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Frame formalism

[zt 2] = ik JH (7).

Let 1 be a typical ‘large’ source mass with
“Schwarzschild radius’ G n .

Square G nh of the Planck length and by k.

Weak field: eqgr = G nhp? small
Almost commutative: eyc = kp? small

We assume

€ <, € =€egr/egr.

Ordinary gravity: limit € — 0
Noncommutative gravity: € >~ 1
Frame: the momenta p, stand in duality to the

position operators x* by the relation

Do, 2] = €



The right-hand side of this identity defines the
gravitational field. The left-hand side must
obey Jacobi identities.

These identities yield relations between
quantum mechanics in the given curved
space-time and the noncommutative structure
of the algebra.

The three aspects of reality then, the curvature
of space-time, quantum mechanics and the
noncommutative structure of space-time are

intimately connected.

Poisson energy

We shall consider here the even more exotic
possibility that the field equations of general
relativity are encoded also in the structure of
the algebra so that the relation between general
relativity and quantum mechanics can be
understood by the relation which each of these
theories has with noncommutative geometry.



In spite of the rather lengthy formalism the
basic idea is simple.

1) classical geometry with a moving frame 6
2) ’quantize’ by 0% — 9«
3) ’quantize’ by imposing the rule

~

€a 7 €a — adpa

4) chose the algebra so that

ik[pa, J*] = [2, [pa, 2]

All together: g, — J#

We shall work exclusively in the

‘quasi-classical’ approximation,
One problem: to understand ’Poisson energy’
(Fishy physics)

Another problem: to what extend is the
Einstein tensor determined as integrability
conditions for the underlying
associative-algebra structure.

The value i vacuo of the commutative limit of



this tensor we interpret as the Poisson energy



In the frame formalism the density of
energy-momentum of the gravitational field is a

vector-valued 3-form 7g

The total energy-momentum is given as the
integral over the sphere at infinity of the
Sparling 2-form

In the noncommutative case there is a

preferred frame.
Our assumption is that there is another 3-form
Tps = Tps(J)

which vanishes in the commutative limit and

which is such that the sum
T =Ts +TPS

is an exact 3-form.

We cannot give an explicit formula for 7pg



Differential calculi

Assume that over A is a differential calculus
which is such that the module of 1-forms is free
and possesses a preferred frame 6 which

commutes,
[zh 6% = 0,
with the algebra.

We can write the differential
b o wo_ v
dz" = el 0%, el = eqa.

The differential calculus is defined as the
largest one consistent with the module
structure of the 1-forms so constructed.

The input of which we shall make the most use

is the Leibniz rule

ikeq JHY = |eh, 2] — |eX, x¥].

One can see here a differential equation for J+¥

in terms of eX.



If the matrix J is invertible then the classical
Darboux theorem states that coordinates can
be chosen so that the components of J are

constants. We deduce in this case that
XM = el "]

is symmetric in the two indices. Under the
change of coordinates, in fact also the momenta

change; the quantities e£ become constant and
X — 0.

Finally, we must insure that the differential is
well defined. A necessary condition is that
dlz*,0% = 0 from which it follows that the
momenta p, must satisfy the consistency

condition
2p’yp5p’75aﬁ _p’yF’yaﬁ - Kozﬁ = 0.

The P'Y‘Sa@ define the product 7 in the algebra

of forms.

We write PO‘675 in the form

« a ¢ ; «
P 675 - %5[7 55] _l_,LEQ 575



of a standard projector plus a perturbation.



The compatibility condition
(PQBCW)*PHC% — Pﬂa%

with the product is satisfied provided Q%" ~5 18

real.

It follows that
dlzt, 0% = [dx", 0%] 4 [x*, dO]
- 65[967 0% — %[a;M7 Ca57]9ﬁ97°

We find then that multiplication of 1-forms
must satisfy

6%,6°] = 165[z+, C~.5]676°.

Consistency requires then that

Ql[f [z, C* 5] = 0.

Because of the condition (6) consistency also
requires that

Qiba ", Cﬁ)vé] = Qgﬁ'ﬂ?-
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Consistency relations:

1) the Leibniz rule
2) the Jacobi identity

3) the two conditions on the differential

The Ricci rotation coefficients can be expressed

as
C% gy = —4ieps Q™" g,
They must satisfy the gauge condition
eaca@y =0

We shall refer to all these conditions as the

Jacobi conditions.
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Metrics and connections

The metric is a map
g: QA 20'(A) — A
Using the frame it is defined by
g(0* ®6%) = g,

and bilinearity of the metric implies that g”
are complex numbers. To define the reality and
symmetry of the metric as well as the bimodule
structure of the linear connection one needs a
‘flip’,
o(0* ®0°) = S 507 ®6°,

which in the present notation is equivalent to a
4-index set of complex numbers S ~s Which

we can write as

S5 = 6965 + 1T 5.

12



In the present formalism the metric is ‘real’ if

it satisfies the condition

—ﬁoz Sozﬁ
‘Symmetry’ of the metric can be defined either
using the projection

Paﬁvégfy& = 0,

or the flip

S8 s g7 = g,

We choose the frame to be orthonormal in the

commutative limit; we can write therefore
g =P — jeh®P.

In the linear approximation, the condition of

the reality of the metric becomes
hozﬁ + Baﬁ _ Tﬁa’yénvé
We introduce also

g = g(dz" ® dx¥) = e“eggo‘ﬁ
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The covariant derivative is given by
DE=0(E®0)—0RE.
In particular
DO = —w®, @07
= —(8%55 — 0505 )ppt” @ 6°
= —ieTO‘ﬁ,y(;p@m R 6°,

so the connection-form coefficients are linear in

the momenta

wo‘7 = wa5796 - i€p5Ta55796.

The w®, measures the variation of the metric;
the array T*° g, is directly related to the
anti-commutation rules for the 1-forms, and to
the momenta ps. As & — 0 the right-hand side

remains finite and

The connection is torsion-free if the

14



components satisfy the constraint

wan(SPn(sﬁv - %Caﬁv-
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The connection is metric if
Wy g w3y S gt = 0,

or linearized,
77 B) — .

The quasi-classical

approximation

Direct connection between the rotation

coefficients and the commutators JH":
: 5
[paapﬁ] — _ZZGQZ aBPyPs — Kozﬁ-

The Jacobi anomaly is given by

A’ = e*P[[pa, pgl, py]
— 2f1,eeo‘ﬁ75Q77C 3|Pnpc, Pyl
= —2iee®®° Q" 5(pylpc, py) + [Py P4 IPC)

= QZGGQﬁWSQnC (pn[pC p’Y] + [pC7p’Y]p77)
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— (2i€)2€aﬁ’w$(QicaﬁQz_ijypnpipj
+ Q" 05Q" e\ pipjpn)
— 2(2i€)2eP7 Q" s Koy

If we introduce the left dual

) 1
QZC 7 = —GOéﬁfyéQicaﬁ

2

we can write the anomaly as

. s g
A = 2(2i€)* Q1 (QY o pypipj +QY ¢ pip Py~ K o)
It must be set to zero case by case.

One can express the commutator of an

arbitrary function f with 2* as a derivative:
(2%, f] = ikJ* 0, f (1 4 o(e)).

Then the Leibniz rule and the Jacobi identity

can be written in leading order as
a1 = Bl oV

em,\WJ'MeWJW —0.—

17



Written in terms of the frame components,

these two Jacobi equations become
e JP —Cle 5010 = 0,

eagws(]aefie(]ﬁfy = 0.

In terms of the dual quantities

* 1 o)
af = 5€apysd’

we have

Equation (0.1) can be written also in terms of
the Jg 5 as

C®lard5°7 = 0.

Similar to Equation (0.1) one can derive the
identity

eadg) = J55 C°py 2577
for the derivative of the inverse if it exists. The

two are consistent because of the cocycle

condition.
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One can solve this for the rotation coefficients.
One obtains

o « —1
C%%y =J ”enJm.
This can be rewritten as
o ad -1 7—1
Cy = J*esJ "I 5 J,
and also, using (0.1) as
o ad € € -1 7—1
Cy = J*(CC5 N = CMes JC) I 5 T,

It follows that in the quasi-classical
approximation, the linear connection and the
curvature can be directly expressed in terms of
the commutation relations. In particular if the
latter are constants then the curvature
vanishes.

From (?77) it follows that
dJ~! = 0.

We conclude then that J—! = dg for some
I-form g. We write this as

1

Jocﬁ §[p[aﬂgﬁ]
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We are now in position to discuss the

‘eround-state configurations’
Go = k(1 + h)pq.
For these
1 1 1.

As usual one can introduce the Dirac operator
0 = —p,0%. It satisfies

0% = L[pa,ppl06°
From this follows
do + 0% = —%Kagﬁo‘ﬁﬁ

If we consider J~! as a Maxwell field strength

then there is a source given by

e*J 5 = J 1 Copy.
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It follows that the commutator must
necessarily satisfy the constraint

€a (Janenjﬁ_,y ) 0.

This can also be written as
(ea ™ + JCC o) eCJ = 0.

We have assumed that the noncommutativity is
small and we have derived some relations to
first-order in the parameter e. We shall now
make an analogous assumption concerning the
gravitational field; we shall assume that egp is
also small and that we consider only the
equations to first-order in it as well. With
these two assumptions the equations become
relatively easy to solve.

If we equate the Expression (19) for the
rotation coefficients with that in terms of the
components of the frame we find after a few
simple applications of the Leibniz rule that

(0T apy = efﬁev] Joj/}.
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The cocyle condition (19) is equivalent to the
condition

—1
efﬁe,y] Jon. = 0.

An interesting particular solution is given by

constants:
o = Joan.
It follows then that
JH = gheer o glreen) — .
One verifies that
C%y = J"enJ o) = enJ*J L)
and so the left-hand side vanishes if and only if

6@]046 = 0.

Finally we note that using (11) we have the

very strong relation
Jo‘"enJﬁ + 4@6}95@0‘557 =0
This can be written as

e,,?Jﬁ +426Jap QO‘(S =0

22



To lowest order we can assume that J~! and p

commute, this because
—1 —1
[p57 Jna ] — 65 ny

and, referring back to the equation we see that

this quantity is of first order.
From the definitions it follows that

dJg, — 4iedgapsQ®° gy = 0
If perchance dp = 0 then we can solve

Jﬁ_vl — Jo_ﬁlfy — 4iegap5Qﬁ557

Ground-state examples

By the expression ‘ground state’ we mean a
convenient solution about which we can apply
the perturbation procedure and analyse the
structure of the solutions in a neighborhood. In
the examples this coincides with what one

would normally call a ground state.
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We set as usual
[zt V] = ikJH”.

The commutator will be of course restricted by
Jacobi identities. To calculate its frame
components we shall need the transformations

g% defined by 9 = A%de* with
0% O

6% =

K _ _
05 0%
The frame components of the commutator are
given by
JoP = Jrro%e)
Written as an equality between matrices this

becomes
afll _ vpopB _ TyapB
J = JH (9“9,/ = (0J0")
One finds that if one set J = ¢%¢=,

JOCL

o003 7% + 6°,0°.77

Jab é[aéb]jJOj + éajJZje_jb

24



= nanb 7017 na _ijk—= b
=e = €4bc00°; T + €40.0% €7 uk‘gj

We shall need in each case the inverse of this

matrix.

Regular lattice structures

The simplest case is with J** = J{'” a matrix
of constants. This case wa treated in Section so
we shall only present a variant.There is a
special case of particular interest, that in which
the mixed components J{'“ are constant and
the matrix they form is invertible. We write
then

ZU“:JSLaDm Da:pa+Aa-

The interest in this decomposition resides in
the properties of the 1-forms A = A,60% and
0 = —p,0° considered as gauge potentials. Let
U C A be the group of unitary elements of the
algebra and define for arbitrary A and g € U

A =gt Ag+ g 'dg.

25



Since
dg — eagea — _[eag]

in the particular case with A = 6 we have

6" = 0. We conclude that, being the difference
between two gauge potentials, the generators
xH transform as adjoint representations of U:

1

't =g xty.

Plane symmetric ground state
The Kasner frame

There is a natural distinguished vector
£ =(0,0,z). We set as usual

[t x¥] = ik JP".
The generic form for the commutator is
J% =g, T = zdbe, (] = ik

with £2 = 22, From symmetry arguments the
commutator must be of the form

JOa — fga’ Jab — geabcgc.
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The inverse is of the form

O_a1 — _T_Qf_lgaa J&)l — —7“_29_1€abc56
We try for the momenta the Ansatz py = p,
Pa — O-ga-

To calculate the frame components of the

commutator we shall need the transformations
93 defined by 6% = Hgdfﬂ with

B Bém,
0, =
CEr Fod 4+ DEYE, + Ee®nn ™
To define a concrete Ansatz for the components
on the left-hand side of this equation we have
introduced on the right-hand side the two sets

fi — fz — (0,0,Z) and ga — fa — (0,0,Z)

We shall need also the frame components

eq = €eh0,, with
A B¢,

CE™  DE™Eq + Be™

27



The condition that el be the inverse of 6}

implies that

A=DA! B=-Br At C=-Cr32A"!

The simplest anisotropic homogeneous solution
to Einstein equations is the Kasner metric:

ds® = —dt* +t (da')? +47% (da®)? +4°% (da®)?.

The vacuum equations with vanishing
cosmological constant impose the constraints

on the parameters g;

g1 +q2+q3 =1, Q%+QS+Q§:1-

The metric (23) is a member of a 1-parameter

family of solutions.

The moving frame is given by
0 =dt, 6 =(t?)ida’,

where () is a symmetric 3x3 matrix. It can be

simply written also in the coordinates
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i (4+Q\t ]
y' = (t%)5x’ as
00 = dt, 0" =dy' — Qit™ 'y dt,

The Ricci rotation coefficients for the Kasner

frame are given by the non-vanishing value
05w = Qpt ™",

and the nonvanishing components of the Ricci

curvature tensor are
R’ = -Tr(Q-Q*)t™>,  R%=-(1-TrQ)Qpt >
We impose the commutation relations

[z, y] = ikJ"?, [t, 2] = ikJ" (1) = ik J(t),

with 7 = 7(t). The Jacobi identities are
satisfied if
J? =c

with ¢ a constant which we shall set equal to
one. The algebra is the tensor product

A=A @ As.

of a factor generated by (x,y) and a factor
generated by (¢, z). The tensor product

29



structure, we shall see, is respected by the
differential calculus; the classical limit is just
the metric product of two manifolds. The
algebra just defined is too restrictive to
describe a general element of the Kasner family.
It can be explicitly and easily solved however
and it is a convenient ground state. From the

definitions follow the commutation relations

po.t] =1,  [pp,2?] = (19)f.

If the momenta are expressed in terms of the
position generators the Leibniz rules are

satisfied automatically.

The first factor is generated by the elements
(x,y). We set

ZRpl = Y, ZEPZ — ZX.
Then we have
6! = dz, 6% = dy.

and we have completely described the geometry
of the first factor. For the second factor we

30



suppose p3 = p3(t) so that the only nontrivial

commutation relation is
p3, 2] = psikJ.
We have further
0°(e3) =7 ps, 2] =1,  q=g3
from which we conclude that
p3, 2| =77,
We write this as a differential equation
patkJ = 14

for p3(t). We must force the algebra of
momenta to be quadratic. This means that

[po, p3] = —2ieQ*?03(p3)* + F>03p3 + Kos

for some set of coefficients. We know however
that by definition

[P0, p3] = D3

We find then a second differential equation

D3 + 2i€Q%%03(p3)* — Fo3ps — Koz =0
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for p3(t). From (23) we find then an expression
for J as integrability condition.

By the definition of the C'*3, we have

[po, P3| = qTp3 + ic3
for some real c3. We can choose
ikps = F (1)
which yields
7F' = qrF — kes.
From (11) we find that
qT = —4MFQ3303-

That is, F' is linear in 7. With F' = ar,
g = —4pa@Q33y3 we find

F=qr’ +c, c = —kcs/a
We find therefore the following expression for J

kT4

J = .
Z a(qr? +c)
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We define
1kpo = z.

The frame is given by
00 = —ikJLdt, 03 = 179z,

Therefore
[p(), t] = —J.

We have thus completely described the
geometry of the second factor. There are two
free quantities, the constants ¢ and c. The
solution is a very particular one. One can find
more general solutions by adding a
perturbation. From this point of view the most
interesting Kasner solution is highly

non-perturbative.

The non-vanishing rotation coefficients are

given by
0330 = —T_anth = —qJT_lf'.

If we use this value in the defining equation we
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find

[P0, ps] — C20sps = —qJ7 (7 — ¢~ '7ps)
We check that there is a ground state. The

frame components of the commutator are given

by
[0 1 0 0 )
10 0 0
JP =
0 0 0 7
\ 0 0 —77 0 )
We see that
[0 1 0 0 )
| -1 0 0 0 B
ik[pa, pgl = = —Jo5-
0 0 0 —Jlr

\ 0 0 Je 0

Therefore the configuration is a ground state if
J — 1.
éa = Jojﬁleﬁ = dpg,.
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The 2-form
1
5,];5100‘05 = dxdy — J ' dzdt

is closed.

35



