Dual Giant Gravitons & Emergent Curvature

Michael Gary

arXiv:1011.5231

w/R. Eager & M. M. Roberts

Motivation

- Understand emergent geometry in AdS/CFT.
- Anomalies are protected, so CFT calculations can be trusted.
- Explore $1/N^2$ and α' corrections.
- New predictions/tests for AdS/CFT.

Outline

- Review of AdS/CFT & the Geometric Setup
- The Hilbert Series
- Dual Giant Gravitons
- The Hilbert Series Revisited
- Curvature from Counting
- Conclusions & Future Directions

Geometric Setup

- Compactify IIB String Theory on Calabi-Yau 3-fold X
- Place stack of N D3-branes at a singular point in X
- Near-Horizon Geometry is $AdS_5 \times L^5$ where L^5 is a Sasaki-Einstein manifold
- Metric cone over L^5 is X^6 $ds_X^2 = dr^2 + r^2 ds_L^2$

Dual Description

- The dual description is an $\mathcal{N}=1$ SCFT, the low energy theory on the stack of D3-branes.
- The N=1 SCFT has a global U(1) R-Symmetry.
- The U(1) R-symmetry is dual to the U(1) generated by the Reeb vector $\xi = J(r\partial_r)$.

Specifics

- We consider theories arising from local CY Singularities X = Spec(R) where R is a Gorenstein ring.
- Consider only SCFTs from quiver gauge theories with superpotential algebra of form $A = \operatorname{End}_R(R + M_1 + \cdots + M_n)$.
- Often further restrict to X the total space of a (complex) line bundle $\mathcal{L} \to B^4$.

Hilbert Series

- The Hilbert Series of a gauge theory is defined to be $H(t) = \sum_{\mathcal{O}} t^{R(\mathcal{O})}$ where \mathcal{O} are mesons and $R(\mathcal{O})$ is the R-charge.
- We define an adjacency matrix

$$M_{ij}(t) = \sum_{e \in \text{Arrows}(i \to j)} t^{R(e)}$$

The Hilbert Series is given by the (0,0)
 component of

$$\mathbb{H} = \frac{1}{1 - \mathbb{M}(t) + t^2 \mathbb{M}^T (1/t) - t^2}$$

Dual Giant Gravitons

Dual Giant Gravitons are BPS D3-branes

wrapping $S^3 \subset AdS_5$.

- The radial position of the brane.
- The position of the brane in B^4 .

Dual Giant Gravitons

• The Hamiltonian is equivalent to a BPS point particle moving in L^5 .

$$H_{\mathrm{BPS}} = \frac{1}{\ell_{\mathrm{AdS}}} P_{\psi}$$

 ψ is defined by $\xi = J(r\partial_r) = \partial_{\psi}$.

 Martelli & Sparks quantize this system by Geometric Quantization

Dual Giant Gravitons

 Martelli & Sparks compute the partition function for dual giant gravitons

$$Z(\beta) = \text{Tr}_{\mathcal{H}} e^{-\beta H}$$

and show that the space of states is precisely the space of holomorphic functions on X^6 .

- Key Point: H generates flow along ξ .
- They show the partition function can be written as an equivariant character under the action of the Reeb vector and is the Hilbert Series.

Geodesic Motion

- Any Sasakian metric can locally be written in the form $ds_L^2 = ds_B^2 + (\frac{1}{3}d\psi + A)^2$.
- Consider the general case of motion on $ds^2 = -dt^2 + ds_B^2 + (\frac{1}{3}d\psi + A)^2$
- Geodesic motion can be derived from the action

$$S = \int d\tau \left[-\dot{t}^2 + h_{ij}\dot{x}^i\dot{x}^j + (\frac{1}{3}\dot{\psi} + A_i\dot{x}^i)^2 \right]$$

BPS Geodesic Motion

$$S = \int d\tau \left[-\dot{t}^2 + h_{ij}\dot{x}^i\dot{x}^j + (\frac{1}{3}\dot{\psi} + A_i\dot{x}^i)^2 \right]$$

$$H = -p_t^2 + p_\psi^2 + h^{ij}(p_i - p_\psi A_i)(p_j - p_\psi A_j)$$

- $\partial_t, \partial_\psi$ are isometries, so $E = p_t, q = p_\psi$ are conserved quantities.
- On-shell solutions have H=0, so $E^2 = q^2 + h^{ij}(p_i qA_i)(p_j qA_j).$
- There is a BPS bound $E^2 \ge q^2$ and the BPS states satisfy $p_i = qA_i, \dot{x}^i = 0, \dot{\psi} = q$.
- BPS geodesics are orbits of ξ with fixed momentum q.

Kaluza-Klein Reduction

$$ds_L^2 = h_{ij} dx^i dx^j + \phi^2 (\frac{1}{3} d\psi + A)^2$$

- Dimensionally reduce the problem of geodesic motion on L^5 to motion of a charged particle on B^4 in a background magnetic field.
- The geodesic equation reduces to $\ddot{x}^i + \Gamma^i_{jk} \dot{x}^j \dot{x}^k = \frac{q}{m} F^i{}_j \dot{x}^j .$
- The connection is proportional to the Kahler form on B^4 .

Kaluza-Klein Reduction

- Fix re-parametrization invariance by choosing $t = \tau$.
- Fix to a holomorphic gauge for A $S_{\rm BPS, fixed} = \int dt (-1 + h_{i\bar{\jmath}} \dot{x}^i \dot{x}^{\bar{\jmath}} + A_i \dot{x}^i + \bar{A}_{\bar{\jmath}} \dot{x}^{\bar{\jmath}})$
- This action was studied by Douglas &
 Klevtsov, who counted the number of states in
 the Lowest Landau Level at large magnetic
 field.

• For a Calabi-Yau singularity X that is the total space of a line bundle $\mathcal{L} \to B^4$,

$$H(t,X) = \sum_{k=0}^{\infty} g(k)t^k .$$

- $g(k) = \dim \mathcal{H}^0(B, \mathcal{L}^{\otimes k})$
- At large k, $g(k) = ak^2 + bk + c + O(1/k)$.

• Douglas & Klevtsov use the Tian-Yau-Zelditch asymptotic expansion to determine the number of states in the Lowest Landau Level in terms of the curvature of B^4 and the magnetic field.

$$g(k) = \frac{1}{2} \left(k^2 + k \frac{R}{2} + \left(\frac{1}{24} \operatorname{Riem}^2 - \frac{1}{6} \operatorname{Ric}^2 + \frac{1}{8} R^2 \right) \right) + \mathcal{O}(1/k)$$

• Reversing the Kaluza-Klein reduction, we are able to re-write the TYZ expansion purely in terms of quantities defined on L^5 .

• Since L^5 and B^4 are both Einstein spaces, R_{ij} and R can be fixed by convention.

$$^{(4)}R_{ij} = 5h_{ij} ^{(5)}R_{ij} = 4g_{ij}$$

• The only non-trivial calculation is the lift of Riem².

$$\operatorname{Riem}_L^2 = \operatorname{Riem}_B^2 - 152$$

• The general form of the Hilbert Series at large

k is
$$H(t, X) = \sum_{k=0}^{\infty} g(k)t^k = \sum_{k=0}^{\infty} (ak^2 + bk + c)t^k$$

• The Hilbert series has a pole at t=1. We expand about the singularity:

$$\lim_{s \to 0} H(e^{-s}) = \frac{2a}{s^3} + \frac{b}{s^2} + \frac{c}{s} + \mathcal{O}(1)$$

Using the lifted form of the TYZ expansion, we find

$$\lim_{s \to 0} \left(\frac{3\pi}{2}\right)^3 H(e^{-\frac{2}{3}s}) = \frac{\text{vol}}{s^3} + \frac{\text{vol}}{s^2} + \left(\frac{91\text{vol}}{216} + \frac{\text{Riem}^2}{1728}\right) \frac{1}{s} + \mathcal{O}(1)$$

Curvature from Counting

• The result that the leading singularity in the Hilbert series is proportional to the volume of L^5 is well known from the work of Martelli, Sparks and Yau.

$$\lim_{s \to 0} s^3 H(e^{-s}) = \text{vol}$$

• The fact that the sub-leading term in the asymptotic expansion is also proportional to the volume follows from the Calabi-Yau condition on X^6 .

Curvature from Counting

• That the order 1/s term in the asymptotic expansion of the Hilbert Series can be expressed in terms of the curvature of L^5 is non-trivial and a new result.

$$\left(\frac{91}{216}\text{vol} + \frac{1}{1728}\int_{L^5} \text{Riem}^2\right) \frac{1}{s}$$

Examples: S^5

•
$$X = \mathbb{C}^3, L = S^5, B = \mathbb{CP}^2$$

•
$$\dim \mathcal{H}^0(\mathbb{CP}^2, \mathcal{O}(1)) = \frac{(k+1)(k+2)}{2}$$

•
$$H(t) = \sum_{k=0}^{\infty} \frac{(k+1)(k+2)}{2} t^k = \frac{1}{(1-t)^3}$$

•
$$\lim_{s \to 0} \pi^3 H(e^{-\frac{2}{3}s}) = \frac{27\pi^3}{8s^3} + \frac{27\pi^3}{8s^2} + \frac{3\pi^3}{2s}$$

•
$$\operatorname{vol} = \pi^3$$

$$\int_{S^5} \operatorname{Riem}^2 = 40\pi^3$$

Examples: S^5/\mathbb{Z}_3

•
$$X = \mathbb{C}^3/\mathbb{Z}_3, L = S^5/\mathbb{Z}_3$$

•
$$H(t) = \frac{1 + 7t^2 + t^4}{(1 - t^2)^3}$$

•
$$\lim_{s \to 0} \pi^3 H(t) = \frac{9\pi^3}{8s^3} + \frac{9\pi^3}{8s^2} + \frac{\pi^3}{2s}$$

•
$$\operatorname{vol} = \frac{\pi^3}{3}$$
 $\int_{S^5/\mathbb{Z}_3} \operatorname{Riem}^2 = \frac{40\pi^3}{3}$

Examples: $T^{1,1}$

•
$$X = \text{Conifold}, L = T^{1,1}$$

•
$$H(t) = \frac{1+t}{(1-t)^3}$$

•
$$\lim_{s \to 0} \pi^3 H(e^{-s}) = \frac{2\pi^3}{s^3} + \frac{2\pi^3}{s^2} + \frac{\pi^3}{s}$$

•
$$\operatorname{vol} = \frac{16\pi^3}{27}$$
 $\int_{T^{1,1}} \operatorname{Riem}^2 = \frac{2176\pi^3}{27}$

Examples: $Y^{2,1}$

$$\bullet \ H(t) = \frac{8t^{2\sqrt{13}/3}}{27(t - t^{(1+2\sqrt{13})/3})^2(t^5 - t^{(1+2\sqrt{13})/3})^2}$$
$$f(t) = 2t^{\frac{22}{3}} + t^{\frac{2(4+\sqrt{13})}{3}} + 3t^{\frac{2(7+\sqrt{13})}{3}} - 3t^{\frac{2(10+\sqrt{13})}{3}} - t^{\frac{2(13+\sqrt{13})}{3}} - 2t^{\frac{4(3+\sqrt{13})}{3}}$$

$$\bullet \lim_{s \to 0} \pi^3 H(e^{-s}) = \frac{(46 + 13\sqrt{13})\pi^3}{324s^3} + \frac{(46 + 13\sqrt{13})\pi^3}{324s^2} + \frac{(22 + 7\sqrt{13})\pi^3}{324s}$$

• vol =
$$\frac{(46 + 13\sqrt{13})\pi^3}{324}$$

$$\int_{V^{2,1}} \text{Riem}^2 = \frac{2\pi^3}{81} (566 + 329\sqrt{13})$$

Conclusions

- We are able to compute $\int_{L^5} {
 m Riem}^2$ purely from gauge theory data.
- While our proof is only valid in the regular case, we conjecture that the formula also holds in the quasi-regular case and provide evidence.
- On the gauge theory side, the sub-leading terms in the Hilbert Series are related to $1/N^2$ corrections to a-c, a topic explored in recent work by Minasian and Liu

Future Directions

- Generalize the proof to the quasi-regular case by properly treating singular points.
- The fact that the sub-leading terms can be written purely in terms of 5d quantities hints at a direct 5d proof.
- Extend to Generalized Complex Geometry, as recently considered by Gabella and Sparks.
- Understand relation to higher curvature corrections to bulk action.