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John and Einstein-Gauss-Bonnet gravity

“Kaluza-Klein Theory With The Lanczos Lagrangian”, J. Madore (Toronto
U.) Print-85-0340 (TORONTO), Apr 1985, 8pp, Phys.Lett.A110:289,1985.
(followed by another four 1985-1987, plus one in 2003)

One of the very first papers (perhaps THE first)
using the “Lanczos” Lagrangian (Riemann® — 4Ricci® + R?)

Lanczos, 1938 : Chern, 1943 : Lovelock, 1971
Boulware-Deser, 1985 : Mueller-Hoissen, 1985 ;: Zumino, 1986

Then John moved to non-commutative geometries :

“Kaluza-Klein aspects of noncommutative geometry”, J. Madore
(Orsay, LPT), In “Chester 1988, Proceedings, Differential geometric
methods in theoretical physics”, p 243-252



Einstein-Gauss-Bonnet gravity in brief

e [ he metric variation of Ly = RijklRijkl — 4Rin7;j + R? yields a tensor
which is identically zero in 4 dimensions (Lanczos, 1938)
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Similarly : Ly = 154%2'8% Risjapiiiz oc (Lovelock, 1971)
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Hence 6Lo =0 in D = 4 AND second order tensor in D > 4

* Lip) = (Qp)hmbp@zmbp where 07 ;= ﬁell...be%ﬂm 01D
proportional to the Euler characteristic in D = 2p, Chern, 1943

hence the name “Dimensionally continued Euler forms”

(JM, 1985, Mueller-Hoissen, 1985, Teitelboim-Zanelli, 1987,...)



Some applications

e 30': Stability of Kaluza-Klein ground states ; FRW cosmologies as
attractors of Lovelock cosmologies ; inflation ; structure of singularity...

e 00's: Randall-Sundrum model and “Brane cosmologies” (BDL, 2000)

Generalisation of the Israel junction conditions

Onshell : 6 | [, dPxLy,— [, Co] = [opq OVCh”
where C, is a Chern form: C; = 2K, Cy = 262"2*3 K“(RJ”3 QngKgg’)
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and where C(l) = KZ 5"K and : C*

ND Dolezel, 2000; Davis, 2002; Gravanis-Willison, 2002; Myers, 1987;
Troncoso-Zanelli et al, 1999...



Gravity on a Einstein-Gauss-Bonnet brane

Randall-Sundrum : Newton's law recovered for scales > L
EGB : Newton's law recovered for all scales (ND, Sasaki, 2003)

Numerous cosmological brane models (including CMB anisotropies)

Conservation laws in EGB gravity (Deser-Tekin)
Mass and angular momenta of EGB black holes (T'dS = dM — QdJ .)

ND Katz Morisawa Ogushi : M = [, dP~2¢J" | J, = [ dP~2¢J""
j[/“/] = j[”’/] + ajgfg]

—8m ¥t = Dlévl — plugnl 4 Eleg?)

—sr iy = 2 [PrrefDydy — Pes Dby | + £k,



Kerr-Schild ansatz in EGB gravity: Outline

e As is well-known, Kerr-Schild metrics linearize the Einstein tensor.

e They also simplify the Gauss-Bonnet tensor, which turns out to be
only quadratic in the arbitrary Kerr-Schild function f.

e We give its analytical expression for any function f when the
background is b5-dimensional Minkowski spacetime in spheroidal
coordinates and equal rotation coefficients.

e This result may be of some use in the quest for Einstein-Gauss-
Bonnet rotating black hole solutions.

e In particular we show that there is no such Kerr-Schild solution of
the Einstein-Maxwell-Gauss-Bonnet field equations.



Introduction
Kerr-Schild metrics
Guv =G+ hypw  with by = fhyh
g ity = and WD, h* = 0.
INCLUDE

The whole Kerr-Newman family of the four dimensional black holes,
solutions of Einstein's equations (with or without a cosmological constant)

The D-dimensional generalizations of (anti-de-Sitter) Kerr black holes
(Einstein’s theory) [Gibbons et al 2004]

The spherically symmetric (charged) Einstein-Gauss-Bonnet black hole
solutions [Boulware Deser, 1985]



BUT
Somewhat curiously:

the D-dimensional, non-rotating, Reisner-Nordstrom black holes are also of
the Kerr-Schild type,

however, the known 5-D charged and rotating black hole solutions are not
[Kunz et al, Beckenridge et al, R. Kallosh et al]

Also :

the Kerr-Schild ansatz, used to obtain the 5-dimensional Kerr (AdS) black
hole solutions of Einstein’s equations, does not solve the
Einstein-Gauss-Bonnet field equations.



The Einstein Gauss-Bonnet tensor for Kerr-Schild spacetimes

H! = 2R" ,YRB’Y — 4R" ;RJ — ARIRY 4 2RRY
—L58(R SR, — ARSRE + R?).

EV=TF  with  EF =AM+ Kk 1GF +aH".

When the metric is of the Kerr-Schild type the Ricci tensor R is linear in f
The Riemann tensors R¥, ,, and R’ turn out to be only quadratic in f

The contracted products R RBV and R“ijﬁRg are also quadratic in f

Hence: the Gauss-Bonnet tensor H¥ is only quadratic in f

at least for maximally symmetric backgrounds :

5} _ 1 — - = —1 200 — 4o
RMVPU T _ﬁ(gupgl/a o g,LLO‘gyp) where k — 712 = :F\/HJ 2 _ 3
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More precisely:

By = (' = %) Bt fheh, + RY), — 18R]

K po By po B _opH ! p
20 (Fof Wby + BT 5 RO o = 2B(5) 5 R {0 — 2Rl o Ry, + R Rz, )
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Lyl (Lyas — A
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with the following definitions

« RY =g(D,Ak, — DAL, Ry =5"D,AL,

Rzy = D [h*D,(fh#)],
o A* =1L[D,(fh"h,) + D,(fh*h,) — D" (fh,h,)] .,

o =
3(h*0af)DshP+2(D—1)fDo(h*DghP)+(4D—7)fDoh?(Dgh®—D " hg) .



Trace of the Einstein-Gauss-Bonnet tensor

5-D (anti-)de Sitter backgrounds in spheroidal coordinates:

2 __ (A+r?/L)Ag 3,2 r?p? 2 | p° 1p2
ds® = — SR “dt +(1—|—r2/£2)(r2—|—a2)(r2—|—b2)dr +A_9d9

2, .2 2,12
+IE - sin®  dg? + T2 cos® 0 di)?
_la/ e

the null and geodesic vector:

A 7“2p2 in” 0 bcos” 0
h’udx:u — Eagb dt + (1—|—r2/£2)(?"2—|—a2)(?”2+62) d?“ + aSEa d¢ —|— %dw .

Kerr-Schild line element : ds? = ds* + f(r,0)h,h,dz*dz”

A Remarkably simple form for the trace: E = —(ZS—;%N

16" . 2
Q= (D -2k~ 'Qr+ 22 with Q= p%f and Q, = 2(4r2 — )Lz
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The Einstein-Gauss-Bonnet tensor
(e = b, 5D, Minkowski background)

Consider Kerr-Schild metrics ds? = ds? + f(r)h,h,dz*dz” where ds* is
the flat 5-D line element in spheroidal coordinates with equal rotation
coefficients:

d5? = —dt? + —dr? + (r® + a®)(d6? + sin® 0de? + cos® Ody?)

2

: . 2 . 2
The null and geodesic vector is h,, = (1,7027_;—6#,0,&811& 0, a cos? 9)

The trace of the EGB tensor simplifies into & = _ZT({TCQin_):Q)

Qi=(D—-2)x'Q; + gc_?%

2 2\ r2
Q= f(r* +a?) and Q, = 28—% )

T2+a2
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Careful examination then shows that all components of the EGB tensor
can then be expressed in terms of £ and Ej; as :

¢
2
t a a —|—r 7“/ r
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Et — _a,sin26’ (a —l—r zp )
3 r 20
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Et _ _ac%SQQ (a 42 E _|_ 2¢ )
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EQ__(CL ‘J:T E"“ _cosg} )_|_E7"
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(#E}Z’ + (2 —3cos”0)—% ) + ET

-
|
L=

¢
E;ﬁ =1 (ME}Z’ — (1 — 3 cos? H)COS§”9> + E
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As for E] et Ej; they are expressed in terms of ()¢ and @), as

Ef = sk | (37 + Q) + 400t (555 |

and (an admitedly ugly expression)

Ejp) . a? [(a2—|—5r2)Q£—T(r2—|—a2)Qg]

cos26 613 (r24+a2)?2
_I_2&@2(277‘4+42r2a2+31a4)Qq _ 2aa’(18r°427r'a’+16r%a"—a%) @y
(3r2—a2)3(r2+a2)2 3r3(3r2—a2)2(r2+a2)2

&a2(3r2—|—2a2)Q/q/
37“2(37“2—@2) (r2—|—a2)

(Of course, various checks were made...)
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Recovering standard results (¢ = 0)

Ef=Er=-% , Ej=Ej=FE)=—2% with

Qi =3r"'Qi+ %2 and Q=7 , Q,=6f

A Kerr-Schild solution of the EGB equations of motion exists and is

2
U(r)==3% , Qt:%—FGm

— () =& (—1+\/1+8“ - <3m+q ))

Reisner-Gauss-Bonnet solution [Boulware-Deser|, in Kerr-Schild form.

m is a constant of integration : the total mass [Deser-Tekin] [Padilla]

[DKO]...
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A “no-go”’ result

d5® = —dt? + Fydr® + (17 + 02)(dB? + sin’ g2 + cos? )

h, = (1, 2j - ,0,asin? 0, a cos 9) and  ds? = ds*+ f(r)h,h,dz"dz”
A, =U(r)h, ; Maxwell equations yield U= —7/>
Einstein-Maxwell Gauss-Bonnet trace equation:

2 r 9
(TQt)// . 2(]2(7'2_@2) __ 2c q2 q Arctam® rq
2r(r24+a2?) —  (r?2+a?)? — Qi==+6m+ 5 — a |

r24a ar 2ar

~ 2 2\ £2
Q: = (D — 2)57'Qr + 524 with @y = £(r” + a?) and Q, = 20r=)f
hence

f(r) =
3 r2—i—a2 2 8ar2(3r2—a? r
2/{(2’4(37“2—22) <_1 + \/1 + 9(r(2+a2)3 : 3m + ¢ + 2(r2—|—a2) + 2qa7“ (5 - ArCtana)])




For all the other field equations to be satisfied we must have

El=—2m , E2=0 ()

— (r2+a?)3
Now, E and Ejz are known fonctions of f(r).

It is an easy exercice to see that, with the function f obtained from the
trace equation, equations (*) are NOT satisfied.

E? 2

. r L w _7a C
|f C # O then ET‘ — 7"5 and COS29 — 6fr.7

4 2 E¢ 2 2
. o r . 32a”q 2 . 16a”q
if c=0then Bl — = and —- — ——5
. 4~ 2 2 E¢ 2~ 2 2
if c=q =0 then E — —32¢ 5 and —60;59 — 336&74%43 -

Hence : There is no Kerr-Schild solution of the
(5D) Einstein-Maxwell-Gauss-Bonnet field equations
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SUMMARY AND OUTLOOK

e We studied Kerr-Schild metrics on maximally symmetric backgrounds
e \We showed that the Einstein-Gauss-Bonnet tensor is quadratic in the
Kerr-Schild function f.

e Specializing to 5-dimensional backgrounds in spheroidal coordinates we
found a simple expression for the trace of the Einstein-Gauss-Bonnet
tensor.

e Specializing further to a flat backgound and equal rotation coefficients
we wrote the whole Einstein-Gauss-Bonnet tensor in closed form.

e \We used those results to show in a transparent manner that the
Einstein-Maxwell Gauss-Bonnet equations do not possess rotating
Kerr-Schild solutions.

e The techniques developped may prove useful in the quest for
Einstein-Gauss-Bonnet rotating black hole solutions and to elucidate under
which conditions Kerr-Schild solutions can exist.
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