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Introduction

Introduction

@ Classical space-time inappropriate at Planck scale
due to gravity < Quantum Mechanics
= “quantized” (noncommutative?) spaces:

@ Physics on NC space:
Noncommutative Quantum Field Theory
strange feature: UV/IR mixing
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Introduction

Introduction

@ Classical space-time inappropriate at Planck scale
due to gravity < Quantum Mechanics
= “quantized” (noncommutative?) spaces:
@ Physics on NC space:
Noncommutative Quantum Field Theory
strange feature: UV/IR mixing

@ What about gravity on/for quantized spaces ??

should be simple & naturally related to NC
should improve quantization and/or “flatness” problem
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Introduction

Main Message:

@ dsimple models for dynamical NC space:
Matrix Models

e M. M. known to describe NC gauge theory
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Introduction

Main Message:

@ dsimple models for dynamical NC space:
Matrix Models

e M. M. known to describe NC gauge theory
e M. M. also contain gravity
intrinsically NC mechanism

@ metric emerges, not fundamental d.o.f.
(Rivelles 2002, Yang 2006, ... NC gauge thy « gravity )
reasonably close to GR at low energies (?)

e gravitational waves
o linearized metric: Ry ~ 0
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Introduction

Main Message:

@ dsimple models for dynamical NC space:
Matrix Models
e M. M. known to describe NC gauge theory

e M. M. also contain gravity
intrinsically NC mechanism

@ metric emerges, not fundamental d.o.f.
(Rivelles 2002, Yang 2006, ... NC gauge thy « gravity )
reasonably close to GR at low energies (?)

e gravitational waves
o linearized metric: Ry ~ 0

@ probably requires extra dimensions / branes (IKKT model)

@ easier to quantize than G.R. (?)
mechanism to avoid cosmological constant problem
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Matrix Models, NC spaces and geometry

Matrix Models and dynamical space(time)

Consider Matrix Model:

SYM = 7Tr[Xa’Xb][Xal7Xb/]naa/77bb'7 a= 0’17273
(toy candidate for fundamental theory)
dynamical objects: X2 € L(H) ... hermitian matrices
equation of motion: [X2, X%, X [naa = 0
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Matrix Models, NC spaces and geometry

Matrix Models and dynamical space(time)

Consider Matrix Model:

Sym = 7Tr[Xa, Xb][Xa/aXb/]naa’nbb’v a=0,1,23
(toy candidate for fundamental theory)
dynamical objects: X2 € L(H) ... hermitian matrices
equation of motion: [X2, X%, X [naa = 0
solutions:
@ [X2 XP] = 0 ...classical objects; ignore here
e [X2, Xt = ig®1,  “quantum plane”
where 7% .. antisymmetric tensor, nondegenerate

@ many more, of type [X2, X?] = i#%(x)
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Matrix Models, NC spaces and geometry

Matrix Models and dynamical space(time)

Consider Matrix Model:

Sym = 7Tr[Xa, Xb][Xa/aXb/]naa’nbb’v a=0,1,23
(toy candidate for fundamental theory)
dynamical objects: X2 € L(H) ... hermitian matrices
equation of motion: [X2, X%, X [naa = 0
solutions:
@ [X2 XP] = 0 ...classical objects; ignore here
e [X2, Xt = ig®1,  “quantum plane”
where 7% .. antisymmetric tensor, nondegenerate

@ many more, of type [X2, X?] = i#%(x)

describes dynamical quantum (NC) space-time J
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Matrix Models, NC spaces and geometry

Noncommutative spaces and Poisson structure

(M, 0" (x)) ... 2n-dimensional manifold with Poisson structure
Its quantization My is NC algebra such that
CM) — AcC L(H)
f(x) — f(X) (e.g. plane waves)
i{f,.gy — [f.8]+0(6?)

Note
[XH, f(X)] ~ i0" (x)0,f(x)

simplest example:  (Moyal-Weyl) quantum plane R3"

(X", XV] = ig" 1

cp. phase space in Quantum Mechanics, but (X, P) « (x', x?)
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Matrix Models, NC spaces and geometry

Effective geometry:

consider scalar field coupled to Matrix Model (“test particle”)
SI9] = Trmu (X, 0]ix”, 9]
~ [ d*x p(x) 01 (X)) (X) 1,10, 0,, DO, D
= [d*x\/detG,, G"(x)9,P0,P

where .
p(x) = Pfaff (6,,}) ... symplectic volume

G(x) = p(X) 0" ()8 () s |, et G =1
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Matrix Models, NC spaces and geometry

Effective geometry:

consider scalar field coupled to Matrix Model (“test particle”)
SI9] = Trmu (X, 0]ix”, 9]
~ [ dtx p(x) 07 ()6 (X) 1y 0, DD, @
= [d*x\/detG,, G"(x)9,P0,P

where .
p(x) = Pfaff (6,,}) ... symplectic volume

G(x) = p(X) 0" ()8 () s |, et G =1

@ d couples to effective metric G*”(x) determined by 6/¥(x)
@ 0(x) ... vielbein (“gauge-fixed™!) J

.. quantized Poisson manifold with metric (M, 6"*(x), G,.(x))

H. Steinacker Emergent Gravity from Yang-Mills Matrix Models



Matrix Models, NC spaces and geometry

observe:

@ preferred coordinates x* (defined by matrices), where
background metric 1,,,, is constant

@ kinetic term always of form [X* ] ~ i0" 0,1
— preferred frame e* = —i[X",.] = 0"0,,
universal coupling to G*¥
@ natural (symplectic) volume Tr ~ [ d*x (detd,,!)"/?
— stabilization of flat space,
N

A

Vol(M3) = / d*x /|G| = (27)?
NC
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Matrix Models, NC spaces and geometry

flat case: Moyal-Weyl plane

e.0.m
[Xav [Xa 7Xb ]]naa/ =0
solution
X", X1=i0""1 ... “Moyal-Weyl quantum plane”

effective metric

G — peulﬂeuu’ N = T

... indeed flat, effective metric for all other fields
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Matrix Models, NC spaces and geometry

Deformations of Moyal-Weyl plane, |

consider configurations of form
Xt =Xt 40" A, (“covariant coordinates”)

2 different points of view:

@ new (geometric) point of view
0" (x) ~ [X*, X¥], G = M ()0 (X) p s

... nontrivial metric — gravity
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Matrix Models, NC spaces and geometry

Deformations of Moyal-Weyl plane, |

consider configurations of form
Xt =Xt 40" A, (“covariant coordinates”)

2 different points of view:

@ new (geometric) point of view
0" (x) ~ [X*, X¥], G = M ()0 (X) p s

... nontrivial metric — gravity
© old point of view: NC U(1) gauge theory

[X'ua XV] = iGm e (au’AV’ - 8V'Alt’ + [Au’u AV’]) + i
= 0 Fy +i0M (=007 (x))
Sy ~ / d*x Fy Fy 777" (+surface terms)
... U(1) Yang-Mills on quantum plane



Matrix Models, NC spaces and geometry

deformations of Moyal-Wey! II: linearized gravity

small fluctuations: X* = X + g A,

0" (x)
G (x)

_i[X//'7XV] = Q_MV + e_up,/gl/l// FM/Z//
—(é‘uﬂl i éunéulﬁ Fnﬁ)(éyyl + e_yngd”] an)p(x)nu/l,/
e (1O(F?))

&

Fou(x) ... u(1) field strength
therefore

hu, = ﬁwﬂe_ylp Fou + ﬁuu’@/n Fo — %ﬁzw (émen)

... linearized metric fluctuation (cf. Rivelles [hep-th/0212262])
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Matrix Models, NC spaces and geometry

e.o.m for gravitational d.o.f.:

(X IXY X e =0 < GM0,0,1(x) =0
implies linearized vacuum equations of motion
RuwlGl =0 + O(6?)
while R, = O(f) # 0 ... nonvanishing curvature

= on-shell d.o.f. of gravitational waves on Minkowski space
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Matrix Models, NC spaces and geometry

e.o.m for gravitational d.o.f.:

X XY XE e =0 & G0, 6, (x) =0
implies linearized vacuum equations of motion
RuwlGl =0 +O(F?)

while R, = O(f) # 0 ... nonvanishing curvature

= on-shell d.o.f. of gravitational waves on Minkowski space

@ G ~ OM (X) 0" (X)1,0, .. restricted class of metrics
@ same on-shell d.o.f. as general relativity (for vacuum)

i.e.: trace-U(1) photons on R$ are actually gravitons
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Matrix Models, NC spaces and geometry

generalization to su(n) gauge fields

basically
Xt — XF @ Mp(C) = YH

separate u(1) and su(n) components !

Y = (XF+0AD) @1, + (VAL @ \y)
- XP@1, 4 (XA ® Ao
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Matrix Models, NC spaces and geometry

generalization to su(n) gauge fields

basically
Xt — Xt @ My(C) = YH
separate u(1) and su(n) components !

Y = (XF+0AD) @1, + (VAL @ \y)
- XP@1, 4 (XA ® Ao

u(1) component X* ... dynamical geometry, gravity

su(n) components A7 ... su(n) gauge field coupled to gravity
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Matrix Models, NC spaces and geometry

effective action to leading order:

requires use of Seiberg-Witten map (technical)

Syw=—[d*xp~" G G"'tr Fp Fuy +2 [n(x)tr FAF

where
n(x) = G" (X)nu
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Matrix Models, NC spaces and geometry

effective action to leading order:

requires use of Seiberg-Witten map (technical)

Syw=—[d*xp~" G G"'tr Fp Fuy +2 [n(x)tr FAF

where
n(x) = G* (X)nu
@ indeed su(n) YM coupled to metric G*¥(x)
@ additional term [ n(y) tr F A F, topological for 6/ = const
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Matrix Models, NC spaces and geometry

effective action to leading order:

requires use of Seiberg-Witten map (technical)

Syw=—[d*xp~" G G"'tr Fp Fuy +2 [n(x)tr FAF

where
n(x) = G* (X)nu
@ indeed su(n) YM coupled to metric G*¥(x)
@ additional term [ n(y) tr F A F, topological for 6/ = const
@ u(1) d.o.f. absorbed in G*(x) = —6#* (x)6"" (X) pijuror
same for scalar fields & fermions = dynamical gravity
(H.S., JHEP 0712:049 (2007) )
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Quantization and Einstein-Hilbert action

Question: what about the Einstein-Hilbert action?

Answer:
@ tree level: e.o.m. for gravity follow from u(1) sector:

G*0,0,.1(y) =0 implies| R, [G]~ 0] (linearized)

N2
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Quantization and Einstein-Hilbert action

Question: what about the Einstein-Hilbert action?

Answer:
@ tree level: e.o.m. for gravity follow from u(1) sector:

G*0,0,.1(y) =0 implies| R, [G]~ 0] (linearized)

P Y v

@ one-loop: gauge or matter (scalar) fields couple to G,
= (Sakharov) induced Einstein-Hilbert action:

S1—loop ~ /d4X\/ [em <C1 /\LZ/V + CZA%/V RIG] + O(|09(AUV)))
suggests
”

G
note: detG, =1, firsttermis huge but irrelevant

2
~ Ny

H. Steinacker Emergent Gravity from Yang-Mills Matrix Models



Quantization and Einstein-Hilbert action

Question: what about the Einstein-Hilbert action?

Answer:
@ tree level: e.o.m. for gravity follow from u(1) sector:

G*0,0,.1(y) =0 implies| R, [G]~ 0] (linearized)

P Y v

@ one-loop: gauge or matter (scalar) fields couple to G,
= (Sakharov) induced Einstein-Hilbert action:

S1—loop ~ /d4X\/ [em <C1 /\LZ/V + CZA%/V RIG] + O(|09(AUV)))
suggests
”

G
note: detG, =1, firsttermis huge but irrelevant

2
~ Ny

no physical cosmological constant,
flat space remains to be solution at one loop \

H. Steinacker Emergent Gravity from Yang-Mills Matrix Models




Quantization and Einstein-Hilbert action

Relation with UV/IR mixing

UV/IR mixing of NC gauge theory  (old point of view)

@ Quantization of NC field theory — new IR - divergences
nonplanar diagrams: UV-finite, except for p — 0

N
2 p\4 U

TNCIA] ~ g2 [d*Pp(0%Fap)2 Nef(p) + ...

2 _ 1
Aeff(p) - 1//\2+%p2//\zllvc

related to UV divergences; non-renormalizable ?
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Quantization and Einstein-Hilbert action

Relation with UV/IR mixing

UV/IR mixing of NC gauge theory  (old point of view)

@ Quantization of NC field theory — new IR - divergences
nonplanar diagrams: UV-finite, except for p — 0

N
2 p\4 U

TNCIA] ~ g2 [d*Pp(0%Fap)2 Nef(p) + ...
Agff(p) = 1//\2+£p2//\zllvc

related to UV divergences; non-renormalizable ?
@ for NC gauge theories: restricted to trace-u(1) sector
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Quantization and Einstein-Hilbert action

Relation with UV/IR mixing

UV/IR mixing of NC gauge theory  (old point of view)

@ Quantization of NC field theory — new IR - divergences
nonplanar diagrams: UV-finite, except for p — 0

N
2 p\4 U

TNCIA] ~ g2 [d*Pp(0%Fap)2 Nef(p) + ...

2 _ 1
Aeff(p) - 1//\2+%p2//\zllvc

related to UV divergences; non-renormalizable ?
@ for NC gauge theories: restricted to trace-u(1) sector

@ here: trace-u(1) sector understood as geometric d. o. f.,
matter couples to G
= expect new divergences in IR due to induced gravity
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Quantization and Einstein-Hilbert action

therefore:

@ explanation for UV/IR mixing in terms of gravitational
action

oAl = / d*x (N*+ or?RIG] )

detailed matching UV/IR mixing < gravity
(H. Grosse, H.S., M. Wohlgenannt, JHEP 0804:023,2008)
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Quantization and Einstein-Hilbert action

therefore:

@ explanation for UV/IR mixing in terms of gravitational
action

oAl = / d*x (N*+ or?RIG] )

detailed matching UV/IR mixing < gravity
(H. Grosse, H.S., M. Wohlgenannt, JHEP 0804:023,2008)

e finite UV cutoff § ~ A2 <= N =4 SUSY broken at Apjunck
— |IKKT model, suitable for quantization
@ no cosm. const.: clear from NC gauge theory point of view

Moyal-Weyl is solution of quantized NC U(1) gauge theory
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Quantization and Einstein-Hilbert action

Matter

Question: sufficient d. o. f. in G*” for gemetries with matter?

Consider Newtonian limit
2U(x 1
o5 = ~ca?(1+ = X ))+d 2(1+0(3))

where A@g)U(x) = 4nGp(x) and p ...static mass density
can show: 3 sufficient d.o.f. in G*¥ for arbitrary p(x)

but:  gravitational field of e.g. point mass not correct
(metric too constrained ?)

need more d.o.f: — branes & extra dimensions

H. Steinacker Emergent Gravity from Yang-Mills Matrix Models



Branes & extra dimensiol

Extra dimensions, branes & compactification

recall action for scalar field (H.S., in preparation)
S[®] = Tr[X*, ®][X”, @] ny

interpret ® as extra dimension — consider D —dim. M.M.

Sym = —Tr[X3, XP[XZ , XOaanipry,  a,b=0,...D—1

(in particluar: IKKT model in D =10 < NC SYM in D = 4)
split matrices X2 = (X*, o), u=0,..,2n—1
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Branes & extra dimensiol

Extra dimensions, branes & compactification

recall action for scalar field (H.S., in preparation)
S[®] = Tr[X*, ®][X”, @] ny

interpret ® as extra dimension — consider D —dim. M.M.

Sym = —Tr[X3, XP[XZ , XOaanipry,  a,b=0,...D—1

(in particluar: IKKT model in D =10 < NC SYM in D = 4)
split matrices X2 = (X*, o), u=0,..,2n—1
so far: background ®(x) =0
now:  background with nontrivial ®(x) — generic M3" ¢ RP

M2 carries Poisson structure [X*, XV] = i0"(x)
tangential VF et = —i[X*,.] = 0"(x) 0,
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Branes & extra dimensiol

effective geometry:
consider scalar field coupled to Matrix Model (“test particle”)

S[(D] = 7-r[Xa7¢][Xb7¢] 77ab
~ [ d?x \/[G.] G*(x) 8,00,

where
G'™(x) = 0 (x)0" (x) p(X) gur(x)  effective metric
9uw(X) = mu+0,9'9,9/6;  induced metric on M3"
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Branes & extra dimensiol

effective geometry:
consider scalar field coupled to Matrix Model (“test particle”)

S[(D] = 7-r[Xa7¢][Xb7¢] 77ab
~ [ d?x \/[G.] G*(x) 8,00,

where
G'™(x) = 0 (x)0" (x) p(X) gur(x)  effective metric
9uw(X) = mu+0,9'9,9/6;  induced metric on M3"

all fields couple to G,,, ~ open string metric
(9. ~ closed string metric)
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Branes & extra dimensiol

Summary and outlook

@ matrix-model Tr[X2 XP|[X& , XP] 122 mpy
describes dynamical NC spaces, & SU(n) gauge theory

@ simple, intrinsically NC mechanism to generate gravity
NC spaces < gravity

@ notsame as G.R., but close to G.R. for small curvature

@ vacuum equation R, ~ 0 at least in linearized case
@ Newtonian limit o.k., but no Schwarzschild in minimal D = 4

(?)
— extends to branes & compactification (IKKT model!)

@ mechanism for stabilizing flat spaces
suitable for quantizing gravity

@ explanation for UV/IR mixing in NC gauge theory
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Branes & extra dimensiol

Coupling to nonabelian gauge fields (heuristic)

set Y2 = X2 + 03(x)Ap(x) obtain

[Y2 YDl = i63(x) + i62°0P9 (0. Ag — DgAc + [Ac, Ad] + O(6100))

— i07b(x) + i92°(x)9P9 (x) Foy + O(0-106))
hence
SYM = _n[ya7 Yb][ya,7 Yb/]naa’nbb’
~ T (GP(X)nab — G (x) G (X) (Foq Fergr + O(07106)))

using Tr(A%(x)Fa) ~ 0
similar to su(n) YM coupled to metric G#(x)
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Branes & extra dimensiol

nonabelian gauge fields (correct)

Seiberg-Witten map:

V3= X4 0% — L (AXC 09Ag) + AFS) 4 O(0°)

@ expresses su(n) d.o.f. in terms of commutative su(n) gauge
fields Ag

@ relates NC g.t. /[A, Y?] in terms of standard su(n) g.t. of A,
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Branes & extra dimensiol

nonabelian gauge fields (correct)

Seiberg-Witten map:

V3= X4 0% — L (AXC 09Ag) + AFS) 4 O(0°)

@ expresses su(n) d.o.f. in terms of commutative su(n) gauge
fields Ag

@ relates NC g.t. /[A, Y?] in terms of standard su(n) g.t. of A,

Volume element:

@r2Trf(x) = [d*p(x)f(x),
p(x) = y/det(d,,) = (det(nap)det(Gap))'/*

(cp. Bohr-Sommerfeld quantization)
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