25.10.2011

Bulk Locality in AdS/CFT

Michael Gary TU Wien mgary@hep.itp.tuwien.ac.at

arXiv:0903.4437 (MG, Giddings, Penedones) arXiv:0904.3544, 1106.3553 (MG, Giddings)

Tuesday, October 25, 2011

* Black hole evaporation & the information problem
* Intro to the AdS/CFT correspondence
* A test of bulk locality

Evaporating Black Holes

- * Classically, everything that falls in is lost forever.
- * Hawking: Black holes aren't completely black.
- ★ Hawking Radiation ⇒ black holes evaporate.

Evaporating Black Holes

- * State on Σ_{\circ} can be pure.
- * Locality \Rightarrow trace over sub-sector of Σ_{I} inside horizon \implies mixed state outside.
- * Pure state evolving into mixed state violates unitarity.

Evaporating Black Holes

***** 3 Possible Resolutions:

* Non-Unitary evolution $\rho \mapsto \$\rho$

* Remnants Black hole only evaporates to Planck scale

* Non-locality

Non-Unitary Evolution?

$\rho \mapsto \$\rho$

- * Information transfer requires energy.
- * Information loss \Leftrightarrow energy loss.
- * Virtual effects \Rightarrow Planck-scale energy non-conservation.
- * Banks, Peskin, Susskind (1984): Nonunitarity \Rightarrow thermal bath at T - M_P

Remnants?

* Long lived Planck-scale remnant: if remnant decays and information gets out, takes $t_{decay} = \frac{S^2}{M_P}$

★ Form black holes from arbitrarily many initial states, so arbitrarily many remnant species ⇒ arbitrarily large production cross-section.

Non-Locality?

- * Physical observables must be gauge invariant.
- * In gravity, this means observables must be diffeomorphism invariant.
- * There are no diffeomorphism invariant local observables in gravity. (Torre 1993)

 $\delta \mathcal{O}(x) = \epsilon^{\mu} \nabla_{\mu} \mathcal{O}(x)$

Holographic Principle

- * Hints that locality should be given up.
 - * BH Entropy grows with bounding area, not volume.
 - ★ Bousso (1999): trying to access too many states in a fixed volume → black hole formation.
- * Look for a non-local formulation of Quantum Gravity.
- * Area law \Rightarrow should look for a theory in one fewer dimensions.

AdS/CFT

- * Quantum Gravity in asymptotically Anti-de Sitter space (AdS) is conjectured to be dual to a Conformal Field Theory (CFT) living on the boundary. (Maldacena 1997)
- * Simplest example: stack of N D3-branes. As $N \to \infty$, geometry back-reacts, near-horizon geometry becomes $AdS_5 \times S^5$, with SUGRA as LEFT. Worldvolume LEFT of branes is $\mathcal{N} = 4$ SYM with gauge group SU(N).

* Example of open/closed string duality.

AdS Geometry

$$* ds^{2} = \frac{R^{2}}{\cos^{2} \rho} \left(-d\tau^{2} + d\rho^{2} + \sin^{2} \rho \, d\Omega_{d-1}^{2} \right)$$

* Universal cover of hyperboloid of radius R in $M_{2,d}$.

* Asymptotic Boundary $S^{d-1} \times \mathbb{R}$.

AdS/CFT Dictionary

- ★ Gubser, Klebanov, Polyakov; Witten (1998): Boundary conditions on fields in AdS ↔ operator insertions & VEVs in dual CFT.
 - * Fields in AdS have normalizable & non-normalizable modes: $\phi \sim \cos^{2h_{-}} \rho \ \alpha(\tau, \Omega) + \dots + \cos^{2h_{+}} \rho \ \beta(\tau, \Omega)$
 - * Non-normalizable mode \Leftrightarrow operator insertion: $\mathcal{L}_{CFT} \mapsto \mathcal{L}_{CFT} + \alpha_{\phi} \mathcal{O}_{\phi}$
 - * Normalizable mode \Leftrightarrow operator expectation value: $\langle \mathcal{O}_{\phi} \rangle = \beta_{\phi}$

Physical Interpretation

- * AdS/CFT is a geometrization of the Renormalization Group.
 - ★ Radial direction ↔ Energy Scale
- * Locality in Energy leads to coarse locality in radius (up to corrections of order R_{AdS}).
- * How does fine-grained locality emerge?
 - * Look for a test of fine-grained locality: scattering.

Large R Limit

*
$$t = R\tau$$
 $r = R\rho$ $R \to \infty$

* Approximately flat $ds^2 \rightarrow -dt^2 + dr^2 + r^2 d\Omega^2$

- * Normalizable frequencies $\omega_{nl} \rightarrow \omega R$
- * Normalizable wavefunctions $\phi_{nl\vec{m}} \rightarrow \frac{\sqrt{2\omega^{d-1}}}{(\omega r)^{\frac{d}{2}-1}} J_{l+\frac{d}{2}-1}(\omega r) Y_{l\vec{m}}(\Omega)$

Scattering in the Flat Region

- * Scattering in the flat region should approximate local physics in our universe.
- * Need to construct wavepackets to localize scattering to a single flat region of AdS.

Multiple Scattering

- * Free fields in AdS are periodic.
- * Purely normalizable states will interact infinitely many times.
- * Can't isolate contribution from one scattering experiment.

Interactions Near the Boundary

- ★ Boundary sources → infinite particle production near the boundary.
- * Single particle states not well defined when boundary sources turned on.

$$N = \int_{t_0} d^d \vec{x} \sqrt{-g} (\phi^* \stackrel{\leftrightarrow}{\partial_t} \phi) = \infty$$

- * Difficult to isolate scattering in flat region from scattering near the boundary.
- * Sources should be compact and non-overlapping to avoid infinite interactions near the boundary and normalize states.

Boundary-Compact Wavepackets

* Construct using Bulk-Boundary Propagator.

$$\phi_f(x) = \int db f(b) G_{B\partial}(b, x)$$

* Compactly supported sources $f(b) = L\left(\frac{\tau - \tau_0}{\Delta \tau}\right) L\left(\frac{\theta}{\Delta \theta}\right) e^{-i\omega R(\tau - \tau_0)}$

of size
$$\Delta \tau$$
, $\Delta \theta$.

$$* \ \frac{1}{\omega R} \ll \Delta \tau, \Delta \theta \ll 1$$

* Scatter when sources turned off.

Wavepackets in the Scattering Region

- * Near the center of AdS, $\phi_f(x) \approx \phi_f(0) \frac{\tilde{L}_{d-1}(x_{\perp}\omega\Delta\theta)}{\tilde{L}_{d-1}(0)} L\left(\frac{u}{\Delta t}\right) e^{-i\omega u}.$
- * Longitudinal width $\Delta t \sim R \Delta \tau$.
- * Transverse width $\Delta x_{\perp} \sim 1/(\omega \Delta \theta)$.
- * Well localized for $1/\omega \ll \Delta t, \Delta x_{\perp} \ll R$, equivalent to earlier requirement.

Singularity Structure

* Signal of interaction from intersecting wavepackets: local bulk physics!

Analytic Continuation

Singularity Structure

* Signal of interaction from intersecting wavepackets: local bulk physics!

$$* z = \sigma e^{-\rho}, \ \bar{z} = \sigma e^{\rho}$$
$$* \mathcal{A}(z, \bar{z}) \approx g^2 R^{5-d-2j} \frac{F(\sigma)}{(-\rho^2)^{\beta}}$$
$$* \beta = \Delta_1 + \Delta_2 + j - 5/2$$

Momentum Conservation

- * Flat space S-Matrix conserves momentum: $S = 1 + i(2\pi)^D \delta^D \left(\sum k_i\right) \mathcal{T}(s,t)$
- * Momentum conserving δ-function must emerge from CFT amplitude in appropriate limit.
- * Delta function does emerge from form of boundary compact sources and singularity structure:

$$\lim_{R \to \infty} \int d\nu \frac{R^n e^{-i\nu}}{(R^2 \kappa^2 - (\nu + i\epsilon)^2)^\beta} \propto \delta^n(\vec{\kappa})$$

The S-Matrix

* Determine flat space scattering amplitude from residue of CFT singularity: $\mathcal{F}(\sigma)$

$$\mathcal{A}(z,\bar{z}) \to g^2 R^{5-d-2j} \frac{\mathcal{F}(0)}{(-\rho^2)^{\beta}}$$

$$i\mathcal{T}(s,t) = \mathcal{K}g^2 s^{j-1} \left(\frac{-t}{s}\right)^{j-2} \left(\frac{-u}{s}\right)^{3-j-\Delta_1-\Delta_2} \mathcal{F}\left(\frac{-s}{t}\right)$$

Examples

* Compute CFT correlators using AdS/CFT dictionary (D'Hoker *et al.*, 1999), read off scattering amplitudes.

* Scalar exchange: $\mathcal{F}(\sigma) \propto \sigma (1-\sigma)^{\Delta_1 + \Delta_2 - 3} \rightarrow \mathcal{T}(s,t) = \frac{g^2}{-t}$

* Graviton exchange:

$$\mathcal{F}(\sigma) \propto \frac{(1-\sigma)^8}{\sigma} \rightarrow \mathcal{T}(s,t) = 8\pi G_5 \frac{s^2 + ts}{-t}$$

Conclusions

* AdS/CFT ⇒ BH Evaporation is Unitary & non-local.
* CFT singularity signature of fine-grained locality.
* AdS/CFT really is holographic in the large N limit.
* Locality should only be approximate, should go away when stringy corrections are included.

Thank You