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Chern-Simons Formulation

Gravity in Asymptotically AdS3 can be formulated as
sl2(R)⊕ sl2(R) Chern-Simons theory with level k = 1

4GN

S =
k

4π

(
SCS [A]− SCS

[
A
])

SCS [A] =

∫
M

tr

(
A ∧ dA− 2

3
A3

)
where

e =
`

2

(
A− A

)
ω =

1

2

(
A + A

)
Gauge transformations δεA = dε+ [ε,A], δε̄A = d ε̄+

[
ε̄,A
]

Diffeomorphisms generated by ξµ are given by

ε = ξµAµ ε̄ = ξµAµ
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Brown-Henneaux Boundary Conditions

Denote sl2 generators by L0, L±1

Convenient to partially gauge fix

A = g−1dg + g−1ag A = gdg−1 + gāg−1 g = eρL0

Impose Asymptotic AdS boundary conditions

a =
(
L1 + L(x+)L−1

)
dx+ + o(1)

ā =
(
L−1 + L(x−)L1

)
dx− + o(1)

Solutions include AdS, BTZ black holes, more

ds2 = `2
[
dρ2 −

(
e2ρ + e−2ρLL

)
dx+dx− + L(dx+)2 + L(dx−)2

+ · · · ]
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Canonical Analysis

Locally, all solutions are flat, so gauge equivalent to the
vacuum

At the asymptotic boundary, some first class constraints
become second class, and thus generate new states, rather
than gauge transformations

Asymptotic Symmetry Algebra is two copies of Viraosoro with
cL = cR = 6k

[Ln, Lm] = (n −m)Ln+m +
c

12
n(n2 − 1)δn,−m

CFT vacuum defined by Ln |0〉 = 0 for all n ≥ −1 (similar for
barred sector)

States generated by Ln1 · · · Lnm |0〉 for ni < −1, called
boundary gravitons
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Symmetries & Vacuum

AdS solution preserves 3+3 symmetries corresponding to the
wedge algebra of the ASA, sl2 ⊕ sl2, and is thus identified
with the CFT vacuum

All solutions locally preserve 3+3 symmetries, since all
solutions locally flat, but global realization is such that they
excite infinite numbers of charges, not the wedge algebra
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Higher Spin Generalization

Enlarge sl2 to slN

Choice of embedding sl2 ↪→ slN determines other field content

Spins of other fields given by weight under gravitational sl2
action

Typical choice: Principal embedding, integer spins 2, . . . ,N.

gµν =
1

2
tr [eµeν ]

φµνρ = tr
[
e(µeνeρ)

]
...
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Spin-3 AdS Boundary Conditions

A = g−1dg + g−1ag A = gdg−1 + gāg−1 g = eρL0

a =
(
L1 + L(x+)L−1 +W(x+)W−2

)
dx+ + o(1)

ā =
(
L−1 + L(x−)L1 +W(x−)W2

)
dx− + o(1)

Asymptotic Symmetry Algebra: two copies of W3 with central
charges cL = cR = 6k

Vacuum: metric is AdS3, spin-3 field is 0, invariant under
sl3 × sl3 symmetry

BTZ black holes are a solution, as are black holes with spin-3
charge
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Lifshitz Geometry
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Procedure for Generalizing to Other Geometries

Add boundary term to cancel variation of the action

SCT = − k

4π

∫
∂M

tr
(
A2 −A

2
)

Split connection into background and fluctuations

Impose consistent boundary conditions on fluctuations. In
particular

Find closed set of boundary condition preserving gauge
transformations
Require finite, conserved, integrable asymptotic charges

Determine Asymptotic Symmetry Algebra by computing
Poisson Brackets and quantizing
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Lifshitz Geometry

Lifshitz geometries are dual to Lifshitz field theories, which
feature anisotropic scaling between space and time with a
relative factor z

t → λz t x → λx

Metric

ds2
z = `2

(
−r2zdt2 +

dr2

r2
+ r2dx2

)
= `2

(
−e2zρdt2 + dρ2 + e2ρdx2

)
Isometries and Lifshitz Algebra

ξH = ∂t ξP = ∂x ξD = −zt∂t + ∂ρ − x∂x

[ξH, ξP] = 0 [ξD, ξH] = zξH [ξD, ξP] = ξP
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z = 2 Lifshitz Background

Background connection

â = L1dx +
4

9
W2dt

ˆ̄a = L−1dx + W−2dt

Background metric

ds2 = `2
(
−e4ρdt2 + dρ2 + e2ρdx2

)
Non-trivial background spin-3 field

φµνλdx
µdxνdxλ = −5`3

4
e4ρdt(dx)2
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Higher Spin Fluctuations on Lifshitz Background

Boundary conditions

a(0) =

(
4tWL0 − LL−1 −

16t2

9
WW2 +

16t

9
LW1 +WW−2

)
dx

ā(0) =
(
−LL1 − 9tWL0 +WW2 + 4tLW−1 − 9t2WW−2

)
dx

Theory includes states with metrics that would not typically
be called asymptotically Lifshitz

Background and all excited states break time-reversal
invariance

Asymptotic charges nonetheless finite, conserved, and
integrable in field space
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Asymptotic Symmetry Algebra

Asymptotic charges are L(x),W(x),L(x),W(x),
t-independent

Asymptotic Symmetry Algebra: two copies of W3 with central
charges cL = cR = 12ktr(L0)2 = 3`

2GN

δεLL = L′εL + 2Lε′L − k
π ε

(3)
L

δεLW =W ′εL + 3Wε′L

δεWL = 2W ′εW + 3Wε′W

δεWW =
(

3π
k LL

′ − 3
8L

(3)
)
εW +

(
3π
k LL −

3
8L

(2)
)
ε′W

− 45
16L

′ε′′W − 15
8 Lε

(3)
W + 3k

16π ε
(5)
W
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Symmetries of the Background

Background is invariant under 8 + 8 linearly independent
gauge transformations of the form

εL = l+1 − xl0 + x2l−1

εW = w+2 − xw+1 + x2w0 − x3w−1 + x4w−2

εL = l̄−1 − x l̄0 + x2 l̄+1

εW = w−2 − xw−1 + x2w0 − x3w+1 + x4w+2

Special case: Lifshitz isometries

ξH : w+2 =
4

9
w−2 = 1

ξP : l+1 = 1 l̄−1 = 1

ξD : l0 = 1 l̄0 = 1
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Symmetries & Global Structure

Symmetries of the background enhanced to the full wedge
algebra sl3 × sl3, thus background is dual to the CFT vacuum
(on the plane)

All states locally have 8 + 8 symmetries, but globally realized
non-polynomially, leading to infinite towers of non-trivial
charges

No other states are invariant under precisely the complete
wedge algebra

All states break time-reversal invariance
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Conclusions

Also looser boundary conditions for Lifshitz background,

possibly related to W(2)
3

Conjecture: all higher spin realizations of asymptotic Lifshitz
geometries exhibit isotropic scaling

Metric and higher spin fields need to be placed on equal
footing—all massless degrees of freedom

To really talk about geometry, we should use a local probe
(e.g. scalar field in HS(λ) theory)

Thank You
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