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transformations
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theories
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Twisted vs. *-gauge transformations

In particular, noncommutativity deforms the 
gauge theory action:

S = −

1

2g2

∫

d4x tr

[

Fµν ! Fµν

]

where

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ]"

(Quantum) Field Theory gets interesting when 
the space is noncommutative

[xµ, xν ] = iθµν



Twisted vs. *-gauge transformations

In particular, noncommutativity deforms the 
gauge theory action:

S = −

1

2g2

∫

d4x tr

[

Fµν ! Fµν

]

where

(Quantum) Field Theory gets interesting when 
the space is noncommutative

[xµ, xν ] = iθµν

f(x) ! g(x) ≡ f(x) exp

[

i

2
θµν←−∂µ

−→
∂ν

]

g(x)



This also results in a deformation of gauge 
symmetry (*-star gauge symmetry)

δεAµ = ∂µε + i[ε, Aµ]"

Actually, because of the *-commutator, 

there are restrictions on the possible gauge groups

The gauge group is U(N)

Aµ     takes values in the Universal enveloping 
algebra of a group  G

[ε, Aµ]! = [εa, Ab
ν ]!{T

a, T b} + {εa, Ab
ν}![T

a, T b]

(Jurco, Schralm, Schupp & Wess ‘00)



In addition, the NCYM action is also invariant 
under twisted gauge transformations

(Vassilevich ’06; Aschieri, Dimitrijevic, Meyer, Schraml & Wess ’06)

δεAµ = ∂µε + i[ε, Aµ]

while the action on products uses a deformed 
Leibniz rule

δε(Φ1 " Φ2) = (δεΦ1) " Φ2 + Φ1 " (δεΦ2)

∞
∑

n=1

(−i/2)n

n!
θα1β1 . . . θαnβn

{

[∂α1
, [. . . [∂αn

, δε] . . .]]Φ1 $ ∂β1
. . . ∂βn

Φ2+

+∂α1
. . . ∂αn

Φ1 " [∂β1
, [. . . [∂βn

, δε] . . .]]Φ2

}



For field theory purposes, this can be seen as a 
gauge transformation of the *-product

δε(Φ1 " Φ2) = (δεΦ1) " Φ2 + Φ1 " (δεΦ2) + Φ1(δε")Φ2

(Álvarez-Gaumé, Meyer & M.A.V.-M. ‘06)

In more precise terms, introducing the twist operator

F = e
− i

2
θ

µν
∂µ⊗∂ν

∆(δε) = δε ⊗ 1 + 1 ⊗ δε ∆(δε)F = F

(

δε ⊗ 1 + 1 ⊗ δε

)

F−1

f ! g = µ
[

F−1f ⊗ g
]

the deformed Leibniz rule corresponds to a twist of 
the coproduct



Now, the equations of motion constraint the 
possible gauge groups

∂µFµν
− i[Aµ, Fµν ]" = 0 Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ]"

The gauge group is 

Aµ     takes values in the Universal enveloping 
algebra of a gauge group  G

*-gauge symmetry has been argued to play a 
custodial role with respect to twisted-gauge 
symmetry (Álvarez-Gaumé, Meyer & M.A.V.-M. ‘06)

(Giller, Gonera, Kosinski & Maslanka ‘07)

U(N)



Summarizing (with a change of notation)

*-gauge transformations:

Twisted-gauge transformations:

δθ
εAµ = ∂µε + i[ε, Aµ]θ

δ0

εAµ = ∂µε + i[ε, Aµ]0

∆(δε)θ = Fθ

(

δ
0

ε ⊗ 1 + 1 ⊗ δ
0

ε

)

F
−1

θ

∆(δε)0 = δ
θ
ε ⊗ 1 + 1 ⊗ δ

θ
ε

S = −

1

2g2

∫

d4x tr

[

Fµν !θ Fµν
]

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ]θ



*-twisted gauge transformations:

Let us look at an “intermediate” case:

S = −

1

2g2

∫

d4x tr

[

Fµν !θ Fµν
]

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ]θ

Is there any way to implement these 
transformations as an invariance of the action?

δθ′

ε Aµ = ∂µε + i[ε, Aµ]θ′
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We look now for a deformation of the Leibniz rule, 
such that      transforms covariantly with respect 
to    -*-gauge transformations

Fµν

θ
′

δθ′

ε Fµν = [iε, ∂µAν − ∂νAµ]θ′ + i[∂µε, Aν ]θ′ − i[∂νε, Aµ]θ′ − iδθ′

ε [Aµ, Aν ]θ

Imposing now that                          and usingδθ′

ε Fµν = [iε, Fµν ]θ′

f!θg =
∞∑

n=0

(−i/2)n

n!
(θ′µ1ν1

−θµ1ν1) . . . (θ′µnνn
−θµnνn)(∂µ1

. . . ∂µn
f)!θ′(∂ν1

. . . ∂νn
g)

we find

Because of this deformed gauge transformation the gauge group has to be restricted to U(N).

For any other gauge group G, Eq. (2.3) forces the gauge field Aµ has to take values on the

universal enveloping algebra of the Lie algebra of G.

The idea of Ref. [8] is that the action (2.2) can also be made invariant under standard

(undeformed) gauge transformations

δ0
εAµ = ∂µε + i[ε, Aµ]0 ≡ ∂µα + i

(

ε · Aµ − Aµ · ε
)

, (2.4)

provided the action on the products of fields in changed appropriately

δ0
ε

(

Aµ %θ Aν

)

(2.5)

=
∞

∑

n=0

(−i/2)n

n!
θα1β1θα2β2 . . . θαnβn

{(

[∂α1
, [∂α2

, . . . [∂αn , δε] . . .]]Aµ

)

%θ

(

∂β1
∂β2

. . . ∂βnAν

)

+
(

∂α1
∂α2

. . . ∂αnAµ

)

%θ

(

[∂β1
, [∂β2

, . . . [∂βn , δε] . . .]]Aν

)}

.

In this serie the term n = 0 gives the standard Leibniz rule which is corrected by an infinite

number of terms with arbitrary number of derivatives. This transformation of the product of

two gauge fields implies that the field strength transforms as

δ0
εFµν = [iε, Fµν ]0 ≡ i

(

ε · Fµν − Fµν · ε
)

. (2.6)

Since the star-product in the action (2.2) can be traded by a surface term this guarantees the

invariance of the action under twisted gauge transformations.

Let us now go back to the action (2.2) but consider a star-gauge transformation with pa-

rameter θ′µν #= θµν

δθ′

ε Aµ = ∂µε + i[ε, Aµ]θ′ . (2.7)

The variation of the field strength Fµν in Eq. (2.2) under this transformation can be written as

δθ′

ε Fµν = [iα, ∂µAν − ∂νAµ]θ′ + i[∂µα, Aν ]θ′ − i[∂να, Aµ]θ′ − iδθ′

ε [Aµ, Aν ]θ. (2.8)

In order to evaluate the last term explicitly we need to compute the action of the θ′-star gauge

transformation on the θ-star product, δθ′

ε (Aµ %θ Aν). We use the deformed Leibniz rule

δθ′

ε

(

Aµ %θ Aν

)

=
∞

∑

n=0

(−i/2)n

n!
(θα1β1 − θ′α1β1)(θα2β2 − θ′α2β2) . . . (θαnβn − θ′αnβn)

×
{(

[∂α1
, [∂α2

, . . . [∂αn , δθ′

ε ] . . .]]Aµ

)

%θ

(

∂β1
∂β2

. . . ∂βnAν

)

(2.9)

+
(

∂α1
∂α2

. . . ∂αnAµ

)

%θ

(

[∂β1
, [∂β2

, . . . [∂βn , δθ′

ε ] . . .]]Aν

)}

.
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, . . . [∂βn , δθ′

ε ] . . .]]Aν
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Using now the same Leibniz rule for the product 
of two field strength tensors

We find that 

This guarantees the invariance of the pure 
Yang-Mills action under *-twisted gauge 
transformations:

δθ′

ε

[

−

1

2g2

∫

d4x tr

(

Fµν "θ Fµν
)

]

= 0

δθ′

ε

(

Fµν "θ Fµν
)

= [iε, Fµν "θ Fµν ]θ′

of two field strength fields

δθ′

ε

(

Fµν "θ F µν
)

=
∞

∑

n=0

(−i/2)n

n!
(θα1β1 − θ′α1β1)(θα2β2 − θ′α2β2) . . . (θαnβn − θ′αnβn)

×
{(

[∂α1
, [∂α2

, . . . [∂αn , δθ′

ε ] . . .]]Fµν

)

"θ

(

∂β1
∂β2

. . . ∂βnF µν
)

(2.15)

+
(

∂α1
∂α2

. . . ∂αnFµν

)

"θ

(

[∂β1
, [∂β2

, . . . [∂βn , δθ′

ε ] . . .]]F µν
)}

.

Using manipulations similar to the ones applied above, we conclude that the product Fµν "θ F µν

transforms as well as an adjoint field

δθ′

ε

(

Fµν "θ F µν
)

= [iε, Fµν "θ F µν ]θ′ . (2.16)

In order to finally show that this transformation implies the invariance of the action with respect

to the star-twisted transformations (2.7) we only have to use the cyclic property of the integral

with respect to the θ′-star product

δθ′

ε S = −
1

2g2

∫

ddx tr
[

iε "θ′ (Fµν "θ F µν) − i (Fµν "θ F µν) "θ′ ε
]

= 0. (2.17)

With this analysis we have shown how pure noncommutative U(N) Yang-Mills theories are

invariant under star-gauge transformations with any value of the noncommutativity parameter

provided the Leibniz rule is modified. The extra terms in the modified Leibniz rule scale with

the difference between the two noncommutativity parameters, θµν − θ′µν and therefore vanish

for standard star-gauge transformations. In the same way the invariance under the so-called

twisted gauge transformations of Ref. [11, 12] is recovered when θ′µν = 0.

Matter fields. Once studied the case of pure gauge theories, we turn next to gauge field cou-

pled to matter. Because of the peculiar algebraic properties of noncommutative field theories,

the coupling of matter fields to gauge fields can only be made in the fundamental, antifunda-

mental and adjoint representation, defined by [16, 5]

δθ′

ε ψ = iε "θ′ ψ fundamental,

δθ′

ε ψ = −iψ "θ′ ε antifundamental, (2.18)

δθ′

ε ψ = [iε, ψ]θ′ adjoint.
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of two field strength fields
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Fµν "θ F µν
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∞
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n=0

(−i/2)n

n!
(θα1β1 − θ′α1β1)(θα2β2 − θ′α2β2) . . . (θαnβn − θ′αnβn)

×
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[∂α1
, [∂α2

, . . . [∂αn , δθ′
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"θ
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Matter fields

We consider matter transforming under *-twisted 
gauge transformations as

After a tedious but straightforward calculation one arrives at

δθ′

ε

(

Aµ "θ Aν

)

= (∂µε) "θ′ Aν + Aµ "θ′ (∂νε) + [iε, Aµ "θ Aν ]θ′. (2.10)

In getting this expression it is crucial to use the following equation valid for any two functions

f(x), g(x)

[f, ∂µ1
. . . ∂µng]θ′ =

n
∑

k=0

(−1)k∂(µ1
. . . ∂µk

[∂µk+1
. . . ∂µn)f, g]θ′, (2.11)

together with the identity

f "θ g =
∞

∑

n=0

(−i/2)n

n!
(θ′µ1ν1 − θµ1ν1) . . . (θ′µnνn − θµnνn)(∂µ1

. . . ∂µnf) "θ′ (∂ν1
. . . ∂νng). (2.12)

The proof of this last expression is deferred to the Appendix. With this expression we find that

the transformation of the field strength is given by

δθ′

ε Fµν =
[

iα, ∂µAν − ∂νAµ − i[Aµ, Aν ]θ
]

θ′
= [iε, Fµν ]θ′. (2.13)

In order to see that this transformation implies the invariance of the action with respect to the

star-twisted transformations (2.7) we only have to take into account the identity
∫

ddx f "θ g =

∫

ddx f "θ′ g + boundary terms. (2.14)

With this we have shown above that pure noncommutative U(N) Yang-Mills theories are in-

variant under star-gauge transformations with any value of the noncommutativity parameter

provided the Leibniz rule is modified. The extra terms in the modified Leibniz rule scale with

the difference between the two noncommutativity parameters, θµν−θ′µν and therefore vanish for

standard star-gauge transformations. In the same way the invariance under standard twisted

gauge transformations of Ref. [8] is recovered when θ′µν = 0.

Matter fields. Once the case of pure gauge theories is studied, we turn next to gauge field

coupled to matter. Because of the peculiar algebraic properties of noncommutative field theo-

ries, the coupling of matter fields to gauge fields can only be made in the fundamental, anti-

fundamental and adjoint representation [13]

δθ′

ε ψ = iε "θ′ ψ fundamental,

δθ′

ε ψ = −iψ "θ′ ε antifundamental, (2.15)

δθ′

ε ψ = [iε, ψ]θ′ adjoint.

4One can defined the corresponding covariant 
derivativesAssociated with them we introduce the corresponding covariant derivatives defined by

∇µψ = ∂µψ − iAµ #θ ψ fundamental,

∇µψ = ∂µψ + iψ #θ Aµ antifundamental, (2.16)

∇µψ = ∂µψ − i[Aµ, ψ]θ adjoint.

Now we can prove that the previous derivatives transform indeed covariantly provided we use

the modified Leibniz rule [cf. Eq. (2.9)]

δθ′

ε

(

Φ1 #θ Φ2

)

=
∞

∑

n=0

(−i/2)n

n!
(θα1β1 − θ′α1β1)(θα2β2 − θ′α2β2) . . . (θαnβn − θ′αnβn)

×
{(

[∂α1
, [∂α2

, . . . [∂αn , δθ′

ε ] . . .]]Φ1 #θ

(

∂β1
∂β2

. . . ∂βnΦ2

)

(2.17)

+
(

∂α1
∂α2

. . . ∂αnΦ1

)

#θ

(

[∂β1
, [∂β2

, . . . [∂βn , δθ′

ε ] . . .]]Φ2

)}

.

Using this and with the help of Eqs. (2.11) and (2.12) we arrived at the desired results

δθ′

ε ∇µψ = iε #θ′ (∇µψ) fundamental,

δθ′

ε ∇µψ = −i(∇µψ) #θ′ ε antifundamental, (2.18)

δθ′

ε ∇µψ = i[ε,∇µψ]θ′ adjoint.

Notice that the key point here is that all covariant derivatives are defined using the θ-star

product #θ, whereas the gauge trasformations involve the θ′-star product #θ′.

These transformations of the covariant derivatives under star-twisted gauge transformations

show that any action constructed in terms of them invariant under U(N) θ-star gauge transfor-

mations is at the same time invariant under star-twisted gauge transformations for any value

of θ′µν .

3 Mathematical construction

After the heuristic construction of star-twisted gauge theories presented above we turn to a

more mathematical derivation of these type of theories. In the following we use the notation of

Ref. [8] with minimal changes.

As usual we work with an algebra of functions A with the standard pointwise product

defined through the operation µ : A⊗A → A as f · g = µ(f ⊗g). The θ-star product is defined
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show that any action constructed in terms of them invariant under U(N) θ-star gauge transfor-

mations is at the same time invariant under star-twisted gauge transformations for any value

of θ′µν .
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it can be proved that the derivatives are indeed 
covariant
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adjoint

With this we can construct invariant actions



We can make a bit more mathematical 
construction by defining the differential operator

3 Mathematical construction

After the heuristic construction of star-twisted gauge theories presented above we turn to a

more mathematical derivation of these class of invariances. In the following we use the notation

of Ref. [12] with minimal changes. A comprehensive study of the Lie algebra of star-gauge

transformations can be found in [10].

As usual we work with an algebra of functions A where the standard pointwise product is

defined through the operation µ : A⊗A → A as f · g = µ(f ⊗ g). In terms of this, the θ-star

product is defined as f "θ g = µ[F−1
θ (f ⊗ g)] where the twist operator is given by

Fθ = e−
i
2
θµν∂µ⊗∂ν . (3.1)

Given a function f in the algebra A we define the differential operator

Xθ
f ≡

∞
∑

n=0

(−i/2)n

n!
θµ1ν1 . . . θµnνn∂µ1

. . . ∂µnf∂ν1
. . . ∂νn. (3.2)

These operators act on the elements of the same algebra of functions. In particular we can

define the left θ′-action of this operator on a function g ∈ A as

Xθ
f !θ′ g ≡

∞
∑

n=0

(−i/2)n

n!
θµ1ν1 . . . θµnνn(∂µ1

. . . ∂µnf) "θ′ (∂ν1
. . . ∂νng), (3.3)

which using Eq. (2.13) leads to the identity

Xθ
f !θ′ g = f "θ′−θ g. (3.4)

Using this expression, together with the associativity of the star-product, it is easy to show

that these differential operators satisfy the composition rule

(Xθ
f ◦θ′ Xθ

g ) !θ′ h ≡ Xθ
f !θ′ (Xθ

g !θ′ h) = Xθ
f$θ′−θg !θ′ h (3.5)

for every f, g, h ∈ A.

The right action of the differential operator Xθ
f can be also defined in an analogous way by

g "θ′ Xθ
f =

∞
∑

n=0

(−i/2)n

n!
θµ1ν1 . . . θµnνn(∂µ1

. . . ∂µng) "θ′ (∂ν1
. . . ∂νnf)

= g "θ′−θ f. (3.6)
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7andFinally, we define the adjoint action by

Adj(Xθ
f ) !θ′ g =

∞
∑

n=0

(−i/2)n

n!
θµ1ν1 . . . θµnνn

[

∂µ1
. . . ∂µnf, ∂ν1

. . . ∂νng
]

θ′

= [f, g]θ′−θ. (3.7)

Using again the definitions and the associativity of the product it can shown that both the

antifundamental and adjoint actions of the differential operator Xθ
f satisfy the analog of the

composition rule (3.5).

The transformations properties of matter fields under θ′-star gauge transformations in the

(anti)fundamental and adjoint representations introduced above can be written in terms of the

action of the operator Xθ
f as

δθ′

ε Φ = iXθ
εaT a !θ+θ′ Φ fundamental,

δθ′

ε Φ = −iΦ "θ+θ′ Xθ
εaT a antifundamental, (3.8)

δθ′

ε Φ = iAdj(Xθ
εaT a) !θ+θ′ Φ adjoint

Once the action of the transformations are defined on fields we need to extend it to their

θ-star products. To this end, let us consider two fields Φ1, Φ2 transforming in some of the

above representation under θ-star gauge transformations (θ′µν = θµν), but such that their θ-

star product itself transform also in one of these representations under the same transformation.

This is the case of the product of two fields in the adjoint representation, an antifundamental

with a fundamental, an adjoint field with a fundamental field or an antifundamental field with

a field in the adjoint representation. We are going to focus on these cases since they are the

building blocks in terms of which the action is constructed.

For concreteness we consider the product of two adjoint fields, although all other cases can

be treated in a similar way with the same result. For star-gauge transformations, θ′µν = θµν ,

we have that

δθ
ε(Φ1 $θ Φ2) = i[εaT a, Φ1]θ $θ Φ2 + iΦ1 $θ [εaT a, Φ2]θ

= i
[

εaT a, Φ1 $θ Φ2

]

θ
, (3.9)

so the product of two adjoint fields transforms is an adjoint field itself with the standard

coproduct

δθ
ε(Φ1 $θ Φ2) = µ

[

F−1
θ ∆(δθ

ε)Φ1 ⊗ Φ2

]

, ∆(δθ
ε ) = δθ

ε ⊗ 1 + 1 ⊗ δθ
ε . (3.10)
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The transformations properties of matter fields under θ′-star gauge transformations in the

(anti)fundamental and adjoint representations introduced above can be written in terms of the

action of the operator Xθ
f as

δθ′

ε Φ = iXθ
εaT a !θ+θ′ Φ fundamental,

δθ′

ε Φ = −iΦ "θ+θ′ Xθ
εaT a antifundamental, (3.8)

δθ′

ε Φ = iAdj(Xθ
εaT a) !θ+θ′ Φ adjoint

Once the action of the transformations are defined on fields we need to extend it to their

θ-star products. To this end, let us consider two fields Φ1, Φ2 transforming in some of the

above representation under θ-star gauge transformations (θ′µν = θµν), but such that their θ-

star product itself transform also in one of these representations under the same transformation.

This is the case of the product of two fields in the adjoint representation, an antifundamental

with a fundamental, an adjoint field with a fundamental field or an antifundamental field with

a field in the adjoint representation. We are going to focus on these cases since they are the

building blocks in terms of which the action is constructed.

For concreteness we consider the product of two adjoint fields, although all other cases can

be treated in a similar way with the same result. For star-gauge transformations, θ′µν = θµν ,

we have that

δθ
ε(Φ1 $θ Φ2) = i[εaT a, Φ1]θ $θ Φ2 + iΦ1 $θ [εaT a, Φ2]θ

= i
[

εaT a, Φ1 $θ Φ2

]

θ
, (3.9)

so the product of two adjoint fields transforms is an adjoint field itself with the standard

coproduct

δθ
ε(Φ1 $θ Φ2) = µ

[

F−1
θ ∆(δθ

ε)Φ1 ⊗ Φ2

]

, ∆(δθ
ε ) = δθ

ε ⊗ 1 + 1 ⊗ δθ
ε . (3.10)
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Then, if                  (*-gauge transformations) θ
µν

= θ
′µν



Taking                (*-twisted gauge tranformations)θ
µν != θ

′µν

Equation (3.9) ceases to be valid if the gauge transformations act with a noncommutativity

parameter different from the one used to multiply fields, i.e. θ′µν != θµν . In order to keep the

covariance of the product of the two fields we require the transformation

δθ′

ε (Φ1 #θ Φ2) = iAdj(Xθ
εaT a) !θ+θ′ (Φ1 #θ Φ2)

= i
[

εaT a, Φ1 #θ Φ2

]

θ′
. (3.11)

Notice that now we cannot apply the same manipulations used in Eq. (3.9) since in this case

we have two different star products. To simplify the expression we use Eq. (2.13) to rewrite it

in terms of θ′-star products alone.

δθ′

ε (Φ1 #θ Φ2) (3.12)

=
∞

∑

n=0

(−i/2)n

n!
(θ′µ1ν1 − θµ1ν1) . . . (θ′µnνn − θµnνn) [iεaT a, (∂µ1

. . . ∂µnΦ1) #θ′ (∂ν1
. . . ∂νnΦ2)]θ′ .

In this way we have that all products on the right-hand side of the previous equation are

identical and we can use the standard identities for commutators. Applying Eq. (2.11) and

once again the relation (2.13) we find that the transformation of the product of the two fields

given in Eq. (3.11) can be expressed after some manipulations as

δθ′

ε (Φ1 #θ Φ2) =
∞

∑

n=0

(−i/2)n

n!
(θµ1ν1 − θ′µ1ν1)(θµ2ν2 − θ′µ2ν2) . . . (θµnνn − θ′µnνn)

× µ
{

F−1
θ

[

[∂µ1
, [∂µ2

, . . . [∂µn , iAdj(Xθ′

εaT a)] . . .]] ⊗ ∂ν1
. . . ∂νn (3.13)

+ ∂µ1
. . . ∂µn ⊗ [∂ν1

, [∂ν2
, . . . [∂νn, iAdj(Xθ′

εaT a)] . . .]]
]

!θ+θ′ (Φ1 ⊗ Φ2)
}

.

Interestingly, this expression can be written in a more compact form

δθ′

ε (Φ1 #θ Φ2) = µ
[

F−1
θ ∆(δθ′

ε )θ−θ′(Φ1 ⊗ Φ2)
]

, (3.14)

where the twisted coproduct ∆(δθ′

ε )θ−θ′ is given by

∆(δθ′

ε )θ−θ′ = Fθ−θ′

(

δθ′

ε ⊗ 1 + 1 ⊗ δθ′

ε

)

F−1
θ−θ′. (3.15)

For θ′µν = 0 we recover the standard twisted coproduct of Ref. [11, 12], whereas for θ′µν = θµν

the twist vanishes and we find the standard coproduct associated with the ordinary Leibniz

rule.

The same analysis presented here can be repeated for the θ-star products of fields in the

representations mentioned above. In all cases the requirement that the product transforms

covariantly under θ′-star gauge transformations lead to the same twisted coproduct (3.15).
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rule.

The same analysis presented here can be repeated for the θ-star products of fields in the
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This continuously interpolates between:

                 (*-gauge transformations)

              (twisted-gauge transformations)

θ
µν

= θ
′µν

θ
′µν

= 0



We have shown that the NCYM action admits 
a continuous family of twisted invariances 
interpolating between *-gauge symmetry 
and twisted gauge symmetry

Concluding remarks

θ
′µν

= λθ
µν 0 ≤ λ ≤ 1

for example:



An interesting case arises when 

θ
µν

= 0 θ
′µν != 0but

We find that ordinary (commutative) Yang-
Mills theories admit a continous family of 
twisted invariances

Do these invariances play any dynamical role?



In all cases the twist can be interpreted as a 
transformation of the *-product                                   

δ
θ
′

ε (Φ1 "θ Φ2) = (δθ
′

ε Φ1) "θ Φ2 + Φ1 "θ (δθ
′

ε Φ2) + Φ1(δ
θ
′

ε "θ)Φ2

where

Φ1(δ
θ
′

ε "θ)Φ2 =

+∂α1
. . . ∂αn

Φ1 "θ [∂α1
, [. . . [∂αn

, δθ
′

ε ] . . .]]Φ2

}

∞
∑

n=1

(−i/2)n

n!
(θα1β1

−θ′α1β1) . . . (θαnβn
−θ′αnβn)

{

[∂α1
, [. . . [∂αn

, δθ′

ε ] . . .]]Φ1$θ∂β1
. . . ∂βn

Φ2

*-gauge symmetry might still be playing a 
custodial role



Thanks


