Quantum coordinates of an event

Klaus Fredenhagen
II. Institut für Theoretische Physik, Hamburg

(based on joint work with Romeo Brunetti and Marc Hoge)
(1) Introduction
(2) A new interpretation of the Schrödinger equation
(3) Event localization on Minkowski space
(4) Localization in spacetime
(5) Conclusions and Outlook

Introduction

Main conceptual problem for the quantization of gravity:
Spacetime should be observable in the sense of quantum physics, but spacetime in quantum field theory is merely a tool for the parametrization of observables (local fields)
(a priori structure)
Analogous problem in quantum mechanics:
Parameter time versus observable time

A new interpretation of the Schrödinger equation

Schrödinger equation:

$$
i \frac{d}{d t} \psi(t)=H_{0} \psi(t)
$$

H_{0} selfadjoint operator on Hilbert space \mathfrak{H}_{0} with domain $D\left(H_{0}\right)$, ψ differentiable function on \mathbb{R} with values in $D\left(H_{0}\right)$.
Reinterpretation as a constraint

$$
H \psi=0
$$

where $H=-i \frac{d}{d t}+H_{0}$ is a selfadjoint operator on $\mathfrak{H}=L^{2}\left(\mathbb{R}, \mathfrak{H}_{0}\right)$.
Problem: H has continuous spectrum, hence $\psi \notin \mathfrak{H}$.

Traditional description of eigenfunctions associated to points in the continuous spectrum : realization of ψ as a linear functional on a dense subspace $D \subset \mathfrak{H}$.

Buchholz-Porrmann: improper eigenfunctions give rise to weights on a suitable subset of observables (\Longrightarrow new approach to the infrared problem ("charged particles without photon cloud"))
Weights: positive linear functionals on the algebra of observables which are not necessarily normalizable

Classical analogue: unbounded positive measures
Standard example: Trace on an infinite dimensional Hilbert space
Example in physics: scattering cross sections

Construction of a weight $w_{\psi}, \psi: D \rightarrow \mathbb{C}$ linear, D dense in \mathfrak{H} :

$$
\begin{gathered}
R_{D}:=\{A \in \mathcal{B}(\mathfrak{H}) \mid A \mathfrak{H} \subset D\} \\
A \in R_{D} \Longrightarrow A^{*} \psi \in \mathfrak{H} \\
w_{\psi}\left(\sum A_{i} B_{i}^{*}\right)=\sum\left\langle A_{i}^{*} \psi, B_{i}^{*} \psi\right\rangle, A_{i}, B_{i} \in R_{D}
\end{gathered}
$$

Extension to all positive bounded operators C :

$$
w_{\psi}(C)=\sup _{0 \leq B \leq C, B \in R_{D} R_{D}^{*}} w_{\psi}(B)
$$

Define the left ideal

$$
L_{\psi}:=\left\{A \in \mathcal{B}(\mathfrak{H}) \mid w_{\psi}\left(A^{*} A\right)<\infty\right\} .
$$

and extend the weight to $L_{\psi}^{*} L_{\psi}$ by linearity and the polarization equality.
Positive semidefinite scalar product on L_{ψ} :

$$
\langle A, B\rangle:=w_{\psi}\left(A^{*} B\right) .
$$

\Longrightarrow GNS-representation $\left(\mathfrak{H}_{\psi}, \pi_{\psi}\right)$ by left multiplication and dividing out the null space of the scalar product.

Interpretation of the state induced by $A \in L_{\psi}$:

$$
\omega_{A \psi}(B):=\frac{\left\langle A, \pi_{\psi}(B) A\right\rangle}{\langle A, A\rangle}=\frac{w_{\psi}\left(A^{*} B A\right)}{w_{\psi}\left(A^{*} A\right)}
$$

is the expectation value of B under the condition that the event $A^{*} A$ took place. (Note the dependence on the phase of A.)
Application to solutions of the Schrödinger equation

$$
\psi: \mathbb{R} \in \mathfrak{H}_{0}, \psi(t)=e^{-i H_{0} t} \psi(0)
$$

Domain of ψ as a linear functional on $\mathfrak{H}=L^{2}\left(\mathbb{R}, \mathfrak{H}_{0}\right)$:

$$
D=\left\{\varphi: \mathbb{R} \rightarrow \mathfrak{H}_{0} \text { continuous, } \int d t\|\varphi(t)\|<\infty\right\}
$$

Let $C: \mathbb{R} \rightarrow \mathcal{B}\left(\mathfrak{H}_{0}\right)$ be strongly continuous, bounded and positive operator valued. The weight associated to ψ is defined on C by

$$
w_{\psi}(C):=\int d t\langle\psi(t), C(t) \psi(t)\rangle \in \mathbb{R}_{+} \cup\{\infty\}
$$

The left ideal L_{ψ} contains e.g. multiplication operators by test functions $g(t)$. For $A \in \mathcal{B}\left(\mathfrak{H}_{0}\right)$ we find

$$
\omega_{g \psi}(A)=\frac{w_{\psi}\left(g^{*} A g\right)}{w_{\psi}\left(g^{*} g\right)}=\frac{\int d t|g(t)|^{2}\langle\psi(t), A \psi(t)\rangle}{\int d t|g(t)|^{2}\langle\psi(t), \psi(t)\rangle}
$$

If $|g(t)|^{2} \rightarrow \delta_{t_{0}}$, we obtain the state induced by $\psi\left(t_{0}\right)$. Hence standard quantum mechanics on \mathfrak{H}_{0} is covered by the enlarged formalism.

Additional elements of L_{ψ} : Operators $A \in \mathcal{B}\left(\mathfrak{H}_{0}\right)$ with

$$
w_{\psi}\left(A^{*} A\right) \equiv \int d t\left\langle\psi(t), A^{*} A \psi(t)\right\rangle<\infty
$$

exist for suitable ψ iff the spectrum of H_{0} is absolutely continuous. Let $B=\int d t e^{i H_{0} t} A^{*} A e^{-i H_{0} t}$. B can be interpreted as the

dwell time

of the event $A^{*} A$ and is in general unbounded.
Assumption: The kernel of B is trivial (otherwise replace \mathfrak{H}_{0} by the orthogonal complement of the kernel).

Relation between the states $\omega_{A \psi}$ on $\mathcal{B}(\mathfrak{H})$ and $\omega_{\sqrt{B} \psi(0)}$ on $\mathcal{B}\left(\mathfrak{H}_{0}\right)$:

$$
\omega_{A \psi}=\omega_{\sqrt{B} \psi(0)} \circ \Phi_{A}
$$

where Φ_{A} is the completely positive mapping

$$
\Phi_{A}(C)=V_{A}^{*} C V_{A}
$$

and $V_{A}: \mathfrak{H}_{0} \rightarrow \mathfrak{H}=L^{2}\left(\mathbb{R}, \mathfrak{H}_{0}\right)$ is the isometry

$$
\left(V_{A} \psi_{0}\right)(t)=A e^{-i t H_{0}} B^{-\frac{1}{2}} \psi_{0}
$$

The time parameter of the Schrödinger equation is a selfadjoint multiplication operator on $\mathfrak{H}=L^{2}\left(\mathbb{R}, \mathfrak{H}_{0}\right)$. Its spectral projections $E(I)$ can be mapped to positive operators

$$
P_{A}(I)=\Phi_{A}(E(I))
$$

on \mathfrak{H}_{0}.
One obtains the positive operator valued measure

$$
I \rightarrow P_{A}(I)=B^{-\frac{1}{2}} \int_{I} d t e^{i H_{0} t} A^{*} A e^{-i H_{0} t} B^{-\frac{1}{2}}
$$

interpreted as time of occurence of the event $A^{*} A$ in [Brunetti,F 2002]

Example: Particle moving freely in 1 dimension.
Event: Particle stays in a neighbourhood of the origin.
Event represented by the projection

$$
A_{a} \Phi(x) \equiv \chi_{a}(x) \Phi(x)=\left\{\begin{array}{cc}
\Phi(x) & , \quad|x| \leq a / 2 \\
0, & \text { else }
\end{array}\right.
$$

Time, the particle spends inside the interval $[-a / 2, a / 2]$:

$$
B_{a}=\frac{m a}{|p|}\left(1+\frac{\sin p a}{p a} \Pi\right)
$$

with the parity operator Π
(vanishes on the antisymmetric subspace in the limit $a \rightarrow 0$). Isometry V_{A} :

$$
V_{A}=\frac{\chi_{a}(x)}{\sqrt{a}} e^{-i t \frac{p^{2}}{2 m}} \sqrt{\frac{|p|}{m}}\left(1+\frac{\sin p a}{p a} \Pi\right)^{-\frac{1}{2}}
$$

POVM in the limit $a \rightarrow 0:$

$$
P(I)(p, q)=V_{A}^{*} \chi_{I} V_{A}(p, q)=\left\{\begin{array}{cc}
\frac{\sqrt{p q}}{2 \pi m} \int_{I} d t e^{i t \frac{p^{2}-q^{2}}{2 m}} & , \quad p q>0 \\
0, & \text { else }
\end{array}\right.
$$

First moment

$$
T=\int t P(t, d t)
$$

yields Aharanov's time operator

$$
T=-\frac{m}{2}\left(p^{-1} x+x p^{-1}\right)
$$

Warning: T is not selfadjoint, but maximally symmetric with deficiency indices $(2,0)$.
$(P(I))$ । generates Töplitz quantization of $\mathbb{R}(\Longrightarrow$ nontrivial uncertainty relation for time measurements (Brunetti, F 2002))

Event localization on Minkowski space

U_{0} representation of the translation group on \mathfrak{H}_{0}
$\mathfrak{H}:=L^{2}\left(\mathbb{M}, \mathfrak{H}_{0}\right)$

$$
(U(x) \psi)(y):=U_{0}(x) \psi(y-x), \psi \in \mathfrak{H}
$$

Constraint: $U(x) \psi=\psi$
Associated weight w_{ψ}, with left ideal L_{ψ}.
$A \in L_{\psi} \cap \mathcal{B}\left(\mathfrak{H}_{0}\right) \Longleftrightarrow \int d^{4} x\left\langle\psi(0), U_{0}(x) A^{*} A U_{0}(-x) \psi(0)\right\rangle<\infty$
$B:=\int d^{4} x U_{0}(x) A^{*} A U_{0}(-x)$ spacetime volume of the event
Restriction of \mathfrak{H}_{0} to $\operatorname{ker}(B)^{\perp}$

Construction of a positive operator valued measure on Minkowski

 space:$$
P(G)=V_{A}^{*} \chi_{G} V_{A}
$$

with $V_{A}: \mathfrak{H}_{0} \rightarrow L^{2}\left(\mathbb{M}, \mathfrak{H}_{0}\right)$

$$
\left(V_{A} \psi_{0}\right)(x)=A U_{0}(x) B^{-\frac{1}{2}} \psi_{0}
$$

Example: Free scalar field on Fock space with mass m

$$
U_{0}(x) A^{*} A U_{0}(-x)=a^{*}(x)^{2} a(x)^{2}
$$

a, a^{*} annihilation and creation operators
Interpretation: 2 particles collide at the spacetime point \times
Restriction to the 2 particle subspace: $\operatorname{Ker} B^{\perp}$ is the space of s waves
(collisions occur only if the relative angular momentum vanishes)

$$
\mathcal{H}_{0} \simeq L^{2}\left(H_{>2 m}^{+}\right)
$$

(as representations of the translation group)
$H_{>2 m}^{+}=\left\{p \in \mathbb{M}^{*}, p^{2}>4 m^{2}, p_{0}>0\right\} 2$ particle momentum spectrum

$$
\left(V_{A} \Phi\right)(x, k)=(2 \pi)^{-2} g(k) \int d^{4} p e^{-i p x} \Phi(p),\|g\|_{2}^{2}=1, g \geq 0
$$

"Coordinate operators":

$$
\hat{x}^{\mu}:=V_{A}^{*} x^{\mu} V_{A}=\frac{1}{i} \frac{\partial}{\partial p_{\mu}}
$$

(with Dirichlet boundary conditions on the boundary of $\mathrm{H}_{>2 m}^{+}$) ("Töplitz quantization" of Minkowski space)

Localization in spacetime

$\mathcal{M}=\Sigma_{0} \times \mathbb{R}$ globally hyperbolic d-dimensional spacetime. $\chi_{x}: \Sigma_{0} \rightarrow \Sigma_{x}$ Cauchy surface in $\mathcal{M}, x \in \mathcal{U}, 0 \in \mathcal{U} \subset \mathbb{R}^{d}$
Time slice axiom: $\alpha_{\chi_{x}}: \mathfrak{A}\left(\Sigma_{0}\right) \rightarrow \mathfrak{A}(\mathcal{M})$ isomorphism

$$
\mathfrak{B}:=\mathcal{C}_{0}(\mathcal{U}, \mathfrak{A}(\mathcal{M}))
$$

ω_{0} state on $\mathfrak{A}(\mathcal{M}) \Longrightarrow$

$$
w(B)=\int_{\mathcal{U}} d^{d} x \omega_{0}\left(\alpha_{\chi_{x}} \alpha_{\chi_{0}}^{-1}(B(x))\right)
$$

weight on \mathfrak{B}.

$$
\frac{w\left(A^{*} C A\right)}{w\left(A^{*} A\right)}
$$

conditional expectation value of $C \in \mathfrak{B}$.
$p \in \Sigma_{0} \subset \mathcal{M}, \mathcal{O}$ neighbourhood of p in \mathcal{M}.
$A \in \mathfrak{A}(\mathcal{O}) \Longrightarrow$

$$
\alpha_{\chi_{x}} \alpha_{\chi_{0}}^{-1}(A) \in \mathfrak{A}\left(\chi_{x} \circ \chi_{o}^{-1}(\mathcal{O})\right)
$$

$0 \leq A^{*} A \leq 1 \Longrightarrow w\left(A^{*} A\right)$ integral over the (not mutually exclusive) probabilities of the effects $\alpha_{\chi_{x}} \alpha_{\chi_{0}}^{-1}\left(A^{*} A\right)$

$$
\begin{gathered}
B=\int_{\mathcal{U}} d^{d} x \alpha_{\chi \times} \alpha_{\chi_{0}}^{-1}\left(A^{*} A\right) \\
\phi_{A}(C)=B^{-\frac{1}{2}} \int_{\mathcal{U}} d^{d} x \alpha_{\chi x} \alpha_{\chi_{0}}^{-1}\left(A^{*} C(x) A\right) B^{-\frac{1}{2}}
\end{gathered}
$$

completely positive mapping.

Let χ_{G} be the characteristic function of $G \subset \mathcal{U}$:
Interpretation of expectation values of the effect operator $\phi_{A}\left(\chi_{G}\right)$: (generalized Schrödinger picture)

Probability, that that the event $A^{*} A$ took place in \mathcal{O}_{G}, provided it took place within $\mathcal{O}_{\mathcal{U}}$

$$
\left(\mathcal{O}_{G}=\bigcup_{x \in G} \chi_{x} \chi_{0}^{-1}(\mathcal{O})\right)
$$

Conclusions and Outlook

- Observables (in the sense of positive operator valued measures) of time of occurence and of spacetime localization of events can be given.
- They typically yield noncommutative spaces. For instance in the case $\operatorname{sp}(H)=\mathbb{R}_{+}$one obtains the Töplitz quantization of \mathbb{R} as the quantized time axis. This implies new uncertainty relations for time measurements alone,

$$
\Delta T \geq \frac{d}{\langle H\rangle}
$$

with $d=1.376$.

- There exists an interacting model (the Grosse-Lechner-Buchholz-Summers model) which delivers coordinate operators with commutation relations

$$
\left[q^{\mu}, q^{\nu}\right]=\theta^{\mu \nu}
$$

- In analogy to renormalization theory one may interpret parametric spacetime as bare spacetime and the observable spacetime as the physical spacetime.

