Star-twisted gauge theories

Miguel A. Vázquez-Mozo (U. Salamanca)
Based on: A. Dueñas-Vidal \& M.A.V.-M., arXiv:0802.4201 [hep-th]

2008 Bayrischzell Workshop on Noncommutativity in Physics

Summary

- introduction: twisted vs. *-gauge transformations
- Half-way twisting: start-twisted gauge theories
- Outlook

Twisted vs. *-gauge transformations

(Quantum) Field Theory gets interesting when the space is noncommutative

$$
\left[x^{\mu}, x^{\nu}\right]=i \theta^{\mu \nu}
$$

In particular, noncommutativity deforms the gauge theory action:

$$
S=-\frac{1}{2 g^{2}} \int d^{4} x \operatorname{tr}\left[F_{\mu \nu} \star F^{\mu \nu}\right]
$$

where

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-i\left[A_{\mu}, A_{\nu}\right]_{\star}
$$

Twisted vs. *-gauge transformations

(Quantum) Field Theory gets interesting when the space is noncommutative

$$
\left[x^{\mu}, x^{\nu}\right]=i \theta^{\mu \nu}
$$

In particular, noncommutativity deforms the gauge theory action:

$$
S=-\frac{1}{2 g^{2}} \int d^{4} x \operatorname{tr}\left[F_{\mu \nu} \star F^{\mu \nu}\right]
$$

where

$$
f(x) \star g(x) \equiv f(x) \exp \left[\frac{i}{2} \theta^{\mu \nu} \overleftarrow{\partial}_{\mu} \vec{\partial}_{\nu}\right] g(x)
$$

This also results in a deformation of gauge symmetry (*-star gauge symmetry)

$$
\delta_{\varepsilon} A_{\mu}=\partial_{\mu} \varepsilon+i\left[\varepsilon, A_{\mu}\right]_{\star}
$$

Actually, because of the *-commutator,

$$
\left[\varepsilon, A_{\mu}\right]_{\star}=\left[\varepsilon^{a}, A_{\nu}^{b}\right]_{\star}\left\{T^{a}, T^{b}\right\}+\left\{\varepsilon^{a}, A_{\nu}^{b}\right\} \star\left[T^{a}, T^{b}\right]
$$

there are restrictions on the possible gauge groupsThe gauge group is $U(N)$$A_{\mu}$ takes values in the universal enveloping algebra of a group G In addition, the NCYM action is also invariant under twisted gauge transformations
(Vassílevich '06; Aschieri, Dímitríjevic, Meyer, Schraml \& Wess '06)

$$
\delta_{\varepsilon} A_{\mu}=\partial_{\mu} \varepsilon+i\left[\varepsilon, A_{\mu}\right]
$$

while the action on products uses a deformed Leibniz rule

$$
\begin{aligned}
& \delta_{\varepsilon}\left(\Phi_{1} \star \Phi_{2}\right)=\left(\delta_{\varepsilon} \Phi_{1}\right) \star \Phi_{2}+\Phi_{1} \star\left(\delta_{\varepsilon} \Phi_{2}\right) \\
& +\sum_{n=1}^{\infty} \frac{(-i / 2)^{n}}{n!} \theta^{\alpha_{1} \beta_{1}} \ldots \theta^{\alpha_{n} \beta_{n}}\left\{\left[\partial_{\alpha_{1}},\left[\ldots\left[\partial_{\alpha_{n}}, \delta_{\varepsilon}\right] \ldots\right]\right] \Phi_{1} \star \partial_{\beta_{1}} \ldots \partial_{\beta_{n}} \Phi_{2}\right. \\
& \left.\quad+\partial_{\alpha_{1}} \ldots \partial_{\alpha_{n}} \Phi_{1} \star\left[\partial_{\beta_{1}},\left[\ldots\left[\partial_{\beta_{n}}, \delta_{\varepsilon}\right] \ldots\right]\right] \Phi_{2}\right\}
\end{aligned}
$$

In more precise terms, introducing the twist operator

$$
\mathcal{F}=e^{-\frac{i}{2} \theta^{\mu \nu} \partial_{\mu} \otimes \partial_{\nu}} \quad \longrightarrow \quad f \star g=\mu\left[\mathcal{F}^{-1} f \otimes g\right]
$$

the deformed Leibniz rule corresponds to a twist of the coproduct

$$
\Delta\left(\delta_{\varepsilon}\right)=\delta_{\varepsilon} \otimes \mathbf{1}+\mathbf{1} \otimes \delta_{\varepsilon} \quad \longrightarrow \quad \Delta\left(\delta_{\varepsilon}\right)_{\mathcal{F}}=\mathcal{F}\left(\delta_{\varepsilon} \otimes \mathbf{1}+\mathbf{1} \otimes \delta_{\varepsilon}\right) \mathcal{F}^{-1}
$$

For field theory purposes, this can be seen as a gauge transformation of the *-product

$$
\delta_{\varepsilon}\left(\Phi_{1} \star \Phi_{2}\right)=\left(\delta_{\varepsilon} \Phi_{1}\right) \star \Phi_{2}+\Phi_{1} \star\left(\delta_{\varepsilon} \Phi_{2}\right)+\Phi_{1}\left(\delta_{\varepsilon} \star\right) \Phi_{2}
$$

Now, the equations of motion constraint the possible gauge groups

$$
\partial_{\mu} F^{\mu \nu}-i\left[A_{\mu}, F^{\mu \nu}\right]_{\star}=0 \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-i\left[A_{\mu}, A_{\nu}\right]_{\star}
$$

The gauge group is $U(N)$

- A_{μ} takes values in the universal enveloping algebra of a gauge group G
*-gauge symmetry has been argued to play a custodial role with respect to twisted-gange symmetry

Summarizing (with a change of notation)

$$
S=-\frac{1}{2 g^{2}} \int d^{4} x \operatorname{tr}\left[F_{\mu \nu} \star_{\theta} F^{\mu \nu}\right] \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-i\left[A_{\mu}, A_{\nu}\right]_{\theta}
$$

- *-gauge transformations:

$$
\begin{aligned}
\delta_{\varepsilon}^{\theta} A_{\mu} & =\partial_{\mu} \varepsilon+i\left[\varepsilon, A_{\mu}\right]_{\theta} \\
\Delta\left(\delta_{\varepsilon}\right)_{0} & =\delta_{\varepsilon}^{\theta} \otimes \mathbf{1}+\mathbf{1} \otimes \delta_{\varepsilon}^{\theta}
\end{aligned}
$$

D Twisted-gauge transformations:

$$
\begin{gathered}
\delta_{\varepsilon}^{0} A_{\mu}=\partial_{\mu} \varepsilon+i\left[\varepsilon, A_{\mu}\right]_{0} \\
\Delta\left(\delta_{\varepsilon}\right)_{\theta}=\mathcal{F}_{\theta}\left(\delta_{\varepsilon}^{0} \otimes \mathbf{1}+\mathbf{1} \otimes \delta_{\varepsilon}^{0}\right) \mathcal{F}_{\theta}^{-1}
\end{gathered}
$$

Let us look at an "intermediate" case:

$$
S=-\frac{1}{2 g^{2}} \int d^{4} x \operatorname{tr}\left[F_{\mu \nu} \star_{\theta} F^{\mu \nu}\right] \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-i\left[A_{\mu}, A_{\nu}\right]_{\theta}
$$

[*-twisted gauge transformations:

$$
\delta_{\varepsilon}^{\theta^{\prime}} A_{\mu}=\partial_{\mu} \varepsilon+i\left[\varepsilon, A_{\mu}\right]_{\theta^{\prime}}
$$

Is there any way to implement these transformations as an invariance of the action?

Let us look at an "intermediate" case:

$$
S=-\frac{1}{2 g^{2}} \int d^{4} x \operatorname{tr}\left[F_{\mu \nu} \star_{\theta} F^{\mu \nu}\right] \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-i\left[A_{\mu}, A_{\nu}\right]_{\theta} \uparrow
$$

- *-twisted gauge transformations:

$$
\delta_{\varepsilon}^{\theta^{\prime}} A_{\mu}=\partial_{\mu} \varepsilon+i\left[\varepsilon, A_{\mu}\right]_{\theta^{\prime}}
$$

Is there any way to implement these transformations as an invariance of the action?

We look now for a deformation of the Leibniz rule, such that $F_{\mu \nu}$ transforms covariantly with respect to θ^{\prime}-*-gauge transformations

$$
\left.\delta_{\varepsilon}^{\theta^{\prime}} F_{\mu \nu}=\left[i \varepsilon, \partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right]_{\theta^{\prime}}+i\left[\partial_{\mu} \varepsilon, A_{\nu}\right]_{\theta^{\prime}}-i\left[\partial_{\nu} \varepsilon, A_{\mu}\right]\right]^{\prime}-i \delta_{\varepsilon}^{\theta^{\prime}}\left[A_{\mu}, A_{\nu}\right]_{\theta}
$$

imposing now that $\delta_{\varepsilon}^{\theta^{\prime}} F_{\mu \nu}=\left[\varepsilon \varepsilon, F_{\mu \nu}\right]_{\theta^{\prime}}$ and using

$$
f \star_{\theta} g=\sum_{n=0}^{\infty} \frac{(-i / 2)^{n}}{n!}\left(\theta^{\prime \mu_{1} \nu_{1}}-\theta^{\mu_{1} \nu_{1}}\right) \ldots\left(\theta^{\prime \mu_{n} \nu_{n}}-\theta^{\mu_{n} \nu_{n}}\right)\left(\partial_{\mu_{1}} \ldots \partial_{\mu_{n}} f\right)_{\star_{\theta}(}\left(\partial_{\nu_{1}} \ldots \partial_{\nu_{n}} g\right)
$$

we find

$$
\begin{aligned}
& \left.\delta_{\varepsilon}^{\theta^{\prime}}\left(A_{\mu} * \theta_{\theta} A_{\nu}\right)=\sum_{n=0}^{\infty} \frac{(-i / 2)^{n}}{n!}{ }^{\theta^{\alpha_{1} \beta_{1}}}-\theta^{\alpha_{1} \beta_{1} \beta_{1}}\right)\left(\theta^{\alpha_{2} \beta_{2}}-\theta^{\alpha_{2} \beta_{2}}\right) \ldots\left(\theta^{\alpha_{n} \beta_{n}}-\theta^{\alpha_{n} \beta_{n}}\right) \\
& \times\left\{\left(\left[\partial_{\alpha_{1}},\left[\partial_{\alpha_{2}}, \ldots\left[\partial_{\alpha_{n}}, \partial_{\varepsilon}^{\delta_{\varepsilon}^{\prime}}\right] \ldots\right] A_{\mu}\right) \star_{\theta}\left(\partial_{\beta_{1}} \partial_{\beta_{2}} \ldots \partial_{\beta_{n}} A_{\nu}\right)\right.\right. \\
& +\left(\partial_{\alpha_{1}} \partial_{\alpha_{2}} \ldots \partial_{\alpha_{n}} A_{\mu}\right) \star_{\theta}\left(\left[\partial_{\beta_{1},},\left[\partial_{\beta_{2}}, \ldots\left[\partial_{\beta_{n}}, \delta_{\xi}^{\theta^{\prime}}\right] \ldots\right] A_{\nu}\right)\right\}
\end{aligned}
$$

using now the same Leibniz rule for the product of two field strength tensors

$$
\begin{aligned}
& \times\left\{\left(\left[\partial_{\alpha_{1},},\left[\partial_{\alpha_{2}}, \ldots\left[\partial_{\alpha_{n}}, \delta_{\varepsilon}^{\theta^{\theta}}\right] \ldots\right] \mid F_{\mu_{\mu \nu}}\right) *_{\theta}\left(\partial_{\left.\beta_{1}, \partial_{\beta_{2}} \ldots \partial_{\beta_{n}} F^{\mu \omega}\right)}\right)\right.\right. \\
& +\left(\partial_{\alpha_{1}} \partial_{\alpha_{2}} \ldots \partial_{\alpha_{n}} F_{\mu \nu}\right) \star_{\theta}\left(\left[\partial_{\beta_{1}},\left[\partial_{\beta_{2}}, \ldots\left[\partial_{\beta_{n}}, \partial_{\varepsilon}^{\theta^{\prime}}\right] \ldots\right] F^{\mu \nu}\right)\right\}
\end{aligned}
$$

We find that

$$
\delta_{\varepsilon}^{\theta^{\prime}}\left(F_{\mu \nu} \star_{\theta} F^{\mu \nu}\right)=\left[i \varepsilon, F_{\mu \nu} \star_{\theta} F^{\mu \nu}\right]_{\theta^{\prime}}
$$

This guarantees the invariance of the pure Yang-Mills action under *-twisted gauge transformations:

$$
\delta_{\varepsilon}^{\theta^{\prime}}\left[-\frac{1}{2 g^{2}} \int d^{4} x \operatorname{tr}\left(F_{\mu \nu} *_{\theta} F^{\mu \nu}\right)\right]=0
$$

We consider matter transforming under *-twisted gauge transformations as

$$
\begin{array}{rlr}
\delta_{\varepsilon}^{\theta^{\prime}} \psi=i \varepsilon \star_{\theta^{\prime}} \psi & & \text { fundamental } \\
\delta_{\varepsilon}^{\theta^{\prime}} \psi & =-i \psi \star_{\theta^{\prime}} \varepsilon & \\
\text { antifundamental, } \\
\delta_{\varepsilon}^{\theta^{\prime}} \psi & =[i \varepsilon, \psi]_{\theta^{\prime}} & \\
\text { adjoint. }
\end{array}
$$

One can defined the corresponding covariant derivatives

$$
\begin{aligned}
\nabla_{\mu} \psi & =\partial_{\mu} \psi-i A_{\mu} \star_{\theta} \psi & & \text { fundamental } \\
\nabla_{\mu} \psi & =\partial_{\mu} \psi+i \psi \star_{\theta} A_{\mu} & & \text { antifundamental, } \\
\nabla_{\mu} \psi & =\partial_{\mu} \psi-i\left[A_{\mu}, \psi\right]_{\theta} & & \text { adjoint. }
\end{aligned}
$$ using now again the Leibniz rule

$$
\begin{aligned}
\delta_{\varepsilon}^{\theta^{\prime}}\left(\Phi_{1} \star_{\theta} \Phi_{2}\right)= & \sum_{n=0}^{\infty} \frac{(-i / 2)^{n}}{n!}\left(\theta^{\alpha_{1} \beta_{1}}-\theta^{\prime \alpha_{1} \beta_{1}}\right)\left(\theta^{\alpha_{2} \beta_{2}}-\theta^{\prime \alpha_{2} \beta_{2}}\right) \ldots\left(\theta^{\alpha_{n} \beta_{n}}-\theta^{\prime \alpha_{n} \beta_{n}}\right) \\
& \times\left\{\left(\left[\partial_{\alpha_{1}},\left[\partial_{\alpha_{2}}, \ldots\left[\partial_{\alpha_{n}}, \delta_{\varepsilon}^{\theta^{\prime}}\right] \ldots\right]\right] \Phi_{1} \star_{\theta}\left(\partial_{\beta_{1}} \partial_{\beta_{2}} \ldots \partial_{\beta_{n}} \Phi_{2}\right)\right.\right. \\
& \left.+\left(\partial_{\alpha_{1}} \partial_{\alpha_{2}} \ldots \partial_{\alpha_{n}} \Phi_{1}\right) \star_{\theta}\left(\left[\partial_{\beta_{1}},\left[\partial_{\beta_{2}}, \ldots\left[\partial_{\beta_{n}}, \delta_{\varepsilon}^{\theta^{\prime}}\right] \ldots\right]\right] \Phi_{2}\right)\right\}
\end{aligned}
$$

it can be proved that the derivatives are indeed covariant

$$
\begin{aligned}
\delta_{\varepsilon}^{\theta^{\prime}}\left(\nabla_{\mu} \psi\right) & =i \varepsilon \star_{\theta^{\prime}} \nabla_{\mu} \psi \\
\delta_{\varepsilon}^{\theta^{\prime}}\left(\nabla_{\mu} \psi\right) & =-i\left(\nabla_{\mu} \psi\right) \star_{\theta^{\prime}} \varepsilon
\end{aligned}
$$

$$
\delta_{\varepsilon}^{\theta^{\prime}}\left(\nabla_{\mu} \psi\right)=\left[i \varepsilon, \nabla_{\mu} \psi\right]_{\theta^{\prime}} \quad \text { adjoint }
$$

With this we can construct invariant actions

We can make a bit more mathematical construction by defining the differential operator

$$
X_{f}^{\theta} \equiv \sum_{n=0}^{\infty} \frac{(-i / 2)^{n}}{n!} \theta^{\mu_{1} \nu_{1}} \ldots \theta^{\mu_{n} \nu_{n} \partial_{\mu_{1}} \ldots \partial_{\mu_{2}} f \partial_{\nu_{1}} \ldots \partial_{\nu_{n}}}
$$

with a left θ^{\prime}-action given by

$$
X_{f}^{\theta} \triangleright_{\theta^{\prime}} g \equiv \sum_{n=0}^{\infty} \frac{(-i / 2)^{n}}{n!} \theta^{\mu_{1} \nu_{1}} \ldots \theta^{\mu_{n} \nu_{n}}\left(\partial_{\mu_{1}} \ldots \partial_{\mu_{n}} f\right) \star_{\theta^{\prime}}\left(\partial_{\nu_{1}} \ldots \partial_{\nu_{n}} g\right)=f \star_{\theta^{\prime}-\theta} g
$$

Analogously, we can define

$$
g \triangleleft_{\theta_{\theta}} X_{f}^{\theta}=\sum_{n=0}^{\infty} \frac{(-i / 2)^{n}}{n!} \theta^{\theta^{\mu} \nu_{1}} \ldots \theta^{\mu_{n} \nu_{n}}\left(\partial_{\mu_{1}} \ldots \partial_{\mu_{n}} g\right) \star_{\theta^{\prime}}\left(\partial_{\nu_{1}} \ldots \partial_{\mu_{n} f}\right)=g \star_{\theta^{\prime}-\theta} f
$$

and

$$
\operatorname{Adj}\left(X_{f}^{\theta}\right) \triangleright_{\theta^{\prime}} g=\sum_{n=0}^{\infty} \frac{(-i / 2)^{n}}{n!} \theta^{\mu_{1} \nu_{1}} \ldots \theta^{\mu_{n} \nu_{n}}\left[\partial_{\mu_{1}} \ldots \partial_{\mu_{n}} f, \partial_{\nu_{1}} \ldots \partial_{\nu_{n}} g\right]_{\theta^{\prime}}=[f, g]_{\theta^{\prime}-\theta}
$$

The transformation field in different representations can be written then as

$$
\begin{aligned}
\delta_{\varepsilon}^{\theta^{\prime}} \Phi & =i X_{\varepsilon^{a} T^{a}}^{\theta} \triangleright_{\theta+\theta^{\prime}} \Phi & & \text { fundamental }, \\
\delta_{\varepsilon}^{\theta^{\prime}} \Phi & =-i \Phi \triangleleft_{\theta+\theta^{\prime}} X_{\varepsilon^{a} T^{a}}^{\theta} & & \text { antifundamental, } \\
\delta_{\varepsilon}^{\theta^{\prime}} \Phi & =i \operatorname{Adj}\left(X_{\varepsilon^{a} T^{a}}^{\theta}\right) \triangleright_{\theta+\theta^{\prime}} \Phi & & \text { adjoint }
\end{aligned}
$$

Let's take Φ_{1} and Φ_{2} such that $\Phi_{1} \star_{\theta} \Phi_{2}$ also transforms in one of these representations

Then, if $\theta^{\mu \nu}=\theta^{\prime \mu \nu} \quad$ (*-gauge transformations)

$$
\delta_{\varepsilon}^{\theta}\left(\Phi_{1} \star_{\theta} \Phi_{2}\right)=\mu\left[\mathcal{F}_{\theta}^{-1} \Delta\left(\delta_{\varepsilon}^{\theta}\right) \Phi_{1} \otimes \Phi_{2}\right], \quad \Delta\left(\delta_{\varepsilon}^{\theta}\right)=\delta_{\varepsilon}^{\theta} \otimes \mathbf{1}+\mathbf{1} \otimes \delta_{\varepsilon}^{\theta}
$$

Taking $\theta^{\mu \nu} \neq \theta^{\prime \mu \nu}$ (*-twisted gauge tranformations)

$$
\delta_{\varepsilon}^{\theta^{\prime}}\left(\Phi_{1} \star_{\theta} \Phi_{2}\right)=\mu\left[\mathcal{F}_{\theta}^{-1} \Delta\left(\delta_{\varepsilon}^{\theta^{\prime}}\right)_{\theta-\theta^{\prime}}\left(\Phi_{1} \otimes \Phi_{2}\right)\right]
$$

where

$$
\Delta\left(\delta_{\varepsilon}^{\theta^{\prime}}\right)_{\theta-\theta^{\prime}}=\mathcal{F}_{\theta-\theta^{\prime}}\left(\delta_{\varepsilon}^{\theta^{\theta^{\prime}}} \otimes \mathbf{1}+\mathbf{1} \otimes \delta_{\varepsilon}^{\theta^{\prime}}\right) \mathcal{F}_{\theta-\theta^{\prime}}^{-1}
$$

This continuously interpolates between:

- $\theta^{\mu \nu}=\theta^{\prime \mu \nu}$ (*-gauge transformations)
- $\theta^{\prime \mu \nu}=0$ (twisted-gange transformations)

concluding remarks

- We have shown that the NCYM action admits a continuous family of twisted invariances interpolating between *-gange symmetry and twisted gauge symmetry
for example:

$$
\theta^{\prime \mu \nu}=\lambda \theta^{\mu \nu} \quad 0 \leq \lambda \leq 1
$$

- An interesting case arises when

$$
\theta^{\mu \nu}=0 \quad \text { but } \quad \theta^{\prime \mu \nu} \neq 0
$$

We find that ordinary (commutative) YangMills theories admit a continous family of twisted invariances

Do these invariances play any dynamical role?In all cases the twist can be interpreted as a transformation of the ${ }^{*}$-product

$$
\delta_{\varepsilon}^{\theta^{\prime}}\left(\Phi_{1} \star_{\theta} \Phi_{2}\right)=\left(\delta_{\varepsilon}^{\theta^{\prime}} \Phi_{1}\right) \star_{\theta} \Phi_{2}+\Phi_{1} \star_{\theta}\left(\delta_{\varepsilon}^{\theta^{\prime}} \Phi_{2}\right)+\Phi_{1}\left(\delta_{\varepsilon}^{\theta^{\prime}} \star_{\theta}\right) \Phi_{2}
$$

where

$$
\begin{aligned}
& \Phi_{1}\left(\delta_{\varepsilon}^{\theta^{\prime}} \star_{\theta}\right) \Phi_{2}= \\
& \quad \sum_{n=1}^{\infty} \frac{(-i / 2)^{n}}{n!}\left(\theta^{\alpha_{1} \beta_{1}}-\theta^{\prime \alpha_{1} \beta_{1}}\right) \ldots\left(\theta^{\alpha_{n} \beta_{n}}-\theta^{\prime \alpha_{n} \beta_{n}}\right)\left\{\left[\partial_{\alpha_{1}},\left[\ldots\left[\partial_{\alpha_{n}}, \delta_{\varepsilon}^{\theta^{\prime}}\right] \ldots\right]\right] \Phi_{1} \star_{\theta} \partial_{\beta_{1}} \ldots \partial_{\beta_{n}} \Phi_{2}\right. \\
& \left.\quad+\partial_{\alpha_{1}} \ldots \partial_{\alpha_{n}} \Phi_{1} \star_{\theta}\left[\partial_{\alpha_{1}},\left[\ldots\left[\partial_{\alpha_{n}}, \delta_{\varepsilon}^{\theta^{\prime}}\right] \ldots\right]\right] \Phi_{2}\right\}
\end{aligned}
$$

*-gauge symmetry might still be playing a custodial role

