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Fuzzy Geometry as a Regulator
Studying fuzzy geometry is well motivated.

Planck-Scale Structure of Spacetime

Smooth structure of spacetime probably not to arbitrary scales.
The most prominent modifications: SUSY and Noncommutativity.
Fuzzy Geometry: NC on compact symplectic Riemannian spaces

arise naturally in string theory

Regularization of Field Theories

Field theories on fuzzy spaces: finite-dimensional matrix models.
QFTs are finite and path integrals well-defined.

Advantages over lattice approach:
Isometries preserved, no fermion doubling, analytical handle

Numerical Simulations are easily done
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Fuzzy Geometry as a Regulator
Naive regularization does not reproduce planar commutative limit.

Taking the commutative limit does not reproduce scalar φ4-theory.
UV/IR-mixing distorts the picture.

[Vaidya, Chu, Madore, Steinacker]

Modifications of the näıve model, however, could cure this problem.

[Dolan, O’Connor, Presnajder]

To do:
Obtain an analytical handle on fuzzy φ4-theory, in particular its
phase diagram and study the effect of the proposed modifications.

(Gauge theory on the fuzzy sphere has recently been solved

[Steinacker, Szabo, hep-th/0701041]

scalar field theory appears to be simpler.)
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The Fuzzy Sphere
Idea: Consider the spherical harmonics up to a certain angular momentum.

Quantization of the sphere:

As usually, do not quantize space itself, but algebra of functions.

Basis: Spherical harmonics Ylm with l = 0, ..,∞,m = −l, ..., l.

Quantization: Truncate angular momentum l ≤ L
Multiplication will not close any more: Yl1...Yl2... = Yl1+l2... + ...
However, deforming the product to the star product

[xi ?, xj ] ∼ iεijkxk ,

where xi ∈ R3 ⊃ S2 yields a closed, truncated algebra.
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The Fuzzy Sphere
(a) Explicite construction from coherent states/group theory.

S2 ∼= SU(2)/U(1)

Consider irreducible representation ρ of SU(n), extended to U(n):

i i . . . ia1 a2 an−1

U(1) U(1) U(1) U(1) U(1)

n2 − n “simple” raising and lowering operators E±
~αi

.

ai: nontrivial actions (E−
~αi

)ai |µ〉 6= 0 = (E−
~αi

)ai+1|µ〉
n Cartan generators, isotropy group of |µ〉: H ⊃ U(1)×n

One-To-One Correspondence:

Coherent States |p〉 ∈ ρ ↔ p ∈ Coset U(n)/(U(m1)× ...×U(mk))

⇒ Fuzzy Flag (Super) Manifolds [S. Murray, CS, hep-th/0611328]
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The Fuzzy Sphere
Young diagrams yield a Fock space construction of NC functions on fuzzy geometries.

Representation ρ = (a1, ..., an−1) corresponds to Young diagram

n

{ a1+...+an−1︷ ︸︸ ︷

Fuzzy sphere: ρ = (a1) = L of SU(2):

L︷ ︸︸ ︷
∼= span( â†α1

...â†αL
|0〉 ) , L̂i = â†ασi

αβ âβ

Isometry-preserving quantization of functions on S2 via the rule:

f(p) = 〈p|f̂ |p〉 ,

f̂ ∈
L︷ ︸︸ ︷

⊗
L︷ ︸︸ ︷

∼= span( â†α1
...â†αL

|0〉〈0|âβ1 ...âβL
)
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The Fuzzy Sphere
(b) The truncated coordinate ring is mapped to an L-particle Hilbert space.

S2 ∼= CP 1

The spherical harmonics Ylm, l ≤ L can be written in terms of
homogeneous coordinates zα (xi ∼ z̄ασi

αβzβ) on CP 1 in terms of

zα1 ...zαL z̄β1 ...z̄βL

with αi, βi = 1, 2 due to the Hopf fibration

0 → U(1) → S3 → CP 1 → 0 .

Quantization as in flat case, (zα, z̄β) → (â†α, âβ):

â†α1
...â†αL

|0〉〈0|âβ1 ...âβL

In this way, also fuzzy versions of X↪→CPn. [CS, hep-th/0612124]
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The Fuzzy Sphere
(c) Geometric Quantization yields the same result.

S2 ∼= (CP 1, ω)

Take the line bundle L := O(1) as the quantum line bundel.
Toeplitz quantization (Geometric quantization):

T (L) : C∞(M) → End (Γ(M,L ⊗L)) .

The set of sections Γ(CP 1,L ⊗L) is spanned by

zα1 ...zαL

The quantized algebra of functions is thus spanned by

zα1 ...zαL

∂

∂zβ1

...
∂

∂zβL

or, equivalently, by

â†α1
...â†αL

|0〉〈0|âβ1 ...âβL
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The Fuzzy Sphere
Only a pseudo-Drinfeld twist is possible.

Consider the product of base elements

â†α1
...â†αL

|0〉〈0|âβ1 ...âβL
· â†γ1

...â†γL
|0〉〈0|âδ1 ...âδL

This translates into

zα1 ...zαL z̄β1 ...z̄βL
? zγ1 ...zγL z̄δ1 ...z̄δL

With f ? g := µ(Ff ⊗ g), the twist element reads as

F =
(

1
L!

∂

∂z̄α1
...

∂

∂z̄αL

)
⊗

(
1
L!

∂

∂zα1
...

∂

∂zαL

)
This twist element does not have a left-inverse, however, a
right-inverse can be defined [S. Kürkçüoǧlu, CS, hep-th/0606197].
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Fuzzy Scalar Field Theory: Definition.
Scalar field theory on the fuzzy sphere is a finite hermitian matrix model

Quantized algebra of functions on the fuzzy sphere:

span( â†α1
...â†αL

|0〉〈0|âβ1 ...âβL
) ∼= Mat(L + 1)

Integration and Laplacian on the fuzzy sphere:∫
S2

dA f → 4πR2

N
tr (f̂) Li = iεijkx

j∂k → [Li, ·] , ∆ → C2

The action of real scalar field theory on the fuzzy sphere:

S ∼ tr
(
a[Li,Φ][Li,Φ] + b Φ2 + cΦ4

)
We define the partition function

Z =
∫

dµD(Φ) e− tr (a[Li,Φ][Li,Φ]+b Φ2+c Φ4)

with the Dyson measure

dµD(Φ) =
∏
i≤j

d<(Φij)
∏
i>j

d=(Φij)
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Fuzzy Scalar Field Theory vs. HMMs
Fuzzy scalar field theory is significantly harder than matrix models usually considered.

Fuzzy scalar field theory: Z =
∫

dµD(Φ) e− tr (a[Li,Φ][Li,Φ]+b Φ2+c Φ4)

First example: One-Hermitian Matrix Model

Z =
∫

dµD(Φ) e− tr (b Φ2+c Φ4)

Solution: splitting Φ = ΩΛΩ†, Λ = diag(λ1, . . . , λN ) as well as∫
dµD(Φ) =

∫ ∏N
i=1 dλi∆2(Λ)

∫
dµH(Ω) yields

Z =
∫ N∏

i=1

dλi e−2
P

i>j ln |λi−λj |−b
P

i λ2
i +c

P
i λ4

i

From here: saddle point, orthogonal polynomials, etc.
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Fuzzy Scalar Field Theory vs. HMMs
Fuzzy scalar field theory is significantly harder than matrix models usually considered.

Fuzzy scalar field theory: Z =
∫

dµD(Φ) e− tr (a[Li,Φ][Li,Φ]+b Φ2+c Φ4)

Second example: Hermitian matrix model with one external matrix

Z =
∫

dµD(Φ) e− tr (V (AΦ)+b Φ2+c Φ4)

Solution: splitting Φ = ΩΛΩ†, as well as character expansion

exp( tr (V (AΦ))) =
∑

ρ

fρχρ(AΦ)

Orthogonality relation:

∫
dµH(Ω)χρ(AΩ†ΛΩ) =

1
dim(ρ)

χρ(A)χρ(Λ)

Formula by Itzykson and Di Francesco [hep-th/9212108]:

Z =
∑

h1<...<hN

Π(he − 1)!!ho!!
Π(he − ho)

χρ(A)χρ(t)
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Known Results: Matrix Model Phase Diagram
The matrix model phase diagram suggests two phases.

Z =
∫

dµD(Φ) e− tr (b Φ2+c Φ4) , 0 <
dx

dλ
< ∞

Christian Sämann On the Phase Diagram of Fuzzy Scalar Field Theory



Known Results: Phase Diagram for φ4-Theory on R2

The (lattice) model has two different phases.

Z =
∫

Dφ e−
R

d2x 1
2
(∇φ)2+bφ2+cφ4

, 〈φ〉 = 0 ,
c

b
= const.

proof of existence: [Glimm, Jaffe, Spencer, 1974/1975]
exact shape numerically: [Loinaz, Willey, hep-lat/9712008],
confirmed by [Lee, hep-th/9811117]
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Known Results: Numerical Simulations
The phase diagram suggests a combination of the phases.

Z =
∫

dµD(Φ) e−β tr (a[Li,Φ][Li,Φ]+b Φ2+c Φ4) , χ =
∂

∂β2
log(Z)

[Flores, O’Connor, Martin, hep-th/0601012,
Panero, hep-th/0608202]
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Known Results: φ4-Theory on R2
θ

The fuzzy model corresponds actually to regularized NC φ4 theory.

In φ4-theory on R2
θ:

New phase predicted [Gubser, Sondhi, hep-th/0006119],
analytically confirmed [Chen, Wu, hep-th/0110134] and
numerically confirmed [Ambjorn, Catterall, hep-th/0209106].

Indications for the new phase also found by regularization
φ4-theory with fuzzy spaces by [Steinacker, hep-th/0501174].

Removal of new phase would be an indicator of successful
regularization of commutative φ4-theory.

⇒ Better analytical handle on fuzzy φ4 theory necessary.
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Fuzzy Scalar Field Theory: Simplifications
Symmetry arguments yield simplifications.

Fuzzy scalar field theory: Z =
∫

dµD(Φ) e− tr (a[Li,Φ][Li,Φ]+b Φ2+c Φ4)

L = 1 : Z =
∫

dλ1dλ2 (λ1 − λ2)2 e−(a(λ1−λ2)2+b(λ2
1+λ2

2)+c(λ4
1+λ4

2))

Symmetries:
1. dµD(Φ) = dµD(ΩΦΩ†) ⇒

∫
dµD(Φ) e−S =

∫
dµD(Φ) e−S0

S0 =
∑

n

sn tr (Φn) +
∑
n,m

snm tr (Φn) tr (Φm) + ...

2. dµD(Φ) f(Φ) ∼ dN2
Φµ f(Φµτµ) ⇒ S0 =

∑
n sn

(
tr (Φ2)

)n

3. [Li,1] = 0, λ ↔ −λ ⇒ tr ([Li,Φ]2) ∼
(∑

i>j(λi − λj)2mk

)nl
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Perturbative expansion: Motivation
A high temperature expansion yields a useful approximation.

Idea: Treat the kinetic term perturbatively.

Motivation:

Hopping parameter expansion successfully used on the lattice.

Specific heat up to O(a8) for L = 1:

Group theoretical considerations allow everything else to be
treated exactly.
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Perturbative expansion: Principles
The angular variables can be integrated out in the perturbative series.

Introduce Kab:= tr ([Li, τa][Li, τb]), Φa = tr (τaΩΛΩ†). Then:

eaΦaKabΦ
b

= 1 + aΦaKabΦb +
a2

2
ΦaKabΦb ΦcKcdΦd + . . .

To integrate over dµH(Ω) we need to compute terms like∫
dµH(Ω)Kab tr (τaΩΛΩ†) tr (τ bΩΛΩ†)

Recall:

∫
dµH(Ω) [ρ(Ω)]ij [ρ†(Ω)]kl =

1
dim(ρ)

δilδjk

tr
(
(τaΩΛΩ†)⊗ (τ bΩΛΩ†)

)
= tr

(
(τa ⊗ τ b)(Ω⊗ Ω)(Λ⊗ Λ)(Ω† ⊗ Ω†)

)
Thus:

∫
dµH(Ω)KabΦaΦb = Kab

∑
ρ

1
dim(ρ) tr ρ(τa ⊗ τ b) tr ρ(Λ⊗ Λ)
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Perturbative expansion: Results
Up to O(a2), the perturbative expansion is easily doable.

After some group theory and algebra, we obtain:∫
dµH(Ω)KabΦaΦb =

1
2
N

∑
i>j

(λi − λj)2

∫
dµH(Ω)KabΦaΦbKcdΦc Φd =

(2 tr K2 + ( tr K)2)
N2(N4 − 10N2 + 9)

(α1A1 + α2A2)

+
1

N(−36 + N2(−7 + N2)2)
(β1A1 + β2A2)KqK ,

where

A1 =
∑
i>j

(λi − λj)4 and A2 =

∑
i>j

(λi − λj)2

2

(Confirmation: Structure correct, limit L = 1 is valid.)
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Large N expansion
The large N expansion is rewritten in terms of a multi-matrix model.

In the large N limit, we have:∫
dµH(Ω)KabΦaΦb =

1
2
N

∑
i>j

(λi − λj)2

∫
dµH(Ω)(KabΦaΦb)2 = −N2

2

∑
i>j

(λi − λj)4 + N2

4

∑
i>j

(λi − λj)2

2

After re-exponentiating the terms (still exact to O(a2))

S =
∑

i

(
bλ2

i + cλ4
i

)
+

∑
i>j

(
−a

2N(λi − λj)2 + a2

4 N2(λi − λj)4

−2 ln |λi − λj |
)
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Saddle point approximation
The saddle point approximation gives a rought picture of what is going on.

Rewrite: λi → λ( i
N ) = λ(x), 0 < x < 1,

∑N
i=0 → N

∫ 1
0 dx

Rescale: a = N θa ã, b = N θb b̃, c = N θc c̃, λ(x) = N θλ λ̃(x)

Partition function: Z =
∫

Dλ exp(−N2S̃)

Action:

S̃ =
∫ 1

0
dx

(
b̃λ̃2(x)+c̃λ̃4(x) +

∫ 1

0
dy

(
− ã

4 (λ̃(x)− λ̃(y))2

+ ã2

8 (λ̃(x)− λ̃(y))4 − ln |λ̃(x)− λ̃(y)|
))

Saddle point solution (one symmetric cut [−δ, δ]): u(λ̃) =(
4b̃− ã + 12πã2c2 + 4

(
c̃ + πã2

2

)
δ2 + 8

(
c̃ + πã2

2

)
λ̃2

) √
δ2 − λ̃2
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Saddle point approximation
New phase lies within the region of the two-cut solution.

The boundary of the region of validity of the one-cut solution is
consistent with the data.

Numerics, fuzzy φ4-theory Analytical results, multi-trace MM

⇒ “New phase” must already be a feature of the matrix model.
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Modification of the model
The proposed modification of the model moves the triple point in the right direction.

Modify the action, assuming momentum-dependent wave function
regularization ZL(C2) ≈ 1 + κC2:

S̃ = tr
(
aΦ(C2 + κC2C2)Φ + b Φ2 + cΦ4

)
This implies the following modification in our analysis

Kab → Ǩab := Kab + κKacKcb and ǎ = a(1 + 2
3κ(N2 − 1))

Rescaling of κ to keep highest order term yields ˜̌a = a(1 + 2
3 κ̃).

⇒ The triple point moves off to infinity for increasing κ̃.
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Conclusion
Summary and Outlook.

We achieved the following:

formulated a generalized character expansion technique

reformulated fuzzy φ4-theory as multi-trace matrix model

preliminary analysis of the approximation looks promising

Future directions:

Examine all possible one- and two-cut solutions; this should
yield a (full) explanation of the phase diagram

Examine modifications of the model for extended solutions

Extract more information from the expansion

Study other models (other fuzzy spaces) with this technique

Relation to c > 1 string theories?

Christian Sämann On the Phase Diagram of Fuzzy Scalar Field Theory



On the Phase Diagram of
Fuzzy Scalar Field Theory

Christian Sämann
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