NC Emergent Gravity & Fermions

Daniela Klammer

Joint work with Harold Steinacker

Department of Physics, University of Vienna

hep-th/0805.1157

Outline

To begin with ... an Introduction
Geometry & NC *U(N)* gauge theory
Scalars

Fermions

... then gravity emerges ...

Geometry & UV/IR mixing
Conclusion

Motivation
The Matrix Mov

Scalars

Fermions

Emergent Gravity

Unimodular Me Seeley-de Witt

EH Action

JV/IR mixin

Conclusion

Introduction

, GR & QM ?

Quantum fluctuations of space-time

Noncommutative space-time

$$[x_i, x_j] = i \,\theta_{ij}$$

Desire simple, intrinsic relation between NC & Gravity

Motivatio

he Matrix Model calars

Emergent Gravity

Upon Quantization
Unimodular Metric
Seeley-de Witt

EH Action

UV/IR mixing

Conclusions

NC gauge theory contains gravity

Motivation
The Matrix Mode

Fermion

Gravity
Upon Quantiza

Unimodular Met Seeley-de Witt coefficients

EH Actio

JV/IR mixin

Conclusion

The Model

$$S_{YM}=- ext{Tr}ig[Y^a,Y^big]ig[Y^{a'},Y^{b'}ig]g_{aa'}g_{bb'}$$
 $Y^a\in L\left(\mathcal{H}
ight)$... matrices/operators; $a=0,1,2,3;$ $ig[Y^a,Y^big]=i\, heta^{ab}$

- θ^{ab} not constant
- Y^a interpreted as quantization of coordinate functions y^a on Poisson manifold $(\mathcal{M}, \theta^{ab}(y))$ with Poisson structure $\theta^{ab}(y)$
- This implies in the semi classical limit

$$[Y^a, \Psi] \sim i \, \theta^{ab}(y) \frac{\partial}{\partial y^b} \Psi$$

Scalars

Effective Metric

$$S [\Phi] = -\text{Tr} [Y^a, \Phi] [Y^b, \Phi] g_{ab}$$
$$\sim \int d^4 y \, \rho(y) G^{ab}(y) \partial_a \Phi(y) \partial_b \Phi(y)$$

where

$$G^{mn}(y) = \theta^{ma}(y)\theta^{nb}(y)g_{ab}$$

- Effective metric determined by Poisson sturcture θ^{mn}
- Φ couples to effective metric
- $\rho(y) = |G_{ab}|^{1/4}$
- $\theta^{mn} \rightarrow \text{vielbein}$

EH Actio

UV/IR mixin

Conclusion

Fermions

The Action

$$S = (2\pi)^2 \operatorname{Tr} \bar{\Psi} \gamma_a [Y^a, \Psi] \ \sim \int \mathrm{d}^4 y
ho(y) \bar{\Psi} i \gamma_a heta^{ab}(y) \partial_b \Psi$$

The Dirac operator

$$\not\!\!D\Psi = \gamma_a [Y^a, \Psi] \sim i \gamma_a \theta^{ab}(y) \partial_b \Psi$$

★ no spin connection appears

Compare to standard covariant derivative

Motivation
The Matrix Model
Scalars

Emergen Gravity

Upon Quantizatio Unimodular Metr Seeley-de Witt coefficients

EH Action

UV/IR mixii

Conclusion

Spin connection?

Yes, this is a strange feature

- Rotation of spin will be different in this model
- Holonomies will be different than in GR

Nevertheless ...

... trajectory of fermion will follow geodesics ... Einstein-Hilbert action will be induced

This is a reasonable action for fermions

... Opens possiblity for experimental signature?

Motivation
The Matrix Mode

Fermions

Gravity

Upon Quantizati

Unimodular N Seeley-de Wit coefficients

EH Actio

JV/IR mixin

Conclusion

Emergent Gravity

How will the Einstein-Hilbert action join our game? No need of adding further terms to the action.

 S_{EH} emerges automatically upon quantization. One-loop effective action Γ_{Ψ} will correspond to EH-action S_{EH} .

$$e^{-\Gamma_{\Psi}} = \int d\Psi d\bar{\Psi} e^{-S[\Psi,\bar{\Psi}]}$$

$$\Gamma_{\Psi} = -\frac{1}{2} \text{Tr} \log \not D^2$$

$$S_{
m square} = \left(2\pi^2
ight) {
m Tr} ar{\Psi} D\!\!\!/ \, {}^2 \Psi = \int d^4 y
ho(y) ar{\Psi} D\!\!\!/ \, {}^2 \Psi$$

Motivation
The Matrix Model
Scalars

Gravity

Unimodular Met
Seeley-de Witt

EH Actio

UV/IR mixin

Conclusions

Emergent Gravity

Unimodular metric

$$\widetilde{G}_{ab}:=e^{\sigma}G_{ab} \qquad e^{\sigma} = (\det G_{ab})^{-1/4}
ightarrow \det \widetilde{G}=1$$
 $S_{ ext{square}}=\int d^4y \sqrt{\widetilde{G}}\ ar{\varPsi} \widetilde{D}^2 \Psi$

$$\widetilde{\mathcal{D}}^{2} \Psi = -\left(\widetilde{G}^{ab} \partial_{a} \partial_{b} \Psi + e^{-\sigma} \gamma_{a} \gamma_{b} \theta^{ma} \left(\partial_{m} \theta^{db}\right) \partial_{d} \Psi\right)
:= -\left(\widetilde{G}^{ab} \partial_{a} \partial_{b} \Psi + \widetilde{a}^{d} \partial_{d} \Psi\right)$$

Motivation
The Matrix Model
Scalars

Emergent Gravity

Upon Quantizatio
Unimodular Metri
Seeley-de Witt
coefficients

EH Actio

UV/IR mixin

Conclusions

Seeley-de Witt coefficients for Fermions

$$\frac{1}{2}\mathrm{Tr}\Big(\log\widetilde{\mathcal{D}}^2 - \log\widetilde{\mathcal{D}}_0^2\Big) = -\frac{1}{2}\mathrm{Tr}\int_0^\infty \frac{d\alpha}{\alpha}\Big(e^{-\alpha\,\widetilde{\mathcal{D}}^2} - e^{-\alpha\,\widetilde{\mathcal{D}}_0^2}\Big)e^{-\frac{1}{2\alpha\,\widetilde{\lambda}^2}}$$

Heat kernel expansion

$$\operatorname{Tr} e^{-\alpha \widetilde{\mathcal{D}}^2} = \sum_{n \geq 0} \alpha^{\frac{n-4}{2}} \int_{\mathcal{M}} d^4 y \, a_n \left(y, \widetilde{\mathcal{D}}^2 \right)$$

Seeley-de Witt coefficients

$$a_0(y) = rac{1}{16\pi^2} \operatorname{tr} \mathbb{I}$$
 $a_2(y) = rac{1}{16\pi^2} \operatorname{tr} \left(rac{R[\widetilde{G}]}{6} \mathbb{I} + \mathcal{E}
ight)$

Motivation
The Matrix Model
Scalars

Emergent Gravity

Upon Quantizatio
Unimodular Metr
Seeley-de Witt

EH Actio

UV/IR mixin

Conclusions

Effective Action for Fermions

$$\Gamma_{\Psi} = \frac{1}{16 \pi^2} \int d^4y \left(2 \operatorname{tr}(\mathbb{I}) \widetilde{A}^4 + \operatorname{tr} \left(\frac{R[\widetilde{G}]}{6} \mathbb{I} + \mathcal{E} \right) \widetilde{A}^2 + O(\log \widetilde{A}) \right)$$

Commutative case:

$$tr\mathcal{E}_{comm} = -R$$

This model: no spin connection $\rightarrow \mathcal{E}$ will be modified Still a reasonable Einstein-Hilbert action?

yes

Motivation
The Matrix Model
Scalars

Emergent Gravity

Upon Quantizatio
Unimodular Metr
Seeley-de Witt

EH Action

UV/IR mixing

Induced EH-Action?

$$\mathcal{E} = -\widetilde{G}^{mn} \left(\partial_m \Omega_n + \Omega_m \Omega_n - \widetilde{\Gamma}_{mn}^k \Omega_k \right)$$

$$\Omega_m = \frac{1}{2} \, \widetilde{G}_{mn} \left(\widetilde{a}^n + \widetilde{\Gamma}^n \right) \qquad \widetilde{a}^n = e^{-\sigma} \gamma_a \gamma_b \theta^{ma} \left(\partial_m \theta^{nb} \right)$$

$$\int d^4 y \operatorname{tr} \mathcal{E} = - \int d^4 y \left(2R[\widetilde{G}] - G^{mn} \left(\partial_m \sigma \right) \left(\partial_n \sigma \right) \right)$$

for on-shell geometries ↔ fulfill eom

Obtain EH action with an unsual numerical constant

+ dilaton-like term

EH Action

UV/IR mixing

Conclusions

$R \& tr \mathcal{E}$

Use Jacobi identity

$$\partial_a \theta_{bc}^{-1} + \partial_c \theta_{ab}^{-1} + \partial_b \theta_{ca}^{-1} = 0$$

$$\begin{split} R[\widetilde{G}] &= e^{-\sigma} \left[-\frac{1}{2} \theta^{mn} G^{pq} \partial_p \partial_q \theta_{mn}^{-1} - \frac{1}{2} G^{pq} \left(\partial_p \theta^{mn} \right) \left(\partial_q \theta_{mn}^{-1} \right) \right. \\ & \left. - \left(\partial_m \theta^{ma} \right) G^{nk} \left(\partial_k \theta_{na}^{-1} \right) + \frac{1}{2} G^{mn} \left(\partial_m \sigma \right) \left(\partial_n \sigma \right) \right. \\ & \left. + \frac{1}{2} \left(\partial^m \theta_{na}^{-1} \right) \left(\partial^n \theta_{mb}^{-1} \right) g^{ab} - \frac{1}{2} G^{mn} \left(\partial^q \theta_{ma}^{-1} \right) \left(\partial_q \theta_{nb}^{-1} \right) g^{ab} \right. \\ & \left. - \frac{1}{2} \left(\partial_m \theta^{na} \right) \left(\partial_n \theta^{mb} \right) g_{ab} \right] \\ \mathrm{tr} \mathcal{E} &= e^{-\sigma} \left[G^{mn} \left(\partial^l \theta_{ma}^{-1} \right) \left(\partial_l \theta_{nb}^{-1} \right) g^{ab} - \left(\partial^m \theta_{na}^{-1} \right) \left(\partial^n \theta_{mb}^{-1} \right) g^{ab} \right] \end{split}$$

Gravity Upon Quantization

Upon Quantizatio
Unimodular Meta
Seeley-de Witt

EH Action

UV/IR mixing

Conclusions

Partial integration reduces Ricci scalar to

$$\int d^4y R[\widetilde{G}]\widetilde{A}^2 = e^{-\sigma} \times$$

$$\left[\frac{1}{2} \left(\partial^m \theta_{na}^{-1} \right) \left(\partial^n \theta_{mb}^{-1} \right) g^{ab} - \frac{1}{2} G^{mn} \left(\partial^p \theta_{ma}^{-1} \right) \left(\partial_p \theta_{nb}^{-1} \right) g^{ab} \right.$$

$$\left. - \frac{1}{2} \left(\partial_p \theta^{pa} \right) G^{qk} \left(\partial_k \theta^{-1} \right) + \frac{1}{2} G^{mn} \left(\partial_m \sigma \right) \left(\partial_n \sigma \right) \right] \widetilde{A}^2$$

EH Action

U V/IK IIIIXII

Conclusion

Cancellation of bosonic and fermionic contributions

$$\Gamma_{\Psi} + 4\Gamma_{\Phi} = rac{1}{16\pi^2} \int d^4y \, \mathrm{tr} \, \mathcal{E} \, \widetilde{\Lambda}^2 \, .$$

- Induced gravitational action is nontrivial in the case of e.g.
 N = 1 supersymmetry
- UV/IR mixing remains in supersymmetric models
- Full cancellation only for N = 4 supersymmetry

UV/IR mixing

Relation with gauge theory ...

$$S = (2\pi)^2 \operatorname{Tr} \bar{\Psi} \gamma_a \left[Y^a, \Psi \right]$$

regarded as action for fermions on $\mathbb{R}^{\frac{4}{a}}$ coupled to U(1) gauge field

covariant coordinates

$$Y^a = X^a - \bar{\theta}^{ab} A_b(x)$$

 $A_b(x)$ hermitian matrices, smooth functions on $\mathbb{R}^4_{\bar{a}}$

$$\left[X^a, X^b\right] = i\,\bar{\theta}^{ab}$$

$$\bar{\theta}^{ab}$$
 constant

$$\bar{g}^{ab} = \bar{\theta}^{am}\bar{\theta}^{bn}g_{mn} \qquad \bar{\rho} = |\bar{g}_{ab}|^{1/4}$$

$$\bar{\rho} = |\bar{g}_{ab}|^{1/4}$$

Motivation
The Matrix Model
Scalars

Emergent Gravity

Upon Quantizatio Unimodular Meta Seeley-de Witt coefficients

EH Actio

UV/IR mixing

Conclusions

UV/IR mixing

The "conventional" gauge theory point of view.

Write the action

$$S = (2\pi)^2 \operatorname{Tr} \bar{\Psi} \gamma_a \left[Y^a, \Psi \right]$$

as NC $\overline{U(1)}$ gauge theory...

$$S = \int d^4x \, \bar{\Psi} i \gamma^a \, \left(\bar{\partial}_a \Psi + ig \left[A_a, \Psi
ight]
ight)$$

Consider again the one-loop effective action

→ Use fermionic Feynman rules

Motivation
The Matrix Model
Scalars

Emergent Gravity

Upon Quantizatio
Unimodular Metri
Seeley-de Witt
coefficients

EH Action

UV/IR mixing

Conclusion

UV/IR mixing

$$\varGamma_{\varPsi} = -\frac{1}{2} \mathrm{Tr} \log \Delta_0 - \frac{g^2}{2} \langle \int d^4 x \, \bar{\rho} \bar{\varPsi} \, \gamma^a \, [A_a, \varPsi] \int d^4 y \, \bar{\rho} \bar{\varPsi} \, \gamma^b \, [A_b, \varPsi] \rangle$$

... corresponds to the Feynman diagram

$$\Gamma_{\Psi} = -4\Gamma_{\Phi} - \int d^4x \, \bar{\rho} \, \bar{g}^{ac} \bar{g}^{bd} \, \bar{F}_{ab} \bar{\partial}^2 \bar{F}_{cd} \frac{\Lambda^2}{2}$$

Motivation
The Matrix Model
Scalars

Emergent Gravity

Upon Quantizatio
Unimodular Metr
Seeley-de Witt

EH Actio

UV/IR mixing

Conclusions

Rewrite geometric Γ_{Ψ}

We had

$$egin{aligned} arGamma_{\Psi} &= rac{1}{16\,\pi^2} \int d^4y \left(2\, ext{tr}(\mathbb{I})\,\widetilde{A}^4 + ext{tr}\left(rac{R[\widetilde{G}]}{6}\,\mathbb{I} + \mathcal{E}
ight)\widetilde{A}^2 + O(\log\widetilde{A})
ight) \ &= -4\,arGamma_{\Phi} + rac{1}{16\pi^2} \int d^4y\, ext{tr}\mathcal{E}\widetilde{A}^2 \end{aligned}$$

compare this to the result from gauge theory point of view

rewrite Γ_{Ψ} in x-coordinates of Moyal-Weyl plane

Motivation
The Matrix Model
Scalars

Emergent Gravity

Upon Quantizati Unimodular Met Seeley-de Witt coefficients

EH Actio

UV/IR mixing

Conclusions

UV/IR mixingan effect of gravity

Relation between y and x coordinates

$$y^a = x^a - \bar{\theta}^{ab}\bar{A}_b + O(\theta^2)$$

Relation between

$$i \theta^{ab}(y) = \left[Y^a, Y^b \right] = i \bar{\theta}^{ab} - i \bar{\theta}^{ac} \bar{\theta}^{bd} \bar{F}_{cd}$$

 $\theta_{ab}^{-1}(y) = \bar{\theta}_{ab}^{-1} - \bar{F}_{ab}$

Obtain effective action in x-coordinates

$$\Gamma_{\Psi} = -4\Gamma_{\Phi} - \int d^4x \,\bar{\rho} \,\bar{g}^{ac} \bar{g}^{bd} \,\bar{F}_{ab} \bar{\partial}^2 \bar{F}_{cd} \frac{\Lambda^2}{2}$$

UV/IR mixing is understood as an effect of gravity.

Motivation
The Matrix Model
Scalars
Fermions

Emergent Gravity

Upon Quantization
Unimodular Meta
Seeley-de Witt

EH Action

JV/IR mixin

Conclusions

Conclusions

Framework of NC emergent gravity extends to fermions

Fermions couple to background geometry

Spin connection appears to be missing

Fermions will follow standard trajectories with different spin rotation

Einstein-Hilbert action is induced

UV/IR mixing is an effect of gravity

Bosonic & fermionic contributions do not cancel

... only for N = 4 SUSY