

Translationinvariant models for NCGFT

alk presente by Daniel N. Blaschke

ntroduction NC gauge

Conclusion

TRANSLATION-INVARIANT MODELS FOR NON-COMMUTATIVE GAUGE FIELDS

Talk presented by Daniel N. Blaschke

Institute for Theoretical Physics, Vienna University of Technology

Collaborators: F. Gieres, H. Grosse, E. Kronberger, M. Schweda, R. Sedmik, M. Wohlgenannt

May 17, 2008

1/14

Translationinvariant models for NCGFT

alk presented by Daniel N. Blaschke

Introduction

Conclusion

phases act as UV-regulators,

For a field theory this means:

have phases, e.g.

 \Rightarrow origin of the UV/IR mixing problem

interaction vertices gain phases, whereas

propagators remain unchanged

Weyl-Moyal correspondence

TU

WIEN

Translation-

invariant

models for

NCGFT

ntroduction

TU

WIEN

Translation-

invariant models for

NCGFT

by Daniel N. Blaschke

ntroduction

RECENT SUCCESSES

assume non-commuting space-time coordinates:

 $[\hat{x}^{\mu}, \hat{x}^{\nu}] = i\theta^{\mu\nu}, \qquad \Rightarrow \text{leads to uncertainty relation:}$ $\Delta x^{\mu} \Delta x^{\nu} \ge \frac{1}{2} |\theta^{\mu\nu}| \sim (\lambda_p)^2$

■ definition of the Groenewold-Moyal *****-product:

$$f(x) \star g(x) = e^{\frac{i}{2}\theta^{\mu\nu}\partial^x_{\mu}\partial^y_{\nu}} f(x)g(y)\Big|_{x=y}$$

$$\neq g(x) \star f(x)$$

• invariance under cyclic permutations of the integral

$$\int d^4x f(x) \star g(x) \star h(x) = \int d^4x h(x) \star f(x) \star g(x)$$
$$\implies \int d^4x f(x) \star g(x) = \int d^4x f(x) g(x)$$

2/14

QFT on θ -deformed space-time

■ some Feynman integrals ("non-planar diagrams")

So far there are two types of scalar field theories where the UV/IR mixing problem could be solved:

- the Grosse-Wulkenhaar model (2003), where the ϕ^4 theory was supplemented by a (translation-invariance breaking) oscillator term ($\approx \tilde{x}^2 \phi^2$)
- and recently a translation-invariant model by Gurau, Magnen, Rivasseau and Tanasa (2008), where the oscillator term is replaced by a ¹/_{n²} term.

 \Rightarrow Both models could be proved to be renormalizable to all orders.

IN GAUGE THEORIES ...

Translationinvariant models for NCGFT

NCGFT lk presented by Daniel

NC gauge fields Conclusion ... matters are more complicated. Recent ansatzes:

- Slavnov model (2003): relies on a constraint → reduces degrees of freedom
- models involving oscillator terms in analogy to the scalar model: break translation invariance

(de Goursac et. al., Grosse+Wohlgenannt, D.N.B. et. al., 2007)

proofs of renormalizability still missing for gauge theories

Inspired by the scalar model of Gurau et. al., whose propagator has "damping" behaviour for vanishing momentum:

$$G^{\phi\phi}(k) = \frac{1}{k^2 + m^2 + \frac{a}{\theta^2 k^2}} \approx \frac{\theta^2 k^2}{a} \quad \text{for } k \to 0 \,,$$

a new gauge field model is put forward:

5/14

VICTCOMPLETE ACTION INCLUDING GAUGE FIXINGTranslation
invariant
models for
NCGFT• recursion formula leads to
 $Y^0 = \frac{1}{\Box}F,$ Talk presented
by Daniel
N. Blaschke• $Y^0 = \frac{1}{\Box}F,$ Nation
Subscript $Y^1 = \frac{1}{\Box}F + \frac{ig}{\Box} \Big\{ \partial^{\mu} \left[A_{\mu} \stackrel{*}{,} Y^0 \right] + \left[A^{\mu} \stackrel{*}{,} \partial_{\mu} Y^0 \right] - ig \left[A^{\mu} \stackrel{*}{,} \left[A_{\mu} \stackrel{*}{,} Y^0 \right] \right] \Big\}$ • New action (where stars have been suppressed):
 $\Gamma^{(0)} = S_{inv} + S_{gf},$
 $S_{inv} = \int d^4x \left[\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \frac{1}{4} F^{\mu\nu} \frac{1}{D^2 \widetilde{D}^2} F_{\mu\nu} \right],$
 $S_{gf} = s \int d^4x \, \overline{c} \left[\left(1 + \frac{1}{\Box \widetilde{\Box}} \right) \partial^{\mu} A_{\mu} - \frac{\alpha}{2} B \right]$
 $= \int d^4x \left[B \star \left(1 + \frac{1}{\Box \widetilde{\Box}} \right) \partial^{\mu} A_{\mu} - \frac{\alpha}{2} B^2 - \overline{c} \left(1 + \frac{1}{\Box \widetilde{\Box}} \right) \partial^{\mu} D_{\mu} c \right].$

A NEW GAUGE FIELD MODEL

Translationinvariant models for NCGFT

NC gauge fields

TU

WIEN

$$\int d^4x \phi(x) \frac{1}{\theta^2 \Box} \phi(x) \quad \Rightarrow \quad \int d^4x \frac{1}{4} F^{\mu\nu} \star \frac{1}{D^2 \widetilde{D}^2} \star F_{\mu\nu}$$

where

$$\begin{split} F_{\mu\nu} &= \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - \mathrm{i}g\left[A_{\mu} \, \overset{*}{,} A_{\nu}\right] \,, \\ \widetilde{D}^{2} &= \widetilde{D}^{\mu} \star \widetilde{D}_{\mu} \,, \qquad \mathrm{with} \ \widetilde{D}_{\mu} = \theta_{\mu\nu}D^{\nu} \,, \end{split}$$

Expression $\frac{1}{D^2}F \equiv Y$ transforms covariantly (sY = ig [c * Y])and is to be understood as formal power series in the gauge field A_{μ} :

$$F = D^{2} \star \frac{1}{D^{2}} \star F = D^{2}Y =$$

= $\Box Y - ig\partial^{\mu} [A_{\mu} * Y] - ig [A^{\mu} * \partial_{\mu}Y] + (ig)^{2} [A^{\mu} * [A_{\mu} * Y]].$

6/14

BRST SYMMETRY AND PROPAGATORS

Translationinvariant models for

NCGFT

NC gauge

fields

• this action is invariant under the BRST transformations

$$sA_{\mu} = D_{\mu}c \equiv \partial_{\mu}c - ig [A_{\mu} * c], \qquad s\bar{c} = B,$$

$$sc = igc * c, \qquad sB = 0,$$

$$s^{2}\varphi = 0 \qquad \text{for } \varphi \in \{A_{\mu}, c, \bar{c}, B\}.$$

• the bilinear action leads to the improved propagators

$$\begin{split} G^{A}_{\mu\nu}(k) &= \frac{1}{k^{2} + \frac{1}{\tilde{k}^{2}}} \left(-\delta_{\mu\nu} + \frac{k_{\mu}k_{\nu}}{k^{2}} - \alpha \frac{k_{\mu}k_{\nu}}{k^{2} + \frac{1}{\tilde{k}^{2}}} \right) \\ G^{\bar{c}c}(k) &= \frac{1}{k^{2} + \frac{1}{\tilde{k}^{2}}} \qquad \text{with} \quad \tilde{k}^{\mu} = \theta^{\mu\nu}k_{\nu} \,. \end{split}$$

LOOP INTEGRALS

Translationinvariant models for NCGFT

alk presented by Daniel N. Blaschke

NC gauge fields Conclusion simplest non-planar one-loop integral:

$$\int d^4k \frac{e^{\pm ik\tilde{p}}}{k^2 + \frac{1}{\tilde{k}^2}} = \frac{1}{2} \int d^4k \left[\frac{e^{\pm ik\tilde{p}}}{\left(k^2 + \frac{i}{\theta}\right)} + \frac{e^{\pm ik\tilde{p}}}{\left(k^2 - \frac{i}{\theta}\right)} \right] \approx \frac{1}{\tilde{p}^2}$$

for $\tilde{p}^2 \to 0$.

• In the sum of 1-loop graphs due to gauge symmetry:

 $\approx \frac{\tilde{p}_{\mu}\tilde{p}_{\nu}}{(\tilde{p}^2)^2}$

• IR damping due to propagators

9/14

۰.

TU WIEN

ADDITIONAL FEYNMAN RULES

Translationinvariant models for NCGFT

by Daniel N. Blaschke

NC gauge fields Conclusion

• two additional propagators:

$$G^{AB}_{\rho,\sigma\tau}(k) = \frac{i \left(k_{\sigma} \delta_{\rho\tau} - k_{\tau} \delta_{\rho\sigma}\right)}{2k^2 \tilde{k}^2 \left(k^2 + \frac{1}{2\sigma}\right)},$$

$$G^{BB}_{\rho\sigma,\tau\epsilon}(k) = \frac{1}{4k^2\tilde{k}^2} \Big[\delta_{\rho\tau}\delta_{\sigma\epsilon} - \delta_{\rho\epsilon}\delta_{\sigma\tau} + \frac{k_{\sigma}k_{\tau}\delta_{\rho\epsilon} + k_{\rho}k_{\epsilon}\delta_{\sigma\tau} - k_{\sigma}k_{\epsilon}\delta_{\rho\tau} - k_{\rho}k_{\tau}\delta_{\sigma\epsilon}}{k^2\tilde{k}^2\left(k^2 + \frac{1}{\tilde{k}^2}\right)} \Big]$$

 \bullet and 5 new vertices, namely a BAA-vertex, a BBA-vertex, a 2B2A-vertex, a 2B3A-vertex and a 2B4A-vertex.

More convenient formulation

Translationinvariant models for NCGFT

NC gauge fields

TU

WIEN

$$S_{\text{new}} = \int d^4x \left[B^{\mu\nu} \star F_{\mu\nu} - B^{\mu\nu} \star \widetilde{D}^2 D^2 \star B_{\mu\nu} \right]$$

is gauge invariant if new field $B_{\mu\nu}$ transforms covariantly, i.e.

$$sB_{\mu\nu} = \mathrm{i}g\left[c \stackrel{\star}{,} B_{\mu\nu}\right]$$

and has only a finite number of new vertices. Re-inserting the e.o.m.

$$\frac{\delta S_{\text{new}}}{\delta B^{\rho\sigma}} = F_{\rho\sigma} - 2\widetilde{D}^2 D^2 \star B_{\rho\sigma} = 0$$

leads again to

$$\int d^4x \frac{1}{4} F^{\mu\nu} \star \frac{1}{D^2 \tilde{D}^2} \star F_{\mu\nu} \,,$$

10/14

VANISHING TADPOLE GRAPHS

There are only 4 possible one-loop tadpole graphs with external gauge boson lines in this model:

N. Blaschke Introduction NC gauge fields Conclusion

Translation-

invariant

models for NCGFT

From the Feynman rules one sees that all 4 come with a factor

$$\delta^4(p+k-k)\sin\left(\frac{k\theta p}{2}\right) \to 0,$$

Hence, all four graphs vanish.

Conclusion and Outlook

Translationinvariant models for NCGFT

> by Daniel N. Blaschke

fields Conclusion and Outlook

- the model seems to be a promising candidate for a renormalizable non-commutative gauge model
- gauge field and ghost propagators damp IR divergences
- it is translation-invariant (tadpoles vanish)
- one-loop calculations are in progress

References

TU

WIEN

Translation-

invariant

models for NCGFT

Conclusion

and Outlook

- D. N. Blaschke, F. Gieres, E. Kronberger, M. Schweda and M. Wohlgenannt, to appear in J. Phys. A, [arXiv:0804.1914].
- R. Gurau, J. Magnen, V. Rivasseau and A. Tanasa, [arXiv:0802.0791].
- H. Grosse and F. Vignes-Tourneret, [arXiv:0803.1035].
- F. Aigner, M. Hillbrand, J. Knapp, G. Milovanovic,
 V. Putz, R. Schoefbeck and M. Schweda, *Czech. J. Phys.* 54 (2004) 711–719, [arXiv:hep-th/0302038].

Thank you for your attention!

13/14