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Frame formalism

[xµ, xν ] = ik̄Jµν(xσ).

Let µ be a typical ‘large’ source mass with

‘Schwarzschild radius’ GNµ.

Square GN~ of the Planck length and by k̄.

Weak field: εGF = GN~µ2 small

Almost commutative: εNC = k̄µ2 small

We assume

ε�, ε = εGF /εGF .

Ordinary gravity: limit ε→ 0

Noncommutative gravity: ε ' 1

Frame: the momenta pα stand in duality to the

position operators xµ by the relation

[pα, x
µ] = eµα
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The right-hand side of this identity defines the

gravitational field. The left-hand side must

obey Jacobi identities.

These identities yield relations between

quantum mechanics in the given curved

space-time and the noncommutative structure

of the algebra.

The three aspects of reality then, the curvature

of space-time, quantum mechanics and the

noncommutative structure of space-time are

intimately connected.

Poisson energy

We shall consider here the even more exotic

possibility that the field equations of general

relativity are encoded also in the structure of

the algebra so that the relation between general

relativity and quantum mechanics can be

understood by the relation which each of these

theories has with noncommutative geometry.
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In spite of the rather lengthy formalism the

basic idea is simple.

1) classical geometry with a moving frame θ̃α

2) ’quantize’ by θ̃α 7→ θα

3) ’quantize’ by imposing the rule

ẽα 7→ eα = ad pα

4) chose the algebra so that

ik̄[pα, J
µν ] = [x[µ, [pα, x

ν]]]

All together: g̃µν 7→ Jµν

We shall work exclusively in the

‘quasi-classical’ approximation,

One problem: to understand ’Poisson energy’

(Fishy physics)

Another problem: to what extend is the

Einstein tensor determined as integrability

conditions for the underlying

associative-algebra structure.

The value in vacuo of the commutative limit of
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this tensor we interpret as the Poisson energy
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In the frame formalism the density of

energy-momentum of the gravitational field is a

vector-valued 3-form τS

The total energy-momentum is given as the

integral over the sphere at infinity of the

Sparling 2-form

σα = − 1
2ω
∗
αβθ

β.

In the noncommutative case there is a

preferred frame.

Our assumption is that there is another 3-form

τPS = τPS(J)

which vanishes in the commutative limit and

which is such that the sum

τ = τS + τPS

is an exact 3-form.

We cannot give an explicit formula for τPS
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Differential calculi

Assume that over A is a differential calculus

which is such that the module of 1-forms is free

and possesses a preferred frame θα which

commutes,

[xµ, θα] = 0,

with the algebra.

We can write the differential

dxµ = eµαθ
α, eµα = eαx

µ.

The differential calculus is defined as the

largest one consistent with the module

structure of the 1-forms so constructed.

The input of which we shall make the most use

is the Leibniz rule

ik̄eαJ
µν = [eµα, x

ν ]− [eνα, x
µ].

One can see here a differential equation for Jµν

in terms of eµα.
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If the matrix J is invertible then the classical

Darboux theorem states that coordinates can

be chosen so that the components of J are

constants. We deduce in this case that

Xα
µν = [eµα, x

ν ]

is symmetric in the two indices. Under the

change of coordinates, in fact also the momenta

change; the quantities eµα become constant and

X → 0.

Finally, we must insure that the differential is

well defined. A necessary condition is that

d[xµ, θα] = 0 from which it follows that the

momenta pα must satisfy the consistency

condition

2pγpδP
γδ
αβ − pγF γαβ −Kαβ = 0.

The P γδαβ define the product π in the algebra

of forms.

We write Pαβγδ in the form

Pαβγδ = 1
2δ

[α
γ δ

β]
δ + iεQαβγδ
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of a standard projector plus a perturbation.
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The compatibility condition

(Pαβζη)∗P ηζγδ = P βαγδ

with the product is satisfied provided Qαβγδ is

real.

It follows that

d[xµ, θα] = [dxµ, θα] + [xµ, dθα]

= eµβ [θβ, θα]− 1
2 [xµ, Cαβγ ]θβθγ .

We find then that multiplication of 1-forms

must satisfy

[θα, θβ] = 1
2θ
β
µ[xµ, Cαγδ]θ

γθδ.

Consistency requires then that

θ[β
µ [xµ, Cα]

γδ] = 0.

Because of the condition (6) consistency also

requires that

θ(α
µ [xµ, Cβ)

γδ] = Qαβ− γδ.
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Consistency relations:

1) the Leibniz rule

2) the Jacobi identity

3) the two conditions on the differential

The Ricci rotation coefficients can be expressed

as

Cαβγ = −4iεpδQ
αδ
− βγ

They must satisfy the gauge condition

eαC
α
βγ = 0

We shall refer to all these conditions as the

Jacobi conditions.
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Metrics and connections

The metric is a map

g : Ω1(A)⊗ Ω1(A)→ A.

Using the frame it is defined by

g(θα ⊗ θβ) = gαβ ,

and bilinearity of the metric implies that gαβ

are complex numbers. To define the reality and

symmetry of the metric as well as the bimodule

structure of the linear connection one needs a

‘flip’,

σ(θα ⊗ θβ) = Sαβγδθ
γ ⊗ θδ,

which in the present notation is equivalent to a

4-index set of complex numbers Sαβγδ which

we can write as

Sαβγδ = δβγ δ
α
δ + iεTαβγδ.
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In the present formalism the metric is ‘real’ if

it satisfies the condition

ḡβα = Sαβγδg
γδ.

‘Symmetry’ of the metric can be defined either

using the projection

Pαβγδg
γδ = 0,

or the flip

Sαβγδg
γδ = cgαβ.

We choose the frame to be orthonormal in the

commutative limit; we can write therefore

gαβ = ηαβ − iεhαβ .

In the linear approximation, the condition of

the reality of the metric becomes

hαβ + h̄αβ = T βαγδη
γδ.

We introduce also

gµν = g(dxµ ⊗ dxν) = eµαe
ν
βg
αβ .
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The covariant derivative is given by

Dξ = σ(ξ ⊗ θ)− θ ⊗ ξ.

In particular

Dθα = −ωαγ ⊗ θγ

= −(Sαβγδ − δβγ δαδ )pβθ
γ ⊗ θδ

= −iεTαβγδpβθγ ⊗ θδ,

so the connection-form coefficients are linear in

the momenta

ωαγ = ωαβγθ
β = iεpδT

αδ
βγθ

β.

The ωαγ measures the variation of the metric;

the array Tαδβγ is directly related to the

anti-commutation rules for the 1-forms, and to

the momenta pδ. As k̄ → 0 the right-hand side

remains finite and

ωαγ → ω̃αγ .

The connection is torsion-free if the
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components satisfy the constraint

ωαηδP
ηδ
βγ = 1

2C
α
βγ .
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The connection is metric if

ωαβγg
γδ + ωδγηS

αγ
βζg

ζη = 0,

or linearized,

T (αγ
δ
β) = 0.

The quasi-classical

approximation

Direct connection between the rotation

coefficients and the commutators Jµν :

[pα, pβ] = −2iεQγδ− αβpγpδ −Kαβ .

The Jacobi anomaly is given by

Aδ = εαβγδ[[pα, pβ], pγ ]

= −2iεεαβγδQηζ− αβ [pηpζ , pγ ]

= −2iεεαβγδQηζ− αβ(pη[pζ , pγ ] + [pη, pγ ]pζ)

= −2iεεαβγδQηζ− αβ(pη[pζ , pγ ] + [pζ , pγ ]pη)
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= (2iε)2εαβγδ(Qηζ− αβQ
ij
−ζγpηpipj

+Qηζ− αβQ
ij
−ζγpipjpη)

− 2(2iε)2εαβγδQηζ− αβKζγpη

If we introduce the left dual

Qηζ∗γδ− =
1

2
εαβγδQηζ− αβ

we can write the anomaly as

Aδ = 2(2iε)2Qηζ∗γδ− (Qij−ζγpηpipj+Q
ij
−ζγpipjpη−Kζγpη)

It must be set to zero case by case.

One can express the commutator of an

arbitrary function f with xλ as a derivative:

[xλ, f ] = ik̄Jλσ∂σf(1 + o(ε)).

Then the Leibniz rule and the Jacobi identity

can be written in leading order as

eαJ
µν = ∂σe

[µ
α J

σν]

εκλµνJ
γλeγJ

µν = 0.−
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Written in terms of the frame components,

these two Jacobi equations become

eγJ
αβ − C [α

γδJ
β]δ = 0,

εαβγδJ
αεeεJ

βγ = 0.

In terms of the dual quantities

J∗αβ = 1
2εαβγδJ

γδ

we have

eαJ
∗
βγ + Cδα[βJ

∗
γ]δ + CδαδJ

∗
βγ = 0.

Equation (0.1) can be written also in terms of

the J∗αβ as

Cα[αγJ
∗
β]δJ

δγ = 0.

Similar to Equation (0.1) one can derive the

identity

eαJ
−1
βγ = J−1

αδ C
δ
βγ2577

for the derivative of the inverse if it exists. The

two are consistent because of the cocycle

condition.
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One can solve this for the rotation coefficients.

One obtains

Cαβγ = JαηeηJ
−1
βγ .

This can be rewritten as

Cαβγ = JαδeδJ
ζηJ−1

ζβ J
−1
ηγ

and also, using (0.1) as

Cαβγ = Jαδ(CζεδJ
εη − CηεδJ εζ)J−1

ζβ J
−1
ηγ .

It follows that in the quasi-classical

approximation, the linear connection and the

curvature can be directly expressed in terms of

the commutation relations. In particular if the

latter are constants then the curvature

vanishes.

From (??) it follows that

dJ−1 = 0.

We conclude then that J−1 = dg for some

1-form g. We write this as

J−1
αβ =

1

2
[p[α, gβ].
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We are now in position to discuss the

‘ground-state configurations’

gα = ik̄(1 + h)pα.

For these

J−1
αβ =

1

2
ik̄(1 + h)[p[α, pβ] +

1

2
ik̄[p[α, h], ∂β].

As usual one can introduce the Dirac operator

θ = −pαθα. It satisfies

θ2 = 1
2 [pα, pβ]θαθβ

From this follows

dθ + θ2 = − 1
2Kαβθ

αθβ

If we consider J−1 as a Maxwell field strength

then there is a source given by

eαJ−1
αβ = J−1αγCαβγ .

20



It follows that the commutator must

necessarily satisfy the constraint

eα

(
JαηeηJ

−1
βγ

)
= 0.

This can also be written as

(eαJ
αζ + JαηCζαη) eζJ

−1
βγ = 0.

We have assumed that the noncommutativity is

small and we have derived some relations to

first-order in the parameter ε. We shall now

make an analogous assumption concerning the

gravitational field; we shall assume that εGF is

also small and that we consider only the

equations to first-order in it as well. With

these two assumptions the equations become

relatively easy to solve.

If we equate the Expression (19) for the

rotation coefficients with that in terms of the

components of the frame we find after a few

simple applications of the Leibniz rule that

(δJ−1)αβγ = eµ[βeγ]J
−1
αµ.
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The cocyle condition (19) is equivalent to the

condition

eµ[βeγ]J
−1
αµ. = 0.

An interesting particular solution is given by

constants:

J−1
αµ. = J−1

0αµ..

It follows then that

Jµν = Jµα0 eνα, J
(µα
0 eν)

α = 0.

One verifies that

Cααγ = JαηeηJ
−1
αγ = eηJ

αηJ−1
αγ

and so the left-hand side vanishes if and only if

eβJ
αβ = 0.

Finally we note that using (11) we have the

very strong relation

JαηeηJ
−1
βγ + 4iεpδQ

αδ
− βγ = 0

This can be written as

eηJ
−1
βγ + 4iεJ−1

ηα pδQ
αδ
− βγ = 0
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To lowest order we can assume that J−1 and p

commute, this because

[pδ, J
−1
ηα ] = eδJ

−1
βγ

and, referring back to the equation we see that

this quantity is of first order.

From the definitions it follows that

dJ−1
βγ − 4iεdgαpδQ

αδ
− βγ = 0

If perchance dp = 0 then we can solve

J−1
βγ = J−1

0βγ − 4iεgαpδQ
αδ
− βγ

Ground-state examples

By the expression ‘ground state’ we mean a

convenient solution about which we can apply

the perturbation procedure and analyse the

structure of the solutions in a neighborhood. In

the examples this coincides with what one

would normally call a ground state.
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We set as usual

[xµ, xν ] = ik̄Jµν .

The commutator will be of course restricted by

Jacobi identities. To calculate its frame

components we shall need the transformations

θαµ defined by θα = θαµdξ
µ with

θαµ =




θ̄0
0 θ̄0

m

θ̄a0 θ̄am


 .

The frame components of the commutator are

given by

Jαβ = Jµνθαµθ
β
ν

Written as an equality between matrices this

becomes

Jαβ = Jµνθαµθ
β
ν = (θJθT )αβ

One finds that if one set Jab = εabcΞc

J0a = θ̄a0 θ̄
0
j θ̄

0
0 θ̄
a
jJ

0j + θ̄aiθ̄
0
jJ

ij

Jab = θ̄[aθ̄b]jJ
0j + θ̄ajJ

ij θ̄j
b
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Ξc = εabcθ̄
aθ̄biJ

0i + εabcθ̄
a
iε
ijkΞkθ̄j

b

We shall need in each case the inverse of this

matrix.

Regular lattice structures

The simplest case is with Jµν = Jµν0 a matrix

of constants. This case wa treated in Section so

we shall only present a variant.There is a

special case of particular interest, that in which

the mixed components Jµα0 are constant and

the matrix they form is invertible. We write

then

xµ = Jµα0 Dα, Dα = pα +Aα.

The interest in this decomposition resides in

the properties of the 1-forms A = Aαθα and

θ = −pαθα considered as gauge potentials. Let

U ⊂ A be the group of unitary elements of the

algebra and define for arbitrary A and g ∈ U

A′ = g−1Ag + g−1dg.
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Since

dg = eαgθ
α = −[θ, g]

in the particular case with A = θ we have

θ′ = θ. We conclude that, being the difference

between two gauge potentials, the generators

xµ transform as adjoint representations of U :

x′µ = g−1xµg.

Plane symmetric ground state

The Kasner frame

There is a natural distinguished vector

ξa = (0, 0, z). We set as usual

[xµ, xν ] = ik̄Jµν .

The generic form for the commutator is

J0i = fξi, J ij = zεijkξk, [t, r] = ik̄zf

with ξ2 = z2. From symmetry arguments the

commutator must be of the form

J0a = fξa, Jab = gεabcξc.
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The inverse is of the form

J−1
0a = −r−2f−1ξa, J−1

ab = −r−2g−1εabcξ
c

We try for the momenta the Ansatz p0 = ρ,

pa = σξa.

To calculate the frame components of the

commutator we shall need the transformations

θαµ defined by θα = θαµdξ
µ with

θαµ =




B̄ B̄ξm

C̄ξa F̄ δam + D̄ξaξm + Ēεamnξ
n


 .

To define a concrete Ansatz for the components

on the left-hand side of this equation we have

introduced on the right-hand side the two sets

ξi = ξi = (0, 0, z) and ξa = ξa = (0, 0, z).

We shall need also the frame components

eα = eµα∂µ with

eµα =




A Bξa

Cξm Dξmξa +Eεmabξ
b


 .
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The condition that eµα be the inverse of θαµ
implies that

Ā = D∆−1 B̄ = −Br−2∆−1 C̄ = −Cr−2∆−1

D̄ = Ar−4∆−1 Ē = −r−2E−1 F̄ = 0

The simplest anisotropic homogeneous solution

to Einstein equations is the Kasner metric:

ds2 = −dt2+t2q1(dx1)2+t2q2(dx2)2+t2q3(dx3)2.

The vacuum equations with vanishing

cosmological constant impose the constraints

on the parameters qi

q1 + q2 + q3 = 1, q2
1 + q2

2 + q2
3 = 1.

The metric (23) is a member of a 1-parameter

family of solutions.

The moving frame is given by

θ0 = dt, θi = (tQ)ijdx
j ,

where Q is a symmetric 3×3 matrix. It can be

simply written also in the coordinates
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yi = (tQ)ijx
j as

θ0 = dt, θi = dyi −Qijt−1yjdt,

The Ricci rotation coefficients for the Kasner

frame are given by the non-vanishing value

θa0 b0 = Qab t
−1,

and the nonvanishing components of the Ricci

curvature tensor are

R0
0 = −Tr (Q−Q2) t−2, Rab = −(1−TrQ)Qab t

−2.

We impose the commutation relations

[x, y] = ik̄J12, [t, z] = ik̄J03(τ) = ik̄J(t),

with τ = τ(t). The Jacobi identities are

satisfied if

J12 = c

with c a constant which we shall set equal to

one. The algebra is the tensor product

A = A1 ⊗A2.

of a factor generated by (x, y) and a factor

generated by (t, z). The tensor product
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structure, we shall see, is respected by the

differential calculus; the classical limit is just

the metric product of two manifolds. The

algebra just defined is too restrictive to

describe a general element of the Kasner family.

It can be explicitly and easily solved however

and it is a convenient ground state. From the

definitions follow the commutation relations

[p0, t] = 1, [pb, x
a] = (τQ)ab .

If the momenta are expressed in terms of the

position generators the Leibniz rules are

satisfied automatically.

The first factor is generated by the elements

(x, y). We set

ik̄p1 = −y, ik̄p2 = x.

Then we have

θ1 = dx, θ2 = dy.

and we have completely described the geometry

of the first factor. For the second factor we
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suppose p3 = p3(t) so that the only nontrivial

commutation relation is

[p3, z] = ṗ3ik̄J.

We have further

θ3(e3) = τ−q[p3, z] = 1, q = q3

from which we conclude that

[p3, z] = τ q.

We write this as a differential equation

ṗ3ik̄J = τ q

for p3(t). We must force the algebra of

momenta to be quadratic. This means that

[p0, p3] = −2iεQ33
03(p3)2 + F 3

03p3 +K03

for some set of coefficients. We know however

that by definition

[p0, p3] = ṗ3

We find then a second differential equation

ṗ3 + 2iεQ33
03(p3)2 − F 3

03p3 −K03 = 0
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for p3(t). From (23) we find then an expression

for J as integrability condition.

By the definition of the Cαβγ we have

[p0, p3] = qτp3 + ic3

for some real c3. We can choose

ik̄p3 = F (τ)

which yields

τ̇F ′ = qτF − k̄c3.

From (11) we find that

qτ = −4µFQ33
03.

That is, F is linear in τ . With F = ατ ,

q = −4µαQ33
03 we find

τ̇ = qτ2 + c, c = −k̄c3/α

We find therefore the following expression for J

ik̄J =
ik̄τ q

α(qτ2 + c)
.
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We define

ik̄p0 = z.

The frame is given by

θ0 = −ik̄J−1dt, θ3 = τ−qdz.

Therefore

[p0, t] = −J.
We have thus completely described the

geometry of the second factor. There are two

free quantities, the constants q and c. The

solution is a very particular one. One can find

more general solutions by adding a

perturbation. From this point of view the most

interesting Kasner solution is highly

non-perturbative.

The non-vanishing rotation coefficients are

given by

C3
30 = −τ−qJ∂tτ q = −qJτ−1τ̇ .

If we use this value in the defining equation we
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find

[p0, p3]− C3
03p3 = −qJτ−1(τ̇ − q−1τ ṗ3)

We check that there is a ground state. The

frame components of the commutator are given

by

Jαβ =




0 1 0 0

−1 0 0 0

0 0 0 τ−q

0 0 −τ−q 0




We see that

ik̄[pα, pβ] =




0 1 0 0

−1 0 0 0

0 0 0 −J−1τ q

0 0 J−1τ q 0




= −J−1
αβ .

Therefore the configuration is a ground state if

J → 1.

θ̂α = J−1
αβ θ

β = dpα.
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The 2-form

1

2
J−1
αβ θ

αθβ = dxdy − J−1dzdt

is closed.
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