On second quantization on NC spaces with twisted symmetries

G. Fiore, Universitá "Federico II" and INFN, Napoli.

Bayrischzell Workshop 2008 "Noncommutative Geometry and Physics", Bayrischzell, May 2008
(Based on Preprint DSF-11/08, Napoli)

Introduction
 QFT on NC space(time)s: how and why?

Various possible routes:

- Path-integral field quantization Filk 96, Douglas, Schwarz, Oeckl 99, Seiberg-Witten 99, Alvarez-Gaume', Nekrasov, Szabo,..., Grosse-Wulkenhaar (renormalizable QFT's),...,
- Field quantization in operator approach (Canonical or á la Wightman? Standard o deformed Poincaré?...) Doplicher-Fredenhagen-Roberts 95, et al 95-06,..., Chaichian et al 04-07, Balachandran et al 05-07, Lizzi et al 06, Abe 06, Zahn 06, ...,G.F.-Wess 07, ,..., Aschieri et al 07 (quantizing \star-Poisson bracket),...
In [G.F.-Wess 07] a surprising result: Wightman axioms with careful twisted Poincaré covariance yield QFT (free or interacting) with the same n-point functions and commutation relation relations. What's happening?!? (Already [G.F.-Schupp 96]: twisted symmetries compatible with Bose-Fermi statistics)
- Here 2nd Quantization: from covariant QM of n identical bosons/fermions on a NC space(time) to QFT on the latter. Main motivations: importance of the particle interpretation; keeping Bose-Fermi statistics to avoid drastic consequences.

Various issues involved: consistency with QM axioms (unitarity, quantum statistics,...)? Deformed space(time) symmetry? Causality? Divergences \& renormalizability?...

Bottom-up approach based on \star-products to guess a consistent NC framework:

- Start from G-covariant many-particle QM on a G-symmetric, commutative space(time) M. E.g.: $G=$ Galilei group and $M=\mathbb{R} \times \mathbb{R}^{3} ; G=$ Poincaré group and $M=$ Minkowski spacetime. - QFT can be obtained by 2 nd quantization.
- We may introduce a moderate (very special) non-locality in the interactions using the \star-product induced by a twist $\mathcal{F}(\lambda)$ of $H \equiv U \mathbf{g}[\mathbf{g}:=\operatorname{Lie}(G), \lambda=$ deformation parameter].
- Express all ordinary products as formal expansions in λ of \star-ones upon inverting the definition

$$
f \star g=f g+O(\lambda) \quad \Rightarrow \quad f g=f \star g+O_{\star}(\lambda)
$$

So we reformulate commutative notions [wavefunctions, differential operators (Hamiltonian, etc), creation \& annihilation operators,..., their transformations, 2nd quantization procedure itself] purely in terms of their noncommutative analogs.

- Forget original products to obtain a closed framework for Second Quantization on a NC space.

Same strategy as adopted by J. Wess and collaborators [03-06] e.g. to formulate noncommutative diffeomorphisms and related notions (metric, connections, tensors etc).

We stick to NC space(time)s symmetric under triangular deformations (by twisting) of Lie groups, requiring full covariance of the framework under such a "twisted symmetry group" (Hopf algebra). Maybe no or little new dynamics, but at least a "noncommutative way" to look at it; moreover, this can pave the way for more interesting (and complicated) deformations.

Plan

1. Introduction
2. Twisting $H=U \mathbf{g}$ to a noncocommutative Hopf algebra \hat{H}
3. Twisting modules and module (*-)algebras [to be applied to $\mathcal{H}, \mathcal{O}, \mathcal{M}=C^{\infty}(M)$, $\mathcal{D}(\mathcal{M}), \mathcal{L}^{2}$, their tensor powers, their (anti)symmetric parts, \mathcal{A}, the field algebra $\left.\Phi, \ldots\right]$
4. Symmetric QM with n bosons/fermions in abstract Hilbert space
5. Second quantization: from wavefunctions to quantum fields (non-relativistic)
6. Second quantization: from wavefunctions to quantum fields (relativistic)
7. Examples: QM and QFT on Moyal NC space(time)

Twisting $H=U \mathbf{g}$ to a noncocomm. Hopf algebra \hat{H}

Real deformation parameter $\lambda . \hat{H}, H[[\lambda]]$ have

1. same $*$-algebra (over $\mathbb{C}[[\lambda]]$) and counit ε
2. coproducts $\Delta, \hat{\Delta}$ related by

$$
\Delta(g) \equiv \sum_{I} g_{(1)}^{I} \otimes g_{(2)}^{I} \longrightarrow \hat{\Delta}(g)=\mathcal{F} \Delta(g) \mathcal{F}^{-1} \equiv \sum_{I} g_{(\hat{1})}^{I} \otimes g_{(\hat{2})}^{I}
$$

3. antipodes S, \hat{S} s.t. $\hat{S}(g)=\alpha^{-1} S(g) \alpha$, with $\alpha=\sum_{I} S\left(\overline{\mathcal{F}}_{I}^{(1)}\right) \overline{\mathcal{F}}_{I}^{(2)}, \overline{\mathcal{F}}=\mathcal{F}^{-1}$.
where the twist [Drinfel'd 83] is for our purposes a unitary element $\mathcal{F} \in\left(H^{s} \otimes H^{s}\right)[[\lambda]]$, ($H^{s} \subseteq H$ Hopf $*$-subalgebra) fulfilling

$$
\begin{align*}
& \mathcal{F}=\mathbf{1} \otimes \mathbf{1}+O(\lambda), \quad(\epsilon \otimes \mathrm{id}) \mathcal{F}=(\mathrm{id} \otimes \epsilon) \mathcal{F}=\mathbf{1}, \\
& (\mathcal{F} \otimes \mathbf{1})[(\Delta \otimes \mathrm{id})(\mathcal{F})]=(\mathbf{1} \otimes \mathcal{F})[(\mathrm{id} \otimes \Delta)(\mathcal{F})]=: \mathcal{F}_{3} . \tag{1}
\end{align*}
$$

\hat{H} has unitary triangular structure $\mathcal{R}=\mathcal{F}_{21} \mathcal{F}^{-1} . \hat{H}^{s}:=H^{s}[[\lambda]]$ is a Hopf $*$-subalgebra of \hat{H}.

Twisting module (*-)algebras

Recall defs: a $\hat{*}$-algebra $\hat{\mathcal{A}}$ over $\mathbb{C}[[\lambda]]$ is a left \hat{H}-module $\hat{*}$-algebra if \exists a $\mathbb{C}[[\lambda]]$-bilinear map $(g, \hat{a}) \in \hat{H} \times \hat{\mathcal{A}} \rightarrow g \stackrel{\rightharpoonup}{a} \in \hat{\mathcal{A}}$, called left action, such that (omitting product symbols)

$$
\begin{align*}
& \left(g g^{\prime}\right) \stackrel{\rightharpoonup}{a}=g \triangleright\left(g^{\prime} \stackrel{\rightharpoonup}{\triangleright}\right), \quad(g \triangleright \hat{a})^{\hat{*}}=[\hat{S}(g)]^{\hat{*}} \stackrel{\rightharpoonup}{a^{\hat{*}}}, \\
& g \stackrel{\triangleright}{a}(\hat{a})=\sum_{I}\left[g_{(\hat{1})}^{I} \hat{\triangleright} \hat{a}\right]\left[g_{(\hat{2})}^{I} \diamond \triangleright b\right] . \tag{2}
\end{align*}
$$

A $\hat{H}-(\hat{*}-)$ module $\hat{\mathcal{M}}$ is a linear space fulfilling only the first (two) relations.
Since $\hat{H}=H[[\lambda]]$ as $*$-algebras (and \mathcal{F} is unitary), $\mathcal{M}[[\lambda]]$ is a \hat{H}-($(\hat{-}$)module under

$$
\begin{equation*}
g \hat{\triangleright} a=g \triangleright a ; \quad\left(a^{\hat{*}}:=S\left(\alpha^{-1}\right) \triangleright a^{*}\right) \tag{3}
\end{equation*}
$$

Given a \mathcal{A}, endow $\mathcal{M}[[\lambda]]:=V(\mathcal{A})[[\lambda]] \equiv$ vector space underlying $\mathcal{A}[[\lambda]]$ with a new product, the \star-product, defined by

$$
\begin{equation*}
a \star b:={ }_{I}\left(\overline{\mathcal{F}}_{I}^{(1)} \triangleright a\right)\left(\overline{\mathcal{F}}_{I}^{(2)} \triangleright b\right), \tag{4}
\end{equation*}
$$

this becomes a H-module (*-)algebra \mathcal{A}_{\star} : associativity follows from (1), whereas (2)3 from

$$
g \triangleright(a \star b)=\left[g_{(1)}^{I} \overline{\mathcal{F}}_{I^{\prime}}^{\left(1^{\prime}\right)} \triangleright a\right]\left[g_{(2)}^{I} \overline{\mathcal{F}}_{I^{\prime}}^{\left(2^{\prime}\right)} \triangleright b\right]=\left[\overline{\mathcal{F}}_{I^{\prime}}^{\left(1^{\prime}\right)} g_{(\hat{1})}^{I} \triangleright a\right]\left[\overline{\mathcal{F}}_{I^{\prime}}^{\left(2^{\prime}\right)} g_{(\hat{2})}^{I} \triangleright b\right]=\left[g_{(\hat{1})}^{I} \triangleright a\right] \star\left[g_{(\hat{2})}^{I}\right.
$$

The \star is ineffective if a or b is H^{s}-invariant:

$$
\begin{equation*}
g \triangleright a=\epsilon(g) a \quad \text { or } \quad g \triangleright b=\epsilon(g) b \quad \forall g \in H^{s} \quad \Rightarrow \quad a \star b=a b \tag{5}
\end{equation*}
$$

Given $H-(*-)$ modules \mathcal{M}, \mathcal{N}, then also $\mathcal{M} \otimes \mathcal{N}$ is, under the action

$$
\begin{equation*}
g \triangleright(m \otimes n)=\sum_{I}\left(g_{(1)}^{I} \triangleright m\right) \otimes\left(g_{(2)}^{I} \triangleright n\right), \tag{6}
\end{equation*}
$$

and $\mathcal{M} \otimes \mathcal{N}[[\lambda]]$ is a $\hat{H}-(\hat{*}-)$ module, under the action

$$
\begin{equation*}
g \hat{\triangleright}(m \otimes n)=\sum_{I}\left(g_{(\hat{1})}^{I} \hat{\triangleright} m\right) \otimes\left(g_{(\hat{2})}^{I} \hat{\triangleright} n\right) \in \mathcal{M} \otimes \mathcal{N}[[\lambda]] \tag{7}
\end{equation*}
$$

$\mathcal{F} \triangleright^{\otimes 2}$ is an intertwiner between them. Applying (6) to the " \star-tensor product" [Aschieri et al]

$$
\left(m \otimes_{\star} n\right):=\overline{\mathcal{F}} \triangleright^{\otimes 2}(m \otimes n)=\sum_{I}\left(\overline{\mathcal{F}}_{I}^{(1)} \triangleright m\right) \otimes\left(\overline{\mathcal{F}}_{I}^{(2)} \triangleright n\right)
$$

one finds $g \triangleright\left(m \otimes_{\star} n\right)=\sum_{I}\left(g_{(\hat{1})}^{I} \triangleright m\right) \otimes_{\star}\left(g_{(\hat{2})}^{I} \triangleright n\right)$, i.e. a realizaton of (7).
Moreover, if $\mathcal{M}^{s} \subset \mathcal{M} \otimes \mathcal{N}$ is a $H-(*-)$ submodule, then $\mathcal{F} \triangleright^{\otimes 2} \mathcal{M}^{s}$ is a \hat{H}-($\left.\hat{*}-\right)$ submodule.
Given H-module ($*-$)algebras \mathcal{A}, \mathcal{B} the tensor ($*-$-)algebra $\mathcal{A} \otimes \mathcal{B}\left[(a \otimes b)\left(a^{\prime} \otimes b^{\prime}\right)=a a^{\prime} \otimes b b^{\prime}\right]$ also is a H-module $(*-)$ algebra under \triangleright.
Introducing the \star-product (4) $\mathcal{A} \otimes \mathcal{B}$ is deformed into a \hat{H}-module $(*-) \operatorname{algebra}(\mathcal{A} \otimes \mathcal{B})_{\star}$. One finds

$$
\begin{equation*}
\left(a \otimes_{\star} b\right) \star\left(c \otimes_{\star} d\right)=\sum_{I} a \star\left(\overline{\mathcal{R}}_{I}^{(1)} \triangleright c\right) \otimes_{\star}\left(\overline{\mathcal{R}}_{I}^{(1)} \triangleright b\right) \star d \tag{8}
\end{equation*}
$$

$\overline{\mathcal{R}} \equiv \mathcal{R}^{-1} . \otimes_{\star}$ is the associated braided tensor product, (involutive, as $\mathcal{R} \mathcal{R}_{21}=\mathbf{1} \otimes \mathbf{1}$). Note that $a \otimes \star b=(a \otimes \mathbf{1}) \star(\mathbf{1} \otimes b), \mathcal{A}_{1 \star} \equiv(\mathcal{A} \otimes \mathbf{1})_{\star} \sim \mathcal{A}_{\star}$, So $\mathcal{B}_{2 \star} \equiv(\mathbf{1} \otimes \mathcal{B})_{\star} \sim \mathcal{B}_{\star}$. So $(\mathcal{A} \otimes \mathcal{B})_{\star}$ encodes the \star within \mathcal{A}, \mathcal{B} and the \otimes_{\star} between them.
H-module algebras defined by generators and relations. Given a \mathcal{M}, fix a (discrete) basis $\left\{a_{i}\right\}_{i \in \mathcal{I}}$ of \mathcal{M}. The free algebra \mathcal{A}^{f} generated by $\left\{a_{i}\right\}_{i \in \mathcal{I}}$ is automatically a H-module ($*$-)algebra under

$$
g \triangleright\left(a_{i_{1}} a_{i_{2}} \ldots a_{i_{k}}\right)=\sum_{I}\left(g_{(1)}^{I} \triangleright a_{i_{1}}\right)\left(g_{(2)}^{I} \triangleright a_{i_{2}}\right) \ldots\left(g_{(k)}^{I} \triangleright a_{i_{k}}\right) .
$$

By the previous procedure one deforms \mathcal{A}^{f} into a \hat{H}-module (*-) algebra \mathcal{A}_{\star}^{f}. Now assume $\mathcal{A}=\mathcal{A}^{f} / \mathcal{I}$, where \mathcal{I} is a H-invariant (*)ideal generated by some set of polynomial relations ${ }^{a}$

$$
\begin{equation*}
f^{J}\left(a_{1}, a_{2}, \ldots\right)=0, \quad J \in \mathcal{J} \tag{9}
\end{equation*}
$$

We can define \star-polynomials f_{\star}^{J} requiring $f_{\star}^{J}\left(a_{1 \star}, a_{2} \star, \ldots\right)=f^{J}\left(a_{1}, a_{2}, \ldots\right)$ in $V\left(\mathcal{A}^{f}\right)[[\lambda]]=V\left(\mathcal{A}_{\star}^{f}\right)$. The \star-polynomial relations

$$
\begin{equation*}
f_{\star}^{J}\left(a_{1} \star, a_{2} \star, \ldots\right)=0, \quad J \in \mathcal{J} \tag{10}
\end{equation*}
$$

generate a \hat{H}-invariant $\left(\hat{*}\right.$-)ideal \mathcal{I}_{\star}, hence $\mathcal{A}_{\star}:=\mathcal{A}_{\star}^{f} / \mathcal{I}_{\star}$ is a H-module $\left(*-\right.$)algebra \mathcal{A}_{\star}, with generators a_{i} and relations (10). By construction the Poincaré-Birkhoff-Witt series of $\mathcal{A}, \mathcal{A}_{\star}$ coincide.

[^0]Similarly, the Poincaré-Birkhoff-Witt series of $\mathcal{A} \otimes \mathcal{B},(\mathcal{A} \otimes \mathcal{B})_{\star}$ coincide. Denoting by $\left\{a_{i}\right\}_{i \in \mathcal{I}}$, $\left\{b_{i}\right\}_{i \in \mathcal{I}^{\prime}}$ sets of generators of \mathcal{A}, \mathcal{B} (assumed unital), a set of generators of both $\mathcal{A} \otimes \mathcal{B}$ and $(\mathcal{A} \otimes \mathcal{B})_{\star}$ will consist of $\left\{a_{i 1}, b_{i^{\prime} 2}\right\}_{i \in \mathcal{I}, i^{\prime} \in \mathcal{I}^{\prime}}$, where for any $\alpha \in \mathcal{A}[[\lambda]], \beta \in \mathcal{B}[[\lambda]]$ we set

$$
\alpha_{1}:=\alpha \otimes \mathbf{1}, \quad \beta_{2}:=\mathbf{1} \otimes \beta .
$$

As generators of $\mathcal{A} \otimes \mathcal{B}\left[\right.$ resp. $\left.(\mathcal{A} \otimes \mathcal{B})_{\star}\right]$ they will all separately fulfill (9) [resp. (10)] and the analogous relations for \mathcal{B}, together with

$$
\begin{equation*}
a_{i 1} b_{i^{\prime} 2}=b_{i^{\prime} 2} a_{i 1} \quad\left[\text { resp. } a_{i 1} \star b_{i^{\prime} 2}=\quad\left(\overline{\mathcal{R}}_{I}^{(1)} \hat{\triangleright} b_{i^{\prime} 2}\right) \star\left(\overline{\mathcal{R}}_{I}^{(1)} \hat{\triangleright} a_{i 1}\right)\right] . \tag{11}
\end{equation*}
$$

The $\left\{a_{i 1}\right\}_{i \in \mathcal{I}}$ will generate a H - (resp. \hat{H}_{-}) module (*-)subalgebra, which we shall call \mathcal{A}_{1} (resp. $\mathcal{A}_{1 \star}$). As a H - (resp. \hat{H}-) module (*-)algebra, this will be isomorphic to \mathcal{A} (resp. \mathcal{A}_{\star}). Similarly for \mathcal{B}_{2} (resp. $\mathcal{B}_{2 \star}$).
As the original product of \mathcal{A} no more appears in these \star-relations, one can introduce \hat{H}-module (*-)algebras $\widehat{\mathcal{A}}, \hat{B}, \widehat{\mathcal{A} \otimes \mathcal{B}}$ resp. isomorphic to $\mathcal{A}_{\star}, \mathcal{B}_{\star},(\mathcal{A} \otimes \mathcal{B})_{\star}$ just in terms of these generators and relations. Change of notation: $a_{i}, b, \triangleright, \star \rightarrow \hat{a}_{i}, \hat{b}_{i}, \hat{\vee}, \quad($ omitting the symbol $\star)$; e.g. $\widehat{\mathcal{A}} \equiv$ (*-)algebra generated by $\left\{\hat{a}_{i}\right\}$ fulfilling

$$
f_{\star}^{J}\left(\hat{a}_{1}, \hat{a}_{2}, \ldots\right)=0, \quad J \in \mathcal{J}
$$

(and $\hat{*}$-structure defined by $\hat{a}_{i}{ }^{\hat{}}=S\left(\alpha^{-1}\right) \triangleright \widehat{a_{i}^{*}}$).
H itself is a left H-module $*$-algebra under the left adjoint action

$$
\begin{equation*}
g \hat{\triangleright} h=g_{(\hat{1})}^{I} h \hat{S}\left(g_{(\hat{2})}^{I}\right) \tag{12}
\end{equation*}
$$

(no ${ }^{\wedge}$). Applying the above procedure to $\mathcal{A}=H$ one gets [Aschieri et al.] a \hat{H}-module $*$-algebra H_{\star}, isomorphic to \hat{H} under the noncocomm. adjoint action $\hat{\triangleright}$. More generally, if a H-module $*$-algebra \mathcal{A} admits a $*$-algebra map $\sigma: H \rightarrow \mathcal{A}$ s.t. \triangleright can be expressed in the "adjoint-like" form

$$
\begin{equation*}
g \hat{\triangleright} \hat{a}=\hat{\sigma}\left(g_{(\hat{1})}^{I}\right) \hat{a} \hat{\sigma}\left[\hat{S}\left(g_{(\hat{2})}^{I}\right)\right] \tag{13}
\end{equation*}
$$

(no^), then $\mathcal{A}[[\lambda]]$ becomes a \hat{H}-module $*$-algebra under $\hat{\triangleright}$ defined by (13) (with 's and extended $\hat{\sigma}: \hat{H}=H[[\lambda]] \rightarrow \mathcal{A}[[\lambda]])$. The deforming map $D_{\mathcal{F}}^{\sigma}: a \in V(\mathcal{A})[[\lambda]] \rightarrow \check{a} \in V(\mathcal{A})[[\lambda]]$ defined by

$$
\begin{equation*}
\check{a} \equiv D_{\mathcal{F}}^{\sigma}(a):=\sigma\left(\mathcal{F}_{I}^{(1)}\right) a \sigma\left[S\left(\mathcal{F}_{I}^{(2)} \alpha\right)\right]=\left(\overline{\mathcal{F}}_{I}^{(1)} \triangleright a\right) \sigma\left(\overline{\mathcal{F}}_{I}^{(2)}\right) \tag{14}
\end{equation*}
$$

intertwines between $\triangleright, \hat{\triangleright}$:

$$
\begin{equation*}
g \hat{\triangleright}\left[D_{\mathcal{F}}^{\sigma}(a)\right]=D_{\mathcal{F}}^{\sigma}(g \triangleright a) \tag{15}
\end{equation*}
$$

Moreover $\left[D_{\mathcal{F}}^{\sigma}(a)\right]^{*}=D_{\mathcal{F}}^{\sigma}\left[a^{\hat{*}}\right]$, implying $(g \stackrel{\rightharpoonup}{\triangleright})^{*}=[\hat{S}(g)]^{*} \hat{\triangleright}(\check{a})^{*}$. So if $\mathcal{M} \subseteq V(\mathcal{A})$ is a H-*-submodule, $D_{\mathcal{F}}^{\sigma}(\mathcal{M})$ is a \hat{H}-*-submodule. Finally,

$$
\begin{equation*}
D_{\mathcal{F}}^{\sigma}(a \star b)=D_{\mathcal{F}}^{\sigma}(a) D_{\mathcal{F}}^{\sigma}(b) \tag{16}
\end{equation*}
$$

So we can promote $D_{\mathcal{F}}^{\sigma}$ to a \hat{H}-module $*$-algebra isomorphism $D_{\mathcal{F}}^{\sigma}: \mathcal{A}_{\star} \rightarrow \check{\mathcal{A}}=\mathcal{A}[[\lambda]]$. If $\mathcal{A}^{s} \subset \mathcal{A}$ is a H-module $*$-subalgebra, $\check{\mathcal{A}}^{s}=D_{\mathcal{F}}^{\sigma}\left(\mathcal{A}_{\star}^{s}\right) \subset \mathcal{A}[[\lambda]]$ is a \hat{H}-module $(\hat{*}-$) subalgebra.

Clearly, for $\mathcal{A}=H$ one can use $\sigma=\mathrm{id}$ [Gurevich \& Majid '94]. In [G.F. '96] a σ for general H-covariant Heisenberg or Clifford algebras was proposed, see below.

Clearly, if $*$-algebra maps $\sigma_{\mathcal{A}}: H \rightarrow \mathcal{A}, \sigma_{\mathcal{B}}: H \rightarrow \mathcal{B}$ exist,

$$
\hat{\sigma}_{\mathcal{A} \otimes \mathcal{B}}:=\left(\sigma_{\mathcal{A}} \otimes \sigma_{\mathcal{B}}\right) \circ \hat{\Delta}: H \rightarrow(\mathcal{A} \otimes \mathcal{B})[[\lambda]]
$$

is a $*$-algebra map. Replacing $\hat{\sigma}_{\mathcal{A} \otimes \mathcal{B}}$ in $(\hat{13})$ we make $(\mathcal{A} \otimes \mathcal{B})[[\lambda]]$ into a \hat{H}-module $*$-algebra. One can define a deforming map, i.e. a $\hat{H}-*$-module isomorphism $D_{\mathcal{F}}^{\sigma_{\mathcal{A} \otimes \mathcal{B}}}:(\mathcal{A} \otimes \mathcal{B})_{\star} \rightarrow(\mathcal{A} \otimes \mathcal{B})[[\lambda]]$ by

$$
\begin{equation*}
D_{\mathcal{F}}^{\sigma_{\mathcal{A} \otimes \mathcal{B}}}(a):=\mathcal{F}_{\sigma} \quad\left[\overline{\mathcal{F}}_{I}^{(1)} \triangleright a\right] \sigma^{(2)}\left(\overline{\mathcal{F}}_{I}^{(2)}\right) \mathcal{F}_{\sigma}^{-1} \tag{17}
\end{equation*}
$$

[with $\mathcal{F}_{\sigma}:=\left(\sigma_{\mathcal{A}} \otimes \sigma_{\mathcal{B}}\right)(\mathcal{F})$]. Again we see that, if $\mathcal{M} \subset \mathcal{A} \otimes \mathcal{B}$ is a H-submodule, then $D_{\mathcal{F}}^{\sigma n}(\mathcal{M}) \subset \mathcal{A}^{\otimes n}[[\lambda]]$ is a \hat{H}-submodule.

H-covariant QM with n bosons/fermions (abstract setting)

and associated Fock space

Assume the 1-particle Hilbert space is a $H-*$-module: \exists a dense subspace \mathcal{H} and $*$-algebra map (embedding) $\rho: H \rightarrow \mathcal{O} \equiv$ alg. of operators on $\mathcal{H}, g \triangleright u=\rho(g) u$ on $u \in \mathcal{H}$. The compatibility condition $g \triangleright(O u)=\left(g_{(1)}^{I} \triangleright O\right) g_{(2)}^{I} \triangleright u$ induces on \mathcal{O} a H-module $*$-algebra structure:

$$
\begin{equation*}
g \triangleright u=\rho(g) u, \quad g \triangleright O=\rho\left(g_{(1)}^{I}\right) O \rho\left[S\left(g_{(2)}^{I}\right)\right] . \tag{18}
\end{equation*}
$$

Replacing ρ in (18) by $\rho^{(n)}:=\rho^{\otimes n} \circ \Delta^{(n)}$ transformation of n-particle states and observables. (Previous constructions with $\sigma=\rho, \rho^{(n)}$ apply!)

The completely (anti)symmetric part $\mathcal{H}_{ \pm}^{n}$ of $\mathcal{H} \mathcal{H}^{\otimes n}$ is a H-*-submodule and describes the Hilbert space of n-boson (+) or n-fermion (-) states. The completely symmetric part \mathcal{O}_{+}^{n} of $\mathcal{O}^{\otimes n}$ is a H - module $*$-subalgebra and its elements maps each of $\mathcal{H}_{+}^{n}, \mathcal{H}_{-}^{n}$ into itself. $\rho^{(n)}(H) \subset \mathcal{O}_{+}^{n}$ is usually a physically relevant module $*$-subalgebra: if e.g. \mathcal{H} has a rotational symmetry $s o(3)$, the components of the total angular momentum of the n-particle system belong to $\rho^{(n)}(U \operatorname{so}(3))$.

Let $\left\{e_{i}\right\}_{i \in \mathbb{N}}$ be an orthonormal basis of \mathcal{H}. For any $i_{1}, i_{2}, \ldots, i_{n} \in \mathbb{N}$ let

$$
e_{i_{1}, i_{2}, \ldots, i_{n}}^{ \pm}:=N \mathcal{P}_{ \pm i_{1} i_{2} \ldots i_{n}}^{n j_{1} j_{2} \ldots j_{n}}\left(e_{j_{1}} \otimes e_{j_{2}} \otimes \ldots \otimes e_{j_{n}}\right) \in \mathcal{H}_{ \pm}^{n}
$$

$\left(N \equiv\right.$ normalization factor). An orthonormal basis $\mathcal{B}_{+}^{n}\left(\right.$ resp. $\left.\mathcal{B}_{-}^{n}\right)$ of \mathcal{H}_{+}^{n} (resp. $\left.\mathcal{H}_{-}^{n}\right)$ is obtained choosing $i_{1} \leq i_{2} \leq \ldots \leq i_{n}\left(\right.$ resp. $\left.i_{1}<i_{2}<\ldots<i_{n}\right)$.

Introduce occupation numbers n_{j} : each counts for how many h it occurs $i_{h}=j$ there; for n identical fermions it can be only $n_{j}=0,1$. The vectors of $\mathcal{B}_{ \pm}^{n}$ are characterized by a sequence of occupation numbers fulfilling $n=\sum_{j \in \mathbb{N}} n_{j}$, so one can denote them as

$$
\begin{equation*}
\left|n_{1}, n_{2}, \ldots\right\rangle:=e_{i_{1}, i_{2}, \ldots, i_{n}}^{ \pm} \tag{19}
\end{equation*}
$$

Let $|0\rangle \equiv$ vacuum state. Fock space: completion of

$$
\mathcal{H}_{ \pm}^{\infty}:=\mathbb{C}|0\rangle \oplus \mathcal{H} \oplus \mathcal{H}_{ \pm}^{2} \oplus \ldots \oplus \mathcal{H}_{ \pm}^{n} \oplus \ldots
$$

Define creation/annihilation op.'s as usual. They fulfill the canonical (anti)commutation relations

$$
\begin{equation*}
\left[a^{i}, a^{j}\right]_{ \pm}=0, \quad\left[a_{i}^{+}, a_{j}^{+}\right]_{ \pm}=0, \quad\left[a^{i}, a_{j}^{+}\right]_{ \pm}=\delta_{j}^{i} \tag{CCR}
\end{equation*}
$$

Assuming $|0\rangle$ to be H-invariant, a_{i}^{+}, a^{i} must transform as $e_{i}=a_{i}^{+}|0\rangle$ and $\langle i|=\langle 0| a^{i}$ respectively:

$$
\begin{equation*}
g \stackrel{\rightharpoonup}{\triangleright} \hat{a}_{i}^{+}=\rho_{i}^{j}(g) \hat{a}_{j}^{+} \quad g \hat{\triangleright} \hat{a}^{i}=\hat{\rho}^{\vee}{ }_{i}^{j}(g) \hat{a}^{j}:=\rho_{j}^{i}[\hat{S}(g)] \hat{a}^{j} . \tag{20}
\end{equation*}
$$

(with no ${ }^{\wedge}$). So $\left\{a_{i}^{+}\right\}$and $\left\{a^{i}\right\}$ resp. span carrier spaces of the representations ρ, ρ^{\vee} of H. As the CCR are H-invariant, $\left\{a_{i}^{+}, a^{i}\right\}$ generate a (Heisenberg or Clifford) H-module $*$-algebra \mathcal{A}.

Applying the previous deformation procedure one obtains a H-module $*$-algebra \mathcal{A} with generators $\hat{a}_{i}^{+}, \hat{a}^{i}$ [G.F. '96] transforming as above (with ${ }^{\wedge}$), fulfilling $\hat{a}_{i}^{+*}=\hat{a}^{i}$ and

$$
\begin{align*}
& \hat{a}^{i} \hat{a}^{j}= \pm R_{v u}^{i j} \hat{a}^{u} \hat{a}^{v} \\
& \hat{a}_{i}^{+} \hat{a}_{j}^{+}= \pm R_{i j}^{v u} \hat{a}_{u}^{+} \hat{a}_{v}^{+} \tag{TCR}\\
& \hat{a}^{i} \hat{a}_{j}^{+}=\delta_{j}^{i} \mathbf{1}_{\mathcal{A}} \pm R_{j v}^{u i} \hat{a}_{u}^{+} \hat{a}^{v}
\end{align*}
$$

where $R:=(\rho \otimes \rho)(\mathcal{R})=\mathbf{1} \otimes \mathbf{1}+O(\lambda)$. We could have presented $\widehat{\mathcal{A}} \sim \mathcal{A}_{\star}$ also in terms of generators a_{i}^{+}, a^{i} and \star-products. On the other hand, one can define a Lie $*$-algebra map $\sigma: \mathbf{g} \rightarrow \mathcal{A}$ by

$$
\begin{equation*}
\sigma(g):=\left(g \triangleright a_{j}^{+}\right) a^{j}=\rho_{j}^{i}(g) a_{i}^{+} a^{j}, \quad g \in \mathbf{g} \tag{21}
\end{equation*}
$$

σ is extended as a $*$-algebra map $\sigma: H=U \mathbf{g}[[\lambda]] \rightarrow \mathcal{A}[[\lambda]]$ over $\mathbb{C}[[\lambda]]$ by setting $\sigma\left(\mathbf{1}_{H}\right)=\mathbf{1}_{\mathcal{A}}$. (It is a generalization of the Jordan-Schwinger realization of $\mathbf{g}=s u(2)$.) So we can make $\mathcal{A}[[\lambda]]$ into a \hat{H}-module $*$-algebra. Under $\hat{\triangleright} a_{i}^{+}, a^{i}$ do not transform as $\hat{a}_{i}^{+}, \hat{a}^{i}$ in (20), but the elements [G.F. '96]

$$
\begin{equation*}
\check{a}_{i}^{+}=D_{\mathcal{F}}^{\sigma}\left(a_{i}^{+}\right), \quad \quad \check{a}^{i}=D_{\mathcal{F}}^{\sigma}\left[\rho_{j}^{i}\left(\alpha^{-1}\right) a^{j}\right] \tag{22}
\end{equation*}
$$

do. Moreover, the latter fulfill the (TCR) and $\check{a}^{i}=\check{a}_{i}^{+*}$. Namely, $\check{a}_{i}^{+}, \check{a}^{i}$ provide a realization of $\hat{a}_{i}^{+}, \hat{a}^{i}$ within $\mathcal{A}[[\lambda]]$. Hence, $*$-representations of $\mathcal{A}[[\lambda]]$ are also $*$-representations of $\widehat{\mathcal{A}}$. This suggests that, at least near $0=\lambda \in \mathbb{C}, *$-representations of \mathcal{A}, in particular the Fock one, are also *-representations of $\widehat{\mathcal{A}}$ (to be verified case by case). Let us compare a_{i}^{+}with $\check{a}_{i}^{+}, \hat{a}_{i}^{+}$:

$$
\begin{equation*}
\left.\check{a}_{i_{1}}^{+} \ldots \check{a}_{i_{n}}^{+}|0\rangle=\left(F^{n}\right)^{-1 j_{1}, \ldots, j_{n}} i_{1}, \ldots, i_{n}\right) a_{j_{1}}^{+} \ldots a_{j_{n}}^{+}|0\rangle=a_{i_{1}}^{+} \star \ldots \star a_{i_{n}}^{+}|0\rangle=: \hat{a}_{i_{1}}^{+} \ldots \hat{a}_{i_{n}}^{+}|0\rangle \tag{23}
\end{equation*}
$$

$\check{a}_{i}^{+}, \check{a}^{i}, \hat{a}_{i}^{+}, \hat{a}^{i}, a_{i}^{+} \star, a^{i} \star$ all act on the Fock space of bosons/fermions (no change of statistics!).

Differential and integral calculus over G-symmetric M

Let $\mathcal{M}=C^{\infty}(M), \Xi \supset \mathbf{g}$ the algebra of vector fields over $M, \mathcal{A}=\mathcal{D}:=U \Xi \ltimes \mathcal{M}$ (cf. [Aschieri et al]). (By construction \mathcal{M} is a H-module $*$-subalgebra of \mathcal{D}). We apply the above \star-deformation procedure with some twist $\mathcal{F} \in(H \otimes H)[[\lambda]], H=U \mathbf{g}$.

If M is a submanifold of some \mathbb{R}^{m} characterized by a set of equations $f_{J}(x)=0$ [with $\left.x=\left(x^{1}, \ldots x^{m}\right)\right]$ symmetric under \mathbf{g}, \mathcal{M} is the abelian H-module algebra generated by $x^{1}, \ldots x^{m}$ fulfilling the relations $f_{J}(x)=0$ in addition to $x^{a} x^{b}-x^{b} x^{a}=0, \Xi$ is the Lie subalgebra of vector fields $\xi=\sum_{h=1}^{m} \xi^{h}(x) \partial_{x^{h}}$ over \mathbb{R}^{m} such that $\left[\xi, f_{J}(x)\right]=0$, and the \star-deformed (or "hatted") objects can be described globally in terms of generators $\hat{x}^{h}, \hat{\partial}_{x^{h}}$ and relations.
One can globally define a Lie $*$-algebra map $\sigma: H[[\lambda]] \rightarrow U \Xi[[\lambda]]$ starting from

$$
\sigma(g):=\sum_{h=1}^{m}\left(g \triangleright x^{h}\right) \partial_{x^{h}} \in \Xi, \quad g \in \mathbf{g}
$$

and the corresponding deforming map $D_{\mathcal{F}}^{\sigma}$ for \mathcal{D}, and then for tensor powers of \mathcal{D}.
If $M \equiv$ Riemannian, $G \equiv$ its group of isometries, $d \nu \equiv$ invariant volume form, also $\int_{X} d \nu(x)$ is:

$$
\int_{X} d \nu(x)(g \triangleright f)=\epsilon(g) \int_{X} d \nu f \quad \Leftrightarrow \quad \int_{X} d \nu f(g \triangleright h)=\int_{X} d \nu[S(g) \triangleright f] h
$$

This implies for the corresponding \star-product

$$
\int_{X} d \nu(x) f(x) \star h(x)=\int_{X} d \nu(x) f(\mathbf{x})[\alpha \triangleright h(x)]=\int_{X} d \nu(x)[S(\alpha) \triangleright f(\mathbf{x})] h .
$$

These eqns hold also for integration over n independent x - $\begin{gathered}\text {-varabables } \\ \text { and }\end{gathered}$

From wavefunctions to quantum fields (non-relativistic)

Let $H=U \mathbf{g}$ include the UEA of the Lie group G of isometries of a commutative spacetime $\mathbb{R} \times X$, with $X \equiv$ a Riemannian manifold on which QM is well-defined; then $d \nu, \int_{X} d \nu$ are H-invariant (E.g. $X=\mathbb{R}^{3}, G \equiv$ Galilei group). Fix an inertial reference frame.

First: $n=1$ nonrelativistic quantum particle on X (with spin zero or factored out):

1. $\exists H$-equivariant, unitary transformation $\kappa: u \in \mathcal{H} \leftrightarrow \psi_{u} \in \mathcal{X} \subset C^{\infty}(X) \cap \mathcal{L}^{2}(X, d \nu)$, $g \triangleright \psi_{u}=\psi_{g \triangleright u}$,

$$
\begin{equation*}
\langle u \mid v\rangle=\int_{X} d \nu\left[\psi_{u}(\mathbf{x})\right]^{*} \psi_{v}(\mathbf{x})=\int_{X} d \nu\left[\psi_{u}(\mathbf{x})\right]^{\hat{*}} \star \psi_{v}(\mathbf{x}) \tag{24}
\end{equation*}
$$

2. $\kappa(O u)=\tilde{\kappa}(O) \kappa(u)$ for any $u \in \mathcal{H}$ defines a H-equivariant map $\tilde{\kappa}: \mathcal{O} \leftrightarrow \mathcal{D}$.
[for $X=\mathbb{R}^{3}, \mathcal{O}$ is generated by $\left\{q^{a}, p^{a}\right\}$, and $\tilde{\kappa}\left(q^{a}\right)=x^{a} \cdot \tilde{\kappa}\left(p^{a}\right)=-i \hbar \frac{\partial}{\partial x^{a}}$].
The maps $\kappa, \tilde{\kappa}$ provide a commutative, H-equivariant configuration space realization of $\{\mathcal{H}, \mathcal{O}\}$ on \mathcal{X}, \mathcal{D}, depending on the choice of the reference frame.

This is immediately extended to n identical quantum particles on X :

1) $\kappa^{\otimes n}: \mathcal{H}^{\otimes n} \leftrightarrow \mathcal{X}^{\otimes n}$ and the restrictions to the completely (anti)symmetric subspaces $\kappa^{\otimes n}: \mathcal{H}_{ \pm}^{n} \leftrightarrow\left(\mathcal{X}^{\otimes n}\right)_{ \pm}$are H-equivariant unitary transfs, (24) holds with n-fold integration 2) $\tilde{\kappa}: \mathcal{O}^{\otimes n} \leftrightarrow \mathcal{D}^{\otimes n}$ and the restriction $\tilde{\kappa}: \mathcal{O}_{+}^{\otimes n} \leftrightarrow \mathcal{D}_{+}^{\otimes n}$ are H-equivariant maps.

Applying the \star-deformation procedure with a twist leaving t central, one defines wavefunctions $\hat{\psi}_{u} \equiv \wedge^{n}\left(\psi_{u}\right)$ of noncommutative coordinates, $\hat{\psi}_{u}\left(\mathbf{x}_{1} \star, \ldots, \mathbf{x}_{n} \star, t\right)=\psi_{u}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{1}, t\right) \star$, and "hatted" differential operators $\hat{D}(\mathbf{x} \star, \partial \star):=D(\mathbf{x}, \partial) \star$, and one finds $\hat{D}=\wedge^{n} D\left[\wedge^{n}\right]^{-1}$. We define a deformed \hat{H}-invariant "integration over \hat{X} " $\int_{\hat{X}} d \hat{\nu}(\hat{\mathbf{x}})$ such that

$$
\underset{\hat{X}}{d \hat{\nu}(\hat{\mathbf{x}}) \hat{f}(\hat{\mathbf{x}})={ }_{X} d \nu(\mathbf{x}) f(\mathbf{x}), ~}
$$

and similarly for n-fold integration. Then in "hat-notation" $(24)_{2}$ for n particles becomes

$$
\begin{equation*}
\langle u, v\rangle=\underset{\hat{X}}{d \hat{\nu}\left(\hat{\mathbf{x}}_{1}\right) \ldots \underset{\hat{X}}{d \hat{\nu}}\left(\hat{\mathbf{x}}_{n}\right)\left[\hat{\psi}_{u}\left(\hat{\mathbf{x}}_{1}, \ldots, \hat{\mathbf{x}}_{n}\right)\right]^{\hat{*}} \hat{\psi}_{v}\left(\hat{\mathbf{x}}_{1}, \ldots, \hat{\mathbf{x}}_{n}\right)} \tag{25}
\end{equation*}
$$

The map $\wedge^{n}: \psi_{u} \in \mathcal{X}^{\otimes n} \rightarrow \hat{\psi}_{u} \in\left(\mathcal{X}^{\otimes n}\right)_{\star}$ is therefore unitary and \hat{H}-equivariant. \wedge^{n} also maps the action of the symmetric group S_{n} from $\mathcal{X}^{\otimes n}$ to $\left(\mathcal{X}^{\otimes n}\right)_{\star}$. A permutation $\tau \in S_{n}$ is represented on $\mathcal{X}^{\otimes n},\left(\mathcal{X}^{\otimes n}\right)_{\star}$ respectively by the permutation operator \mathcal{P}_{τ} and the "twisted permutation operator" $\mathcal{P}_{\tau}^{F}=\wedge^{n} \mathcal{P}_{\tau}\left[\wedge^{n}\right]^{-1}$ [c.f. G.F.-Schupp 96].

Let $\hat{\kappa}^{n}:=\wedge^{n} \kappa^{\otimes n}, \widehat{\tilde{\kappa}}^{n}(\cdot):=\wedge^{n}\left[\tilde{\kappa}^{\otimes n}(\cdot)\right]\left[\wedge^{n}\right]^{-1}$. Then the maps $\hat{\kappa}_{ \pm}^{n}, \widehat{\tilde{\kappa}}_{+}^{n}$ define a \hat{H}-equivariant, noncommutative configuration space realization of $\left\{\mathcal{H}_{ \pm}^{\otimes n}, \mathcal{O}_{+}^{\otimes n}\right\}$ on $\left(\mathcal{X}_{ \pm}^{\otimes n}\right)_{\star},\left(\mathcal{D}_{+}^{\otimes n}\right)_{\star}$, depending on the choice of the reference frame.

Let $\left\{e_{i}\right\}_{i \in \mathbb{N}}$ be orthonormal basis of $\mathcal{H}, \varphi_{i}=\kappa\left(e_{i}\right), a_{i}^{+}, a^{i}$ associated wavefunction, creation, annihilation operators. The (nonrelativistic) field operator and its hermitean conjugate

$$
\begin{equation*}
\varphi(\mathbf{x}):=\varphi_{i}(\mathbf{x}) a^{i}, \quad \varphi^{*}(\mathbf{x})=\varphi_{i}^{*}(\mathbf{x}) a_{i}^{+} \tag{26}
\end{equation*}
$$

in the Schrödinger picture (sum over i : infinitely many terms) are operator-valued distributions, basis-independent (i.e. invariant under a unitary transf. U of $\left\{e_{i}\right\}_{i \in \mathbb{N}}$) and fulfilling the $\mathrm{CC}(\mathrm{A}) \mathrm{R}$

$$
\begin{equation*}
[\varphi(\mathbf{x}), \varphi(\mathbf{y})]_{\mp}=\text { h.c. }=0, \quad\left[\varphi(\mathbf{x}), \varphi^{*}(\mathbf{y})\right]_{\mp}=\varphi_{i}(\mathbf{x}) \varphi_{i}^{*}(\mathbf{y})=|g|^{-\frac{1}{2}} \delta(\mathbf{x}-\mathbf{y}) \tag{27}
\end{equation*}
$$

(\mp for bosons/fermions). The field $*$-algebra Φ is spanned e.g. by the normal ordered monomials

$$
\varphi^{*}\left(\mathbf{x}_{1}\right) \ldots \varphi^{*}\left(\mathbf{x}_{m}\right) \varphi\left(\mathbf{x}_{m+1}\right) \ldots \varphi\left(\mathbf{x}_{n}\right)
$$

$\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right.$ are independent points). So $\Phi \subset \Phi^{e}:=\left(\bigotimes_{i=1}^{\infty} V\right) \otimes \mathcal{A}$ (1st, 2nd,... V means space of distributions depending on $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots$). CCR of \mathcal{A} are the only nontrivial comm. rel. in Φ^{e}.
H-invariant $|0\rangle \Rightarrow a_{i}^{+}$transform as $e_{i}=a_{i}^{+}|0\rangle, \varphi_{i}$, whereas a^{i} transform as $\langle i|=\langle 0| a^{i}, \varphi_{i}^{*}$:

$$
\begin{equation*}
g \triangleright a_{i}^{+}=\rho_{i}^{j}(g) a_{j}^{+} \quad g \triangleright a^{i}=\rho_{i}^{\vee j}(g) a^{j}:=\rho_{j}^{i}(S(g)) a^{j} . \tag{28}
\end{equation*}
$$

When $g \in \mathbf{g}$ this is a very special (infinitesimal) unitary transformation U of $\left\{e_{i}\right\}_{i \in \mathbb{N}}$. Under this transf. φ, φ^{*} are scalars. $\mathbf{S o} \star$-products with $\forall \chi \in \Phi^{e}$ make no difference:

$$
g \triangleright \varphi(\mathbf{x})=\epsilon(g) \varphi(\mathbf{x}), \quad \varphi(\mathbf{x}) \star \chi=\varphi(\mathbf{x}) \chi, \quad \chi \star \varphi(\mathbf{x})=\chi \varphi(\mathbf{x}), \quad \& \quad \text { h. c. (29) }
$$

These properties, $\epsilon(\alpha)=1$ and the definition $a^{\prime i}:=a_{i}^{+\hat{*}}=S\left(\alpha^{-1}\right) \triangleright a^{i}=\rho_{j}^{i}\left(\alpha^{-1}\right) a^{j}$ imply

$$
\begin{equation*}
\varphi(\mathbf{x})=\varphi_{i}(\mathbf{x}) \star a^{\prime i}, \quad \varphi^{*}(\mathbf{x})=\varphi^{\hat{*}}(\mathbf{x})=a_{i}^{+} \star \varphi_{i}^{\hat{*}}(\mathbf{x}) \tag{30}
\end{equation*}
$$

$\varphi_{i}(\mathbf{x}) \varphi_{i}^{*}(\mathbf{y})=\varphi_{i}(\mathbf{x}) \star \varphi_{i}^{\hat{*}}(\mathbf{y})$ and therefore that the CCR (27) can be rewritten in the form

$$
\begin{equation*}
[\varphi(\mathbf{x}) \stackrel{\star}{,} \varphi(\mathbf{y})]_{\mp}=h . c .=0, \quad\left[\varphi(\mathbf{x}) \stackrel{\star}{,} \varphi^{\hat{*}}(\mathbf{y})\right]_{\mp}=\varphi_{i}(\mathbf{x}) \star \varphi_{i}^{\hat{*}}(\mathbf{y}) \tag{31}
\end{equation*}
$$

(here and below $[A, B]_{\mp}:=A \star B \mp B \star A$). Also Φ^{e} is a H-module $*$-algebra.
The field fulfills the following properties: for any $u \in\left(\mathcal{H}^{\otimes n}\right)_{ \pm}$

$$
\begin{align*}
& \psi_{u}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)=\kappa^{\otimes n}(u)\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)=\frac{1}{\sqrt{n!}}\langle 0| \varphi\left(\mathbf{x}_{n}\right) \star \ldots \star \varphi\left(\mathbf{x}_{1}\right) u, \tag{32}\\
& u=\frac{1}{\sqrt{n!}}{ }_{X}^{d \nu}\left(\mathbf{x}_{1}\right) \ldots \underset{X}{d \nu\left(\mathbf{x}_{n}\right) \psi_{u}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right) \varphi^{\hat{*}}\left(\mathbf{x}_{1}\right) \star \ldots \star \varphi^{\hat{*}}\left(\mathbf{x}_{n}\right)|0\rangle,} \tag{33}
\end{align*}
$$

which are very useful for computing the unitary transformation $\kappa^{\otimes n} \mathcal{H}_{ \pm}^{n}$ and its inverse, taking into account automatically the combinatorial aspects of (anti)symmetrization.

Equations of motion

Assume the n-particle wavefunctions $\psi_{\star}^{(n)}$ fulfill some \star-differential Schrödinger equation

$$
\begin{array}{ll}
i \hbar \frac{\partial}{\partial t} \psi_{\star}^{(1)}=\mathbf{H}_{\star}^{(1)} \psi_{\star}^{(1)}, & \mathbf{H}_{\star}^{(1)}=\left[-\frac{\hbar^{2}}{2 m} D^{a} \star D_{a}+V\right]_{\star}, \quad D_{a}=\partial_{a}+i e A_{a} \\
i \hbar \frac{\partial}{\partial t} \psi_{\star}^{(n)}=\mathbf{H}_{\star}^{(n)} \psi_{\star}^{(n)}, & \mathbf{H}_{\star}^{(n)}=\sum_{h=1}^{n} \mathbf{H}_{\star}^{(1)}\left(\mathbf{x}_{h}, t\right)+\sum_{h<k} W\left(\rho_{h k}\right) \star . \quad n \geq 2 \tag{34}
\end{array}
$$

Commuting t; \star-local interaction with external background potential $V(\mathbf{x}, t)$ and $U(1)$ gauge potential $\mathbf{A}(\mathbf{x}, t) . \rho_{h k} \equiv$ distance between the points $\mathbf{x}_{h}, \mathbf{x}_{k}\left(\rho_{h k}=\left|\mathbf{x}_{h}-\mathbf{x}_{k}\right|\right.$ if $\left.X=\mathbb{R}^{3}\right)$. $\mathbf{H}_{\star}^{(n)} \equiv$ pseudo-differential operator! It is hermitean provided $H^{(1)}$ is and $\alpha \triangleright \mathbf{H}^{(1)}=H^{(1)} \cdot H_{\star}^{(n)}$ is completely symmetric, so preserves the (anti)symmetry of $\psi_{\star}^{(n)}$. The Fock space Hamiltonian
$\mathrm{H}_{\star}(\varphi)=\underset{X}{d \nu}(\mathbf{x}) \varphi^{\hat{*}}(\mathbf{x}) \star \mathbf{H}_{\star}^{(1)}(\mathbf{x}, t) \varphi(\mathbf{x})+\underset{X}{d \nu(\mathbf{x})} \underset{X}{d \nu}(\mathbf{y}) \varphi^{\hat{*}}(\mathbf{y}) \star \varphi^{\hat{*}}(\mathbf{x}) \star W\left(\rho_{\mathbf{x y}}\right) \star \varphi(\mathbf{x}) \star \varphi($
commutes with $\mathbf{n}:=a_{i}^{+} a^{i}=a_{i}^{+} \star a^{i}$, and $\kappa^{\otimes n} \circ \mathrm{H}_{\star} \upharpoonright_{\mathcal{H}}^{ \pm}{ }^{n}=\mathrm{H}_{\star}^{(n)}$ for $n \geq 2$.
The Heisenberg field operator $\varphi_{\star}^{H}(\mathbf{x}, t):=e^{-\frac{i}{\hbar} \int_{0}^{t} d t \mathrm{H}_{\star}} \varphi(\mathbf{x}) e^{-\frac{i}{\hbar} \int_{0}^{t} d t \mathrm{H}_{\star}}$ fulfills

$$
\begin{align*}
& {\left[\varphi_{\star}^{H}(\mathbf{x}, t) \stackrel{\star}{,} \varphi_{\star}^{H}(\mathbf{y}, t)\right]_{\mp}=\text { h.c. }=0, \quad\left[\varphi_{\star}^{H}(\mathbf{x}, t)_{\stackrel{\star}{*}}^{\varphi_{\star}^{H} \hat{*}}(\mathbf{y}, t)\right]_{\mp}=\varphi_{i}(\mathbf{x}) \star \varphi_{i}^{\hat{*}}(\mathbf{y}),} \\
& i \hbar \frac{\partial}{\partial t} \varphi_{\star}^{H}=\left[\mathrm{H}_{\star} \stackrel{\star}{,} \varphi_{\star}^{H}\right] . \tag{35}
\end{align*}
$$

If $W=0(34)_{3}$ amounts to the "second quantization of (33) $)_{1}$ ", $i \hbar \frac{\partial \varphi_{\star}^{H}}{\partial t}=\mathrm{H}_{\star}^{(1)} \varphi_{\star}^{H}$, a \star-local equation. If $\mathrm{H}_{\star}^{(1)}$ is t-independent, so is H_{\star}, then $\mathrm{H}_{\star}\left(\varphi_{\star}^{H}\right)=\mathrm{H}_{\star}(\varphi)$, and (34) can be equivalently formulated directly in the Heisenberg picture as equations in the unknown $\varphi_{\star}^{H}(t)$.

By further replacing $\hat{V}(\mathbf{x} \star, t)=V(\mathbf{x}, t) \star, \hat{\mathbf{A}}(\mathbf{x} \star, t)=\mathbf{A}(\mathbf{x}, t) \star, \hat{\varphi}_{i}(\mathbf{x} \star)=\varphi_{i}(\mathbf{x}) \star$ we can reformulate the previous eq.'s purely with \star-products: 2nd quantization on the NC spacetime $\hat{X} \times \mathbb{R}$ compatible with QM axioms and Bose/Fermi statistics. In "hat" notation, within $\hat{\Phi}^{e}, \hat{\Phi}$,

$$
\begin{array}{ll}
\hat{\varphi}(\hat{\mathbf{x}})=\hat{\varphi}_{i}(\hat{\mathbf{x}}) \hat{a}^{\prime i}, & \varphi^{\hat{*}}(\hat{\mathbf{x}})=\hat{a}_{i}^{+} \hat{\varphi}_{i}^{\hat{*}}(\hat{\mathbf{x}}) \\
{[\hat{\varphi}(\hat{\mathbf{x}}), \hat{\varphi}(\hat{\mathbf{y}})]_{\mp}=\mathrm{h} . \mathrm{c} .=0,} & {\left[\hat{\varphi}(\hat{\mathbf{x}}), \hat{\varphi}^{\hat{*}}(\hat{\mathbf{y}})\right]_{\mp}=\hat{\varphi}_{i}(\hat{\mathbf{x}}) \hat{\varphi}_{i}^{\hat{*}}(\hat{\mathbf{y}}),} \\
i \hbar \frac{\partial}{\partial t} \hat{\psi}=\hat{\mathbf{H}}^{(n)} \hat{\psi}, & \hat{\mathbf{H}}^{(n)}=\sum_{h=1}^{n} \hat{\mathbf{H}}^{(1)}\left(\hat{\mathbf{x}}_{h}, t\right)+\sum_{h<k} \hat{W}\left(\hat{\rho}_{h k}\right) \tag{36}\\
\hat{\mathbf{H}}=\int d \hat{\nu}(\hat{\mathbf{x}}) \hat{\varphi}^{\hat{*}}(\hat{\mathbf{x}}) \hat{\mathbf{H}}^{(1)}(\hat{\mathbf{x}}, t) \hat{\varphi}(\hat{\mathbf{x}})+\int d \hat{\nu}(\hat{\mathbf{x}}) \int d \hat{\nu}(\hat{\mathbf{y}}) \hat{\varphi}^{\hat{*}}(\hat{\mathbf{y}}) \hat{\varphi}^{\hat{*}}(\hat{\mathbf{x}}) W\left(\hat{\rho}_{\mathbf{x y}}\right) \hat{\varphi}(\mathbf{x}) \hat{\varphi}(\mathbf{y}), \\
{\left[\hat{\varphi}_{H}(\hat{\mathbf{x}}, t), \hat{\varphi}_{H}(\hat{\mathbf{y}}, t)\right]_{\mp}=\text { h.c. }=0,} & {\left[\hat{\varphi}_{H}(\hat{\mathbf{x}}, t), \hat{\varphi}_{H}^{\hat{*}}(\hat{\mathbf{y}}, t)\right]_{\mp}=\hat{\varphi}_{i}(\hat{\mathbf{x}}) \hat{\varphi}_{i}^{\hat{*}}(\hat{\mathbf{y}}),} \\
i \hbar \frac{\partial}{\partial t} \hat{\varphi}_{H}=\left[\hat{\mathbf{H}}, \hat{\varphi}_{H}\right] . &
\end{array}
$$

There is an advantage if the $\hat{\mathbf{x}}$-dependence of $\hat{V}(\hat{\mathbf{x}}, t), \hat{\mathbf{A}}(\hat{\mathbf{x}}, t) \hat{\varphi}_{i}(\hat{\mathbf{x}})$ is simpler than the \mathbf{x}-dependence of $V(\mathbf{x}, t), \mathbf{A}(\mathbf{x}, t), \varphi_{i}(\mathbf{x})$, as it happens if the latter fulfill \star-differential equations. Now you can forget how you have got (36), and check its consistency beyond the

$$
\begin{align*}
& \hat{\psi}_{u}\left(\hat{\mathbf{x}}_{1}, \ldots, \hat{\mathbf{x}}_{n}\right):=\hat{\kappa}_{ \pm}^{n}(u)\left(\hat{\mathbf{x}}_{1}, \ldots, \hat{\mathbf{x}}_{n}\right)=\frac{1}{\sqrt{n!}}\langle 0| \hat{\varphi}\left(\hat{\mathbf{x}}_{n}\right) \ldots \hat{\varphi}\left(\hat{\mathbf{x}}_{1}\right) u, \\
& u=\frac{1}{\sqrt{n!}} \quad \begin{array}{l}
\hat{X}
\end{array} \hat{\hat{\nu}}\left(\hat{\mathbf{x}}_{1}\right) \ldots \underset{\hat{X}}{d \hat{\nu}}\left(\hat{\mathbf{x}}_{n}\right) \hat{\psi}_{u}\left(\hat{\mathbf{x}}_{1}, \ldots, \hat{\mathbf{x}}_{n}\right) \hat{\varphi}^{\hat{*}}\left(\hat{\mathbf{x}}_{1}\right) \ldots \hat{\varphi}^{\hat{*}}\left(\hat{\mathbf{x}}_{n}\right)|0\rangle . \tag{37}
\end{align*}
$$

for any $u \in\left(\mathcal{H}^{\otimes n}\right)_{ \pm}$; choosing $u=e_{i_{1}, \ldots, i_{n}}^{ \pm} \in \mathcal{B}_{ \pm}^{n}$ one finds in particular

$$
\begin{aligned}
& \psi_{u}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)=N \varphi_{\left(j_{1}\right.}\left(\mathbf{x}_{1}\right) \ldots \varphi_{\left.j_{n}\right]}\left(\mathbf{x}_{n}\right), \\
& \hat{\psi}_{u}\left(\hat{\mathbf{x}}_{1}, \ldots, \hat{\mathbf{x}}_{n}\right)=\mathrm{F}_{i_{1} \ldots i_{n}}^{n j_{1} \ldots j_{n}} N \hat{\varphi}_{\left(j_{1}\right.}\left(\hat{\mathbf{x}}_{1}\right) \ldots \hat{\varphi}_{\left.j_{n}\right]}\left(\hat{\mathbf{x}}_{n}\right)
\end{aligned}
$$

where (...] means indices (anti)symmetrization, and $\mathrm{F}^{n}:=(\tilde{\kappa} \circ \rho)^{\otimes n}\left(\mathcal{F}^{n}\right)$ (a unitary operator). The group S_{n} acts on $\hat{\psi}_{u}\left(\hat{\mathbf{x}}_{1}, \ldots, \hat{\mathbf{x}}_{n}\right) \in$ the (braided) tensor product $\hat{\mathcal{X}} \otimes \ldots \otimes \hat{\mathcal{X}}$ by "twisted permutations" $\mathcal{P}_{\tau}^{F}=F^{n} \mathcal{P}_{\tau} F^{n-1}$ [G.F. \& Schupp '95]. This is an alternative way to fulfill Bose/Fermi statistics.

Examples: QM and QFT on Moyal NC space(time)

Here $\mathbf{g}=\mathcal{G} \equiv$ Galilei Lie algebra in the non-relativistic case, $\mathbf{g}=\mathcal{P} \equiv$ Poincaré Lie algebra in the relativistic case. Simplest choice for \mathcal{F} :

$$
\mathcal{F} \equiv \sum_{I} \mathcal{F}_{I}^{(1)} \otimes \mathcal{F}_{I}^{(2)}:=\exp \left(\frac{i}{2} \lambda \theta^{\mu \nu} P_{\mu} \otimes P_{\nu}\right) \rightarrow \exp \left(\frac{i}{2} \theta^{\mu \nu} P_{\mu} \otimes P_{\nu}\right) .
$$

where $\theta^{\mu \nu}$ is a fixed real antisymmetric matrix. Setting $M_{\omega}=\omega^{\mu \nu} M_{\mu \nu}\left(\omega^{\mu \nu}=-\omega^{\nu \mu}\right)$,

$$
\begin{aligned}
& \hat{\Delta}\left(P_{\mu}\right)=\Delta\left(P_{\mu}\right)=P_{\mu} \otimes \mathbf{1}+\mathbf{1} \otimes P_{\mu}=\Delta\left(P_{\mu}\right), \\
& \hat{\Delta}\left(M_{\omega}\right)=M_{\omega} \otimes \mathbf{1}+\mathbf{1} \otimes M_{\omega}+P \cdot \otimes[\omega, \theta] P \neq \Delta\left(M_{\omega}\right) .
\end{aligned}
$$

Translations undeformed!

When $\mathbf{g}=\mathcal{G}$ put $\theta^{0 a}=0, t=x^{0}, P_{0}=H_{0} \equiv$ non-relativistic kinetic energy, $M^{b c}=\epsilon^{a b c} L^{a}$, $M^{0 a}=K^{a}$, and the mass m is an additional generator, central. Only nontrivial comm. rel.:

$$
\begin{align*}
& {\left[K^{a}, P^{b}\right]=i m \hbar \delta^{a b}, \quad\left[K^{a}, H_{0}\right]=i \hbar P^{a},} \\
& {\left[L^{a}, L^{b}\right]=i \epsilon^{a b c} \hbar L^{c}, \quad\left[L^{a}, P^{b}\right]=i \epsilon^{a b c} \hbar P^{c}, \quad\left[L^{a}, K^{b}\right]=i \epsilon^{a b c} \hbar K^{c} .} \tag{38}
\end{align*}
$$

The above \mathcal{F} gives $x_{i}^{\mu} \star x_{j}^{\nu}=x_{i}^{\mu} x_{j}^{\nu}+i \theta^{\mu \nu} / 2 \quad \Rightarrow \quad\left[x_{i}^{\mu}, x_{j}^{\nu}\right]=\mathbf{1} i \theta^{\mu \nu}$,

$$
a\left(x_{i}\right) \star b\left(x_{j}\right)=\exp \left[\frac{i}{2} \partial_{x_{i}} \theta \partial_{x_{j}}\right] a\left(x_{i}\right) b\left(x_{j}\right),
$$

after which we must set $x_{i}=x_{j}$ if $i=j$.

Simplest (nonrelativistic) models where one can see the effects of the \star-locality of the interaction:

1. Charged particle in constant magnetic field B. The simplest gauge choice is $A^{i}(x)=\epsilon^{i j k} B^{j} x^{k} / 2$. One finds $\mathbf{H}_{\star}^{(1)}$, is still differential of second order, but more complicated. In terms of "hatted" objects it can be formulated and solved as in the undeformed case. Choose x^{3}-axis parallel to $q \mathbf{B}=q B \vec{k}$ with $q B>0$, this gives $\hat{D}^{3}=\partial^{3}, \hat{D}^{a}=\partial^{a}-i \frac{q B}{2 \hbar c} \epsilon^{a b} \hat{x}^{b}$ for $a, b \in\{1,2\}$, with $\epsilon^{12}=1=-\epsilon^{21}, \epsilon^{a a}=0$. These fulfill $\left[\partial^{3}, \hat{D}^{a}\right]=0$, $\left[\hat{D}^{1}, \hat{D}^{2}\right]=i \frac{q B}{\hbar c}\left[1-\frac{q B \theta^{12}}{2 \hbar c}\right]$. Defining

$$
\begin{equation*}
a:=\alpha\left[\hat{D}^{1}-i \hat{D}^{2}\right], \quad a^{*}=\alpha\left[-\hat{D}^{1}-i \hat{D}^{2}\right] \quad \alpha:=\sqrt{\frac{\hbar c}{q B}} / \sqrt{2-\frac{q B \theta^{12}}{2 \hbar c}} \tag{39}
\end{equation*}
$$

(we assume $q B \theta^{12}<4 \hbar c$) one obtains the commutation relation $\left[a, a^{*}\right]=1$, and

$$
\begin{align*}
& \hat{H}^{\hat{(1)}}=\frac{-\hbar^{2}}{2 m} \hat{D}^{i} \hat{D}^{i}=\frac{-\hbar^{2}}{2 m}\left[\left(\partial^{3}\right)^{2}-\frac{1}{2 \alpha^{2}}\left(a a^{*}+a^{*} a\right)\right]=\hat{\mathrm{H}^{(1)} \|+\hat{H}^{(1)} \perp} \\
& \hat{\mathrm{H}^{\hat{(1)}} \|:=\frac{\left(-i \hbar \partial^{3}\right)^{2}}{2 m}, \quad \hat{\mathrm{H}^{(1)}} \perp:=\hbar \omega\left(a^{*} a+\frac{1}{2}\right), \quad \omega:=\frac{q B}{m c}\left(1-\frac{q B \theta^{12}}{4 \hbar c}\right)} \tag{40}
\end{align*}
$$

$\left[\hat{\mathrm{H}^{(1)}} \|, \hat{\mathrm{H}^{(1)}} \perp\right]=0 . \hat{\mathrm{H}^{(1)}} \|$ has continuous spectrum $[0, \infty[$; the generalized eigenfuntions are the eigenfuntions $e^{i k \hat{x}^{3}}$ of $p^{3}=-i \hbar \partial^{3}$ with eigenvalue $\hbar k$. The second is formally an harmonic oscillator Hamiltonian with ω modified by the presence of the noncommutativity θ^{12}.

2. Charged particle in a plane wave electromagnetic field.

$A^{a}(x)=\varepsilon^{a}(\mathrm{p}) \exp [-i p \cdot x] \equiv \varepsilon^{a}(\mathrm{p}) \exp [i(\mathrm{p} \cdot \mathbf{x}-|\mathrm{p}| t)]$, (the amplitude vector fulfilling $\left.\varepsilon^{a}(\mathrm{p}) p^{a}=0\right)$. To check (??) it is useful to note the properties

$$
\begin{equation*}
e^{i \mathrm{p} \cdot \mathbf{x}} \star f(\mathbf{x})=e^{i \mathrm{p} \cdot \mathbf{x}} f(\mathbf{x}+\theta \mathrm{p} / 2) \quad \Rightarrow \quad e^{i \mathrm{p} \cdot \mathbf{x}} \star e^{i a \mathrm{p} \cdot \mathbf{x}}=e^{i \mathrm{p} \cdot \mathbf{x}} e^{i a \mathbf{p} \cdot \mathbf{x}} \tag{41}
\end{equation*}
$$

where $(\theta \mathrm{p})^{a}:=\theta^{a b} \mathrm{p}^{b}$, as $\mathrm{p} \theta \mathrm{p}=0$. The Schrödinger equation for $n=1$ particle becomes

$$
i \hbar \partial_{t} \psi_{\star}^{(1)}(\mathbf{x}, t)=\frac{-\hbar^{2}}{2 m}\left[\Delta \psi_{\star}^{(1)}(\mathbf{x}, t)+2 i e e^{-i p \cdot x} \varepsilon^{a} \partial_{a} \psi_{\star}^{(1)}\left(\mathbf{x}+\frac{\theta \mathrm{p}}{2}, t\right)-e^{2} e^{-2 i p \cdot x}|\varepsilon|^{2} \psi_{\star}^{(1)}(\mathbf{x}-\right.
$$

the nonlocality induced by the \star-product is here particularly simple, in that it involves the wavefunction at points $\mathbf{x}, \mathbf{x}+\theta \mathrm{p} / 2, \mathbf{x}+\theta \mathrm{p}$ related by the constant shift $\theta \mathrm{p} / 2$.

Relativistic QFT

By analogous considerations one can construct a consistent (at least free) QFT on a NC
Minkowski spacetime with twisted symmetry. For the Moyal NC one reobtains recent results of G.F., J. Wess 07, in particular

$$
\begin{equation*}
\left[\varphi_{0}(x) \stackrel{\star}{,} \varphi_{0}(y)\right]=i \Delta(x-y), \quad i \Delta(\xi):=\frac{d \mu(p)}{(2 \pi)^{3}}\left[e^{-i p \cdot \xi}-e^{-i p \cdot \xi}\right] \tag{42}
\end{equation*}
$$

(Δ undeformed!) for free fields, implying the c.c.r. $\left[\varphi_{0}\left(x^{0}, \mathbf{x}\right) \stackrel{\star}{,} \dot{\varphi}_{0}\left(x^{0}, \mathbf{y}\right)\right]=i \delta^{3}(\mathbf{x}-\mathbf{y})$. In terms of generalized basis (eigenvectors of P_{μ}) and creation \& annihilation operators:

$$
\begin{array}{lll}
a_{\mathbf{p}}^{+} \star a_{\mathbf{q}}^{+}=e^{-i p \theta q} a_{\mathbf{q}}^{+} \star a_{\mathbf{p}}^{+}, & & \hat{a}_{\mathbf{p}}^{+} \hat{a}_{\mathbf{q}}^{+}=e^{i q \theta p} \hat{a}_{\mathbf{q}}^{+} \hat{a}_{\mathbf{p}}^{+}, \\
a^{\mathbf{p}} \star a^{\mathbf{q}}=e^{-i p \theta q} a^{\mathbf{q}} \star a^{\mathbf{p}}, & & \hat{a}^{\mathbf{p}} \hat{a}^{\mathbf{q}}=e^{i q \theta p} \hat{a}^{\mathbf{q}} \hat{a}^{\mathbf{p}}, \\
a^{\mathbf{p}} \star a_{\mathbf{q}}^{+}=e^{i p \theta q} a_{\mathbf{q}}^{+} \star a^{\mathbf{p}}+2 p^{0} \delta^{3}(\mathbf{p}-\mathbf{q}) & & \hat{a}^{\mathbf{p}} \hat{a}_{\mathbf{q}}^{+}=e^{i p \theta q} \hat{a}_{\mathbf{q}}^{+} \hat{a}^{\mathbf{p}}+2 p^{0} \delta^{3}(\mathbf{p}-\mathbf{q}), \\
a^{\mathbf{p}} \star e^{i q \cdot x}=e^{-i p \theta q} e^{i q \cdot x} \star a^{\mathbf{p}}, & \& \text { h.c., } &
\end{array} \hat{a}^{\mathbf{p}} e^{i q \cdot \hat{x}}=e^{-i p \theta q} e^{i q \cdot \hat{x}} \hat{a}^{\mathbf{p}}, \quad \& \text { h.c.; }
$$

$$
\begin{aligned}
& \check{a}_{\mathbf{p}}^{+} \equiv D_{\mathcal{F}}^{\sigma}\left(a_{\mathbf{p}}^{+}\right)=a_{\mathbf{p}}^{+} e^{-\frac{i}{2} p \theta \sigma(P)}, \quad \check{a}^{\mathbf{p}} \equiv D_{\mathcal{F}}^{\sigma}\left(a^{\mathbf{p}}\right)=a^{\mathbf{p}} e^{\frac{i}{2} p \theta \sigma(P)} \\
& \hat{a}_{\mathbf{p}_{1}}^{+} \ldots \hat{a}_{\mathbf{p}_{n}}^{+}|0\rangle=a_{\mathbf{p}_{1}}^{+} \star \ldots \star a_{\mathbf{p}_{n}}^{+}|0\rangle=\check{a}_{\mathbf{p}_{1}}^{+} \ldots \check{a}_{\mathbf{p}_{n}}^{+}|0\rangle=\exp \left[-\frac{i}{\left.2_{\substack{j, k=1 \\
j<k}}^{n} p_{j} \theta p_{k}\right] a_{\mathbf{p}_{1}}^{+} \ldots a_{\mathbf{p}}^{+}}\right.
\end{aligned}
$$

where $\sigma\left(P_{\mu}\right)=\int d \mu(p) p_{\mu} a_{\mathbf{p}}^{+} a^{\mathbf{P}}$. By (45) generalized states differ from their undeformed counterparts only by multiplication by a phase factor. As $\check{a}_{\mathbf{p}}^{+} \check{a}^{\mathbf{p}}=a_{\mathbf{p}}^{+} a^{\mathbf{p}}$, $\sigma\left(P_{\mu}\right)=\int d \mu(p) p_{\mu} \check{a}_{\mathbf{p}}^{+} \check{a}^{\mathbf{p}}$, the inverse of $D_{\mathcal{F}}^{\sigma}$ is readily obtained.

This means that the results of G.F., J. Wess 07 are consistent with Bose-Fermi statistics and a description of (at least) free n-particle states by t-dependent wavefuntions.

[^0]: ${ }^{a}$ This covers most cases of interest: if e.g. $\exists a_{0}$ spanning a 1 -dimensional submodule and $a_{0} a_{i}-a_{i}=a_{i} a_{0}-a_{i}=0$ for all i, then \mathcal{A} has unit, $a_{0} \equiv \mathbf{1}$. If $a_{i} a_{j}-a_{j} a_{i}=0$ for all i, j, then \mathcal{A} is abelian. Imposing further polynomial relations one gets the algebra of functions on an algebraic manifold M. If instead \mathcal{A} is the UEA of a Lie algebra (in particular of the vector fields over M) among the relations there are $a_{i} a_{j}-a_{j} a_{i}=c_{i \vec{i} \text { isecond quantization on NC }}^{k} a_{k}$. And

