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Neutrino Masses in Noncommutative Geometry

Basic Ideas

The aim of Noncommutative Geometry à la Connes:

To unify general relativity (GR) and the standard model of
particle physics (SM) on the same geometrical level.

This means to describe gravity and the electro-weak and strong
forces as gravitational forces of a unified space-time.
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Basic Ideas

General Relativity

Gravity emerges as a pseudo-force associated to the
space-time symmetries, i.e. the diffeomorphisms of the
manifold M.
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Basic Ideas

General Relativity: The Spectral Approach

Euclidean space-time!
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Basic Ideas

Unifying General Relativity and the Standard Model

Almost-Commutative Spectral Action (A.Chamseddine,
A.Connes 1996):

Almost-Commutative
Spectral Triple

A = C∞(M) ⊗Af

Int.+Ext. Symmetries
= Diff(M)⋊

U(1) × SU(2) × SU(3)

Spectral Action =
E-H Act.+Cosm.Const.
+ Stand. Model Action

act on

leave invariantDynamics
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Basic Ideas

Unifying General Relativity and the Standard Model

Analogy: Almost-comm. geometry ↔ Kaluza-Klein space
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Idea: M → C∞(M), F → some ”finite space”,
differential geometry → spectral triple
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Basic Ideas

Unifying General Relativity and the Standard Model

Almost-commutative Geometry
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”finite space” → Af = M1(K) ⊕ M2(K) ⊕ . . .
Kaluza-Klein space → almost-com. geometry, A = C∞(M)⊗Af
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Basic Ideas

Unifying General Relativity and the Standard Model

The almost-commutative standard model automatically
produces:

• The combined Einstein-Hilbert and standard model action

• A cosmological constant

• The Higgs boson with the correct quartic Higgs potential

The Dirac operator plays a multiple role:

/∂⊗1 + γ5 ⊗Df

Higgs & Gauge
Bosons

Metric of M,
Internal Metric

Particle Dynamics,
Yukawa & CKM

Matrix
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Geometrical and Physical Obstructions

The Input

An even, real spectral triple (A,H,D); the ingredients
(A. Connes):

A real, associative, unital pre-C∗-algebra A

A Hilbert space H on which the algebra A is faithfully
represented via a representation ρ

A self-adjoint operator D with compact resolvent, the Dirac
operator

An anti-unitary operator J on H, the real structure
(charge conjugation operator)

A unitary operator γ on H, the chirality
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Geometrical and Physical Obstructions

The Conditions

The conditions or axioms of noncommutative geometry
(A. Connes 1996):

Condition 1: Classical Dimension n (n = 0 for the finite
part)

Condition 2: Regularity

Condition 3: Finiteness

Condition 4: First Order of the Dirac Operator

Condition 5: Poincaré Duality

Condition 6: Orientability

Condition 7: Reality (→ KO-dim = 0 or 6 for finite part)
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Geometrical and Physical Obstructions

The Spectral Action

The spectral action (A. Connes & A. Chamseddine 1996):

The spectral action is defined to be the number of eigenvalues
of the Dirac operator up to a cut-off Λ.

Ssp. =Tr(f (D
Λ
)) + (Ψ,DΨ)

f : a positive test function

Heat-kernel expansion of the trace => bosonic action

Constraint: g2
2 = g2

3 = λ
8 = 1

4 Y2 at Λ

Robust predictions: Λ ∼ 1017GeV and mHiggs ∼ 170GeV
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Five Scenarios for Neutrino Masses

Pure SM with KO-dim. = 0 (Connes, Chamseddine 1996)

finite Algebra: C ⊕ H ⊕ M3(C)

NνR 6= 3 (Poincaré duality)

Neutrino masses are Dirac masses

No SeeSaw mechanism

Constraint: 3g2
top = 4 g2

2 at Λ ∼ 1017GeV

=> mtop ∼ 190GeV

Solution I: Need another Yukawa coupling g ∼ 1

Solution II: New particles
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Five Scenarios for Neutrino Masses

Pure SM with KO-dim. = 6 (Connes, Barrett 2006)

finite Algebra: C ⊕ H ⊕ M3(C)

NνR arbitrary

Dirac and Majorana masses are allowed

SeeSaw mechanism is natural with MMaj . ∼ 1013GeV

and gν ∼ 1.6 (mtop ∼ 170GeV )

Problem: Leptoquark masses (are put to zero by hand)

Poincaré duality needs to be modified

consider Leptons and Quarks separately

Finite spectral triple violates Orientability axiom

Solution (Connes 2006): enlarge finite Algebra to

C ⊕ H ⊕ H ⊕ M3(C)
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Five Scenarios for Neutrino Masses

Pure SM with KO-dim. = 0 (Jureit, Schücker, C.S. 2005)

finite Algebra: C ⊕ H ⊕ M3(C) ⊕ C

NνR arbitrary

Neutrino masses are Dirac masses

No SeeSaw mechanism

Constraint: 3g2
top = 4 g2

2 at Λ ∼ 1017GeV

=> mtop ∼ 190GeV
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Five Scenarios for Neutrino Masses

Pure SM with KO-dim. = 6 (Jureit, C.S. 2006)

finite Algebra: C ⊕ H ⊕ M3(C) ⊕ C

NνR arbitrary

Dirac and Majorana masses are allowed

SeeSaw mechanism is natural => mtop ∼ 170GeV

No Leptoquark masses!

Poincaré duality needs not to be modified

Finite spectral triple violates Orientability axiom

(generic feature of right-handed neutrinos with Majorana
mass)
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Five Scenarios for Neutrino Masses

SM + 2 neutral Fermions, KO-dim. = 6 (C.S., to appear)

finite Algebra: C ⊕ H ⊕ M3(C) ⊕ C ⊕ C ⊕ C ⊕ C ⊕ C

NνR arbitrary

two new neutral particles X and Y (possibly in every
generation)

Dirac masses for all particles

X and Y masses are vectorlike => mX ∼ mY ∼ Λ

vectorlike mass terms between X,Y and νR

SeeSaw-like mechanism

no problems with Axioms
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Five Scenarios for Neutrino Masses

New part in the SM-Langrangian:

Lnew = gνφ
0νLνR + mX X LXR + M1νRXL + M2νRX R

+mY Y RYL + h.c.

Mass eigenvalues for M = M1 = M2 ∼ mX ∼ Λ, mν ∼ 100GeV

m1/2 ∼ ±m2
ν

mX
2 M2 m3...6 ∼ ±mX m7/8 ∼ ±2 M2

mX

Successful SeeSaw mechanism with a detour!
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Conclusions, Open Questions & Outlook

Conclusions:

Majorana masses and the SeeSaw mechanism

problematic in Noncommutative Geometry à la Connes

Physical constraint Y2 = 4g2 at Λ seems to

suggest particles beyond the Standard Model

SeeSaw mechanism requires either modification of Axioms
or new particles

Open Questions & Outlook:

How to distinguish the different models experimentally?

Underlying theory? -> Quantisation?

Lorentzian spectral triples (M. Paschke, A. Rennie, R.
Verch to appear)


	Basic Ideas
	
	
	

	Geometrical and Physical Obstructions
	
	
	

	Five Scenarios for Neutrino Masses
	Conclusions, Open Questions & Outlook

