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General motivation

Approaches to NC gravity are different and depend much on the
primary aspect, or the starting point which one takes, like e.g.

I field theory

I symmetries

I geometry

Many issues, from motivational to technical, are shared or present
at various levels in different approaches.
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General motivation

Originally the reason to introduce noncommutativity was to deal
with divergences. In various aspects, e.g.

I NC gravity regularizes singularities in classical solutions

I NC field theory regularizes divergences in QFT

I gravity regularizes divergences of QFT

Personal view: the fact that finite-dimensional representations i.e.
matrices have interpretation as geometry (fuzy sphere, matrix
models) is a nontrivial new possibility to approach renormalization.

Completely opposite views, e.g. Caroll’s: interpretational
consistency of cosmology with quantum mechanics needs
infinite-dimensional space of states.
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General motivation

One of the common goals is to find NC versions of spaces like
Schwarzschild, de Sitter or FRW. That is, to relate metric and
curvature of the space to its noncommutativity in a unique and
consistent way.

In the intersection of all approaches is the flat noncommutative
Minkowski space, characterized by constant noncommutativity of
coordinates and infinite-dimensionality of the Hilbert space of
states.
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Real motivation

Our real motivation is understand the properties of the
Grosse-Wulkenhaar model, in particular its renormalizability

S =

∫
1

2
∂µ ϕ∂

µϕ+
µ2

2
ϕ2 +

Ω2

2
x̃µϕ x̃µϕ+

λ

4!
ϕ4

The model is defined on the flat noncommutative space. Fields on
this space can be represented either as ordinary functions with the
Moyal- Weyl multiplication or as infinite-dimensional matrices.

Translational symmetry broken, LS duality
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Real motivation

In one of the first renormalizability proofs the estimates were done
by truncation of infinite-dimensional to n × n matrices and taking
the limit n→∞. The geometry of these matrix spaces is certainly
different from the flat geometry of the Moyal-Weyl space.

Is it possible, if one defines GW model as a limit of finite-matrix
approximations, to interpret the oscillator term geometrically?

This would also be one of the realizations of the idea that gravity
(curvature) can regularize quantum field theory.
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Relations

NC gravity in the noncommutative frame formalism is defined
through a generalization of geometry i.e. differential geometry.

There are two ingredients, in general, which define a NC space:
the commutation relations of coordinates (algebra)

[xµ, xν ] = i k̄Jµν ,

and the commutation relations of coordinates and differentials
(geometry)

[xµ, dxν ] = i k̄χµν .
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Compatibility

If we assume that the Leibniz rule holds, there is a simple
consistency relation between the geometry and the algebra

[dxµ, xν ] + [xµ, dxν ] = i k̄dJµν .

For example, the NC Minkowski space is flat,

[xµ, xν ] = const

if differential is defined such that

[xµ, dxν ] = 0

which is consistent with the commutation relation of coordinates.
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Differential geometry

Differentials dxµ are 1-forms. One can generalize the main
(practically, all) notions of differential geometry, e.g. metric,
connection, curvature and torsion to a noncommutative setting.
For example, the inverse metric g is a function

g(dxµ ⊗ dxν) = gµν(x),

the connection ω is a 1-form while the torsion Θ and the curvature
Ω are 2-forms. Usually the linearity of these mappings is assumed.
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Definition

In general, the nontrivial input is the definition of the differential,
as it is not unique. Here it is given in terms of the
noncommutative moving frame θα as

df = (eαf ) θα.

eα are the derivations dual to the 1-forms θα: θα(eβ) = δαβ
In addition, the frame forms satisfy

[xµ, θα] = 0.

It means means that we can consistently require

g(θα ⊗ θβ) = gαβ = const.
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Properties

As in general relativity, the physical input is the frame.

By the choice of the frame we define symmetries of the
noncommutative space.

The formalism has general coordinate invariance but the local
gauge invariance is broken.

In contrast to the commutative case, the algebraic structure and
its compatibility with the geometric structure are additional
constraints (Jacobi, Leibniz).

The status of the NC gravity action is unclear (at present).
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Momenta

Noncommutative geometry has important property that certain
spaces can be represented by finite-dimensional matrices.

In the matrix case, the choice of the frame is equivalent to the
choice of the momenta pα, as every every derivation can be
represented as a commutator

eαf = [pα, f ].

However the choice of the momenta is not completely arbitrary.
Imposing the Leibniz rule and d2 = 0 constrains the momenta

[pα, pβ] =
1

i k̄
Kαβ + F γαβpγ − 2i k̄Qγδ

αβpγpδ.

They satisfy a quadratic algebra.
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Connection

It can be shown that the rotation coefficients

dθα = −1

2
Cα

βγθ
βθγ

are linear in the momenta

Cγ
αβ = F γαβ − 4i k̄Qγδ

αβpδ.

In the usual approximation the connection ωαβ = ωαγβθ
γ which is

metric compatible and torsion free is given by

ωαβγ =
1

2
(Cαβγ − Cβγα + Cγαβ).
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Riemann curvature

The curvature is defined by

Ωα
β = dωαβ + ωαγω

γ
β =

1

2
Rα

βρσθ
ρθσ.

Expressing it in terms of the momenta we obtain

Rα
βρσθ

ρθσ = 2
(
Tαγ

σβKργ −
1

4
Fα

δβF δ
ρσ +

1

4
Fα

ργF γ
σβ

+
1

2
i k̄pε(2F ε

ργTαγ
σβ + 2Fα

γβQγε
ρσ − F γ

ρσTαε
γβ + Fα

ργT γε
σβ + F γ

σβTαε
ργ)

+(i k̄)2pεpη(−2Tαγ
σβQεη

ργ + 2Tαε
γβQγη

ρσ + Tαε
ργT γη

σβ)
)
θρθσ

with
Tαβγδ = 2(−Qαβγδ + Qβγδα + Qβδγα)
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Curvature scalar

For the curvature scalar we get

R = 8KαγQ
γβ
β
α +

1

4
FαβγFαβγ

+ i k̄pε
(
8F εαγQ

γβ
β
α − 2FαγβQ

εαγβ
)

+ (i k̄)2pεpη
(
− 16Qγβ

β
αQεηαγ − 16Qγβ

β
εQγα

αη

− 4QεαγβQη
αγβ − 8QεαγβQη

γαβ

)
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Heisenberg algebra

In the Fock basis coordinates x and y are represented as

x =
1
√

2



0 1 0 . . . .

1 0
√

2 . . . .

0
√

2 0 . . . .
. . . . . . .
. . . . 0

√
n − 1 .

. . . .
√

n − 1 0 .
. . . . . . .



y =
i
√

2



0 −1 0 . . . .

1 0 −
√

2 . . . .

0
√

2 0 . . . .
. . . . . . .
. . . . 0 −

√
n − 1 .

. . . .
√

n − 1 0 .
. . . . . . .
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Truncation

Truncation to the first n rows and n columns gives

xn =
1
√

2



0 1 0 . . .

1 0
√

2 . . .

0
√

2 0 . . .
. . . . . .
. . . . 0

√
n − 1

. . . .
√

n − 1 0



yn =
i
√

2



0 −1 0 . . .

1 0 −
√

2 . . .

0
√

2 0 . . .
. . . . . .
. . . . 0 −

√
n − 1

. . . .
√

n − 1 0
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Truncated Heisenberg algebra

This truncation changes the initial algebra

[x , y ] = i

to
[xn, yn] = i(1− nPn)

with

Pn =


0 0 0 . . .
0 0 0 . . .
0 0 0 . . .
. . . . . .
. . . . 0 0
. . . . 0 1


In the following, we simplify notation by omitting n.
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Matrices and relations

The truncated Heisenberg algebra can be considered as a
three-dimensional space generated by hermitian coordinates x , y
and z = nP. In the limit n→∞, that is, P → 0 (or z → 0), it
reduces to a two-dimensional space.

Matrices xn and yn approximate the real axis: their spectrum
consists of zeroes of Hermité polynomials Hn. For growing n, more
and more points are included in the spectrum.

As we deal with finite matrices, we have additional relations

an = 0, Pa = 0, an−1(1− P) = 0,

a is the lowering operator, a = 1√
2

(x + iy).
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Position algebra

The complete set of relations which defines this algebra is

[x , y ] = i(1− z)

[x , z ] = i(yz + zy)

[y , z ] = −i(xz + zx)

We shall find geometry of this space.
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Momentum algebra

To obtain the geometry, we need to identify the momenta which
satisfy a quadratic algebra. The momenta we introduce as

p1 = iy , p2 = −ix , p3 = i(z − 1

2
).

Note that that p1 and p2 coincide with those for the Heisenberg.
The momentum algebra is

[p1, p2] =
1

2i
+ p3

[p2, p3] = p1 − i(p1p3 + p3p1)

[p3, p1] = p2 − i(p2p3 + p3p2)
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Weak limit

The (weak) limit in which the dimension of matrices tends to
infinity can be defined as z → 0 or ip3 → 1

2 . One can easily check
that in this limit the two-dimensional subalgebra consistently
decouples and becomes Heisenberg.

It is however not so with the geometry. Although we have e3 → 0
and dz → 0, dx → θ1, dy → θ2, the space of 1-forms is
3-dimensional and the connection does not vanish

dx = (1− z)θ1 + (yz + zy)θ3

dy = (1− z)θ2 + (xz + zx)θ3

dz = (xz + zx)θ1 + (yz + zy)θ2
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Connection

To calculate the connection we first identify the nonvanishing
structure elements

K12 =
1

2
, F 1

23 = 1,

Q13
23 =

1

2
, Q23

31 =
1

2

(+ the symmetries). We obtain

ω12 = −ω21 = (−1

2
+ 2ip3)θ3

ω13 = −ω31 =
1

2
θ2 + 2ip2θ

3

ω23 = −ω32 = −1

2
θ1 − 2ip1θ

3
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Scalar curvature

We can easily calculate the scalar curvature

R =
11

2
− 4(z − 1

2
)− 8(x2 + y2).

It does not vanish in the limit z → 0 but tends to the value

R =
15

2
− 8(x2 + y2).

Thus we see that, defined as a limit of finite-dimensional matrix
algebras, the Heisenberg algebra is not a flat space: it has residual
non-constant curvature.
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Conclusion

Now we can show that the GW action

S =

∫
1

2
(1− Ω2

2
)∂µϕ∂

µϕ+
µ2

2
ϕ2+

Ω2

2
x̃µx̃µϕϕ+

λ

4!
ϕ4

and the action for the scalar field nonminimally coupled to the
curvature

S ′ =

∫ √
g

(
1

2
∂µϕ∂

µϕ+
m2

2
ϕ2−ξ

2
Rϕ2 +

Λ

4!
ϕ4

)
are the same in two (and more) dimensions, if S ′ is defined on a
space which is a limit of finite-dimensional matrix spaces.
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Conclusion

For z → 0 the two-dimensional subspace is flat,
√

g = 1, and
eα = δµα ∂µ for µ = 1, 2 while e3 = 0.

Therefore the two actions are the same up to an overall rescaling

S = κS ′

for

κ = 1− Ω2

2
, µ2 = κm2 − Ω2a

b
, λ = κΛ, ξ =

Ω2

κb
,

and with values a, b given by the curvature, a = 15
2 , b = 8.
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Conclusion

The constant part of the curvature renormalizes the mass of the
scalar field, while the space dependent part gives the harmonic
oscillator potential.

The coupling constant ξ is not a priori fixed but can be related to
Ω. If we identify the two actions at the self-duality point, Ω = 1,
we obtain ξ = 1

4 .
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Conclusion

The harmonic oscillator potential in the GW action is in fact the
curvature scalar of an appropriately defined noncommutative space.

Finite-matrix representations, which exist only for noncommutative
spaces, are important as they can give valuable hints about
renormalizability.

Noncommutative geometry i.e. noncommutative gravity has an
important role.
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