On second quantization on NC spaces with twisted symmetries

G. Fiore, Universitá "Federico II" and INFN, Napoli.

Bayrischzell Workshop 2008 "Noncommutative Geometry and Physics", Bayrischzell, May 2008

(Based on Preprint DSF-11/08, Napoli)

Introduction

QFT on NC space(time)s: how and why?

Various possible routes:

- Path-integral field quantization Filk 96, Douglas, Schwarz, Oeckl 99, Seiberg-Witten 99,
 Alvarez-Gaume', Nekrasov, Szabo,..., Grosse-Wulkenhaar (renormalizable QFT's),...,
- Field quantization in operator approach (Canonical or á la Wightman? Standard o deformed Poincaré?...) Doplicher-Fredenhagen-Roberts 95, *et al* 95-06,...,Chaichian *et al* 04-07, Balachandran *et al* 05-07, Lizzi *et al* 06, Abe 06, Zahn 06, ...,G.F.-Wess 07, ,..., Aschieri *et al* 07 (quantizing *-Poisson bracket),...

In [G.F.-Wess 07] a surprising result: Wightman axioms with careful twisted Poincaré covariance yield QFT (free or interacting) with the same *n*-point functions and commutation relations. What's happening?!? (Already [G.F.-Schupp 96]: twisted symmetries compatible with Bose-Fermi statistics)

• Here **2nd Quantization**: from covariant QM of *n* identical bosons/fermions on a NC space(time) to QFT on the latter. Main motivations: importance of the particle interpretation; keeping Bose-Fermi statistics to avoid drastic consequences.

Various issues involved: consistency with QM axioms (unitarity, quantum statistics,...)? Deformed space(time) symmetry? Causality? Divergences & renormalizability?...

Bottom-up approach based on *-products to guess a consistent NC framework:

Start from G-covariant many-particle QM on a G-symmetric, *commutative* space(time) M.
E.g.: G=Galilei group and M = ℝ × ℝ³; G=Poincaré group and M=Minkowski spacetime.
QFT can be obtained by 2nd quantization.

- We may introduce a moderate (very special) non-locality in the interactions using the \star -product induced by a twist $\mathcal{F}(\lambda)$ of $H \equiv U\mathbf{g}$ [$\mathbf{g} := Lie(G), \lambda =$ deformation parameter].

- Express all ordinary products as formal expansions in λ of \star -ones upon inverting the definition

$$f \star g = fg + O(\lambda) \qquad \Rightarrow \qquad fg = f \star g + O_{\star}(\lambda).$$

So we *reformulate commutative notions* [wavefunctions, differential operators (Hamiltonian, etc), creation & annihilation operators,..., their transformations, 2nd quantization procedure itself] *purely in terms of their noncommutative analogs*.

- Forget original products to obtain a *closed framework for Second Quantization on a NC space*.

Same strategy as adopted by J. Wess and collaborators [03-06] e.g. to formulate noncommutative diffeomorphisms and related notions (metric, connections, tensors etc).

We stick to *NC space(time)s symmetric under* **triangular** *deformations (by twisting) of Lie groups, requiring full covariance of the framework* under such a "twisted symmetry group" (Hopf algebra). Maybe no or little new dynamics, but at least a "noncommutative way" to look at it; moreover, this can pave the way for more interesting (and complicated) deformations.

Plan

- 1. Introduction
- 2. Twisting $H = U\mathbf{g}$ to a noncocommutative Hopf algebra \hat{H}
- 3. Twisting modules and module (*-)algebras [to be applied to $\mathcal{H}, \mathcal{O}, \mathcal{M} = C^{\infty}(M)$, $\mathcal{D}(\mathcal{M}), \mathcal{L}^2$, their tensor powers, their (anti)symmetric parts, \mathcal{A} , the field algebra Φ ,...]
- 4. Symmetric QM with n bosons/fermions in abstract Hilbert space
- 5. Second quantization: from wavefunctions to quantum fields (non-relativistic)
- 6. Second quantization: from wavefunctions to quantum fields (relativistic)
- 7. Examples: QM and QFT on Moyal NC space(time)

Twisting H = U**g** to a noncocomm. Hopf algebra \hat{H}

Real deformation parameter λ . \hat{H} , $H[[\lambda]]$ have

- 1. same *-algebra (over $\mathbb{C}[[\lambda]]$) and counit ε
- 2. coproducts Δ , $\hat{\Delta}$ related by

$$\Delta(g) \equiv \sum_{I} g^{I}_{(1)} \otimes g^{I}_{(2)} \longrightarrow \hat{\Delta}(g) = \mathcal{F}\Delta(g)\mathcal{F}^{-1} \equiv \sum_{I} g^{I}_{(\hat{1})} \otimes g^{I}_{(\hat{2})}$$

3. antipodes
$$S, \hat{S}$$
 s.t. $\hat{S}(g) = \alpha^{-1}S(g)\alpha$, with $\alpha = \sum_{I} S\left(\overline{\mathcal{F}}_{I}^{(1)}\right)\overline{\mathcal{F}}_{I}^{(2)}, \overline{\mathcal{F}} = \mathcal{F}^{-1}$.

where the *twist* [Drinfel'd 83] is for our purposes a <u>unitary</u> element $\mathcal{F} \in (H^s \otimes H^s)[[\lambda]]$, $(H^s \subseteq H \text{ Hopf }*\text{-subalgebra})$ fulfilling

$$\mathcal{F} = \mathbf{1} \otimes \mathbf{1} + O(\lambda), \qquad (\epsilon \otimes \mathrm{id}) \mathcal{F} = (\mathrm{id} \otimes \epsilon) \mathcal{F} = \mathbf{1},$$
$$(\mathcal{F} \otimes \mathbf{1})[(\Delta \otimes \mathrm{id})(\mathcal{F})] = (\mathbf{1} \otimes \mathcal{F})[(\mathrm{id} \otimes \Delta)(\mathcal{F})] =: \mathcal{F}_3. \tag{1}$$

 \hat{H} has unitary triangular structure $\mathcal{R} = \mathcal{F}_{21}\mathcal{F}^{-1}$. $\hat{H}^s := H^s[[\lambda]]$ is a Hopf *-subalgebra of \hat{H} .

Twisting module (*-)algebras

Recall defs: a $\hat{*}$ -algebra $\hat{\mathcal{A}}$ over $\mathbb{C}[[\lambda]]$ is a left \hat{H} -module $\hat{*}$ -algebra if \exists a $\mathbb{C}[[\lambda]]$ -bilinear map $(g, \hat{a}) \in \hat{H} \times \hat{\mathcal{A}} \to g \hat{\triangleright} \hat{a} \in \hat{\mathcal{A}}$, called *left action*, such that (omitting product symbols)

$$(gg') \hat{\triangleright} \hat{a} = g \hat{\triangleright} (g' \hat{\triangleright} \hat{a}), \qquad (g \hat{\triangleright} \hat{a})^{\hat{*}} = [\hat{S}(g)]^{\hat{*}} \hat{\triangleright} \hat{a}^{\hat{*}},$$

$$g \hat{\triangleright} (\hat{a}\hat{b}) = \sum_{I} [g_{(\hat{1})}^{I} \hat{\triangleright} \hat{a}] [g_{(\hat{2})}^{I} \hat{\triangleright} \hat{b}].$$

$$(2)$$

A H-($\hat{*}$ -) module \mathcal{M} is a linear space fulfilling only the first (two) relations.

Since $\hat{H} = H[[\lambda]]$ as *-algebras (and \mathcal{F} is unitary), $\mathcal{M}[[\lambda]]$ is a \hat{H} -($\hat{*}$ -)module under

$$g\hat{\triangleright}a = g \triangleright a; \qquad (a^{\hat{*}} := S(\alpha^{-1}) \triangleright a^{*}) \qquad (3)$$

Given a \mathcal{A} , endow $\mathcal{M}[[\lambda]] := V(\mathcal{A})[[\lambda]] \equiv$ vector space underlying $\mathcal{A}[[\lambda]]$ with a new product, the \star -product, defined by

$$a \star b := \sum_{I} \left(\overline{\mathcal{F}}_{I}^{(1)} \triangleright a \right) \left(\overline{\mathcal{F}}_{I}^{(2)} \triangleright b \right), \tag{4}$$

this becomes a *H*-module (*-)algebra \mathcal{A}_{\star} : associativity follows from (1), whereas (2)₃ from

$$g \triangleright (a \star b) = \left[g_{(1)}^{I} \overline{\mathcal{F}}_{I'}^{(1')} \triangleright a\right] \left[g_{(2)}^{I} \overline{\mathcal{F}}_{I'}^{(2')} \triangleright b\right] = \left[\overline{\mathcal{F}}_{I'}^{(1')} g_{(\hat{1})}^{I} \triangleright a\right] \left[\overline{\mathcal{F}}_{I'}^{(2')} g_{(\hat{2})}^{I} \triangleright b\right] = \left[g_{(\hat{1})}^{I} \triangleright a\right] \star \left[g_{(\hat{2})}^{I} \mapsto b\right] = \left[g_{(\hat{1})}^{I} \models a\right] \star \left[g_{(\hat{2})}^{I} \models b\right] = \left[g_{(\hat{1})}^{I} \models b\right] = \left[g_{(\hat{1})}^{I} \models b\right] = \left[g_{(\hat{1})}^{I} \models b\right] + \left[g_{(\hat{2})}^{I} \models b\right] = \left[g_{(\hat{1})}^{I} \models b\right] = \left[g_{(\hat{1}$$

Moreover, $(a \star b)^{\hat{*}} = b^{\hat{*}} \star a^{\hat{*}}$. We stress: works even if \mathcal{A} not abelian!

On second quantization on NC spaces with twisted symmetries $-p.6/2^{\circ}$

The \star is ineffective if a or b is H^s -invariant:

$$g \triangleright a = \epsilon(g)a \quad \text{or} \quad g \triangleright b = \epsilon(g)b \quad \forall g \in H^s \qquad \Rightarrow \qquad a \star b = ab.$$
 (5)

Given *H*-(*-)modules \mathcal{M}, \mathcal{N} , then also $\mathcal{M} \otimes \mathcal{N}$ is, under the action

$$g \triangleright (m \otimes n) = \sum_{I} \left(g_{(1)}^{I} \triangleright m \right) \otimes \left(g_{(2)}^{I} \triangleright n \right), \tag{6}$$

and $\mathcal{M} \otimes \mathcal{N}[[\lambda]]$ is a \hat{H} -($\hat{*}$ -)module, under the action

$$g\hat{\triangleright}(m\otimes n) = \sum_{I} \left(g_{(\hat{1})}^{I} \hat{\triangleright}m \right) \otimes \left(g_{(\hat{2})}^{I} \hat{\triangleright}n \right) \in \mathcal{M} \otimes \mathcal{N}[[\lambda]].$$
(7)

 $\mathcal{F} \triangleright^{\otimes 2}$ is an intertwiner between them. Applying (6) to the "*-tensor product" [Aschieri et al]

$$(m \otimes_{\star} n) := \overline{\mathcal{F}} \triangleright^{\otimes 2} (m \otimes n) = \sum_{I} (\overline{\mathcal{F}}_{I}^{(1)} \triangleright m) \otimes (\overline{\mathcal{F}}_{I}^{(2)} \triangleright n),$$

one finds $g \triangleright (m \otimes_{\star} n) = \sum_{I} \left(g_{(\hat{1})}^{I} \triangleright m \right) \otimes_{\star} \left(g_{(\hat{2})}^{I} \triangleright n \right)$, i.e. a realizaton of (7). Moreover, if $\mathcal{M}^{s} \subset \mathcal{M} \otimes \mathcal{N}$ is a H-(*-) submodule, then $\mathcal{F} \triangleright^{\otimes 2} \mathcal{M}^{s}$ is a \hat{H} -($\hat{*}$ -) submodule.

Given *H*-module (*-)algebras \mathcal{A}, \mathcal{B} the tensor (*-)algebra $\mathcal{A} \otimes \mathcal{B} [(a \otimes b)(a' \otimes b') = aa' \otimes bb']$ also is a *H*-module (*-)algebra under \triangleright .

Introducing the \star -product (4) $\mathcal{A} \otimes \mathcal{B}$ is deformed into a \hat{H} -module (*-)algebra ($\mathcal{A} \otimes \mathcal{B}$)_{\star}. One finds

$$(a \otimes_{\star} b) \star (c \otimes_{\star} d) = \sum_{I} a \star (\overline{\mathcal{R}}_{I}^{(1)} \triangleright c) \otimes_{\star} (\overline{\mathcal{R}}_{I}^{(1)} \triangleright b) \star d, \tag{8}$$

 $\overline{\mathcal{R}} \equiv \mathcal{R}^{-1} \otimes_{\star} \text{ is the associated$ *braided tensor product*, (*involutive* $, as <math>\mathcal{R} \mathcal{R}_{21} = \mathbf{1} \otimes \mathbf{1}$). Note that $a \otimes_{\star} b = (a \otimes \mathbf{1}) \star (\mathbf{1} \otimes b), \ \mathcal{A}_{1\star} \equiv (\mathcal{A} \otimes \mathbf{1})_{\star} \sim \mathcal{A}_{\star}, \text{ So } \mathcal{B}_{2\star} \equiv (\mathbf{1} \otimes \mathcal{B})_{\star} \sim \mathcal{B}_{\star}$. So $(\mathcal{A} \otimes \mathcal{B})_{\star}$ encodes the \star within \mathcal{A}, \mathcal{B} and the \otimes_{\star} between them.

H-module algebras defined by generators and relations. Given a \mathcal{M} , fix a (discrete) basis $\{a_i\}_{i\in\mathcal{I}}$ of \mathcal{M} . The *free* algebra \mathcal{A}^f generated by $\{a_i\}_{i\in\mathcal{I}}$ is automatically a *H*-module (*-)algebra under

$$g \triangleright (a_{i_1} a_{i_2} \dots a_{i_k}) = \sum_I \left(g_{(1)}^I \triangleright a_{i_1} \right) \left(g_{(2)}^I \triangleright a_{i_2} \right) \dots \left(g_{(k)}^I \triangleright a_{i_k} \right).$$

By the previous procedure one deforms \mathcal{A}^f into a \hat{H} -module (*-) algebra \mathcal{A}^f_{\star} . Now assume $\mathcal{A} = \mathcal{A}^f / \mathcal{I}$, where \mathcal{I} is a *H*-invariant (*-)ideal generated by some set of polynomial relations ^{*a*}

$$f^{J}(a_1, a_2, ...) = 0, \qquad J \in \mathcal{J}.$$
 (9)

We can define *-polynomials f_{\star}^{J} requiring $f_{\star}^{J}(a_{1}\star,a_{2}\star,...) = f^{J}(a_{1},a_{2},...)$ in $V(\mathcal{A}^{f})[[\lambda]] = V(\mathcal{A}_{\star}^{f})$. The *-polynomial relations

$$f_{\star}^{J}(a_1\star, a_2\star, \ldots) = 0, \qquad J \in \mathcal{J}$$
(10)

generate a \hat{H} -invariant ($\hat{*}$ -)ideal \mathcal{I}_{\star} , hence $\mathcal{A}_{\star} := \mathcal{A}_{\star}^{f}/\mathcal{I}_{\star}$ is a H-module (*-)algebra \mathcal{A}_{\star} , with generators a_{i} and relations (10). By construction the Poincaré-Birkhoff-Witt series of $\mathcal{A}, \mathcal{A}_{\star}$ coincide.

^{*a*}This covers most cases of interest: if e.g. $\exists a_0$ spanning a 1-dimensional submodule and $a_0a_i - a_i = a_ia_0 - a_i = 0$ for all *i*, then \mathcal{A} has unit, $a_0 \equiv \mathbf{1}$. If $a_ia_j - a_ja_i = 0$ for all *i*, *j*, then \mathcal{A} is abelian. Imposing further polynomial relations one gets the algebra of functions on an algebraic manifold M. If instead \mathcal{A} is the UEA of a Lie algebra (in particular of the vector fields over M) among the relations there are $a_ia_j - a_ja_i = c_{ij}^k a_k$. And so on. Other second quantization on NC spaces with twisted symmetries – p.8/2

Similarly, the Poincaré-Birkhoff-Witt series of $\mathcal{A} \otimes \mathcal{B}$, $(\mathcal{A} \otimes \mathcal{B})_{\star}$ coincide. Denoting by $\{a_i\}_{i \in \mathcal{I}}$, $\{b_i\}_{i \in \mathcal{I}'}$ sets of generators of \mathcal{A} , \mathcal{B} (assumed unital), a set of generators of both $\mathcal{A} \otimes \mathcal{B}$ and $(\mathcal{A} \otimes \mathcal{B})_{\star}$ will consist of $\{a_{i1}, b_{i'2}\}_{i \in \mathcal{I}, i' \in \mathcal{I}'}$, where for any $\alpha \in \mathcal{A}[[\lambda]], \beta \in \mathcal{B}[[\lambda]]$ we set

$$\alpha_1 := \alpha \otimes \mathbf{1}, \qquad \qquad \beta_2 := \mathbf{1} \otimes \beta.$$

As generators of $\mathcal{A} \otimes \mathcal{B}$ [resp. $(\mathcal{A} \otimes \mathcal{B})_*$] they will all separately fulfill (9) [resp. (10)] and the analogous relations for \mathcal{B} , together with

$$a_{i1}b_{i'2} = b_{i'2}a_{i1} \qquad [\text{resp. } a_{i1} \star b_{i'2} = \sum_{I} (\overline{\mathcal{R}}_{I}^{(1)} \hat{\triangleright} b_{i'2}) \star (\overline{\mathcal{R}}_{I}^{(1)} \hat{\triangleright} a_{i1})]. \qquad (11)$$

The $\{a_{i1}\}_{i\in\mathcal{I}}$ will generate a H- (resp. \hat{H} -) module (*-)subalgebra, which we shall call \mathcal{A}_1 (resp. $\mathcal{A}_{1\star}$). As a H- (resp. \hat{H} -) module (*-)algebra, this will be isomorphic to \mathcal{A} (resp. \mathcal{A}_{\star}). Similarly for \mathcal{B}_2 (resp. $\mathcal{B}_{2\star}$).

As the original product of \mathcal{A} no more appears in these *-relations, one can introduce \hat{H} -module (*-)algebras $\widehat{\mathcal{A}}$, \widehat{B} , $\widehat{\mathcal{A} \otimes \mathcal{B}}$ resp. isomorphic to \mathcal{A}_{\star} , \mathcal{B}_{\star} , $(\mathcal{A} \otimes \mathcal{B})_{\star}$ just in terms of these generators and relations. Change of notation: $a_i, b_i >, \star \rightarrow \hat{a}_i, \hat{b}_i, \hat{>}$, (omitting the symbol \star); e.g. $\widehat{\mathcal{A}} \equiv$ (*-)algebra generated by $\{\hat{a}_i\}$ fulfilling

$$f_{\star}^J(\hat{a}_1, \hat{a}_2, \ldots) = 0, \qquad \qquad J \in \mathcal{J}$$

(and $\hat{*}$ -structure defined by $\hat{a}_i^{\hat{*}} = S(\alpha^{-1}) \triangleright \widehat{a_i^*}$).

H itself is a left H-module *-algebra under the left adjoint action

$$g \triangleright h = g_{(\hat{1})}^{I} h \, \hat{S}\!\left(g_{(\hat{2})}^{I}\right) \tag{12}$$

(no[^]). Applying the above procedure to $\mathcal{A} = H$ one gets [Aschieri et al.] a \hat{H} -module *-algebra H_{\star} , isomorphic to \hat{H} under the noncocomm. adjoint action $\hat{\triangleright}$. More generally, if a H-module *-algebra \mathcal{A} admits a *-algebra map $\sigma: H \to \mathcal{A}$ s.t. \triangleright can be expressed in the "adjoint-like" form

$$g \triangleright \hat{a} = \hat{\sigma} \left(g_{(\hat{1})}^{I} \right) \hat{a} \hat{\sigma} \left[\hat{S} \left(g_{(\hat{2})}^{I} \right) \right]$$
(13)

(no[^]), then $\mathcal{A}[[\lambda]]$ becomes a \hat{H} -module *-algebra under $\hat{\triangleright}$ defined by (13) (with[^]'s and extended $\hat{\sigma}: \hat{H} = H[[\lambda]] \to \mathcal{A}[[\lambda]]$). The *deforming map* $D^{\sigma}_{\mathcal{F}}: a \in V(\mathcal{A})[[\lambda]] \to \check{a} \in V(\mathcal{A})[[\lambda]]$ defined by

$$\check{a} \equiv D_{\mathcal{F}}^{\sigma}(a) := \sigma \left(\mathcal{F}_{I}^{(1)} \right) a \sigma \left[S \left(\mathcal{F}_{I}^{(2)} \alpha \right) \right] = \left(\overline{\mathcal{F}}_{I}^{(1)} \triangleright a \right) \sigma \left(\overline{\mathcal{F}}_{I}^{(2)} \right)$$
(14)

intertwines between \triangleright , $\hat{\triangleright}$:

$$g\hat{\triangleright}[D^{\sigma}_{\mathcal{F}}(a)] = D^{\sigma}_{\mathcal{F}}(g \triangleright a).$$
(15)

Moreover $[D^{\sigma}_{\mathcal{F}}(a)]^* = D^{\sigma}_{\mathcal{F}}[a^{\hat{*}}]$, implying $(g \hat{\triangleright} \check{a})^* = [\hat{S}(g)]^* \hat{\triangleright}(\check{a})^*$. So if $\mathcal{M} \subseteq V(\mathcal{A})$ is a H-*-submodule, $D^{\sigma}_{\mathcal{F}}(\mathcal{M})$ is a \hat{H} -*-submodule. Finally,

$$D^{\sigma}_{\mathcal{F}}(a \star b) = D^{\sigma}_{\mathcal{F}}(a) D^{\sigma}_{\mathcal{F}}(b).$$
(16)

So we can promote $D^{\sigma}_{\mathcal{F}}$ to a \hat{H} -module *-algebra isomorphism $D^{\sigma}_{\mathcal{F}} : \mathcal{A}_{\star} \to \check{\mathcal{A}} = \mathcal{A}[[\lambda]]$. If $\mathcal{A}^{s} \subset \mathcal{A}$ is a H-module *-subalgebra, $\check{\mathcal{A}}^{s} = D^{\sigma}_{\mathcal{F}}(\mathcal{A}^{s}_{\star}) \subset \mathcal{A}[[\lambda]]$ is a \hat{H} -module ($\hat{*}$ -)subalgebra.

Clearly, for $\mathcal{A} = H$ one can use $\sigma = id$ [Gurevich & Majid '94]. In [G.F. '96] a σ for general *H*-covariant Heisenberg or Clifford algebras was proposed, see below.

Clearly, if *-algebra maps $\sigma_{\mathcal{A}}: H \to \mathcal{A}, \sigma_{\mathcal{B}}: H \to \mathcal{B}$ exist,

$$\hat{\sigma}_{\mathcal{A}\otimes\mathcal{B}} := (\sigma_{\mathcal{A}}\otimes\sigma_{\mathcal{B}}) \circ \hat{\Delta} : H \to (\mathcal{A}\otimes\mathcal{B})[[\lambda]]$$

is a *-algebra map. Replacing $\hat{\sigma}_{\mathcal{A}\otimes\mathcal{B}}$ in (13) we make $(\mathcal{A}\otimes\mathcal{B})[[\lambda]]$ into a \hat{H} -module *-algebra. One can define a *deforming map*, i.e. a \hat{H} -*-module isomorphism $D_{\mathcal{F}}^{\sigma_{\mathcal{A}\otimes\mathcal{B}}}: (\mathcal{A}\otimes\mathcal{B})_{\star} \to (\mathcal{A}\otimes\mathcal{B})[[\lambda]]$ by

$$D_{\mathcal{F}}^{\sigma_{\mathcal{A}\otimes\mathcal{B}}}(a) := \mathcal{F}_{\sigma} \sum_{I} \left[\overline{\mathcal{F}}_{I}^{(1)} \triangleright a \right] \, \sigma^{(2)} \left(\overline{\mathcal{F}}_{I}^{(2)} \right) \mathcal{F}_{\sigma}^{-1} \tag{17}$$

[with $\mathcal{F}_{\sigma} := (\sigma_{\mathcal{A}} \otimes \sigma_{\mathcal{B}})(\mathcal{F})$]. Again we see that, if $\mathcal{M} \subset \mathcal{A} \otimes \mathcal{B}$ is a *H*-submodule, then $D_{\mathcal{F}}^{\sigma n}(\mathcal{M}) \subset \mathcal{A}^{\otimes n}[[\lambda]]$ is a \hat{H} -submodule.

H-covariant QM with n bosons/fermions (abstract setting) and associated Fock space

Assume the 1-particle Hilbert space is a *H*-*-module: \exists a dense subspace \mathcal{H} and *-algebra map (embedding) $\rho: H \to \mathcal{O} \equiv \text{alg.}$ of operators on \mathcal{H} , $g \triangleright u = \rho(g)u$ on $u \in \mathcal{H}$. The compatibility condition $g \triangleright (Ou) = (g_{(1)}^I \triangleright O) g_{(2)}^I \triangleright u$ induces on \mathcal{O} a *H*-module *-algebra structure:

$$g \triangleright u = \rho(g)u, \qquad \qquad g \triangleright O = \rho\left(g_{(1)}^{I}\right) O \rho\left[S\left(g_{(2)}^{I}\right)\right]. \tag{18}$$

Replacing ρ in (18) by $\rho^{(n)} := \rho^{\otimes n} \circ \Delta^{(n)}$ transformation of *n*-particle states and observables. (Previous constructions with $\sigma = \rho, \rho^{(n)}$ apply!)

The completely (anti)symmetric part \mathcal{H}^n_{\pm} of $\mathcal{H}^{\otimes n}$ is a H-*-submodule and describes the Hilbert space of n-boson (+) or n-fermion (-) states. The completely symmetric part \mathcal{O}^n_+ of $\mathcal{O}^{\otimes n}$ is a H- module *-subalgebra and its elements maps each of \mathcal{H}^n_+ , \mathcal{H}^n_- into itself. $\rho^{(n)}(H) \subset \mathcal{O}^n_+$ is usually a physically relevant module *-subalgebra: if e.g. \mathcal{H} has a rotational symmetry so(3), the components of the total angular momentum of the n-particle system belong to $\rho^{(n)}(Uso(3))$.

Let $\{e_i\}_{i\in\mathbb{N}}$ be an orthonormal basis of \mathcal{H} . For any $i_1, i_2, ..., i_n \in \mathbb{N}$ let

$$e_{i_1,i_2,\ldots,i_n}^{\pm} := N \mathcal{P}_{\pm i_1 i_2 \ldots i_n}^{n j_1 j_2 \ldots j_n} (e_{j_1} \otimes e_{j_2} \otimes \ldots \otimes e_{j_n}) \in \mathcal{H}_{\pm}^n$$

($N \equiv$ normalization factor). An orthonormal basis \mathcal{B}^n_+ (resp. \mathcal{B}^n_-) of \mathcal{H}^n_+ (resp. \mathcal{H}^n_-) is obtained

choosing $i_1 \le i_2 \le ... \le i_n$ (resp. $i_1 < i_2 < ... < i_n$).

Introduce occupation numbers n_j : each counts for how many h it occurs $i_h = j$ there; for n identical fermions it can be only $n_j = 0, 1$. The vectors of \mathcal{B}^n_{\pm} are characterized by a sequence of occupation numbers fulfilling $n = \sum_{j \in \mathbb{N}} n_j$, so one can denote them as

$$|n_1, n_2, ...\rangle := e_{i_1, i_2, ..., i_n}^{\pm}.$$
 (19)

Let $|0\rangle \equiv$ vacuum state. Fock space: completion of

$$\mathcal{H}^{\infty}_{\pm} := \mathbb{C}|0\rangle \oplus \mathcal{H} \oplus \mathcal{H}^{2}_{\pm} \oplus ... \oplus \mathcal{H}^{n}_{\pm} \oplus ...$$

Define creation/annihilation op.'s as usual. They fulfill the canonical (anti)commutation relations

$$[a^{i}, a^{j}]_{\pm} = 0, \qquad [a^{+}_{i}, a^{+}_{j}]_{\pm} = 0, \qquad [a^{i}, a^{+}_{j}]_{\pm} = \delta^{i}_{j}. \tag{CCR}$$

Assuming $|0\rangle$ to be *H*-invariant, a_i^+ , a^i must transform as $e_i = a_i^+ |0\rangle$ and $\langle i| = \langle 0|a^i$ respectively:

$$g \hat{\triangleright} \hat{a}_i^+ = \rho_i^j(g) \hat{a}_j^+ \qquad g \hat{\triangleright} \hat{a}^i = \hat{\rho}^{\vee j}{}_i^j(g) \hat{a}^j := \rho_j^i \left[\hat{S}(g) \right] \hat{a}^j.$$

$$(20)$$

(with no[^]). So $\{a_i^+\}$ and $\{a^i\}$ resp. span carrier spaces of the representations ρ, ρ^{\vee} of H. As the CCR are H-invariant, $\{a_i^+, a^i\}$ generate a (Heisenberg or Clifford) H-module *-algebra \mathcal{A} .

Applying the previous deformation procedure one obtains a *H*-module *-algebra \mathcal{A} with generators \hat{a}_i^+ , \hat{a}^i [G.F. '96] transforming as above (with $\hat{}$), fulfilling $\hat{a}_i^{+*} = \hat{a}^i$ and

$$\hat{a}^{i} \hat{a}^{j} = \pm R^{ij}_{vu} \hat{a}^{u} \hat{a}^{v},
\hat{a}^{+}_{i} \hat{a}^{+}_{j} = \pm R^{vu}_{ij} \hat{a}^{+}_{u} \hat{a}^{+}_{v},
\hat{a}^{i} \hat{a}^{+}_{j} = \delta^{i}_{j} \mathbf{1}_{\mathcal{A}} \pm R^{ui}_{jv} \hat{a}^{+}_{u} \hat{a}^{v},$$
(TCR)

where $R := (\rho \otimes \rho)(\mathcal{R}) = \mathbf{1} \otimes \mathbf{1} + O(\lambda)$. We could have presented $\widehat{\mathcal{A}} \sim \mathcal{A}_{\star}$ also in terms of generators a_i^+, a^i and \star -products. On the other hand, one can define a Lie \star -algebra map $\sigma : \mathbf{g} \to \mathcal{A}$ by

$$\sigma(g) := (g \triangleright a_j^+) a^j = \rho_j^i(g) a_i^+ a^j, \qquad g \in \mathbf{g};$$
(21)

 σ is extended as a *-algebra map $\sigma: H = U\mathbf{g}[[\lambda]] \to \mathcal{A}[[\lambda]]$ over $\mathbb{C}[[\lambda]]$ by setting $\sigma(\mathbf{1}_H) = \mathbf{1}_{\mathcal{A}}$. (It is a generalization of the Jordan-Schwinger realization of $\mathbf{g} = su(2)$.) So we can make $\mathcal{A}[[\lambda]]$ into a \hat{H} -module *-algebra. Under $\hat{\triangleright} a_i^+, a^i$ do not transform as \hat{a}_i^+, \hat{a}^i in (20), but the elements [G.F. '96]

$$\check{a}_i^+ = D_{\mathcal{F}}^{\sigma}(a_i^+), \qquad \check{a}^i = D_{\mathcal{F}}^{\sigma}[\rho_j^i(\alpha^{-1})a^j]$$
(22)

do. Moreover, the latter fulfill the (TCR) and $\check{a}^i = \check{a}^{+*}_i$. Namely, $\check{a}^+_i, \check{a}^i$ provide a realization of \hat{a}^+_i, \hat{a}^i within $\mathcal{A}[[\lambda]]$. Hence, *-representations of $\mathcal{A}[[\lambda]]$ are also *-representations of $\widehat{\mathcal{A}}$. This suggests that, at least near $0 = \lambda \in \mathbb{C}$, *-representations of \mathcal{A} , in particular the Fock one, are also *-representations of $\widehat{\mathcal{A}}$ (to be verified case by case). Let us compare a^+_i with $\check{a}^+_i, \hat{a}^+_i$:

$$\check{a}_{i_1}^+ \dots \check{a}_{i_n}^+ |0\rangle = (F^n)^{-1} \overset{j_1, \dots, j_n}{i_1, \dots, i_n} a_{j_1}^+ \dots a_{j_n}^+ |0\rangle = a_{i_1}^+ \star \dots \star a_{i_n}^+ |0\rangle =: \hat{a}_{i_1}^+ \dots \hat{a}_{i_n}^+ |0\rangle.$$
(23)

 $\check{a}_i^+, \check{a}^i, \hat{a}_i^+, \hat{a}^i, \hat{a}_i^+, \hat{a}^i, a_i^+ \star, a^i \star$ all act on the Fock space of bosons/fermions (no change of statistics!). On second quantization on NC spaces with twisted symmetries – p.14/2'

Differential and integral calculus over G**-symmetric** M

Let $\mathcal{M} = C^{\infty}(M), \Xi \supset \mathbf{g}$ the algebra of vector fields over $M, \mathcal{A} = \mathcal{D} := U\Xi \ltimes \mathcal{M}$ (cf. [Aschieri et al]). (By construction \mathcal{M} is a *H*-module *-subalgebra of \mathcal{D}). We apply the above *-deformation procedure with some twist $\mathcal{F} \in (H \otimes H)[[\lambda]], H = U\mathbf{g}$.

If M is a submanifold of some \mathbb{R}^m characterized by a set of equations $f_J(x) = 0$ [with $x = (x^1, ...x^m)$] symmetric under \mathbf{g} , \mathcal{M} is the abelian H-module algebra generated by $x^1, ...x^m$ fulfilling the relations $f_J(x) = 0$ in addition to $x^a x^b - x^b x^a = 0$, Ξ is the Lie subalgebra of vector fields $\xi = \sum_{h=1}^m \xi^h(x)\partial_{x^h}$ over \mathbb{R}^m such that $[\xi, f_J(x)] = 0$, and the \star -deformed (or "hatted") objects can be described globally in terms of **generators** $\hat{x}^h, \hat{\partial}_{x^h}$ **and relations**. One can globally define a Lie \star -algebra map $\sigma : H[[\lambda]] \to U\Xi[[\lambda]]$ starting from

$$\sigma(g) := \sum_{h=1}^{m} (g \triangleright x^h) \partial_{x^h} \in \Xi, \qquad g \in \mathbf{g}.$$

and the corresponding deforming map $D^{\sigma}_{\mathcal{F}}$ for \mathcal{D} , and then for tensor powers of \mathcal{D} .

If $M \equiv$ Riemannian, $G \equiv$ its group of isometries, $d\nu \equiv$ invariant volume form, also $\int_X d\nu(x)$ is:

$$\int_X d\nu(x)(g \triangleright f) = \epsilon(g) \int_X d\nu f \qquad \Leftrightarrow \qquad \int_X d\nu f(g \triangleright h) = \int_X d\nu [S(g) \triangleright f] h.$$

This implies for the corresponding *-product

$$\int_X d\nu(x) f(x) \star h(x) = \int_X d\nu(x) f(\mathbf{x}) [\alpha \triangleright h(x)] = \int_X d\nu(x) [S(\alpha) \triangleright f(\mathbf{x})] h.$$

These eqns hold also for integration over n independent x-variables.

From wavefunctions to quantum fields (non-relativistic)

Let $H = U\mathbf{g}$ include the UEA of the Lie group G of isometries of a commutative spacetime $\mathbb{R} \times X$, with $X \equiv$ a Riemannian manifold on which QM is well-defined; then $d\nu$, $\int_X d\nu$ are H-invariant (E.g. $X = \mathbb{R}^3$, $G \equiv$ Galilei group). Fix an inertial reference frame.

First: n = 1 nonrelativistic quantum particle on X (with spin zero or factored out):

1. \exists *H*-equivariant, unitary transformation $\kappa : u \in \mathcal{H} \leftrightarrow \psi_u \in \mathcal{X} \subset C^{\infty}(X) \cap \mathcal{L}^2(X, d\nu),$ $g \triangleright \psi_u = \psi_{g \triangleright u},$

$$\langle u|v\rangle = \int_{X} d\nu \left[\psi_{u}(\mathbf{x})\right]^{*} \psi_{v}(\mathbf{x}) = \int_{X} d\nu \left[\psi_{u}(\mathbf{x})\right]^{*} \star \psi_{v}(\mathbf{x}).$$
(24)

2. $\kappa(Ou) = \tilde{\kappa}(O)\kappa(u)$ for any $u \in \mathcal{H}$ defines a *H*-equivariant map $\tilde{\kappa} : \mathcal{O} \leftrightarrow \mathcal{D}$. [for $X = \mathbb{R}^3$, \mathcal{O} is generated by $\{q^a, p^a\}$, and $\tilde{\kappa}(q^a) = x^a \cdot, \tilde{\kappa}(p^a) = -i\hbar \frac{\partial}{\partial x^a}$].

The maps $\kappa, \tilde{\kappa}$ provide a *commutative*, *H*-equivariant configuration space realization of $\{\mathcal{H}, \mathcal{O}\}$ on \mathcal{X}, \mathcal{D} , depending on the choice of the reference frame.

This is immediately extended to *n* identical quantum particles on *X*: 1) $\kappa^{\otimes n} : \mathcal{H}^{\otimes n} \leftrightarrow \mathcal{X}^{\otimes n}$ and the restrictions to the completely (anti)symmetric subspaces $\kappa^{\otimes n} : \mathcal{H}^n_{\pm} \leftrightarrow (\mathcal{X}^{\otimes n})_{\pm}$ are *H*-equivariant unitary transfs, (24) holds with *n*-fold integration 2) $\tilde{\kappa} : \mathcal{O}^{\otimes n} \leftrightarrow \mathcal{D}^{\otimes n}$ and the restriction $\tilde{\kappa} : \mathcal{O}^{\otimes n}_{+} \leftrightarrow \mathcal{D}^{\otimes n}_{+}$ are *H*-equivariant maps. Applying the *-deformation procedure with a twist leaving t central, one defines wavefunctions $\hat{\psi}_u \equiv \wedge^n(\psi_u)$ of noncommutative coordinates, $\hat{\psi}_u(\mathbf{x}_1 \star, ..., \mathbf{x}_n \star, t) = \psi_u(\mathbf{x}_1, ..., \mathbf{x}_1, t) \star$, and "hatted" differential operators $\hat{D}(\mathbf{x}\star, \partial\star) := D(\mathbf{x}, \partial)\star$, and one finds $\hat{D} = \wedge^n D[\wedge^n]^{-1}$. We define a deformed \hat{H} -invariant "integration over \hat{X} " $\int_{\hat{X}} d\hat{\nu}(\hat{\mathbf{x}})$ such that

$$\int_{\hat{X}} d\hat{\nu}(\hat{\mathbf{x}}) \hat{f}(\hat{\mathbf{x}}) = \int_{X} d\nu(\mathbf{x}) f(\mathbf{x}),$$

and similarly for n-fold integration. Then in "hat-notation" $(24)_2$ for n particles becomes

$$\langle u, v \rangle = \int_{\hat{X}} d\hat{\nu}(\hat{\mathbf{x}}_1) \dots \int_{\hat{X}} d\hat{\nu}(\hat{\mathbf{x}}_n) [\hat{\psi}_u(\hat{\mathbf{x}}_1, \dots, \hat{\mathbf{x}}_n)]^* \hat{\psi}_v(\hat{\mathbf{x}}_1, \dots, \hat{\mathbf{x}}_n).$$
(25)

The map $\wedge^n : \psi_u \in \mathcal{X}^{\otimes n} \to \hat{\psi}_u \in (\mathcal{X}^{\otimes n})_*$ is therefore unitary and \hat{H} -equivariant. \wedge^n also maps the action of the symmetric group S_n from $\mathcal{X}^{\otimes n}$ to $(\mathcal{X}^{\otimes n})_*$. A permutation $\tau \in S_n$ is represented on $\mathcal{X}^{\otimes n}, (\mathcal{X}^{\otimes n})_*$ respectively by the permutation operator \mathcal{P}_{τ} and the "twisted permutation operator" $\mathcal{P}^F_{\tau} = \wedge^n \mathcal{P}_{\tau}[\wedge^n]^{-1}$ [c.f. G.F.-Schupp 96].

Let $\hat{\kappa}^n := \wedge^n \kappa^{\otimes n}$, $\hat{\tilde{\kappa}}^n(\cdot) := \wedge^n [\tilde{\kappa}^{\otimes n}(\cdot)] [\wedge^n]^{-1}$. Then the maps $\hat{\kappa}^n_{\pm}$, $\hat{\tilde{\kappa}}^n_{+}$ define a \hat{H} -equivariant, noncommutative configuration space realization of $\{\mathcal{H}^{\otimes n}_{\pm}, \mathcal{O}^{\otimes n}_{+}\}$ on $(\mathcal{X}^{\otimes n}_{\pm})_{\star}, (\mathcal{D}^{\otimes n}_{+})_{\star}$, depending on the choice of the reference frame. Let $\{e_i\}_{i\in\mathbb{N}}$ be orthonormal basis of $\mathcal{H}, \varphi_i = \kappa(e_i), a_i^+, a^i$ associated wavefunction, creation, annihilation operators. The (nonrelativistic) field operator and its hermitean conjugate

$$\varphi(\mathbf{x}) := \varphi_i(\mathbf{x})a^i, \qquad \qquad \varphi^*(\mathbf{x}) = \varphi_i^*(\mathbf{x})a_i^+ \qquad (26)$$

in the Schrödinger picture (sum over *i*: infinitely many terms) are operator-valued distributions, basis-independent (i.e. invariant under a unitary transf. U of $\{e_i\}_{i\in\mathbb{N}}$) and fulfilling the CC(A)R

$$\varphi(\mathbf{x}), \varphi(\mathbf{y})]_{\mp} = \text{h.c.} = 0, \qquad [\varphi(\mathbf{x}), \varphi^*(\mathbf{y})]_{\mp} = \varphi_i(\mathbf{x})\varphi_i^*(\mathbf{y}) = |g|^{-\frac{1}{2}}\delta(\mathbf{x} - \mathbf{y}) \quad (27)$$

(\mp for bosons/fermions). The *field* *-*algebra* Φ is spanned e.g. by the normal ordered monomials

$$\varphi^*(\mathbf{x}_1)....\varphi^*(\mathbf{x}_m)\varphi(\mathbf{x}_{m+1})...\varphi(\mathbf{x}_n)$$

 $(\mathbf{x}_1, ..., \mathbf{x}_n \text{ are independent points})$. So $\Phi \subset \Phi^e := \left(\bigotimes_{i=1}^{\infty} V\right) \otimes \mathcal{A}$ (1st, 2nd,... V means space of distributions depending on $\mathbf{x}_1, \mathbf{x}_2, ...$). CCR of \mathcal{A} are the only nontrivial comm. rel. in Φ^e . *H*-invariant $|0\rangle \Rightarrow a_i^+$ transform as $e_i = a_i^+ |0\rangle, \varphi_i$, whereas a^i transform as $\langle i| = \langle 0|a^i, \varphi_i^*$:

$$g \triangleright a_i^+ = \rho_i^j(g) a_j^+ \qquad g \triangleright a^i = \rho^{\vee j}_{\ i}(g) a^j := \rho_j^i \left(S(g) \right) a^j. \tag{28}$$

When $g \in \mathbf{g}$ this is a very special (infinitesimal) unitary transformation U of $\{e_i\}_{i\in\mathbb{N}}$. Under this transf. φ, φ^* are scalars. So *-products with $\forall \chi \in \Phi^e$ make no difference:

$$g \triangleright \varphi(\mathbf{x}) = \epsilon(g)\varphi(\mathbf{x}), \qquad \varphi(\mathbf{x})\star\chi = \varphi(\mathbf{x})\chi, \qquad \chi\star\varphi(\mathbf{x}) = \chi\varphi(\mathbf{x}), \qquad \& \text{ h. c. (29)}$$

On second quantization on NC spaces with twisted symmetries - p.18/2'

These properties, $\epsilon(\alpha) = 1$ and the definition $a'^i := a_i^{+\hat{*}} = S(\alpha^{-1}) \triangleright a^i = \rho_j^i(\alpha^{-1})a^j$ imply

$$\varphi(\mathbf{x}) = \varphi_i(\mathbf{x}) \star a^{\prime i}, \qquad \varphi^*(\mathbf{x}) = \varphi^{\hat{*}}(\mathbf{x}) = a_i^+ \star \varphi_i^{\hat{*}}(\mathbf{x}), \qquad (30)$$

 $\varphi_i(\mathbf{x})\varphi_i^*(\mathbf{y}) = \varphi_i(\mathbf{x}) \star \varphi_i^{\hat{*}}(\mathbf{y})$ and therefore that the CCR (27) can be rewritten in the form

$$[\varphi(\mathbf{x}) \stackrel{*}{,} \varphi(\mathbf{y})]_{\mp} = h.c. = 0, \qquad \qquad [\varphi(\mathbf{x}) \stackrel{*}{,} \varphi^{\hat{*}}(\mathbf{y})]_{\mp} = \varphi_i(\mathbf{x}) \star \varphi_i^{\hat{*}}(\mathbf{y}) \qquad (31)$$

(here and below $[A^*, B]_{\mp} := A \star B \mp B \star A$). Also Φ^e is a *H*-module *-algebra. The field fulfills the following properties: for any $u \in (\mathcal{H}^{\otimes n})_{\pm}$

$$\psi_u(\mathbf{x}_1,...,\mathbf{x}_n) = \kappa^{\otimes n}(u)(\mathbf{x}_1,...,\mathbf{x}_n) = \frac{1}{\sqrt{n!}} \langle 0|\varphi(\mathbf{x}_n) \star ... \star \varphi(\mathbf{x}_1)u, \quad (32)$$

$$u = \frac{1}{\sqrt{n!}} \int_{X} d\nu(\mathbf{x}_1) \dots \int_{X} d\nu(\mathbf{x}_n) \psi_u(\mathbf{x}_1, \dots, \mathbf{x}_n) \varphi^{\hat{*}}(\mathbf{x}_1) \star \dots \star \varphi^{\hat{*}}(\mathbf{x}_n) |0\rangle, \quad (33)$$

which are very useful for computing the unitary transformation $\kappa^{\otimes n} \upharpoonright_{\mathcal{H}^n_{\pm}}$ and its inverse, taking into account automatically the combinatorial aspects of (anti)symmetrization.

Equations of motion

Assume the *n*-particle wavefunctions $\psi_{\star}^{(n)}$ fulfill some \star -differential Schrödinger equation

$$i\hbar\frac{\partial}{\partial t}\psi_{\star}^{(1)} = \mathsf{H}_{\star}^{(1)}\psi_{\star}^{(1)}, \qquad \mathsf{H}_{\star}^{(1)} = \left[-\frac{\hbar^{2}}{2m}D^{a}\star D_{a}+V\right]\star, \qquad D_{a} = \partial_{a}+ieA_{a}$$

$$i\hbar\frac{\partial}{\partial t}\psi_{\star}^{(n)} = \mathsf{H}_{\star}^{(n)}\psi_{\star}^{(n)}, \qquad \mathsf{H}_{\star}^{(n)} = \sum_{h=1}^{n}\mathsf{H}_{\star}^{(1)}(\mathbf{x}_{h},t) + \sum_{h< k}W(\rho_{hk})\star, \qquad n \ge 2$$
(34)

Commuting t; *-local interaction with external background potential $V(\mathbf{x}, t)$ and U(1) gauge potential $\mathbf{A}(\mathbf{x}, t)$. $\rho_{hk} \equiv \text{distance}$ between the points $\mathbf{x}_h, \mathbf{x}_k$ ($\rho_{hk} = |\mathbf{x}_h - \mathbf{x}_k|$ if $X = \mathbb{R}^3$). $\mathsf{H}^{(n)}_{\star} \equiv \text{pseudo-differential operator!}$ It is hermitean provided $\mathsf{H}^{(1)}$ is and $\alpha \triangleright \mathsf{H}^{(1)} = \mathsf{H}^{(1)}$. $\mathsf{H}^{(n)}_{\star}$ is completely symmetric, so preserves the (anti)symmetry of $\psi^{(n)}_{\star}$. The Fock space Hamiltonian

$$\mathsf{H}_{\star}(\varphi) = \int_{X} d\nu(\mathbf{x}) \varphi^{\hat{\star}}(\mathbf{x}) \star \mathsf{H}_{\star}^{(1)}(\mathbf{x}, t) \varphi(\mathbf{x}) + \int_{X} d\nu(\mathbf{x}) \int_{X} d\nu(\mathbf{y}) \varphi^{\hat{\star}}(\mathbf{y}) \star \varphi^{\hat{\star}}(\mathbf{x}) \star W(\rho_{\mathbf{x}\mathbf{y}}) \star \varphi(\mathbf{x}) \star \varphi($$

commutes with $\mathbf{n} := a_i^+ a^i = a_i^+ \star a'^i$, and $\kappa^{\otimes n} \circ \mathsf{H}_{\star} \upharpoonright_{\mathcal{H}^n_{\pm}} = \mathsf{H}^{(n)}_{\star}$ for $n \ge 2$. The Heisenberg field operator $\varphi_{\star}^H(\mathbf{x}, t) := e^{-\frac{i}{\hbar} \int_0^t dt \, \mathsf{H}_{\star}} \varphi(\mathbf{x}) e^{-\frac{i}{\hbar} \int_0^t dt \, \mathsf{H}_{\star}}$ fulfills

$$[\varphi_{\star}^{H}(\mathbf{x},t)\overset{\star}{,}\varphi_{\star}^{H}(\mathbf{y},t)]_{\mp} = \mathrm{h.c.} = 0, \qquad [\varphi_{\star}^{H}(\mathbf{x},t)\overset{\star}{,}\varphi_{\star}^{H}\overset{*}{*}(\mathbf{y},t)]_{\mp} = \varphi_{i}(\mathbf{x})\overset{\star}{,}\varphi_{i}^{\hat{*}}(\mathbf{y}),$$

$$i\hbar\frac{\partial}{\partial t}\varphi_{\star}^{H} = [\mathsf{H}_{\star}\overset{\star}{,}\varphi_{\star}^{H}].$$
(35)

If W = 0 (34)₃ amounts to the "second quantization of (33)₁", $i\hbar \frac{\partial \varphi_{\star}^{H}}{\partial t} = \mathsf{H}_{\star}^{(1)} \varphi_{\star}^{H}$, a \star -local equation. If $\mathsf{H}_{\star}^{(1)}$ is *t*-independent, so is H_{\star} , then $\mathsf{H}_{\star}(\varphi_{\star}^{H}) = \mathsf{H}_{\star}(\varphi)$, and (34) can be equivalently formulated directly in the Heisenberg picture as equations in the unknown $\varphi_{\star}^{H}(t)$.

By further replacing $\hat{V}(\mathbf{x}, t) = V(\mathbf{x}, t)$, $\hat{\mathbf{A}}(\mathbf{x}, t) = \mathbf{A}(\mathbf{x}, t)$, $\hat{\varphi}_i(\mathbf{x}) = \varphi_i(\mathbf{x})$ we can reformulate the previous eq.'s purely with \star -products: **2nd quantization on the NC spacetime** $\hat{X} \times \mathbb{R}$ compatible with QM axioms and Bose/Fermi statistics. In "hat" notation, within $\hat{\Phi}^e$, $\hat{\Phi}$,

- $[\hat{\varphi}(\hat{\mathbf{x}}), \hat{\varphi}(\hat{\mathbf{y}})]_{\mp} = \text{h.c.} = 0, \qquad \qquad [\hat{\varphi}(\hat{\mathbf{x}}), \hat{\varphi}^{\hat{*}}(\hat{\mathbf{y}})]_{\mp} = \hat{\varphi}_{i}(\hat{\mathbf{x}})\hat{\varphi}_{i}^{\hat{*}}(\hat{\mathbf{y}}),$
- $i\hbar\frac{\partial}{\partial t}\hat{\psi} = \hat{\mathsf{H}}^{(n)}\hat{\psi}, \qquad \qquad \hat{\mathsf{H}}^{(n)} = \sum_{h=1}^{n} \hat{\mathsf{H}}^{(1)}(\hat{\mathbf{x}}_{h}, t) + \sum_{h < k} \hat{W}(\hat{\rho}_{hk})$ (36)

 $\hat{\mathsf{H}} = \int d\hat{\nu}(\hat{\mathbf{x}})\hat{\varphi}^{\hat{*}}(\hat{\mathbf{x}})\hat{\mathsf{H}}^{(1)}(\hat{\mathbf{x}},t)\hat{\varphi}(\hat{\mathbf{x}}) + \int d\hat{\nu}(\hat{\mathbf{x}})\int d\hat{\nu}(\hat{\mathbf{y}})\hat{\varphi}^{\hat{*}}(\hat{\mathbf{y}})\hat{\varphi}^{\hat{*}}(\hat{\mathbf{x}})W(\hat{\rho}_{\mathbf{xy}})\hat{\varphi}(\mathbf{x})\hat{\varphi}(\mathbf{y}),$

 $[\hat{\varphi}_H(\hat{\mathbf{x}},t),\hat{\varphi}_H(\hat{\mathbf{y}},t)]_{\mp} = \text{h.c.} = 0, \qquad [\hat{\varphi}_H(\hat{\mathbf{x}},t),\hat{\varphi}_H^{\hat{*}}(\hat{\mathbf{y}},t)]_{\mp} = \hat{\varphi}_i(\hat{\mathbf{x}})\hat{\varphi}_i^{\hat{*}}(\hat{\mathbf{y}}),$

 $i\hbar\frac{\partial}{\partial t}\hat{\varphi}_H = [\hat{\mathsf{H}}, \hat{\varphi}_H].$

There is an advantage if the $\hat{\mathbf{x}}$ -dependence of $\hat{V}(\hat{\mathbf{x}}, t)$, $\hat{\mathbf{A}}(\hat{\mathbf{x}}, t)\hat{\varphi}_i(\hat{\mathbf{x}})$ is simpler than the x-dependence of $V(\mathbf{x}, t)$, $\mathbf{A}(\mathbf{x}, t)$, $\varphi_i(\mathbf{x})$, as it happens if the latter fulfill \star -differential equations. Now you can forget how you have got (36), and check its consistency beyond the level of formal λ -power series using only deformed on NC spaces with twisted symmetries – p.21/2

Note in particular that the field commutation relations, both in the Schroedinger and in the Heisenberg picture, are of the type "field (anti)commutator= a distribution".

$$\hat{\psi}_{u}(\hat{\mathbf{x}}_{1},...,\hat{\mathbf{x}}_{n}) := \hat{\kappa}_{\pm}^{n}(u)(\hat{\mathbf{x}}_{1},...,\hat{\mathbf{x}}_{n}) = \frac{1}{\sqrt{n!}} \langle 0 | \hat{\varphi}(\hat{\mathbf{x}}_{n})...\hat{\varphi}(\hat{\mathbf{x}}_{1})u,$$

$$u = \frac{1}{\sqrt{n!}} \int_{\hat{X}} d\hat{\nu}(\hat{\mathbf{x}}_{1})...\int_{\hat{X}} d\hat{\nu}(\hat{\mathbf{x}}_{n})\hat{\psi}_{u}(\hat{\mathbf{x}}_{1},...,\hat{\mathbf{x}}_{n})\hat{\varphi}^{\hat{*}}(\hat{\mathbf{x}}_{1})...\hat{\varphi}^{\hat{*}}(\hat{\mathbf{x}}_{n})|0\rangle.$$
(37)

for any $u \in (\mathcal{H}^{\otimes n})_{\pm}$; choosing $u = e_{i_1,...,i_n}^{\pm} \in \mathcal{B}_{\pm}^n$ one finds in particular

$$\psi_u(\mathbf{x}_1,...,\mathbf{x}_n) = N\varphi_{(j_1}(\mathbf{x}_1)...\varphi_{j_n}](\mathbf{x}_n),$$
$$\hat{\psi}_u(\hat{\mathbf{x}}_1,...,\hat{\mathbf{x}}_n) = \mathsf{F}_{i_1...i_n}^{n\,j_1...j_n} N\hat{\varphi}_{(j_1}(\hat{\mathbf{x}}_1)...\hat{\varphi}_{j_n}](\hat{\mathbf{x}}_n)$$

where (...] means indices (anti)symmetrization, and $\mathsf{F}^n := (\tilde{\kappa} \circ \rho)^{\otimes n} (\mathcal{F}^n)$ (a unitary operator). The group S_n acts on $\hat{\psi}_u(\hat{\mathbf{x}}_1,...,\hat{\mathbf{x}}_n) \in$ the (braided) tensor product $\hat{\mathcal{X}} \otimes ... \otimes \hat{\mathcal{X}}$ by "twisted permutations" $\mathcal{P}^F_{\tau} = F^n \mathcal{P}_{\tau} F^{n-1}$ [G.F. & Schupp '95]. This is an alternative way to fulfill Bose/Fermi statistics.

Examples: QM and QFT on Moyal NC space(time)

Here $\mathbf{g} = \mathcal{G} \equiv$ Galilei Lie algebra in the non-relativistic case, $\mathbf{g} = \mathcal{P} \equiv$ Poincaré Lie algebra in the relativistic case. Simplest choice for \mathcal{F} :

 $\mathcal{F} \equiv \sum_{I} \mathcal{F}_{I}^{(1)} \otimes \mathcal{F}_{I}^{(2)} := \exp\left(\frac{i}{2}\lambda\theta^{\mu\nu}P_{\mu}\otimes P_{\nu}\right) \to \exp\left(\frac{i}{2}\theta^{\mu\nu}P_{\mu}\otimes P_{\nu}\right).$ where $\theta^{\mu\nu}$ is a fixed real antisymmetric matrix. Setting $M_{\omega} = \omega^{\mu\nu}M_{\mu\nu} \ (\omega^{\mu\nu} = -\omega^{\nu\mu}),$

$$\hat{\Delta}(P_{\mu}) = \Delta(P_{\mu}) = P_{\mu} \otimes \mathbf{1} + \mathbf{1} \otimes P_{\mu} = \Delta(P_{\mu}),$$
$$\hat{\Delta}(M_{\omega}) = M_{\omega} \otimes \mathbf{1} + \mathbf{1} \otimes M_{\omega} + P \cdot \otimes [\omega, \theta] P \neq \Delta(M_{\omega}).$$

Translations undeformed!

When $\mathbf{g} = \mathcal{G}$ put $\theta^{0a} = 0$, $t = x^0$, $P_0 = H_0 \equiv$ non-relativistic kinetic energy, $M^{bc} = \epsilon^{abc} L^a$, $M^{0a} = K^a$, and the mass *m* is an additional generator, central. Only nontrivial comm. rel.:

$$a(x_i) \star b(x_j) = \exp\left[\frac{i}{2} \partial_{x_i} \theta \partial_{x_j}\right] a(x_i) b(x_j), \tag{4'}$$

after which we must set $x_i = x_j$ if i = j.

Simplest (nonrelativistic) models where one can see the effects of the \star -locality of the interaction:

1. Charged particle in constant magnetic field B. The simplest gauge choice is $A^i(x) = \epsilon^{ijk} B^j x^k/2$. One finds $\mathsf{H}^{(1)}_{\star}$, is still differential of second order, but more complicated. In terms of "hatted" objects it can be formulated and solved as in the undeformed case. Choose x^3 -axis parallel to $q\mathbf{B} = qB\vec{k}$ with qB > 0, this gives $\hat{D}^3 = \partial^3$, $\hat{D}^a = \partial^a - i\frac{qB}{2\hbar c}\epsilon^{ab}\hat{x}^b$ for $a, b \in \{1, 2\}$, with $\epsilon^{12} = 1 = -\epsilon^{21}$, $\epsilon^{aa} = 0$. These fulfill $[\partial^3, \hat{D}^a] = 0$, $[\hat{D}^1, \hat{D}^2] = i\frac{qB}{\hbar c}[1 - \frac{qB\theta^{12}}{2\hbar c}]$. Defining

$$a := \alpha [\hat{D}^1 - i\hat{D}^2], \qquad a^* = \alpha [-\hat{D}^1 - i\hat{D}^2] \qquad \alpha := \sqrt{\frac{\hbar c}{qB}} / \sqrt{2 - \frac{qB\theta^{12}}{2\hbar c}} \tag{39}$$

(we assume $qB\theta^{12} < 4\hbar c$) one obtains the commutation relation $[a, a^*] = 1$, and

$$\mathbf{H}^{(1)} = \frac{-\hbar^{2}}{2m} \hat{D}^{i} \hat{D}^{i} = \frac{-\hbar^{2}}{2m} \left[(\partial^{3})^{2} - \frac{1}{2\alpha^{2}} (aa^{*} + a^{*}a) \right] = \mathbf{H}^{(1)}_{\parallel} + \mathbf{H}^{(1)}_{\perp} \perp$$

$$\mathbf{H}^{(1)}_{\parallel} := \frac{(-i\hbar\partial^{3})^{2}}{2m}, \qquad \mathbf{H}^{(1)}_{\perp} := \hbar\omega \left(a^{*}a + \frac{1}{2} \right), \qquad \omega := \frac{qB}{mc} \left(1 - \frac{qB\theta^{12}}{4\hbar c} \right)$$

$$(40)$$

 $[\mathsf{H}^{(1)}_{\parallel}, \mathsf{H}^{(1)}_{\perp}] = 0$. $\mathsf{H}^{(1)}_{\parallel}$ has continuous spectrum $[0, \infty]$; the generalized eigenfunctions are the eigenfunctions $e^{ik\hat{x}^3}$ of $p^3 = -i\hbar\partial^3$ with eigenvalue $\hbar k$. The second is formally an harmonic oscillator Hamiltonian with ω modified by the presence of the noncommutativity θ^{12} .

2. Charged particle in a plane wave electromagnetic field.

 $A^{a}(x) = \varepsilon^{a}(\mathbf{p}) \exp[-ip \cdot x] \equiv \varepsilon^{a}(\mathbf{p}) \exp[i(\mathbf{p} \cdot \mathbf{x} - |\mathbf{p}|t)]$, (the amplitude vector fulfilling $\varepsilon^{a}(\mathbf{p})p^{a} = 0$). To check (??) it is useful to note the properties

$$e^{i\mathbf{p}\cdot\mathbf{x}} \star f(\mathbf{x}) = e^{i\mathbf{p}\cdot\mathbf{x}} f(\mathbf{x} + \theta\mathbf{p}/2) \qquad \Rightarrow \qquad e^{i\mathbf{p}\cdot\mathbf{x}} \star e^{ia\mathbf{p}\cdot\mathbf{x}} = e^{i\mathbf{p}\cdot\mathbf{x}} e^{ia\mathbf{p}\cdot\mathbf{x}} \tag{41}$$

where $(\theta p)^a := \theta^{ab} p^b$, as $p\theta p = 0$. The Schrödinger equation for n = 1 particle becomes

$$i\hbar\partial_t\psi^{(1)}_{\star}(\mathbf{x},t) = \frac{-\hbar^2}{2m} \left[\Delta\psi^{(1)}_{\star}(\mathbf{x},t) + 2iee^{-ip\cdot x}\varepsilon^a\partial_a\psi^{(1)}_{\star}\left(\mathbf{x} + \frac{\theta\mathbf{p}}{2},t\right) - e^2e^{-2ip\cdot x}|\varepsilon|^2\psi^{(1)}_{\star}(\mathbf{x} - \frac{\theta\mathbf{p}}{2},t)\right] + e^2e^{-2ip\cdot x}|\varepsilon|^2\psi^{(1)}_{\star}(\mathbf{x} - \frac{\theta\mathbf{p}}{2},t)$$

the nonlocality induced by the \star -product is here particularly simple, in that it involves the wavefunction at points $\mathbf{x}, \mathbf{x} + \theta \mathbf{p}/2, \mathbf{x} + \theta \mathbf{p}$ related by the constant shift $\theta \mathbf{p}/2$.

Relativistic QFT

By analogous considerations one can construct a consistent (at least free) QFT on a NC Minkowski spacetime with twisted symmetry. For the Moyal NC one reobtains recent results of G.F., J. Wess 07, in particular

$$[\varphi_0(x) \stackrel{*}{,} \varphi_0(y)] = i\Delta(x-y), \qquad i\Delta(\xi) := \int \frac{d\mu(p)}{(2\pi)^3} [e^{-ip\cdot\xi} - e^{-ip\cdot\xi}] \tag{42}$$

(Δ undeformed!) for free fields, implying **the c.c.r.** $[\varphi_0(x^0, \mathbf{x}) \stackrel{*}{,} \dot{\varphi}_0(x^0, \mathbf{y})] = i \,\delta^3(\mathbf{x} - \mathbf{y})$. In terms of generalized basis (eigenvectors of P_{μ}) and creation & annihilation operators:

$$a_{\mathbf{p}}^{+} \star a_{\mathbf{q}}^{+} = e^{-ip\theta q} a_{\mathbf{q}}^{+} \star a_{\mathbf{p}}^{+}, \qquad \hat{a}_{\mathbf{p}}^{+} \hat{a}_{\mathbf{q}}^{+} = e^{iq\theta p} \hat{a}_{\mathbf{q}}^{+} \hat{a}_{\mathbf{p}}^{+},
a_{\mathbf{p}}^{\mathbf{p}} \star a^{\mathbf{q}} = e^{-ip\theta q} a_{\mathbf{q}}^{\mathbf{q}} \star a^{\mathbf{p}}, \qquad \hat{a}_{\mathbf{p}}^{\mathbf{p}} \hat{a}_{\mathbf{q}}^{\mathbf{q}} = e^{iq\theta p} \hat{a}_{\mathbf{q}}^{\mathbf{q}} \hat{a}_{\mathbf{p}}^{\mathbf{p}},
a_{\mathbf{p}}^{\mathbf{p}} \star a_{\mathbf{q}}^{+} = e^{ip\theta q} a_{\mathbf{q}}^{+} \star a^{\mathbf{p}} + 2p^{0} \delta^{3}(\mathbf{p} - \mathbf{q}) \qquad \hat{a}_{\mathbf{p}}^{\mathbf{p}} \hat{a}_{\mathbf{q}}^{+} = e^{ip\theta q} \hat{a}_{\mathbf{q}}^{+} \hat{a}_{\mathbf{p}}^{\mathbf{p}} + 2p^{0} \delta^{3}(\mathbf{p} - \mathbf{q}),
a_{\mathbf{p}}^{\mathbf{p}} \star e^{iq \cdot x} = e^{-ip\theta q} e^{iq \cdot x} \star a^{\mathbf{p}}, \qquad \& \text{h.c.}, \qquad \hat{a}_{\mathbf{p}}^{\mathbf{p}} e^{iq \cdot \hat{x}} = e^{-ip\theta q} e^{iq \cdot \hat{x}} \hat{a}_{\mathbf{p}}^{\mathbf{p}}, \qquad \& \text{h.c.};$$

$$(43)$$

$$\check{a}_{\mathbf{p}}^{+} \equiv D_{\mathcal{F}}^{\sigma} \left(a_{\mathbf{p}}^{+} \right) = a_{\mathbf{p}}^{+} e^{-\frac{i}{2}p\theta\sigma(P)}, \qquad \check{a}^{\mathbf{p}} \equiv D_{\mathcal{F}}^{\sigma} \left(a^{\mathbf{p}} \right) = a^{\mathbf{p}} e^{\frac{i}{2}p\theta\sigma(P)}
\hat{a}_{\mathbf{p}_{1}}^{+} \dots \hat{a}_{\mathbf{p}_{n}}^{+} |0\rangle = a_{\mathbf{p}_{1}}^{+} \star \dots \star a_{\mathbf{p}_{n}}^{+} |0\rangle = \check{a}_{\mathbf{p}_{1}}^{+} \dots \check{a}_{\mathbf{p}_{n}}^{+} |0\rangle = \exp\left[-\frac{i}{2} \sum_{\substack{j,k=1\\j$$

where $\sigma(P_{\mu}) = \int d\mu(p) p_{\mu} a_{\mathbf{p}}^{+} a^{\mathbf{p}}$. By (45) generalized states differ from their undeformed counterparts only by multiplication by a phase factor. As $\check{a}_{\mathbf{p}}^{+} \check{a}^{\mathbf{p}} = a_{\mathbf{p}}^{+} a^{\mathbf{p}}$, $\sigma(P_{\mu}) = \int d\mu(p) p_{\mu} \check{a}_{\mathbf{p}}^{+} \check{a}^{\mathbf{p}}$, the inverse of $D_{\mathcal{F}}^{\sigma}$ is readily obtained.

This means that the results of G.F., J. Wess 07 are consistent with Bose-Fermi statistics and a description of (at least) free n-particle states by t-dependent wavefunctions.