Kerr-Schild ansatz in Einstein-Gauss-Bonnet gravity

Nathalie Deruelle, APC, Paris
Yoshiyuki Morisawa, YITP, Kyoto
Misao Sasaki, YITP, Kyoto
A talk dedicated to
John Madore

John and Einstein-Gauss-Bonnet gravity

"Kaluza-Klein Theory With The Lanczos Lagrangian", J. Madore (Toronto U.) Print-85-0340 (TORONTO), Apr 1985, 8pp, Phys.Lett.A110:289,1985.
(followed by another four 1985-1987, plus one in 2003)
One of the very first papers (perhaps THE first) using the "Lanczos" Lagrangian (Riemann ${ }^{2}-4$ Ricci $^{2}+R^{2}$)

Lanczos, 1938 ; Chern, 1943 ; Lovelock, 1971
Boulware-Deser, 1985 ; Mueller-Hoissen, 1985 ; Zumino, 1986
Then John moved to non-commutative geometries :
"Kaluza-Klein aspects of noncommutative geometry", J. Madore (Orsay, LPT), In "Chester 1988, Proceedings, Differential geometric methods in theoretical physics", p 243-252

Einstein-Gauss-Bonnet gravity in brief

- The metric variation of $L_{2}=R_{i j k l} R^{i j k l}-4 R^{i j} R_{i j}+R^{2}$ yields a tensor which is identically zero in 4 dimensions (Lanczos, 1938)
- Hilbert lagrangian: $R=\frac{1}{2} \delta_{j_{1} j_{2}}^{i_{1} i_{2}} R_{i_{1} i_{2}}^{j_{1} j_{2}}$. Einstein's tensor: $G_{j}^{i}=\frac{1}{2} \delta_{j j_{1} j_{2}}^{i i_{1} i_{2}} R_{i_{1} i_{2}}^{j_{1} j_{2}}$

Similarly: $L_{2}=\frac{1}{4} \delta_{j_{1} j_{2} j_{3} j_{4}}^{i_{1} i_{2} i_{3} i_{4}} R_{i_{1} i_{2}}^{j_{3} j_{4}} R_{i_{3} i_{4}}^{j_{1} j_{2}} \quad$ etc, (Lovelock, 1971)
Hence $\delta L_{2} \equiv 0$ in $D=4$ AND second order tensor in $D>4$

- $\mathcal{L}_{(p)}=\left(\Omega^{p}\right)^{I_{1} \cdots I_{2 p}} \theta_{I_{1} \ldots I_{2 p}}^{*}$ where $\theta_{I_{1} \ldots I_{p}}^{*}=\frac{1}{(D-p)!} \epsilon_{I_{1} \ldots I_{D}} \theta^{I_{p+1} \ldots} \theta^{I_{D}}$ proportional to the Euler characteristic in $D=2 p$, Chern, 1943
hence the name "Dimensionally continued Euler forms" (JM, 1985, Mueller-Hoissen, 1985, Teitelboim-Zanelli, 1987,...)

Some applications

- 80': Stability of Kaluza-Klein ground states ; FRW cosmologies as attractors of Lovelock cosmologies ; inflation ; structure of singularity...
- 00's: Randall-Sundrum model and "Brane cosmologies" (BDL, 2000)

Generalisation of the Israel junction conditions
On shell : $\delta\left[\int_{\mathcal{M}} d^{D} x \mathcal{L}_{p}-\int_{\partial \mathcal{M}} \mathcal{C}_{p}\right]=\int_{\partial \mathcal{M}} \delta \gamma_{\mu \nu} \mathcal{C}_{p}^{\mu \nu}$
where \mathcal{C}_{p} is a Chern form: $C_{1}=2 K, C_{2}=2 \delta_{j_{1} j_{2} j_{3}}^{i_{1} i_{2} i_{3}} K_{j_{1}}^{i_{1}}\left(R_{i_{2} i_{3}}^{j_{2} j_{3}}-\frac{2}{3} K_{i_{2}}^{j_{2}} K_{i_{3}}^{j_{3}}\right)$
and where $C_{(1) j}^{i}=K_{j}^{i}-\delta_{j}^{i} K$ and : $C_{(2) j}^{i}=2 \delta_{j j_{1} j_{2} j_{3}}^{i i_{1} i_{2} i_{3}} K_{j_{1}}^{i_{1}}\left(R_{i_{2} i_{3}}^{j_{2} j_{3}}-\frac{2}{3} K_{i_{2}}^{j_{2}} K_{i_{3}}^{j_{3}}\right)$
ND Dolezel, 2000; Davis, 2002; Gravanis-Willison, 2002; Myers, 1987; Troncoso-Zanelli et al, 1999...

Gravity on a Einstein-Gauss-Bonnet brane
Randall-Sundrum: Newton's law recovered for scales $\gg \mathcal{L}$
EGB : Newton's law recovered for all scales (ND, Sasaki, 2003)
Numerous cosmological brane models (including CMB anisotropies)
Conservation laws in EGB gravity (Deser-Tekin)
Mass and angular momenta of EGB black holes ($T d S=d M-\Omega d J$.)
ND Katz Morisawa Ogushi : $M=\int_{S} d^{D-2} x \hat{J}_{t}^{[01]} \quad, \quad J_{i}=\int_{S} d^{D-2} x \hat{J}_{i}^{[01]}$
$\hat{J}^{[\mu \nu]} \equiv \hat{J}_{E}^{[\mu \nu]}+\alpha \hat{J}_{G B}^{[\mu \nu]}$
$-8 \pi \hat{J}_{E}^{[\mu \nu]} \equiv D^{[\mu} \hat{\xi}^{\nu]}-\overline{D^{[\mu} \hat{\xi}^{\nu]}}+\hat{\xi}^{[\mu} k_{E}^{\nu]}$.
$-8 \pi \hat{J}_{G B}^{[\mu \nu]} \equiv 2\left[P^{\mu \nu \alpha \beta} D_{[\alpha} \hat{\xi}_{\beta]}-\overline{P^{\mu \nu \alpha \beta} D_{[\alpha} \hat{\xi}_{\beta]}}\right]+\hat{\xi}^{[\mu} k_{G B}^{\nu]}$.

Kerr-Schild ansatz in EGB gravity: Outline

- As is well-known, Kerr-Schild metrics linearize the Einstein tensor.
- They also simplify the Gauss-Bonnet tensor, which turns out to be only quadratic in the arbitrary Kerr-Schild function f.
- We give its analytical expression for any function f when the background is 5-dimensional Minkowski spacetime in spheroidal coordinates and equal rotation coefficients.
- This result may be of some use in the quest for Einstein-GaussBonnet rotating black hole solutions.
- In particular we show that there is no such Kerr-Schild solution of the Einstein-Maxwell-Gauss-Bonnet field equations.

Introduction

$$
\begin{aligned}
& \text { Kerr-Schild metrics } \\
& g_{\mu \nu}=\bar{g}_{\mu \nu}+h_{\mu \nu} \quad \text { with } \quad h_{\mu \nu}=f h_{\mu} h_{\nu} \\
& \bar{g}^{\mu \nu} h_{\mu} h_{\nu}=0 \quad \text { and } \quad h^{\mu} \bar{D}_{\mu} h^{\rho}=0 \\
& \text { INCLUDE }
\end{aligned}
$$

The whole Kerr-Newman family of the four dimensional black holes, solutions of Einstein's equations (with or without a cosmological constant)

The D-dimensional generalizations of (anti-de-Sitter) Kerr black holes (Einstein's theory) [Gibbons et al 2004]

The spherically symmetric (charged) Einstein-Gauss-Bonnet black hole solutions [Boulware Deser, 1985]

BUT

Somewhat curiously:
the D-dimensional, non-rotating, Reisner-Nordström black holes are also of the Kerr-Schild type,
however, the known 5-D charged and rotating black hole solutions are not [Kunz et al, Beckenridge et al, R. Kallosh et al]

Also :
the Kerr-Schild ansatz, used to obtain the 5-dimensional Kerr (AdS) black hole solutions of Einstein's equations, does not solve the Einstein-Gauss-Bonnet field equations.

The Einstein Gauss-Bonnet tensor for Kerr-Schild spacetimes

$$
\begin{gathered}
E_{\nu}^{\mu}=T_{\nu}^{\mu} \quad \text { with } \quad E_{\nu}^{\mu}=\Lambda \delta_{\nu}^{\mu}+\kappa^{-1} G_{\nu}^{\mu}+\alpha H_{\nu}^{\mu} \\
H_{\nu}^{\mu} \equiv 2 R_{\beta \gamma}^{\mu \alpha} R^{\beta \gamma}{ }_{\nu \alpha}-4 R_{\nu \beta}^{\mu \alpha} R_{\alpha}^{\beta}-4 R_{\alpha}^{\mu} R_{\nu}^{\alpha}+2 R R_{\nu}^{\mu} \\
-\frac{1}{2} \delta_{\nu}^{\mu}\left(R_{\gamma \delta}^{\alpha \beta} R_{\alpha \beta}^{\gamma \delta}-4 R_{\beta}^{\alpha} R_{\alpha}^{\beta}+R^{2}\right)
\end{gathered}
$$

When the metric is of the Kerr-Schild type the Ricci tensor R_{ν}^{μ} is linear in f
The Riemann tensors $R^{\mu}{ }_{\nu \rho \sigma}$ and $R_{\rho \sigma}^{\mu \nu}$ turn out to be only quadratic in f
The contracted products $R_{\beta \gamma}^{\mu \alpha} R_{\nu \alpha}^{\beta \gamma}$ and $R_{\nu \beta}^{\mu \alpha} R_{\alpha}^{\beta}$ are also quadratic in f
Hence: the Gauss-Bonnet tensor H_{ν}^{μ} is only quadratic in f
at least for maximally symmetric backgrounds :

$$
\bar{R}_{\mu \nu \rho \sigma}=-\frac{1}{\mathcal{L}^{2}}\left(\bar{g}_{\mu \rho} \bar{g}_{\nu \sigma}-\bar{g}_{\mu \sigma} \bar{g}_{\nu \rho}\right) \quad \text { where } \quad \kappa^{-1}-\frac{2 \tilde{\alpha}}{\mathcal{L}^{2}}=\mp \sqrt{\kappa^{-2}-\frac{4 \tilde{\alpha}}{l^{2}}}
$$

More precisely:

$$
\begin{aligned}
& E_{\nu}^{\mu}=\left(\kappa^{-1}-\frac{2 \tilde{\alpha}}{\mathcal{L}^{2}}\right)\left[\frac{(D-1)}{\mathcal{L}^{2}} f h^{\mu} h_{\nu}+R_{(L) \nu}^{\mu}-\frac{1}{2} \delta_{\nu}^{\mu} R_{(L)}\right] \\
& +2 \alpha\left(\frac{K}{\mathcal{L}^{2}} f h^{\mu} h_{\nu}+R_{(L) \beta \gamma}^{\mu \alpha} R_{(L) \nu \alpha}^{\beta \gamma}-2 R_{(L) \nu \beta}^{\mu \alpha} R_{(L) \alpha}^{\beta}-2 R_{(L) \alpha}^{\mu} R_{(L) \nu}^{\alpha}+R_{(L)} R_{(L) \nu}^{\mu}\right) \\
& -\frac{\alpha}{2} \delta_{\nu}^{\mu}\left(R_{(L) \gamma \delta}^{\alpha \beta} R_{(L) \alpha \beta}^{\gamma \delta}-4 R_{(L) \beta}^{\alpha} R_{(L) \alpha}^{\beta}+R_{(L)}^{2}\right)
\end{aligned}
$$

with the following definitions

- $R_{(L) \rho \sigma}^{\mu \nu}=\bar{g}^{\nu \alpha}\left(\bar{D}_{\rho} \Delta_{\alpha \sigma}^{\mu}-\bar{D}_{\sigma} \Delta_{\alpha \rho}^{\mu}\right), R_{(L) \nu}^{\mu}=\bar{g}^{\mu \sigma} \bar{D}_{\rho} \Delta_{\nu \sigma}^{\rho}$ $R_{(L)}=\bar{D}_{\rho}\left[h^{\rho} \bar{D}_{\mu}\left(f h^{\mu}\right)\right]$,
- $\Delta_{\nu \rho}^{\mu}=\frac{1}{2}\left[\bar{D}_{\nu}\left(f h^{\mu} h_{\rho}\right)+\bar{D}_{\rho}\left(f h^{\mu} h_{\nu}\right)-\bar{D}^{\mu}\left(f h_{\nu} h_{\rho}\right)\right]$.
- $K=$
$3\left(h^{\alpha} \partial_{\alpha} f\right) \bar{D}_{\beta} h^{\beta}+2(D-1) f \bar{D}_{\alpha}\left(h^{\alpha} \bar{D}_{\beta} h^{\beta}\right)+(4 D-7) f \bar{D}_{\alpha} h^{\beta}\left(\bar{D}_{\beta} h^{\alpha}-\bar{D}^{\alpha} h_{\beta}\right)$.

Trace of the Einstein-Gauss-Bonnet tensor

5-D (anti-)de Sitter backgrounds in spheroidal coordinates:

$$
\begin{gathered}
d \bar{s}^{2}=-\frac{\left(1+r^{2} / \mathcal{L}^{2}\right) \Delta_{\theta}}{\Xi_{a} \Xi_{b}} d t^{2}+\frac{r^{2} \rho^{2}}{\left(1+r^{2} / \mathcal{L}^{2}\right)\left(r^{2}+a^{2}\right)\left(r^{2}+b^{2}\right)} d r^{2}+\frac{\rho^{2}}{\Delta_{\theta}} d \theta^{2} \\
+\frac{r^{2}+a^{2}}{\Xi_{a}} \sin ^{2} \theta d \phi^{2}+\frac{r^{2}+b^{2}}{\Xi_{b}} \cos ^{2} \theta d \psi^{2}
\end{gathered}
$$

the null and geodesic vector:
$h_{\mu} d x^{\mu}=\frac{\Delta_{\theta}}{\Xi_{a} \Xi_{b}} d t+\frac{r^{2} \rho^{2}}{\left(1+r^{2} / \mathcal{L}^{2}\right)\left(r^{2}+a^{2}\right)\left(r^{2}+b^{2}\right)} d r+\frac{a \sin ^{2} \theta}{\Xi_{a}} d \phi+\frac{b \cos ^{2} \theta}{\Xi_{b}} d \psi$.
Kerr-Schild line element : $d s^{2}=d \bar{s}^{2}+f(r, \theta) h_{\mu} h_{\nu} d x^{\mu} d x^{\nu}$
A Remarkably simple form for the trace: $E=-\frac{\left(r Q_{t}\right)^{\prime \prime}}{2 r \rho^{2}}$

$$
Q_{t}=(D-2) \kappa^{-1} Q_{l}+\frac{\tilde{\alpha} Q_{q}}{D-3} \quad \text { with } \quad Q_{l}=\rho^{2} f \text { and } Q_{q}=2\left(4 r^{2}-\rho^{2}\right) \frac{f^{2}}{\rho^{2}}
$$

The Einstein-Gauss-Bonnet tensor ($a=b, 5 D$, Minkowski background)

Consider Kerr-Schild metrics $d s^{2}=d \bar{s}^{2}+f(r) h_{\mu} h_{\nu} d x^{\mu} d x^{\nu}$ where $d \bar{s}^{2}$ is the flat 5 -D line element in spheroidal coordinates with equal rotation coefficients:
$d \bar{s}^{2}=-d t^{2}+\frac{r^{2}}{r^{2}+a^{2}} d r^{2}+\left(r^{2}+a^{2}\right)\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}+\cos ^{2} \theta d \psi^{2}\right)$
The null and geodesic vector is $h_{\mu}=\left(1, \frac{r^{2}}{r^{2}+a^{2}}, 0, a \sin ^{2} \theta, a \cos ^{2} \theta\right)$
The trace of the EGB tensor simplifies into $E=-\frac{\left(r Q_{t}\right)^{\prime \prime}}{2 r\left(r^{2}+a^{2}\right)}$
$Q_{t}=(D-2) \kappa^{-1} Q_{l}+\frac{\tilde{\alpha} Q_{q}}{D-3}$
$Q_{l}=f\left(r^{2}+a^{2}\right)$ and $Q_{q}=\frac{2\left(3 r^{2}-a^{2}\right) f^{2}}{r^{2}+a^{2}}$

Careful examination then shows that all components of the EGB tensor can then be expressed in terms of E_{r}^{r} and E_{ψ}^{ϕ} as :

$$
\begin{aligned}
& E_{t}^{t}=-\frac{a^{2}}{3\left(r^{2}+a^{2}\right)}\left(\frac{a^{2}+r^{2}}{r} E_{r}^{r \prime}+\frac{2 E_{\psi}^{\phi}}{\cos ^{2} \theta}\right)+E_{r}^{r} \\
& E_{\phi}^{t}=-\frac{a \sin ^{2} \theta}{3}\left(\frac{a^{2}+r^{2}}{r} E_{r}^{r \prime}+\frac{2 E_{\psi}^{\phi}}{\cos ^{2} \theta}\right) \\
& E_{\psi}^{t}=-\frac{a \cos ^{2} \theta}{3}\left(\frac{a^{2}+r^{2}}{r} E_{r}^{r \prime}+\frac{2 E_{\psi}^{\phi}}{\cos ^{2} \theta}\right) \\
& E_{\theta}^{\theta}=\frac{1}{3}\left(\frac{a^{2}+r^{2}}{r} E_{r}^{r \prime}-\frac{E_{\psi}^{\phi}}{\cos ^{2} \theta}\right)+E_{r}^{r} \\
& E_{\phi}^{\phi}=\frac{1}{3}\left(\frac{a^{2}+r^{2}}{r} E_{r}^{r \prime}+\left(2-3 \cos ^{2} \theta\right) \frac{E_{\psi}^{\phi}}{\cos ^{2} \theta}\right)+E_{r}^{r} \\
& E_{\psi}^{\psi}=\frac{1}{3}\left(\frac{a^{2}+r^{2}}{r} E_{r}^{r \prime}-\left(1-3 \cos ^{2} \theta\right) \frac{E_{\psi}^{\phi}}{\cos ^{2} \theta}\right)+E_{r}^{r}
\end{aligned}
$$

As for E_{r}^{r} et E_{ψ}^{ϕ} they are expressed in terms of Q_{t} and Q_{q} as $E_{r}^{r}=\frac{1}{6 r\left(r^{2}+a^{2}\right)^{2}}\left[-\left(3 r^{2}+a^{2}\right) Q_{t}^{\prime}+4 \tilde{\alpha} a^{4}\left(\frac{Q_{q}}{3 r^{2}-a^{2}}\right)^{\prime}\right]$
and (an admitedly ugly expression)
$\frac{E_{\psi}^{\phi}}{\cos ^{2} \theta}=\frac{a^{2}\left[\left(a^{2}+5 r^{2}\right) Q_{t}^{\prime}-r\left(r^{2}+a^{2}\right) Q_{t}^{\prime \prime}\right]}{6 r^{3}\left(r^{2}+a^{2}\right)^{2}}$

$$
\begin{aligned}
& +\frac{2 \tilde{\alpha} a^{2}\left(27 r^{4}+42 r^{2} a^{2}+31 a^{4}\right) Q_{q}}{\left(3 r^{2}-a^{2}\right)^{3}\left(r^{2}+a^{2}\right)^{2}}-\frac{2 \tilde{\alpha} a^{2}\left(18 r^{6}+27 r^{4} a^{2}+16 r^{2} a^{4}-a^{6}\right) Q_{q}^{\prime}}{3 r^{3}\left(3 r^{2}-a^{2}\right)^{2}\left(r^{2}+a^{2}\right)^{2}} \\
& +\frac{\tilde{\alpha} a^{2}\left(3 r^{2}+2 a^{2}\right) Q_{q}^{\prime \prime}}{3 r^{2}\left(3 r^{2}-a^{2}\right)\left(r^{2}+a^{2}\right)}
\end{aligned}
$$

(Of course, various checks were made...)

Recovering standard results ($a=0$)

$E_{t}^{t}=E_{r}^{r}=-\frac{Q_{t}^{\prime}}{2 r^{3}} \quad, \quad E_{\theta}^{\theta}=E_{\phi}^{\phi}=E_{\psi}^{\psi}=-\frac{Q_{t}^{\prime \prime}}{6 r^{2}}$ with
$Q_{t}=3 \kappa^{-1} Q_{l}+\frac{\tilde{\alpha} Q_{q}}{2} \quad$ and $\quad Q_{l}=r^{2} f \quad, \quad Q_{q}=6 f^{2}$
Electromagnetic potential $A^{\mu}=(U(r), 0,0,0,0)$.
A Kerr-Schild solution of the EGB equations of motion exists and is
$U(r)=\frac{q}{r^{2}} \quad, \quad Q_{t}=\frac{2 q^{2}}{r^{2}}+6 m$

$$
\Longrightarrow \quad f(r)=\frac{r^{2}}{2 \kappa \tilde{\alpha}}\left(-1+\sqrt{1+\frac{8 \kappa^{2} \tilde{\alpha}}{3 r^{4}}\left(3 m+\frac{q^{2}}{r^{2}}\right)}\right)
$$

Reisner-Gauss-Bonnet solution [Boulware-Deser], in Kerr-Schild form.
m is a constant of integration : the total mass [Deser-Tekin] [Padilla] [DKO]...

A "no-go" result

$d \bar{s}^{2}=-d t^{2}+\frac{r^{2}}{r^{2}+a^{2}} d r^{2}+\left(r^{2}+a^{2}\right)\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}+\cos ^{2} \theta d \psi^{2}\right)$
$h_{\mu}=\left(1, \frac{r^{2}}{r^{2}+a^{2}}, 0, a \sin ^{2} \theta, a \cos ^{2} \theta\right) \quad$ and $\quad d s^{2}=d \bar{s}^{2}+f(r) h_{\mu} h_{\nu} d x^{\mu} d x^{\nu}$
$A_{\mu}=U(r) h_{\mu}$; Maxwell equations yield $\quad U=\frac{q}{r^{2}+a^{2}}$
Einstein-Maxwell Gauss-Bonnet trace equation:
$\frac{\left(r Q_{t}\right)^{\prime \prime}}{2 r\left(r^{2}+a^{2}\right)}=\frac{2 q^{2}\left(r^{2}-a^{2}\right)}{\left(r^{2}+a^{2}\right)^{4}} \Longrightarrow \quad Q_{t}=\frac{2 c}{r}+6 m+\frac{q^{2}}{r^{2}+a^{2}}-\frac{q^{2} \operatorname{Arctan} \frac{r}{a}}{a r}+\frac{\pi q^{2}}{2 a r}$
$Q_{t}=(D-2) \kappa^{-1} Q_{l}+\frac{\tilde{\alpha} Q_{q}}{D-3}$ with $Q_{l}=f\left(r^{2}+a^{2}\right)$ and $Q_{q}=\frac{2\left(3 r^{2}-a^{2}\right) f^{2}}{r^{2}+a^{2}}$ hence
$f(r)=$
$\frac{3\left(r^{2}+a^{2}\right)^{2}}{2 \kappa \tilde{\alpha}\left(3 r^{2}-a^{2}\right)}\left(-1+\sqrt{1+\frac{8 \tilde{\alpha} \kappa^{2}\left(3 r^{2}-a^{2}\right)}{9\left(r^{2}+a^{2}\right)^{3}}\left[3 m+\frac{c}{r}+\frac{q^{2}}{2\left(r^{2}+a^{2}\right)}+\frac{q^{2}}{2 a r}\left(\frac{\pi}{2}-\operatorname{Arctan} \frac{r}{a}\right)\right]}\right)$

For all the other field equations to be satisfied we must have

$$
\begin{equation*}
E_{r}^{r}=\frac{2 q^{2}}{\left(r^{2}+a^{2}\right)^{3}} \quad, \quad E_{\psi}^{\phi}=0 \tag{*}
\end{equation*}
$$

Now, E_{r}^{r} and E_{ψ}^{ϕ} are known fonctions of $f(r)$.
It is an easy exercice to see that, with the function f obtained from the trace equation, equations $\left(^{*}\right)$ are NOT satisfied.
if $c \neq 0$ then $E_{r}^{r} \rightarrow \frac{c}{r^{5}} \quad$ and $\quad \frac{E_{\psi}^{\phi}}{\cos ^{2} \theta} \rightarrow-\frac{7 a^{2} c}{6 r^{7}}$
if $c=0$ then $E_{r}^{r} \rightarrow \frac{32 a^{4} q^{2}}{45 r^{10}} \quad$ and $\quad \frac{E_{\psi}^{\phi}}{\cos ^{2} \theta} \rightarrow-\frac{16 a^{2} q^{2}}{3 r^{8}}$
if $c=q=0$ then $E_{r}^{r} \rightarrow-\frac{32 a^{4} \tilde{\alpha} \kappa^{2} m^{2}}{r^{12}} \quad$ and $\quad \frac{E_{\psi}^{\phi}}{\cos ^{2} \theta} \rightarrow \frac{336 a^{2} \tilde{\alpha} \kappa^{2} m^{2}}{r^{10}}$
Hence :There is no Kerr-Schild solution of the (5D) Einstein-Maxwell-Gauss-Bonnet field equations

SUMMARY AND OUTLOOK

- We studied Kerr-Schild metrics on maximally symmetric backgrounds
- We showed that the Einstein-Gauss-Bonnet tensor is quadratic in the Kerr-Schild function f.
- Specializing to 5-dimensional backgrounds in spheroidal coordinates we found a simple expression for the trace of the Einstein-Gauss-Bonnet tensor.
- Specializing further to a flat backgound and equal rotation coefficients we wrote the whole Einstein-Gauss-Bonnet tensor in closed form.
- We used those results to show in a transparent manner that the Einstein-Maxwell Gauss-Bonnet equations do not possess rotating Kerr-Schild solutions.
- The techniques developped may prove useful in the quest for Einstein-Gauss-Bonnet rotating black hole solutions and to elucidate under which conditions Kerr-Schild solutions can exist.

Valdivia

Kyoto

