

Der Wissenschaftsfonds.

Non-AdS Holography in Higher Spin 3d Gravity

Michael Gary with: R. Rashkov D. Grumiller H. Afshar arXiv: 1201.0013 (to appear in JHEP) Work in Progress

mgary@hep.itp.tuwien.ac.at

Schladming, 28.02.2012

Overview

* Motivation

- * Intro to Higher Spin Theories in 3D
- * Boundary Conditions & Asymptotics * AdS Beyond Brown-Henneaux * AdS₂ × R
 - * Schrödinger/Lifshitz
 - * Warped AdS

* Conclusions & Future Directions

Why Higher Spin?

* Between pure Einstein Gravity and String Theory
* Related to tensionless limit of String Theory
* In some cases dual to soluble/free field theories

Why Non-AdS?

* Want to understand more generic holography
* Would like holographic duals for flat space, dS

* Some applications require non-AdS asymptotics
 * Cold Atoms

* Other non-relativistic systems

Why in 3D?

* Dual 2D CFTs are often solvable

* 3D Gravity is topological * No local DoF * Can be formulated as a Chern-Simons Theory

CS-Gravity in 3D

* Gravity in AdS₃ can be formulated as sl₂×sl₂ Chern-Simons theory

*
$$S_{\text{bulk}} = \frac{k}{4\pi} \int_{\mathcal{M}} \text{tr} \left[CS(A) - CS(\bar{A}) \right]$$

 $CS(A) = A \wedge dA + \frac{2}{3}A \wedge A \wedge A$

*
$$S = S_{\text{bulk}} + \frac{k}{8\pi} \int_{\partial \mathcal{M}} \operatorname{tr} \left[A \wedge A + \bar{A} \wedge \bar{A} \right]$$

$$e = A - \bar{A} \qquad \omega = A + \bar{A} g_{\mu\nu} = \frac{1}{2} \operatorname{tr} \left[e_{\mu} e_{\nu} \right]$$

Generalizing to HS

- * Enlarge gauge group sl_2 to sl_N
- * Vielbein becomes Zuvielbein $e^a_{\mu} = A^a_{\mu} \bar{A}^a_{\mu}$ $g_{\mu\nu} = \frac{1}{2} \operatorname{tr} \left[(A - \bar{A})_{\mu} (A - \bar{A})_{\nu} \right]$
- * Definition of trace depends on choice of gravitational sector (choice of embedding of sl_2 into sl_N)
- * Asymptotic symmetry algebra enhanced from Virasoro to W-algebra

Embedding sl_2 in sl_N

- * Choose an embedding $sl_2 \rightarrow sl_N$, label generators L_0, L_{\pm}
- * Other generators W_h labeled by sl₂ weight $[W_h, L_0] = hW_h$
- * Embeddings given by partitions of (N-1)

AdS Beyond Brown-Henneaux

* Consider an embedding with generators $W_{\pm h}$ such that $h > 0, h \neq 1$, and $tr[W_h W_{-h}] \neq 0$

* Connection

$$A = L_0 d\rho + \left[e^{\rho} L_+ + e^{h\rho} w_+(x^+) W_h \right] dx^+$$

$$\bar{A} = -L_0 d\rho + \left[e^{\rho} L_- + e^{h\rho} w_-(x^-) W_{-h} \right] dx^-$$

* Metric given by $ds^2 = a_0 d\rho^2 + [a_1 e^{2\rho} + a_2 e^{2h\rho} w_+(x^+) w_-(x^-)] dx^+ dx^-$ Fefferman-Graham expansion goes beyond B-H

AdS₂ × R Background

* Embedding with at least one sl₂ singlet S with $\operatorname{tr} [S^2] \neq 0$.

* Connection $A = L_0 d\rho + a_1 e^{\rho} L_+ dt$ $\bar{A} = -L_0 d\rho + e^{\rho} L_- dt + S dx$ * Metric $g_{\rho\rho} = 2 \text{tr} L_0^2$ $g_{tt} = -a_1 \text{tr} (L_+ L_-) e^{2\rho}$ $g_{xx} = \frac{1}{2} \text{tr} S^2$

Schrödinger Background

- * Generators $W_{\pm z}$ with sl2 weight $\pm z$ such that $[W_{-z}, L_{-}] = 0$ and tr $(W_{+z}W_{-z}) \neq 0$.
- * Connection $A = L_0 + (a_1 e^{\rho} L_+ + a_2 e^{z\rho} W_z) dt$ $\bar{A} = -L_0 + e^{z\rho} W_{-z} dt + e^{\rho} L_- d\xi$

* Metric: set $r = e^{-z\rho}$

$$ds^{2} = \ell^{2} \left[\frac{dr^{2} \pm 2dtd\xi}{r^{2}} - \frac{dt^{2}}{r^{2z}} \right]$$

Lifshitz Background

- * Generators $W_{\pm z}$ with sl2 weight $\pm z$ such that $[W_{-z}, L_{-}] = 0$ and $\operatorname{tr}(W_{+z}W_{-z}) \neq 0$.
- * Connection $A = L_0 d\rho + a_1 e^{z\rho} W_z dt + e^{\rho} L_+ dx$ $\bar{A} = -L_0 d\rho + e^{z\rho} W_{-z} dt + a_2 e^{\rho} L_- dx$

* Metric: set
$$r = e^{-z\rho}$$

$$ds^2 = \ell^2 \left[\frac{dr^2 + dx^2}{r^2} - \frac{dt^2}{r^{2z}} \right]$$

WAdS Background

* Generators $W_{\pm\frac{1}{2}}$, S with $\operatorname{tr}\left(W_{\frac{1}{2}}W_{-\frac{1}{2}}\right) \neq 0$ $\operatorname{tr}S^2 \neq 0$.

* Connection $A = L_0 d\rho + \left(a_1 e^{\rho} L_+ + a_2 e^{\rho/2} W_{\frac{1}{2}}\right) dx^+$ $\bar{A} = -L_0 d\rho + e^{\rho} L_- dx^+ + \left(e^{\rho/2} W_{-\frac{1}{2}} + \mu S\right) dx^-$

* Metric $g_{\rho\rho} = 2 \operatorname{tr} L_0^2$ $g_{++} = -a_1 e^{2\rho} \operatorname{tr} (L_+ L_-)$

 $g_{+-} = -\frac{a_2 a_3}{2} e^{\rho} \operatorname{tr} (L_+ L_-)$ $g_{--} = \mu^2 \frac{a_4}{2} \operatorname{tr} (L_+ L_-)$

Questions & Conclusions

- * Straightforward to go beyond standard AdS holography with Brown-Henneaux boundary conditions
- * Canonical analysis underway, necessary to understand
 - * Asymptotic symmetry algebra
 - * Central charges
 - * Valid boundary conditions
- * Relations between embeddings?
- * Understand geometry & higher spin symmetries
 * Causal structure vs. larger gauge symmetry

Thank You