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Introduction
QFT on NC space(time)s: how and why?

Various possible routes:

Path-integral field quantization

Field quantization in operator approach (Canonical or aightvshan? Standard o
deformed Poincaré?...)

In [G.F.-Wess 07] a surprising result: Wightman axioms wiineful twisted Poincaré
covariance yield QFT (free or interacting) with the sampoint functions and
commutation relation relations. What's happening?!?

(Already [G.F.-Schupp 96]: twisted symmetries compatwign Bose-Fermi statistics)

Here2nd Quantization: from covariant QM ofn identical bosons/fermions on a NC
space(time) to QFT on the latter. Main motivations: impoc&of the particle
interpretation; keeping Bose-Fermi statistics to avomktic consequences.

Various issues involved: consistency with QM axioms (uitgaquantum statistics,...)?
Deformed space(time) symmetry? Causality? Divergencesn@nmmalizability?...
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Bottom-up approach based onk-products to guess a consistent NC framework:

- Start fromG-covariant many-particle QM on@-symmetriccommutativespace(time)\/.

E.g.: G =Galilei group andV/ = R x R3; G =Poincaré group andi/f =Minkowski spacetime.

- QFT can be obtained by 2nd quantization.

- We may introduce a moderate (very special) non-localitheinteractions using theproduct
induced by a twistF (M) of H=Ug [g := Lie(G), A=deformation parameter].

- Express all ordinary products as formal expansions af x-ones upon inverting the definitior

fxg=fg+0O) = fa=fxg+O«N).

So wereformulate commutative notiofwavefunctions, differential operators (Hamiltonian;)et
creation & annihilation operators,..., their transforimas, 2nd quantization procedure itself]
purely in terms of their noncommutative analogs

- Forget original products to obtaincéosed framework for Second Quantization on a NC spa:

Same strategy as adopted by J. Wess and collaborators [@3g0&o formulate noncommutativ
diffeomorphisms and related notions (metric, connectitarssors etc).

We stick toNC space(time)s symmetric undaangular deformations (by twisting) of Lie
groups, requiring full covariance of the framewarkder such a "twisted symmetry group" (HG
algebra). Maybe no or little new dynamics, but at least a toommutative way" to look at it;
moreover, this can pave the way for more interesting (andoticated) deformations.
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Plan

1. Introduction

2. Twisting H =Ug to a noncocommutative Hopf algehfa

w

Twisting modules and module-jalgebras [to be applied &, O, M = C*° (M),
D(M), L2, their tensor powers, their (anti)symmetric paus the field algebrap,...]

Symmetric QM withn bosons/fermions in abstract Hilbert space
Second gquantization: from wavefunctions to quantumdién-relativistic)

Second guantization: from wavefunctions to quantumsi@idlativistic)

S -

Examples: QM and QFT on Moyal NC space(time)
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Twisting H =Ug to a noncocomm. Hopf algebraf

Real deformation parametar A, H[[\]] have

1. samex-algebra (ovefC[[\]]) and counit

2. coproduct\, A related by

Ag) = 29(11)@)9([2) — A(g) = FA(9)F ' = Zg(Ii)@g(IQ)
I I

3. antipodesS, S s.t. S(g) =a~1S(g), witha= 3", S(J_-"gl)) FR F=F-1

where thewist [Drinfel’d 83] is for our purposes anitary elementF € (H*® H?®)[[A]],
(H* C H Hopf x-subalgebra) fulfilling

F =181+ 0, (e®id )F = (id ®e)F = 1,
(FD[(A®Id)(F)] = 1xF)[(ld ®A)(F)] =: Fs. (1)

H has unitary triangular structuf@ = Fo1 F 1. H := H*[[\]] is a Hopfx-subalgebra of{.
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Twisting module (x-)algebras

Recall defs: a2-algebr&2t overC[[\]] is a Ieftf{-moduleﬁ-algebra if3 aC[[\]]-bilinear map
(g,a) CHxA — glA>d€.»Zl, calledleft action such that (omitting product symbols)

(g9 )bd = g> (g'ba),  (gba)* = [S(g)]*Ba*,

(2)
> (ab) = I sallg!. &b].
A A (@ab) 21[9(1) ][9(2) ]
A H-(*-) module M is a linear space fulfilling only the first (two) relations.
SinceH = H|[[\]] asx-algebras (andF is unitary), M [[\]] is a H-(*-)module under
gba = g > a; (a* := S(a ™ >a*) (3)

Given aA, endowM|[[\]]:= V (A)[[A]] =vector space underlying[[A]] with a new product,

the x-product defined by
—=(1) —=(2)
axb:= Fr'pa)(F; ' >b), (4)

this becomes &/ -module §-)algebraA,: associativity follows from (1), whereas g2jrom

(1) (2') (1) (2')
g (axb)= [g(l)}" l>a] [g(Q)]-" >b] [ff, 903> a] [ff, 9(5,P b]:[g(fi)> a}*[g(fé)c

Moreover,(axb)* =b*xa*. We stressworks even ifAnot abelian!
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Thex is ineffective ifa or b Is H°-invariant:

g>a=¢€(g)a or gpb=¢€(g)b Vg€ H® = axb = ab. (5)

Given H-(x-)modulesM, N/, then alsoM®N is, under the action

g> (man) =%, (g >m) @ (gh, e n), (6)
and MQN[[\]] is a H-(*-)module, under the action
gs(m@n) = 31 (g5 5m) @ (g1, 5n ) € MRNA]] 7)
F¥ is an intertwiner between them. Applying (6) to thetensor product” [Aschieri et al]
(m@.n) = F o2 (men) = X, (F; o m)@F” o n),
one findsg > (m®4«n) =3, (g(Ii) >m)®« (g(IA >n), i.e. arealizaton of (7).

2)
Moreover, if M3 C MQN is a H-(x-) submodule, thetF 5%2 M is a H-(%-)submodule.

Given H-module &-)algebrasA, B the tensor £-)algebraAxB [(akb) (a'Qb") = aa’@bb’] also is
a H-module &-)algebra undes.
Introducing thex-product (4).AQ8 is deformed into & -module §-)algebra( ARB).. One finds

(a®+b) % (c®sd) = Yy ax Ry b )@« (RY b b) »d, (®)

R=TR ~Lg, is the associateldraided tensor produg{involutive asR R 21 =1x1). Note that
a® b= (aR1)*(1Rb), A1+ =(ARL) 4 ~ Ay, S0B2,. = (1R8) . ~ B4 . S0(AKRB), encodes the
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H-module algebras defined by generators and relation$Given aM, fix a (discrete) basis
{a;}ic7 of M. Thefreealgebrad’ generated bya;};c7 is automatically a-module
(x-)algebra under

9> (i iy, ) =g (g(Il) l>a,z-1) (g(IQ) l>a,z-2) (g(Ik) Daik) .

By the previous procedure one deforpdd into a H-module §-) aIgebraAf. Now assume
A = Al /T, whereZ is a H-invariant (&-)ideal generated by some setmflynomial relations?

f‘](al,ag,...)zo, JeJ. (9)

We can define-polynomialsf; requiring f/(a1xaox...) = f/(ay,as,...) in
V (AN[[N]] = V (AL). Thex-polynomial relations

i (a1%,a2%,...) =0, JeJ (10)

generate &l -invariant &-)idealZ,, henceA, ::AI/I* is a H-module &-)algebraA,, with
generators,; and relations (10)By construction the Poincaré-Birkhoff-Witt series.df A,
coincide.

9This covers most cases of interest: if eflag spanning a 1-dimensional submodule :
aopa; — a; = a;ao — a; = 0 for all 7, thenA has unitao =1. If a;a; — aja; = 0 forall 7, j,
then A is abelian. Imposing further polynomial relations one dhtsalgebra of functions on &
algebraic manifoldV/. If instead.A is the UEA of a Lie algebra (in particular of the vector fie

over M) among the relations there atga; —a;a; =c¥ aj. And so on.
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Similarly, the Poincaré-Birkhoff-Witt series od®B3, (ARB). coincide. Denoting by a; }ic 7,
{b; };c7/ sets of generators o4, B (assumed unital), a set of generators of hdth3 and
(ARB)« will consist of {a;1,b;/5 };e7.47 77, Where for anyx € A[[M]], B € B[[\]] we set

a1 = a®l, B2 = 1R0.

As generators aA® B [resp. (AR B) ] they will all separately fulfill (9) [resp. (10)] and the
analogous relations fds, together with

ailbi/Q = bi/Qa“ [resp.az-l * bi’2 = (ﬁgl)lgb/Q) * (ﬁgl)lga,zl) ] (11)
I

The{a;1 }ic7 will generate aH - (resp.H-) module (*-)subalgebra, which we shall call;
(resp.A1,). As aH- (resp.H-) module (*-)algebra, this will be isomorphic t4 (resp..A,).
Similarly for Bz (resp.B2y).

As the original product of4 no more appears in theserelations, one can introdudé-module
(*-)algebrasZ, B, A=B resp. isomorphic tA,, By, (A®B), justin terms of these generator
and relationsChange of notationz;, b >, * — a;, b;,55, (omitting the symbok); e.g.ﬁ =
(x-)algebra generated By, } fulfilling

£l (a1, a2,..) =0, JeJ

(and#-structure defined bg;* = S(a=1) > Ef).

On second quantization on NC spaces with twisted symmetne8/2



H itself is a left H-modulex-algebra under the left adjoint action
5 h=gl hS(g 12
g 9(1) (9(2)) A (12)
(n0"). Applying the above procedure 4 = H one getsAschieri et al.]a H-modulex-algebra
H,, isomorphic toH under the noncocomm. adjoint actibnMore generally, if a-module
x-algebrad admits ax-algebra map : H — A s.t.> can be expressed in the “adjoint-like” forr
I N aara(aI
S(g” - 13
L) as[S(d",)] (13
(no’), then A[[\]] becomes & -modulex-algebra undeg defined by (13) (with's and extendec
& : H=H[[\]]— A[[)\]]). Thedeforming mapD% : a € V (A)[[\]] — a € V (A)[[\]] defined by

gba —a(g

a=D%(a):=0(FM) a o[S(FPa)] = (F>a) o(FY) (14)

intertwines between, b>:
g8[D%(a)] = D% (g>a). (15)

Moreover[D% (a)]* = D% [a*], implying (g8a)* = [S(g)]*5(a)*. SOif M CV(A)isa
H-+-submodule DZ (M) is a H-+-submodule. Finally,

D%(axb) = D% (a)DE(b). (16)

So we can promot®Z to a H-modulex-algebra isomorphisZ : A, — A = A[[\]]. If
ASC Ais aH-modulex-subalgebrad’= DZ(A%)cC A[[\]] is a H-module §-)subalgebra.

Clearly, forA= H one can use =id [Gurevich & Majid '94]. In [G.F. '96] a o for general
H-covariant Heisenberg or Clifford algebras was proposee b&low.

On second quantization on NC spaces with twisted symmetne$0/2



Clearly, if x-algebra maps 4 : H — A, op: H— B exist,

6azn =(0caQ0p)o A :I;V—>(A®B)[[)\]]

is ax-algebra map. Replacinggs in (13) we make(A® B)[[\]] into a H-modulex-algebra.
One can define deforming mapi.e. aH-+-module isomorphism
D5 : (A®B)x — (A®B)[[A]] by

T ARB = T, —=(1) (2) (=(2) ;1
DIAB (q) = F I i va| o (7)) F (17)

[with F»:=(ca®0op)(F)]. Again we see that, M C AR B is a H-submodule, then
DI (M) C A®[[\]] is aH-submodule.
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H-covariant QM with n bosons/fermions (abstract setting)

and associated Fock space

Assume the 1-particle Hilbert space igfax-module:3 a dense subspa@¢ andx*-algebra map
(embeddingp: H — O =alg. of operators oft{, g bu= p(g)u onwu € H. The compatibility
conditiong >(Ou) = (g(Il) >O0) 9{2) >u induces or® a H-modulex-algebra structure:

gru = p(g)u, grO=p (9{1)) O p[S (gé))] : (18)
Replacingp in (18) by p(") := p®n o A(") transformation of.-particle states and observable
(Previous constructions with = p, p(") apply!)

The completely (anti)symmetric pakt’; of H®" is a H-+-submodule and describes the Hilbe
space ofz-boson ) or n-fermion (—) states. The completely symmetric parf. of O%" is a

H- modulex-subalgebra and its elements maps each®f, H™ into itself. p(") (H) C 0% is
usually a physically relevant modulesubalgebra: if e.gH has a rotational symmetgp(3), the
components of the total angular momentum of#hparticle system belong to{™)(Uso(3)).

Let {e; }iay be an orthonormal basis @&f. For anyiy,i2, ...in, €N let

n oy
Cil i, unsin préiif;zn (ej, ®ej, ®...Q€;, ) EHY
(N =normalization factor). An orthonormal bad# (resp.B™) of H"} (resp.H" ) is obtained

choosingi; < ig < ... < iy (resp.iy <io <...<ipn).
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Introduceoccupation numbers;: each counts for how manlyit occursi;, = j there; forn
identical fermions it can be only; = 0, 1. The vectors o3} are characterized by a sequenc
of occupation numbers fulfilling = > . -y n;, so one can denote them as

Ini,no,...) = e - (19)

1143224449l m

Let |0) =vacuum statefFock space completion of
HY =Cl0)OHOHL D... OHE D ...

Define creation/annihilation op.’s as usual. They fulfikk tanonical (anti)commutation relatior

a’,a’1£=0,  [af,af]1=0, [a’,a]]+=0" (CCR)

Assuming|0) to be H-invariant,a;", a* must transform as; = a;"|0) and(i| = (0|a’
respectively:

gbal = pl(g)al  gba’ =p¥I(g)a? == p[S(g)]d’. (20)
(with no"). So{aj} and{a’} resp. span carrier spaces of the representatiops of H. As the
CCR areH-invariant,{a;r, a'} generate a (Heisenberg or Clifforfl)-modulex-algebraA.
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Applying the previous deformation procedure one obtaifs-modulex-algebraA with
generatorﬁj, a’ [G.F. '96] transforming as above (with fulfilling dj* = a* and

= +Ry,a%a’,
&j_ j_ + Ry Tar, (TCR)
a‘al =614+ R¥aga

whereR:= (p®p)(R)=181+0()). We could have presentedi ~ A, also in terms of
generatorszj, a’ andx-products. On the other hand, one can define askadgebra map
o:9— A by

_+_

+)aj — P;' (g)a@'

a(g) == (gva; a’, g€g; (21)

o is extended as &-algebra map : H =Ug[[\]] — A[[\]] overC[[\]] by settingoc(1x) =1 4.
(It is a generalization of the Jordan-Schwinger realizatibg = su(2).) So we can makel[[\]]
into a /-modulex-algebra. Undeg a;", a® do nottransform asi;", a* in (20), but the elements
[G.F. '96]

= D (a;), a' = DF[pj(a™")a’] (22)

do. Moreover, the latter fulfill the (TCR) angf = d;r*. Namely,d;r, a® provide arealization of
a;", a' within A[[\]]. Hence x-representations ofl[[\]] are also«-representations ofl. This

suggests that, at least néae= )\ € C, x-representations ofl, in particular the Fock one, are als
«-representations ofl (to be verified case by case). Let us compgfewith a.", & :

’L

aj..af |0y = (Fm)~HLodn ob ot |0) = af x..xa) |0) = af..af |0).  (23)

11 in Vlyee5tm J1°7 7] 21

at,a’,a;, al, a% a' all act on the Fock space of bosons/fermions (no change tistital).
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Differential and integral calculus over G-symmetric M

Let M = C°>° (M), E D g the algebra of vector fields ovad, A = D := U= M (cf.
[Aschieri et al]). (By constructiooM is a H-modulex-subalgebra oD). We apply the above
*x-deformation procedure with some twiste (H®Q H)[[\|], H = Ug.

If M is a submanifold of somR™ characterized by a set of equatighs(x) = 0 [with
r=(x!,...2™)] symmetric undeg, M is the abeliantf-module algebra generated by, ...x™

Y

fulfilling the relationsf ; (z) = 0 in addition tox®x® —2°2% =0, Z is the Lie subalgebra of
vector fields¢ = >°7" | €"(x)d,n overR™ such thaf¢, f;(x)] = 0, and thex-deformed (or
"hatted") objects can be described globally in termgerierators”, c‘iph and relations.

One can globally define a Lie-algebra maw : H[[\]] — UZ[[})\]] starting from

a(g) =2 he1(g>a")0,n € B, geg.
and the corresponding deforming m&- for D, and then for tensor powers Bf.

If M =Riemannian(F =its group of isometriesjv =invariant volume form, alsg,dv () is:

[xdv(z)(g> f) = e(g)f5av f & [xdvf(geh) = [dv[S(g) > flh.

This implies for the correspondingproduct

Jxdv () f () = [xdv(z) f(x)]a> h(z)] = [3dv(z) > f(x)]h.

These eqns hOId aISO fOF integration OmiMdepen%Q&bV%mL%n on NC spaces with twisted symmetne$5s/2



From wavefunctions to guantum fields (non-relativistic)

Let H = Ug include the UEA of the Lie groupr of isometries of aommutativespacetime
R x X, with X =a Riemannian manifold on which QM is well-defined; th&n fde are
H-invariant (E.g.X = R3, G = Galilei group).Fix an inertial reference frame.

First: n = 1 nonrelativistic quantum particle oK (with spin zero or factored out):

1. 3 H-equivariant, unitary transformation: u € H « 1, € X CC(X)NL? (X, dv),
g > wu — wgbu,

(ulv) = /dV [ ()] tpu (%) = /dv [ ()] % Yo (%). (24)

X X

2. k(Ou) = k(O)k(u) for anyu € H defines aH-equivariant ma : O < D.

[for X = R3, Ois generated byq®, p®}, andi(q®) = -, &(p?) = —ih52:].

The mapss, < provide acommutative H -equivariant configuration space realizatioh {7+, O}
on X, D, depending on the choice of the reference frame

This is immediately extended toidentical quantum particles oK

1) K2 HO™ — X¥" and the restrictions to the completely (anti)symmetricspaizes
KEn THY (X®") 1 are H-equivariant unitary transfs, (24) holds withfold integration
2) & : O%" D" and the restrictior : 0% «— D= are H-equivariant maps.
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Applylng thex-deformation procedure with a twist leavingentral, one defines wavefunctions
Y = A" (1)) of noncommutative coordinated,, (x1 %, ..., Xn*, t) = ty (X1, ..., X1, t)%, and
"hatted" differential operator® (xx, Ox) := D(x, 9)«, and one findD = A" D [/\”]_1. We
define a deformed-invariant “integration oveX” Jxd(x) such that

AD(R)f(X) = dv(x)f(x),
X

X

and similarly forn-fold integration. Then in “hat-notation” (24 for n particles becomes
(u,v) = di(X1)... dD(Xp)[Pu (K1, ooy %) o (X1, .0s Xn). (25)
X X

The mapA™ : i), € X®" — ), € (X®™), is therefore unitary andll-equivariant.A™ also

maps the action of the symmetric grofp from X®" to (X®"),.. A permutationr € S,, is
represented oA ¥, (X®™), respectively by the permutation operaf¥ and the “twisted
permutation operatorPl” = A" P.[A"]~! [c.f. G.F.-Schupp 96].

Let A" :=A"E", & (-):= A" [R®" (.)][A"]~L. Then the maps™ , =, define aH-equivariant,
noncommutative configuration space realizatid{ 7", 05" } on (X"), (D), depending

_+_

on the choice of the reference frame.
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Let {e; }in be orthonormal basis 6%, ¢; =k(e;), a;", a* associated wavefunction, creation,

1 0

annihilation operators. The (nonrelativistic) field ogerand its hermitean conjugate

(%) == pi(x)a’, o (x) =} (x)a; (26)

in the Schrodinger picture (sum overinfinitely many terms) are operator-valued distribution:s
basis-independent (i.e. invariant under a unitary trabistf {e; } ,ov) and fulfilling the CC(A)R

[p(x), p(¥)]F = h.c.=0, [p(x), " (¥)]F = wi(x)e; (¥) (27)

(= for bosons/fermions). Thieeld x-algebra® is spanned e.g. by the normal ordered monorr

@™ (x1)-- " (Xm) P (Xmt1)-..p(Xn)

(x1, ..., xn are independent points). S0C ¢ := (@2, V)RA (1st, 2nd,..V means space
distributions depending ar;, x2,...). CCR of A are the only nontrivial comm. rel. i®€ .
H-invariant|0) = o transform ag; = a; |0), ;, whereas:’ transform agi| = (0]a’, ¢}:

g>a; =pl(g)a) gra’ = p¥l(g)a’ = p'(S(g))a’. (28)
Wheng € g this is a very special (infinitesimal) unitary transfornoatlU of {e; };ov. Under this

transf.p, ©* are scalars. Sox-products with Vy € ¢ make no difference:

g>p(x) =e(g)p(x),  pE)xx =eX)x,  x*p(x) = xp(x), & h.c. (29)
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These propertieg(a) = 1 and the definition* :=a. * = S(a™1) > o’ =p’(a~")a? imply
(%) = i(x) % a’, " (%) = 9" (x) = af * pF(x), (30)
;i (%) f () = pi(x) * gpj (y) and therefore that the CCR (27) can be rewritten in the form
(%) T o(¥)]F = h.c. =0, (%) ¥ " (¥)]F = wi(x) %7 (¥) (31)

(here and belowWA* B]t := A x BF B % A). Also ®¢ is a H-modulex-algebra.

The field fulfills the following properties: for any € (H&") 1.

Yo (X1, Xn) = K () (X1,000y X)) = \/%(O\go(xn) * ok p(x1)u,  (32)
u = L' dv(x1)... dv(xn)Pu (X1, Xn)@* (X1) * ... * ©* (x,)]0),  (33)
n. x X

which are very useful for computing the unitary transforioas=" in and its inverse, taking
into account automatically the combinatorial aspects ofifsymmetrization.
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Equations of motion

Assume thez-particle wavefunctions) ™ fulfill some x-differential Schrodinger equation

ih 2™ = HO M), HY = [— 22 DasDo+V]x,  Dy=084+ieAq

n (34)
z‘h% () — H{™ (), H(™ = hzl Hi”(xh,t) x. n>2

Commutingt; x-local interaction with external background potentiglx, t) andU (1) gauge

potential A (x, t). p;,;, =distance between the points,, x;, (onr = |x5, — x5 | if X =R3).

H{™ =pseudo-differential operator! It is hermitean provid¢d’ is andasH®» =H®, H{™ is

completely symmetric, so preserves the (anti)symmetnyifff. The Fock space Hamiltonian

H.(¢) = )?V(X)SO"?(X)*HQ)(X, t)p(x) * * *p(X)%

commutes with:=a a’ =a; xa’*, ands® oH, yn = H{™ forn>2.

The Heisenberg field operater (x, t) := e~ & Jodt M ,(x)e™ 7 S0t Hs fyfills

(B (x,t) 5 (y,t)]+ =h.c.=0, [pH(x,t) s *(y, )]+ = pi(x)*¢f (y),
(35)
ihg-of = [H. % 1],
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If W = 0 (34); amounts to the "second quantization of (ﬁB)th* — H" oH | ax-local

equation. IfH{" is t-independent, so id, , thenH, (©*) = H, (), and (34) can be
equivalently formulated directly in the Heisenberg pietas equations in the unknowr’ (¢).

By further replacing’ (x, t) = V(x, t)%, A(xx,t) = A(x, t)*, $;(x*) = p;(x)* we can
reformulate the previous eq.’s purely withproducts:2nd quantization on the NC spacetime
X xR compatible with QM axioms and Bose/Fermi statisticsIn "hat" notation, withind¢, &,

~

P(X) = pi(%)a’?, p* (%) = a; ¢F (%)
[p(%), (¥)]x = h.c.=0, (p(%), p* (3)]5 = 4:(X)PE (),
ihd-ap = H(M, H) = S~ HV (%, 1)

h=1 (36)

There is an advantage if thedependence of (%, t), A(%, t)¢; (X) is simpler than the
x-dependence d¥ (x, t), A(x,t), p;(x), as it happens if the latter fulfil-differential
equations.

On secondguantization on NC spaces with twisted symmetne21/2



Vo (X1 ey X)) 1= R (W) (R1yeee, Xn) = —=(0]p(Xp)...0(X1)u,

n!

(37)

u:% di(X1)... dD(Xn)u(X1yeey Xn)@* (X1)...0% (%n)]0).
mn. X X

for anyu € (H®") 1 ; choosingu = et € B% one finds in particular

2] 5e--sl

Yo (X1 ey Xn) = Ny, (xl)...gojn](xn),
(X1, Xn) = FI 90 NG (R1)..05, 1 (i)

11 .--In
where(...] means indices (anti)symmetrization, adffel:= (<o p)®" (F™) (a unitary operator).
The groupS,, acts omﬁu(:fq ,---, Xp, ) € the (braided) tensor produét@ e ® X by "twisted
permutations’PL” = FP, F™*~1 [G.F. & Schupp '95] This is an alternative way to fulfill
Bose/Fermi statistics.
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Examples: QM and QFT on Moyal NC space(time)

Hereg = G = Galilei Lie algebra in the non-relativistic cage—= P = Poincare Lie algebra in
the relativistic case. Simplest choice bt

F=3, ]—"5,1)@]—"?) = exp(%AH“”PM@)Py) — exp(%@“”PM®Py) .
whered#" is a fixed real antisymmetric matrix. Settidd,, =w** M,,, (WH*¥ = —w"H),

A(Pu) = A(Py) = Pu®1+10P, = A(FyL),
A(M,) = My®1 +1QM,, + P -Qw, )P # A(M,,).

Wheng = G putf®® =0, t = 22, Py = Ho = non-relativistic kinetic energyy/¢ = e*bc¢,
M9 = Ko and the mass: is an additional generator, central. Only nontrivial conte.

[K®, P?] = imhd®?, (K%, Ho| = ihP?%,
(38)
[L%, Lb] = ie*b°RLe, [L%, P%] = ie®bchPe, (L%, K?] = ie**°hK®.
The aboveF gives:zzfj*acj’( = a:é‘a:?—l—i@“”/Q = [k % z¥] = 101,
0
a(z;)*xb(z;) :exp[i&pi98xj]a(:c¢)b(:cj), (47)

afterwhich we must set; =x; if 1 =3.
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Simplest (nonrelativistic) models where one can see tleeesfiof thex-locality of the interaction

1. Charged particle in constant magnetic fieldB. The simplest gauge choice is
Al(z) =€k Bigk /2. One findsH'", is still differential of second order, but more complict
In terms of "hatted" objects it can be formulated and solsethdhe undeformed case. Choose

z3-axis parallel toyB = qBk with ¢B > 0, this givesD? =83, D® =9 —i 42 b3 for
a,be{1,2}, with 2 =1=—¢?!, e =0. These fulfill[§3, D*) =0,
(D', D?] =221~ qgg |. Defining
a::a[ﬁl—iﬁQ], a*:a[—ﬁl—iDQ] o=,/ 25 he /\/2 dem (39)
(we assum@B6d12 < 4hc) one obtains the commutation relatipn a*] = 1, and
- B2 aia. _p2 . A .
HO = S DD = S [(9%)2 = 5Ly (aa” + a*a)| =H | +HD) |
(o (zin0*)? A B B61? “9)
R G e * 1 _
HO =00 HD L =hw (afa+d),  wi=22 (1-25)

[HZl) I Hflu] —0.H® | has continuous spectrufyoo|; the generalized eigenfuntions are |

eigenfuntions:**%> of p? = —ikA3 with eigenvaludik. The second is formally an harmonic
oscillator Hamiltonian withu modified by the presence of the noncommutativity .
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2. Charged particle in a plane wave electromagnetic field.
A%(x)=e%(p) exp[—ip - x| =e%(p) exp[i(p - x—|p|t)], (the amplitude vector fulfilling
e*(p)p®*=0). To check ??) it is useful to note the properties

*x f(x)= e'P’ *f(x+6p/2) = e'P X 4 glaP X _ oI X lap-X (41)
where(0p)? :=02°p?, aspfp=0. The Schridinger equation far=1 particle becomes
(1) h’ (1) 1p-T £ (1) 6 2 _—2ip-x|_12,,(1)
ithow i (x,t) = Dy AP H(x,t)+2iee” P Te0g1p] x—l— —e“e” “PT|e|f Y (x-
m

the nonlocality induced by the-product is here particularly simple, in that it involvegth
wavefunction at point, x+60p/2, x+6p related by the constant shifp /2.
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Relativistic QFT

For the Moyal NC one reobtains recent resul
of G.F., J. Wess Qin particular

po(@) * po(y)=iA(@—y), inE)i= PP i w4

(A undeformed!) for free fields, implyinthe c.c.r. [ipo (2%, x) * ¢o(2?,y)] =i 63(x —y).
In terms of generalized basis (eigenvectors’p) and creation & annihilation operators:

- — - stod _ iglp stat

+ _ _—ipbq
ap*xagq =e Aq *ap apaq =€ aqagp
aPxad = ¢~ PY7 gAx P aPad =% aaGP,
N
+ _ _ip0 + 053 ~pat 1 N N 053
aPxay = e'P’?aq xaP+2p°6°(p—q) aPay =e peqaqap—l—Qp ) (p—q),
aPxet?T = ¢~P0q gi0 T, P & h.C, aPel?T = =04 10 24P & N

(43)
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i i
di')’ = Dg__ (a:)’) — age_ﬁpQU(P), aP = ijf__ (ap) — apeinU(P)

. mn

R R 5 § i

at ...a+n|0> =al x.. *a+n|0> = a:)_1°'°a:>_n|0> =exp|—o p;Opi | ad ...ag
jok=1

i<k

whereo (P,) = [du(p) puag aP. By (45) generalized states differ from their undeformed
counterparts only by multiplication by a phase factor.agsap = afg aP,

o(P,) = [du(p) puay aP, the inverse oD% is readily obtained.

This means that the results 6fF., J. \Wess 0a@re consistent with Bose-Fermi statistics and a
description of (at least) free-particle states by-dependent wavefuntions.
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