Phases of Flat Space Higher Spin Gravity

Mirah Gary

Institute for Theoretical Physics, TU Wien

Karl Schwarzschild Meeting, Frankfurt, 20-24.07.2015

JHEP 1501 (2015) 152 [arXiv:1411.3728 [hep-th]], MG, D Grumiller, M Riegler, J Rosseel

- 2 Higher Spins in 3D
- 3 Flat Holography in 3D
- Phases of Spin-3 Flat Space

5 Conclusion

- Holography in flat space
- Higher spins interesting as possible unbroken/Hagedorn phase of String Theory
- Interesting to evade No-Go theorems
- Phase structure of 3D HS gravity in flat space

Higher Spins in D > 3

 Higher spin particles with long-range interactions in D > 3 forbidden by soft-theorems, Coleman-Mandula, Weinberg-Witten

— evade through long-range cutoff implemented by cosmological constant (dS or AdS) rather than mass

• No-Go theorems on forms of interaction vertices involving higher spins

— evade through non-minimal interactions and infinite tower of spins

Higher Spins in AdS₃

• Generalization of first order formulation of gravity

$$S = rac{k}{4\pi} \int \left\langle A \wedge dA + rac{2}{3}A \wedge A \wedge A
ight
angle$$

where $\langle\cdot,\cdot\rangle$ is a non-degenerate bilinear form.

- For pure gravity, gauge group $G = \mathrm{sl}(2) \oplus \mathrm{sl}(2)$
- $G = \operatorname{sl}(N) \oplus \operatorname{sl}(N)$ gives spins $2, \ldots, N$
- G = hs(λ) ⊕ hs(λ) gives infinite tower of spins, direct analog of higher spin theories in D > 3
- Natural Z₂ grading on algebra, (zu-)Vielbein and Spin connection given by even and odd parts of A

Holography in 3D flat space

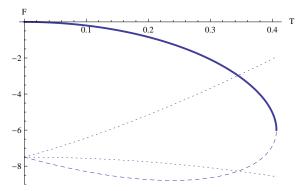
- The large ℓ limit of AdS is flat space
- Taking this limit yields a contraction of the gauge group

$$\mathrm{sl}(2)\oplus\mathrm{sl}(2)
ightarrow\mathrm{isl}(2)$$

 $\mathrm{sl}(N)\oplus\mathrm{sl}(N)
ightarrow\mathrm{isl}(N)$

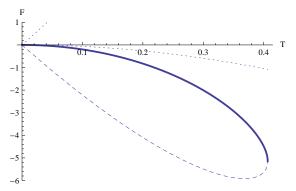
- isl(2) theory is pure gravity in flat space
- $\operatorname{isl}(N)$ theory is gravity in flat space coupled to higher spins $3, \ldots, N$

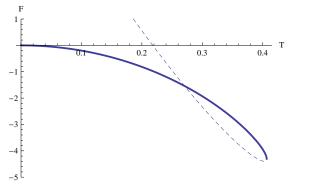
Flat Space Cosmologies

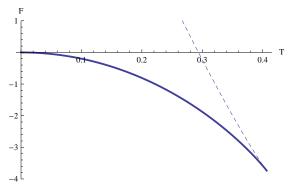

- $\ell \to \infty$ limit of BTZ black hole
- Outer horizon goes to infinity
- Inner horizon becomes cosmological horizon
- Have finite energy, entropy
- For pure gravity, described by 2 parameters (M, J) or (T, Ω)
- For each additional spin, 2 additional parameters

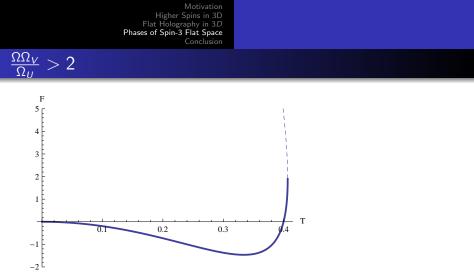
Higher Spin Flat Space Cosmologies

- 4 branches of solutions¹
- Branch 1 connects continuously to the pure gravity solution in appropriate limit
- First order phase transitions between branches 1 and 2
- Also Hawking-Page phase transition to hot flat space


¹Assuming simplest solution of holonomy conditions


branch 1 is thermodynamically unstable for all temperatures


branches 1 and 2 degenerate at T = 0 and branch 1 is thermodynamically unstable at all T > 0



branches 1 and 2 degenerate at some $T_c > 0$. Below T_c branch 1 is stable (up to Hawking-Page), above T_c branch 1 is unstable

branches 1 and 2 degenerate at the maximal temperature (when the discriminant vanishes), branch 1 is stable below the maximal temperature (up to Hawking-Page)

branches 1 and 2 degenerate at the maximal temperature (when the discriminant vanishes), branch 1 is stable below the maximal temperature (up to Hawking-Page)

- \bullet Understanding possible $0^{\rm th}$ order phase transitions
- Understanding or eliminating $2\pi\mathbb{N}$ conical surplus solutions

Thank You