ d\Omega_{d-1}^{2} \right)$$

* Universal cover of hyperboloid of radius R in M2,d

AdS/CFT Dictionary

- * Gubser, Klebanov, Polyakov; Witten (1998): Boundary conditions on fields in AdS ↔ operator insertions & VEVs in dual CFT.
 - * Fields in AdS have normalizable & non-normalizable modes:

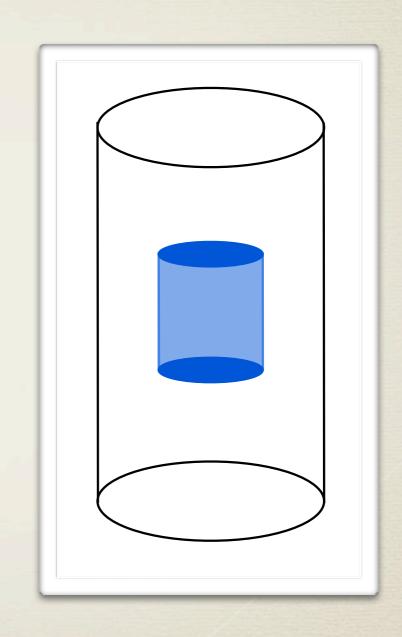
$$\phi \sim \cos^{2h_{-}} \rho \ \alpha(\tau, \Omega) + \dots + \cos^{2h_{+}} \rho \ \beta(\tau, \Omega)$$

* Non-normalizable mode ↔ operator insertion:

$$\mathcal{L}_{CFT} \mapsto \mathcal{L}_{CFT} + \alpha_{\phi} \mathcal{O}_{\phi}$$

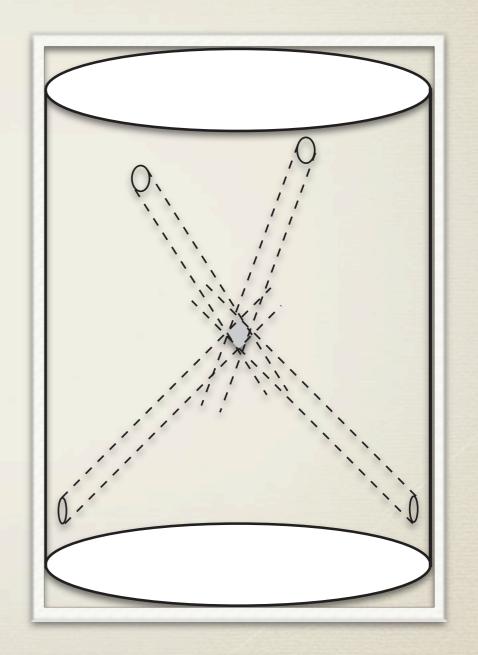
* Normalizable mode ↔ operator expectation value:

$$\langle \mathcal{O}_{\phi} \rangle = \beta_{\phi}$$

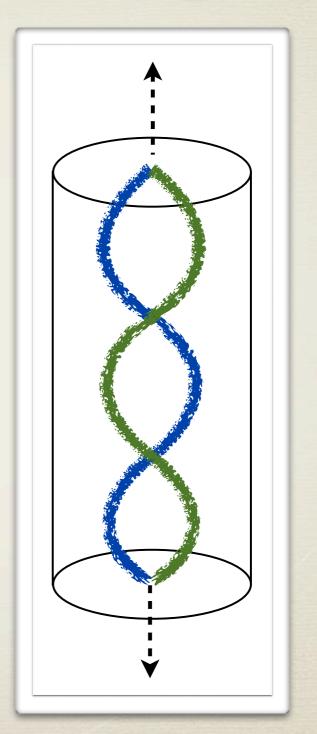

Large R Limit

$$*t = R\tau \quad r = R\rho \quad R \to \infty$$

* Approximately flat
$$ds^2 \rightarrow -dt^2 + dr^2 + r^2 d\Omega^2$$


- * Normalizable frequencies $\omega_{nl} \rightarrow \omega R$
- * Normalizable wavefunctions

$$\phi_{nl\vec{m}} \to \frac{\sqrt{2\omega^{d-1}}}{(\omega r)^{\frac{d}{2}-1}} J_{l+\frac{d}{2}-1}(\omega r) Y_{l\vec{m}}(\Omega)$$


Scattering in the Flat Region

- * Scattering in the flat region should approximate local physics in our universe.
- * Need to construct
 wavepackets to localize
 scattering to a single
 flat region of AdS.

Multiple Scattering

- * Free fields in AdS are periodic.
- * Purely normalizable states will interact infinitely many times.
- * Can't isolate contribution from one scattering experiment.

Interactions Near the Boundary

- * Boundary sources → infinite particle production near the boundary.
- * Single particle states not well defined when boundary sources turned on.

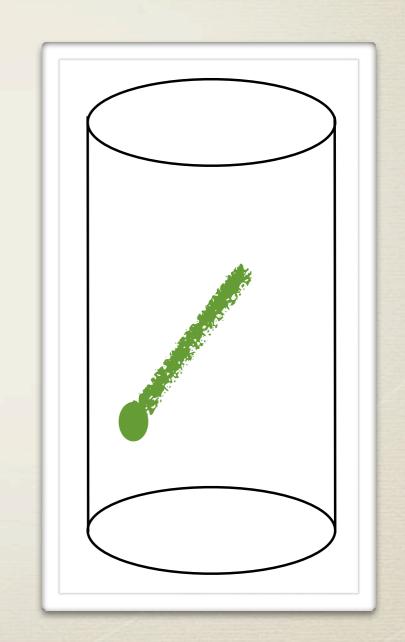
$$N = \int_{t_0} d^d \vec{x} \sqrt{-g} (\phi^* \stackrel{\leftrightarrow}{\partial_t} \phi) = \infty$$

- * Difficult to isolate scattering in flat region from scattering near the boundary.
- * Sources should be compact and non-overlapping to avoid infinite interactions near the boundary and normalize states.

Boundary-Compact Wavepackets

* Construct using Bulk-Boundary Propagator.

$$\phi_f(x) = \int db f(b) G_{B\partial}(b, x)$$


* Compactly supported sources

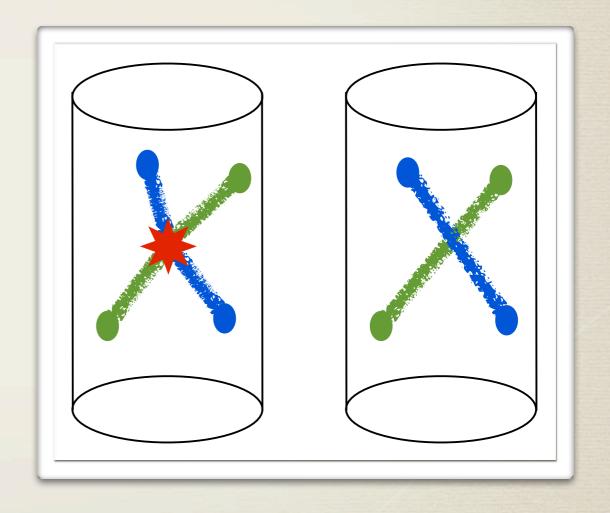
$$f(b) = L\left(\frac{\tau - \tau_0}{\Delta \tau}\right) L\left(\frac{\theta}{\Delta \theta}\right) e^{-i\omega R(\tau - \tau_0)}$$

of size $\Delta \tau$, $\Delta \theta$.

$$* \frac{1}{\omega R} \ll \Delta \tau, \Delta \theta \ll 1$$

* Scatter when sources turned off.

Wavepackets in the Scattering Region

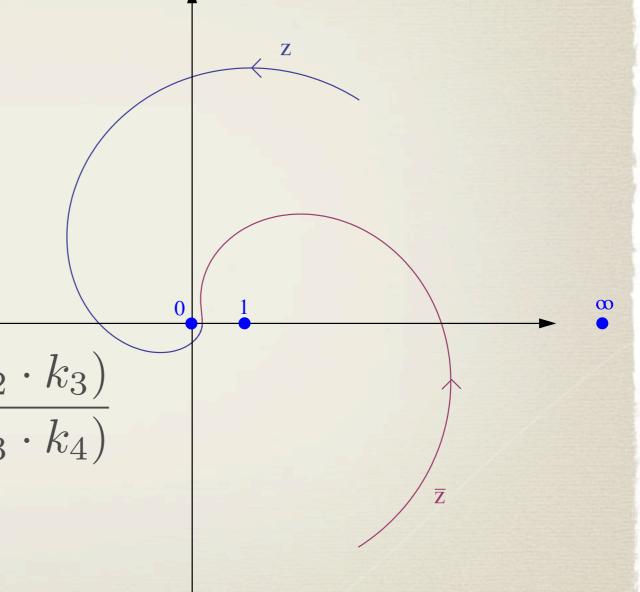

* Near the center of AdS,

$$\phi_f(x) \approx \phi_f(0) \frac{\tilde{L}_{d-1}(x_{\perp}\omega\Delta\theta)}{\tilde{L}_{d-1}(0)} L\left(\frac{u}{\Delta t}\right) e^{-i\omega u}.$$

- * Longitudinal width $\Delta t \sim R\Delta \tau$.
- * Transverse width $\Delta x_{\perp} \sim 1/(\omega \Delta \theta)$.
- * Well localized for $1/\omega \ll \Delta t, \Delta x_{\perp} \ll R$, equivalent to earlier requirement.

Singularity Structure

* Signal of interaction from intersecting wavepackets: local bulk physics!

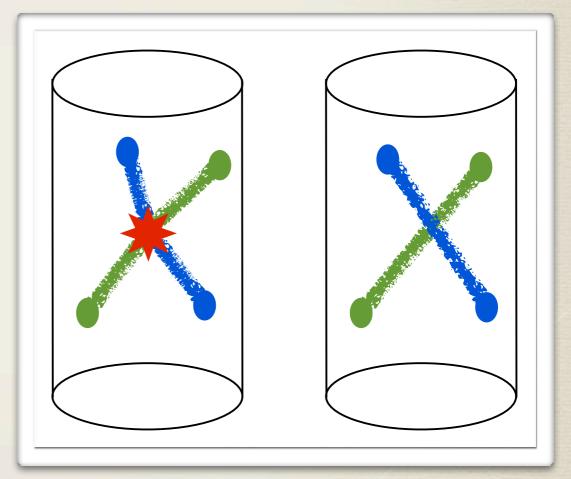

Analytic Continuation

* Singularity only present in physical Lorentzian continuation.

$$* z\bar{z} = \frac{(k_1 \cdot k_3)(k_2 \cdot k_4)}{(k_1 \cdot k_2)(k_3 \cdot k_4)}$$

$$(1-z)(1-\bar{z}) = \frac{(k_1 \cdot k_4)(k_2 \cdot k_3)}{(k_1 \cdot k_2)(k_3 \cdot k_4)}$$

$$*z \rightarrow \bar{z}$$


Singularity Structure

* Signal of interaction from intersecting wavepackets: local bulk physics!

*
$$z = \sigma e^{-\rho}$$
, $\bar{z} = \sigma e^{\rho}$

* $A(z, \bar{z}) \approx g^2 R^{5-d-2j} \frac{F(\sigma)}{(-\rho^2)^{\beta}}$

* $\beta = \Delta_1 + \Delta_2 + j - 5/2$

Momentum Conservation

* Flat space S-Matrix conserves momentum:

$$S = 1 + i(2\pi)^D \delta^D \left(\sum k_i\right) \mathcal{T}(s,t)$$

- * Momentum conserving δ -function must emerge from CFT amplitude in appropriate limit.
- * Delta function does emerge from form of boundary compact sources and singularity structure:

$$\lim_{R \to \infty} \int d\nu \frac{R^n e^{-i\nu}}{(R^2 \kappa^2 - (\nu + i\epsilon)^2)^{\beta}} \propto \delta^n(\vec{\kappa})$$

The S-Matrix

* Determine flat space scattering amplitude from residue of CFT singularity:

$$\mathcal{A}(z,\bar{z}) \to g^2 R^{5-d-2j} \frac{\mathcal{F}(\sigma)}{(-\rho^2)^{\beta}}$$

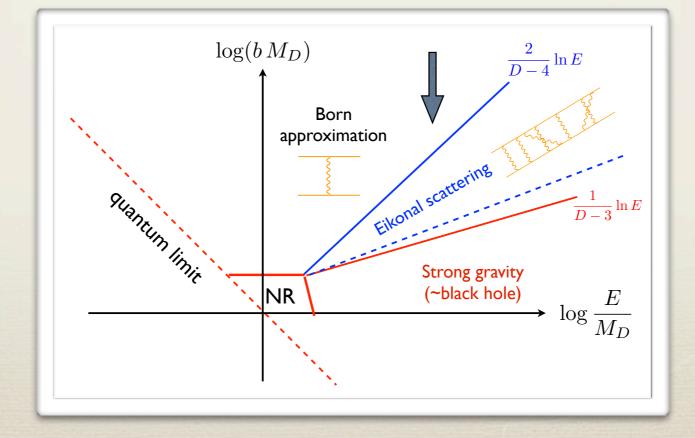
$$i\mathcal{T}(s,t) = \mathcal{K}g^2 s^{j-1} \left(\frac{-t}{s}\right)^{j-2} \left(\frac{-u}{s}\right)^{3-j-\Delta_1-\Delta_2} \mathcal{F}\left(\frac{-s}{t}\right)$$

Examples

- * Compute CFT correlators using AdS/CFT dictionary (D'Hoker *et al.*, 1999), read off scattering amplitudes.
- * Scalar exchange:

$$\mathcal{F}(\sigma) \propto \sigma (1-\sigma)^{\Delta_1 + \Delta_2 - 3} \quad \to \quad \mathcal{T}(s,t) = \frac{g^2}{-t}$$

* Graviton exchange:


$$\mathcal{F}(\sigma) \propto \frac{(1-\sigma)^8}{\sigma} \rightarrow \mathcal{T}(s,t) = 8\pi G_5 \frac{s^2 + ts}{-t}$$

Source of Singularity?

- * Cause of the singularity unclear from CFT perspective.
- * From bulk, singularity occurs when all four boundary sources are at light-like separation from a common bulk point.

* How are different scattering regimes encoded in the

CFT?

Limits on Resolution

- * Well behaved wavepackets are critical for derivation of LSZ decomposition.
- * Bulk-Boundary propagator maps boundary-compact sources to non-compact wavepackets in the bulk.
- * Cannot construct regular wavepackets, typically used for formal derivations of LSZ decomposition.
- * What about Schwartz wavepackets?

Power-Law Tails

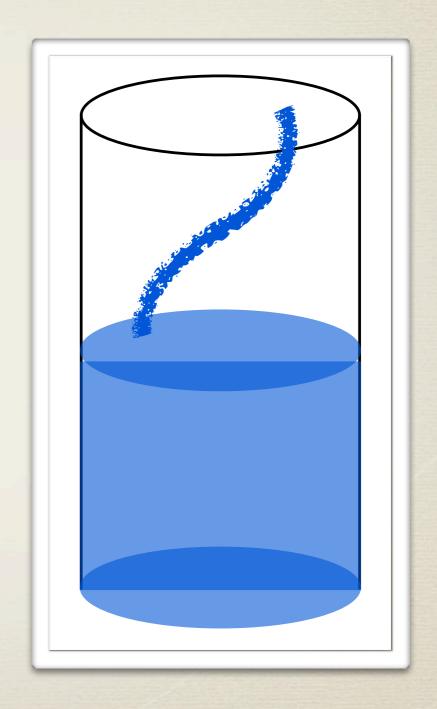
* NO: boundary-compact wavepackets have power-law tails in flat region.

*
$$x_{\perp} \gg \Delta t/\Delta \theta$$
, $u/\Delta \theta$:
$$\phi_f(x) \approx \phi_f(0) \frac{\omega \Delta t \tilde{L}(\omega \Delta t) \hat{L}}{(x_{\perp} \omega \Delta \theta)^{\Delta}}$$

*
$$u \gg \Delta t$$

$$\phi_f(x) \approx \phi_f(0) \frac{\omega \Delta t \tilde{L}(\omega \Delta t) \Gamma(\Delta)}{2\pi (i\omega u)^{\Delta}}$$

Recovering the S-Matrix?


- * Tails from direct contribution interfere with scattered contribution to amplitude.
- * Scattered contribution doesn't always go in the correct direction: haze of order $\tilde{L}(\omega \Delta t)$.
- * We cannot recover the full flat space S-Matrix this way.
- * Can we build better wavepackets?

Resonant Wavepackets

* Use resonant structure of AdS to build any normalizable wavefunction.

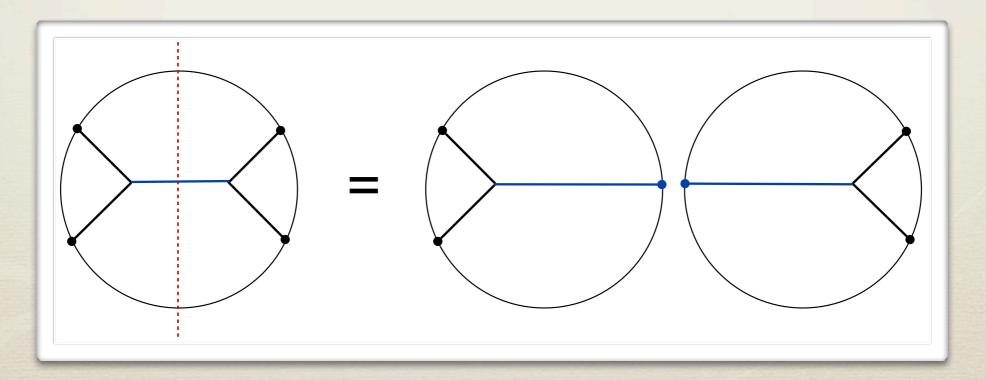
$$\phi_f(x) = \sum_{nl\vec{m}} c_{nl\vec{m}} \phi_{nl\vec{m}}(x)$$

- * Source compactly supported for 1/2 AdS time.
- * Well-behaved in interaction region.
- * What about while the source is turned on?

Multiple Interactions and Power Law Tails

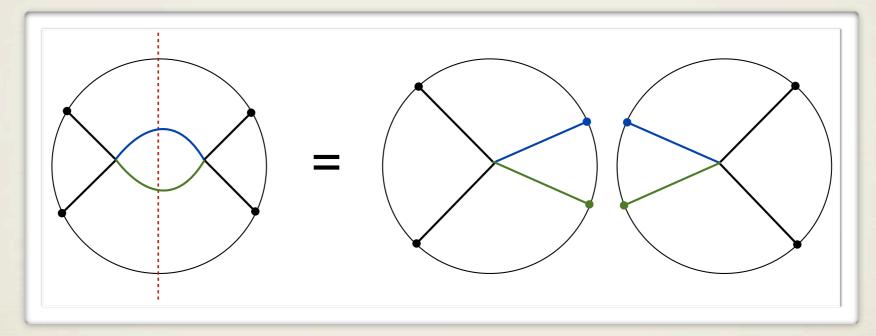
- * While source is on, two terms contribute in the large R limit.
- * First term: wavepacket builds/decays linearly in time,

$$\phi_f(x)\left(1+\frac{\tau}{\pi}\right)$$


- →secondary interactions while wavepackets built/decay.
- * Second term: power law tail in time.

$$\int d\omega \phi_f(\omega) \frac{\omega^{\frac{d-1}{2}} e^{-i\omega R\tau}}{(-i\omega R(\pi+\tau))^{\Delta}}$$

* Not quite a No-Go theorem, but hinders S-Matrix.


Bulk Unitarity

- * Often claimed: Unitary evolution in the CFT ⇒ unitary evolution in the bulk.
- * Can we see bulk unitarity from the CFT?
- * Look at pertubative bulk unitarity. At tree level, just the OPE:

Bulk Unitarity

- * What about loops?
- * Seem to need new relations:

$$\langle \mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_3 \mathcal{O}_4 \rangle_{1\text{loop}} = \sum_{A,B \neq 1} \langle \mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_A \mathcal{O}_B \rangle_{\text{tree}} \langle \mathcal{O}_A \mathcal{O}_B \mathcal{O}_3 \mathcal{O}_4 \rangle_{\text{tree}}$$

* Are these relations present? What does this imply?

Conclusions

- * CFT singularity signature of fine-grained locality.
- * Boundary-compact wavepackets are not as well-localized as flat space wavepackets.
- * Power-law tails can hide important physics.
 - * Signature of black hole formation is exponentially suppressed 2→2 amplitude, swamped by tails.
- * Can build better wavepackets in AdS from compact sources on the boundary, but have multiple scattering.

Unresolved Questions

- * What in the CFT is responsible for the appearance of the singularity?
- * How are different scattering regimes encoded in the CFT?
- * Is there a way to build nice wavepackets that don't have multiple scattering or power-law tails?

Unresolved Questions

- * How is bulk unitarity encoded in the boundary CFT?
 - * Necessary for understanding black hole evaporation & resolving information problem.
- * Are power-law tails a signature of inherent non-locality?
 - * Does the CFT really capture everything in the gravitational theory?

