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John and Einstein-Gauss-Bonnet gravity

“Kaluza-Klein Theory With The Lanczos Lagrangian”, J. Madore (Toronto
U.) Print-85-0340 (TORONTO), Apr 1985, 8pp, Phys.Lett.A110:289,1985.

(followed by another four 1985-1987, plus one in 2003)

One of the very first papers (perhaps THE first)
using the “Lanczos” Lagrangian (Riemann2 − 4Ricci2 +R2)

Lanczos, 1938 ; Chern, 1943 ; Lovelock, 1971
Boulware-Deser, 1985 ; Mueller-Hoissen, 1985 ; Zumino, 1986

Then John moved to non-commutative geometries :

“Kaluza-Klein aspects of noncommutative geometry”, J. Madore
(Orsay, LPT), In “Chester 1988, Proceedings, Differential geometric
methods in theoretical physics”, p 243-252
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Einstein-Gauss-Bonnet gravity in brief

• The metric variation of L2 = RijklR
ijkl − 4RijRij +R2 yields a tensor

which is identically zero in 4 dimensions (Lanczos, 1938)

• Hilbert lagrangian: R = 1
2δ
i1i2
j1j2

Rj1j2i1i2
. Einstein’s tensor: Gij = 1

2δ
ii1i2
jj1j2

Rj1j2i1i2

Similarly : L2 = 1
4δ
i1i2i3i4
j1j2j3j4

Rj3j4i1i2
Rj1j2i3i4

etc, (Lovelock, 1971)

Hence δL2 ≡ 0 in D = 4 AND second order tensor in D > 4

• L(p) = (Ωp)I1···I2pθ∗I1···I2p where θ∗I1...Ip = 1
(D−p)! εI1...IDθ

Ip+1... θID

proportional to the Euler characteristic in D = 2p, Chern, 1943

hence the name “Dimensionally continued Euler forms”

(JM, 1985, Mueller-Hoissen, 1985, Teitelboim-Zanelli, 1987,...)
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Some applications

• 80’: Stability of Kaluza-Klein ground states ; FRW cosmologies as
attractors of Lovelock cosmologies ; inflation ; structure of singularity...

• 00’s: Randall-Sundrum model and “Brane cosmologies” (BDL, 2000)

Generalisation of the Israel junction conditions

On shell : δ
[∫
M dDxLp −

∫
∂M Cp

]
=

∫
∂M δγµνCµνp

where Cp is a Chern form: C1 = 2K, C2 = 2δi1i2i3j1j2j3
Ki1
j1

(Rj2j3i2i3
− 2

3K
j2
i2
Kj3
i3

)

and where Ci(1)j = Ki
j − δijK and : Ci(2)j = 2δii1i2i3jj1j2j3

Ki1
j1

(Rj2j3i2i3
− 2

3K
j2
i2
Kj3
i3

)

ND Dolezel, 2000; Davis, 2002; Gravanis-Willison, 2002; Myers, 1987;
Troncoso-Zanelli et al, 1999...
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Gravity on a Einstein-Gauss-Bonnet brane

Randall-Sundrum : Newton’s law recovered for scales � L

EGB : Newton’s law recovered for all scales (ND, Sasaki, 2003)

Numerous cosmological brane models (including CMB anisotropies)

Conservation laws in EGB gravity (Deser-Tekin)

Mass and angular momenta of EGB black holes (T dS = dM − Ω dJ .)

ND Katz Morisawa Ogushi : M =
∫
S
dD−2xĴ

[01]
t , Ji =

∫
S
dD−2xĴ

[01]
i

Ĵ [µν] ≡ Ĵ
[µν]
E + α Ĵ

[µν]
GB

−8πĴ [µν]
E ≡ D[µξ̂ν] −D[µξ̂ν] + ξ̂[µk

ν]
E .

−8πĴ [µν]
GB ≡ 2

[
PµναβD[αξ̂β] − PµναβD[αξ̂β]

]
+ ξ̂[µk

ν]
GB .
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Kerr-Schild ansatz in EGB gravity: Outline

• As is well-known, Kerr-Schild metrics linearize the Einstein tensor.

• They also simplify the Gauss-Bonnet tensor, which turns out to be
only quadratic in the arbitrary Kerr-Schild function f .

• We give its analytical expression for any function f when the
background is 5-dimensional Minkowski spacetime in spheroidal
coordinates and equal rotation coefficients.

• This result may be of some use in the quest for Einstein-Gauss-
Bonnet rotating black hole solutions.

• In particular we show that there is no such Kerr-Schild solution of
the Einstein-Maxwell-Gauss-Bonnet field equations.
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Introduction

Kerr-Schild metrics

gµν = gµν + hµν with hµν = f hµhν

gµνhµhν = 0 and hµDµh
ρ = 0 .

INCLUDE

The whole Kerr-Newman family of the four dimensional black holes,
solutions of Einstein’s equations (with or without a cosmological constant)

The D-dimensional generalizations of (anti-de-Sitter) Kerr black holes
(Einstein’s theory) [Gibbons et al 2004]

The spherically symmetric (charged) Einstein-Gauss-Bonnet black hole
solutions [Boulware Deser, 1985]
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BUT

Somewhat curiously:

the D-dimensional, non-rotating, Reisner-Nordström black holes are also of
the Kerr-Schild type,

however, the known 5-D charged and rotating black hole solutions are not
[Kunz et al, Beckenridge et al, R. Kallosh et al]

Also :

the Kerr-Schild ansatz, used to obtain the 5-dimensional Kerr (AdS) black
hole solutions of Einstein’s equations, does not solve the
Einstein-Gauss-Bonnet field equations.
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The Einstein Gauss-Bonnet tensor for Kerr-Schild spacetimes

Eµν = Tµν with Eµν = Λδµν + κ−1Gµν + αHµ
ν .

Hµ
ν ≡ 2RµαβγR

βγ
να − 4RµανβR

β
α − 4RµαR

α
ν + 2RRµν

−1
2δ
µ
ν (R

αβ
γδR

γδ
αβ − 4RαβR

β
α +R2) .

When the metric is of the Kerr-Schild type the Ricci tensor Rµν is linear in f

The Riemann tensors Rµνρσ and Rµνρσ turn out to be only quadratic in f

The contracted products RµαβγR
βγ
να and RµανβR

β
α are also quadratic in f

Hence: the Gauss-Bonnet tensor Hµ
ν is only quadratic in f

at least for maximally symmetric backgrounds :

Rµνρσ = − 1
L2(gµρgνσ − gµσgνρ) where κ−1 − 2α̃

L2 = ∓
√
κ−2 − 4α̃

l2
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More precisely:

Eµν =
(
κ−1 − 2α̃

L2

) [
(D−1)
L2 fhµhν +Rµ(L)ν −

1
2δ
µ
νR(L)

]
+2α

(
K
L2fh

µhν +Rµα(L)βγR
βγ
(L)να − 2Rµα(L)νβR

β
(L)α − 2Rµ(L)αR

α
(L)ν +R(L)R

µ
(L)ν

)
−α2δ

µ
ν

(
Rαβ(L)γδR

γδ
(L)αβ − 4Rα(L)βR

β
(L)α +R2

(L)

)
with the following definitions

• Rµν(L)ρσ = gνα(Dρ∆µ
ασ −Dσ∆µ

αρ) , R
µ
(L)ν = gµσDρ∆ρ

νσ

R(L) = Dρ[hρDµ(fhµ)],

• ∆µ
νρ = 1

2[Dν(fhµhρ) +Dρ(fhµhν)−D
µ
(fhνhρ)] .,

• K =
3(hα∂αf)Dβh

β+2(D−1)fDα(hαDβh
β)+(4D−7)fDαh

β(Dβh
α−Dα

hβ) .
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Trace of the Einstein-Gauss-Bonnet tensor

5-D (anti-)de Sitter backgrounds in spheroidal coordinates:

ds2 = −(1+r2/L2)∆θ
ΞaΞb

dt2 + r2ρ2

(1+r2/L2)(r2+a2)(r2+b2)
dr2 + ρ2

∆θ
dθ2

+r2+a2

Ξa
sin2 θ dφ2 + r2+b2

Ξb
cos2 θ dψ2

the null and geodesic vector:

hµdx
µ = ∆θ

ΞaΞb
dt+ r2ρ2

(1+r2/L2)(r2+a2)(r2+b2)
dr + a sin2 θ

Ξa
dφ+ b cos2 θ

Ξb
dψ .

Kerr-Schild line element : ds2 = ds2 + f(r, θ)hµhνdxµdxν

A Remarkably simple form for the trace: E = −(rQt)
′′

2rρ2

Qt = (D − 2)κ−1Ql +
α̃Qq
D−3 with Ql = ρ2f and Qq = 2(4r2 − ρ2)f

2

ρ2
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The Einstein-Gauss-Bonnet tensor
(a = b, 5D, Minkowski background)

Consider Kerr-Schild metrics ds2 = ds2 + f(r)hµhνdxµdxν where ds2 is
the flat 5-D line element in spheroidal coordinates with equal rotation
coefficients:

ds2 = −dt2 + r2

r2+a2dr
2 + (r2 + a2)(dθ2 + sin2 θdφ2 + cos2 θdψ2)

The null and geodesic vector is hµ =
(
1, r2

r2+a2, 0, a sin2 θ, a cos2 θ
)

The trace of the EGB tensor simplifies into E = − (rQt)
′′

2r(r2+a2)

Qt = (D − 2)κ−1Ql +
α̃Qq
D−3

Ql = f(r2 + a2) and Qq = 2(3r2−a2)f2

r2+a2
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Careful examination then shows that all components of the EGB tensor
can then be expressed in terms of Err and Eφψ as :

Ett = − a2

3(r2+a2)

(
a2+r2

r Err
′ +

2E
φ
ψ

cos2 θ

)
+ Err

Etφ = −a sin2 θ
3

(
a2+r2

r Err
′ +

2E
φ
ψ

cos2 θ

)
Etψ = −a cos2 θ

3

(
a2+r2

r Err
′ +

2E
φ
ψ

cos2 θ

)
Eθθ = 1

3

(
a2+r2

r Err
′ −

E
φ
ψ

cos2 θ

)
+ Err

Eφφ = 1
3

(
a2+r2

r Err
′ + (2− 3 cos2 θ)

E
φ
ψ

cos2 θ

)
+ Err

Eψψ = 1
3

(
a2+r2

r Err
′ − (1− 3 cos2 θ)

E
φ
ψ

cos2 θ

)
+ Err



14

As for Err et Eφψ they are expressed in terms of Qt and Qq as

Err = 1
6r(r2+a2)2

[
−(3r2 + a2)Q′

t + 4α̃a4
(

Qq
3r2−a2

)′]
and (an admitedly ugly expression)

E
φ
ψ

cos2 θ
= a2[(a2+5r2)Q′t−r(r

2+a2)Q′′t ]
6r3(r2+a2)2

+2α̃a2(27r4+42r2a2+31a4)Qq
(3r2−a2)3(r2+a2)2

−2α̃a2(18r6+27r4a2+16r2a4−a6)Q′q
3r3(3r2−a2)2(r2+a2)2

+
α̃a2(3r2+2a2)Q′′q

3r2(3r2−a2)(r2+a2)

(Of course, various checks were made...)
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Recovering standard results (a = 0)

Ett = Err = −Q′t
2r3

, Eθθ = Eφφ = Eψψ = −Q′′t
6r2

with

Qt = 3κ−1Ql +
α̃Qq

2 and Ql = r2f , Qq = 6f2

Electromagnetic potential Aµ = (U(r), 0, 0, 0, 0).

A Kerr-Schild solution of the EGB equations of motion exists and is

U(r) = q
r2

, Qt = 2q2

r2
+ 6m

=⇒ f(r) = r2

2κα̃

(
−1 +

√
1 + 8κ2α̃

3r4

(
3m+ q2

r2

))
Reisner-Gauss-Bonnet solution [Boulware-Deser], in Kerr-Schild form.

m is a constant of integration : the total mass [Deser-Tekin] [Padilla]
[DKO]...
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A “no-go” result

ds2 = −dt2 + r2

r2+a2dr
2 + (r2 + a2)(dθ2 + sin2 θdφ2 + cos2 θdψ2)

hµ =
(
1, r2

r2+a2, 0, a sin2 θ, a cos2 θ
)

and ds2 = ds2 + f(r)hµhνdxµdxν

Aµ = U(r)hµ ; Maxwell equations yield U = q
r2+a2

Einstein-Maxwell Gauss-Bonnet trace equation:

(rQt)
′′

2r(r2+a2)
= 2q2(r2−a2)

(r2+a2)4
=⇒ Qt = 2c

r + 6m+ q2

r2+a2 −
q2Arctanra

ar + πq2

2ar

Qt = (D − 2)κ−1Ql +
α̃Qq
D−3 with Ql = f(r2 + a2) and Qq = 2(3r2−a2)f2

r2+a2

hence

f(r) =
3(r2+a2)2

2κα̃(3r2−a2)

(
−1 +

√
1 + 8α̃κ2(3r2−a2)

9(r2+a2)3

[
3m+ c

r + q2

2(r2+a2)
+ q2

2ar

(
π
2 −Arctanra

)])
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For all the other field equations to be satisfied we must have

Err = 2q2

(r2+a2)3
, Eφψ = 0 (∗)

Now, Err and Eφψ are known fonctions of f(r).

It is an easy exercice to see that, with the function f obtained from the
trace equation, equations (*) are NOT satisfied.

if c 6= 0 then Err → c
r5

and
E
φ
ψ

cos2 θ
→ −7a2c

6r7

if c = 0 then Err →
32a4q2

45r10
and

E
φ
ψ

cos2 θ
→ −16a2q2

3r8

if c = q = 0 then Err → −32a4α̃κ2m2

r12
and

E
φ
ψ

cos2 θ
→ 336a2α̃κ2m2

r10

Hence :There is no Kerr-Schild solution of the
(5D) Einstein-Maxwell-Gauss-Bonnet field equations



18

SUMMARY AND OUTLOOK

• We studied Kerr-Schild metrics on maximally symmetric backgrounds
• We showed that the Einstein-Gauss-Bonnet tensor is quadratic in the
Kerr-Schild function f .
• Specializing to 5-dimensional backgrounds in spheroidal coordinates we
found a simple expression for the trace of the Einstein-Gauss-Bonnet
tensor.
• Specializing further to a flat backgound and equal rotation coefficients
we wrote the whole Einstein-Gauss-Bonnet tensor in closed form.
• We used those results to show in a transparent manner that the
Einstein-Maxwell Gauss-Bonnet equations do not possess rotating
Kerr-Schild solutions.
• The techniques developped may prove useful in the quest for
Einstein-Gauss-Bonnet rotating black hole solutions and to elucidate under
which conditions Kerr-Schild solutions can exist.
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Valdivia Kyoto


