Bayrischzell Workshop 2009;
Noncommutativity and physics: Quantum Geometries and Gravity
Bayrischzell, May 15-18, 2009

Monopoles and instantons on quantum projective spaces

Giovanni Landi

Trieste

Part 1:

A spectral triple on the quantum projective space $\mathbb{C} P_{q}^{2}$ holomorphic calculus and spectral geometry
F. D'Andrea, L. Dabrowski, G. L.

The Noncommutative geometry of the quantum projective plane Rev. Math. Phys. 20 (2008) 979-1006

Recently generalized to $\mathbb{C P}{ }_{q}^{N}$
F. D'Andrea, L. Dabrowski

Dirac operators on quantum projective spaces
arXive:0901.4735 [math.QA]

Part 2:

Monopoles connections on $\mathbb{C P}{ }_{q}^{2}$
F. D'Andrea, G. L.

Anti-selfdual Connections on the Quantum Projective Plane:
Monopoles
arXiv:0903.3551v1 [math.QA]
F. D'Andrea, G. L.

Bounded and unbounded Fredholm modules for quantum projective spaces
arXiv:0903.3553v1 [math.QA]

A spectral triple for the quantum projective space $\mathbb{C P}_{q}^{2}$

$$
\mathcal{A}\left(\mathbb{C} P_{q}^{2}\right), \mathcal{H}, D
$$

a q-deformation of the classical principal fibrations:

$$
\mathrm{U}(2) \hookrightarrow \mathrm{SU}(3) \rightarrow \mathbb{C P}^{2} \quad \mathrm{U}(1) \hookrightarrow S^{5} \rightarrow \mathbb{C P}^{2}
$$

and q -deformation of associated bundles

With $0<q<1, \quad$ the function algebra

$$
\mathcal{O}:=\mathcal{A}\left(S U_{q}(3)\right)
$$

has generators u_{j}^{i} and relations

$$
\begin{gathered}
R_{k l}^{i j}(q) u_{m}^{k} u_{n}^{l}=u_{m}^{k} u_{n}^{l} R_{k l}^{i j}(q), \quad \sum_{p \in S_{3}}(-q)^{\|p\|} u_{p(1)}^{1} u_{p(2)}^{2} u_{p(3)}^{3}=1 \\
\left(u_{j}^{i}\right)^{*}=(-q)^{j-i}\left(u_{l_{1}}^{k_{1}} u_{l_{2}}^{k_{2}}-q u_{l_{2}}^{k_{1}} u_{l_{1}}^{k_{2}}\right)
\end{gathered}
$$

$R_{k l}^{i j}(q)$ is the R-matrix of the $S U_{q}(n)$ series

Coproduct, counit and antipode:

$$
\begin{gathered}
\Delta\left(u_{j}^{i}\right)=\sum_{k} u_{k}^{i} \otimes u_{j}^{k}, \\
\epsilon\left(u_{j}^{i}\right)=\delta_{j}^{i},
\end{gathered}
$$

$$
S\left(u_{j}^{i}\right)=\left(u_{i}^{j}\right)^{*}
$$

The symmetry algebra

Symmetries are via the $*$-Hopf algebra $\quad \mathcal{U}:=U_{q}(s u(3))$
generated by $K_{i}, K_{i}^{-1}, E_{i}, F_{i}, i=1,2$ with $K_{i}=K_{i}^{*}, F_{i}=E_{i}^{*}$, and relations ($a_{i j}=$ Cartan matrix)

$$
\begin{aligned}
& {\left[K_{i}, K_{j}\right]=0, \quad K_{i} E_{j} K_{i}^{-1}=q^{a_{i j} / 2} E_{j}, \quad\left[E_{i}, F_{j}\right]=\delta_{i j} \frac{K_{i}^{2}-K_{i}^{-2}}{q-q^{-1}}} \\
& E_{i} E_{j}^{2}-\left(q+q^{-1}\right) E_{i} E_{j} E_{i}+E_{j} E_{i}^{2}=0 \quad \forall i \neq j
\end{aligned}
$$

Coproduct, counit and antipode are given by (with $i=1,2$)

$$
\begin{gathered}
\Delta\left(K_{i}\right)=K_{i} \otimes K_{i}, \quad \Delta\left(E_{i}\right)=E_{i} \otimes K_{i}+K_{i}^{-1} \otimes E_{i} \\
\epsilon\left(K_{i}\right)=1, \quad \epsilon\left(E_{i}\right)=0 \\
S\left(K_{i}\right)=K_{i}^{-1}, \quad S\left(E_{i}\right)=-q E_{i}
\end{gathered}
$$

Via a non-degenerate dual pairing $\langle\rangle:, \mathcal{U} \times \mathcal{O} \rightarrow \mathbb{C}$
define commuting left and right \mathcal{U}-actions on \mathcal{O} :

$$
h \triangleright a=a_{(1)}\left\langle h, a_{(2)}\right\rangle, \quad a \triangleleft h=\left\langle h, a_{(1)}\right\rangle a_{(2)},
$$

forall $h \in U_{q}(s u(3)), a \in \mathcal{A}\left(S U_{q}(3)\right)$
notation

$$
\Delta(a)=a_{(1)} \otimes a_{(2)}
$$

The deformation of the quadratic Casimir of $U(s u(3))$; a central element in \mathcal{U} given by

$$
\begin{aligned}
& \mathcal{C}_{q}:=\left(q-q^{-1}\right)^{-2}\left(\left(H+H^{-1}\right)\left\{\left(q K_{1} K_{2}\right)^{2}+\left(q K_{1} K_{2}\right)^{-2}\right\}+H^{2}+H^{-2}-6\right) \\
&+\left(q H K_{2}^{2}+\right.\left.q^{-1} H^{-1} K_{2}^{-2}\right) F_{1} E_{1}+\left(q H^{-1} K_{1}^{2}+q^{-1} H K_{1}^{-2}\right) F_{2} E_{2} \\
&+q H\left[F_{2}, F_{1}\right]_{q}\left[E_{1}, E_{2}\right]_{q}+q H^{-1}\left[F_{1}, F_{2}\right]_{q}\left[E_{2}, E_{1}\right]_{q}
\end{aligned}
$$

with $H:=\left(K_{1} K_{2}^{-1}\right)^{2 / 3} \quad[a, b]_{q}:=a b-q^{-1} b a$

The restriction of \mathcal{C}_{q} to the irrep $\left(n_{1}, n_{2}\right)$ is
$\left.\mathcal{C}_{q}\right|_{\left(n_{1}, n_{2}\right)}=\left[\frac{1}{3}\left(n_{1}-n_{2}\right)\right]^{2}+\left[\frac{1}{3}\left(2 n_{1}+n_{2}\right)+1\right]^{2}+\left[\frac{1}{3}\left(n_{1}+2 n_{2}\right)+1\right]^{2}$

Some relevant subalgebras:
$U_{q}(s u(2))$
the Hopf $*$-subalgebra of $U_{q}(s u(3))$ generated by $\left\{K_{1}, K_{1}^{-1}, E_{1}, F_{1}\right\}$
$U_{q}(u(2))$
the Hopf $*$-subalgebra generated by $U_{q}(s u(2))$ and $K_{1} K_{2}^{2},\left(K_{1} K_{2}^{2}\right)^{-1}$
$K_{1} K_{2}^{2}$ commutes with all elements of $U_{q}(s u(2))$
a class $\left\{\sigma_{\ell, N}\right\}$ of irreducible representation of $U_{q}(u(2))$ coming from a spin ℓ representation of $U_{q}(s u(2)), \ell \in \frac{1}{2} \mathbb{N}$, and a representation of charge N on $K_{1} K_{2}^{2}$,

$$
\sigma_{\ell, N}\left(K_{1} K_{2}^{2}\right)=q^{N}, \quad N \in \frac{1}{2} \mathbb{Z}
$$

a constraint on the labels: $\quad \ell+N \in \mathbb{Z}$

The quantum complex projective plane $\mathbb{C P}{ }_{q}^{2}$
The $*$-algebra $\mathcal{A}\left(S U_{q}(3)\right)$ is an $U_{q}(s u(3))$-bimodule for the canonical actions \triangleright and \triangleleft

Call $\mathcal{A}:=\mathcal{A}\left(\mathbb{C P}{ }_{q}^{2}\right)$ the fixed point subalgebra for the right action of the $*$-Hopf subalgebra $U_{q}(u(2)) \subset U_{q}(s u(3))$:

$$
\begin{aligned}
\mathcal{A}\left(\mathbb{C P}_{q}^{2}\right) & =\mathcal{A}\left(S U_{q}(3)\right)^{U_{q}(u(2))} \\
& =\left\{a \in \mathcal{A}\left(S U_{q}(3)\right) \mid a \triangleleft h=\epsilon(h) a, \forall h \in U_{q}(u(2))\right\}
\end{aligned}
$$

\mathcal{A} is a left $U_{q}(s u(3))$-module algebra;
\mathcal{A} generated by elements $p_{i j}:=\left(u_{i}^{3}\right)^{*} u_{j}^{3}$, of a projection

$$
p^{2}=p=p^{*}
$$

this projection is a line bundle over $\mathbb{C P}_{q}^{2}$
more later on
there are commutation rules (here $\operatorname{sgn}(0):=0)$

$$
\begin{aligned}
p_{i i} p_{j k} & =q^{\operatorname{sgn}(i-j)+\operatorname{sgn}(k-i)} p_{j k} p_{i i} & & i, j, k \text { distinct }, \\
p_{i i} p_{i j} & =q^{\operatorname{sgn}(j-i)+1} p_{i j} p_{i i}-\left(1-q^{2}\right) \sum_{k<i} q^{6-2 k} p_{k k} p_{i j} & & i \neq j, \\
p_{i j} p_{i k} & =q^{\operatorname{sgn}(k-j)} p_{i k} p_{i j} & & i \notin\{j, k\}, \\
p_{i j} p_{j k} & =q^{\operatorname{sgn}(i-j)+\operatorname{sgn}(k-j)+1} p_{j k} p_{i j}-\left(1-q^{2}\right) \sum_{l<j} p_{i l} p_{l k} & & i, j, k \text { distinct, }, \\
p_{i j} p_{j i} & =\left(1-q^{2}\right)\left(\sum_{l<i} p_{j l} p_{l j}-\sum_{l<j} p_{i l} p_{l i}\right) & & i \neq j,
\end{aligned}
$$

and 'projective plane' conditions

$$
\sum_{k} p_{j k} p_{k l}=p_{j l}, \quad \operatorname{Tr}_{q}(p):=q^{4} p_{11}+q^{2} p_{22}+p_{33}=1
$$

also: \quad *-structure $\left(p_{i j}\right)^{*}=p_{j i}$

There is a quantum sphere S_{q}^{5}

Call $\mathcal{B}:=\mathcal{A}\left(S_{q}^{5}\right)$ the fixed point subalgebra for the right action of the $*$-Hopf subalgebra $U_{q}(s u(2)) \subset U_{q}(s u(3))$:

$$
\begin{aligned}
\mathcal{A}\left(S_{q}^{5}\right) & =\mathcal{A}\left(S U_{q}(3)\right)^{U_{q}(u(2))} \\
& =\left\{a \in \mathcal{A}\left(S U_{q}(3)\right) \mid a \triangleleft h=\epsilon(h) a, \forall h \in U_{q}(s u(2))\right\}
\end{aligned}
$$

\mathcal{B} is a left \mathcal{U}-module algebra, and is generated by $z_{i}:=u_{i}^{3}$

Also:

$$
\mathcal{A}\left(\mathbb{C P}_{q}^{2}\right) \simeq\left\{a \in \mathcal{A}\left(S_{q}^{5}\right) \mid a \triangleleft K_{1} K_{2}^{2}=a\right\}
$$

and its generators are written as $p_{i j}:=z_{i}^{*} z_{j}$

Relations for the sphere generators:

$$
\begin{gathered}
z_{i} z_{j}=q z_{j} z_{i} \quad \forall i<j, \quad z_{i}^{*} z_{j}=q z_{j} z_{i}^{*} \quad \forall i \neq j \\
{\left[z_{1}^{*}, z_{1}\right]=0, \quad\left[z_{2}^{*}, z_{2}\right]=\left(1-q^{2}\right) z_{1} z_{1}^{*}} \\
{\left[z_{3}^{*}, z_{3}\right]=\left(1-q^{2}\right)\left(z_{1} z_{1}^{*}+z_{2} z_{2}^{*}\right)} \\
z_{1} z_{1}^{*}+z_{2} z_{2}^{*}+z_{3} z_{3}^{*}=1
\end{gathered}
$$

The classical spinc ${ }^{c}$-structure
$\mathbb{C} P^{2}$ does not admit a spin structure; only spin ${ }^{c}$ structures
it is a Kähler manifold $\quad \Rightarrow$
the bundle of antiholomorphic forms $\Omega^{0, \bullet}$ with a natural $\mathbb{Z}_{2^{-}}$ grading is a canonical spinctbundle and a spinct-Dirac operator is given by the Dolbeault-Dirac operator

$$
D=\partial+\bar{\partial}
$$

tensoring with line bundles one gets other spin ${ }^{c}$-bundles

Associated bundles: line bundles in particular

$\sigma: U_{q}(u(2)) \rightarrow \operatorname{End}\left(\mathbb{C}^{n}\right)$ an n-dimensional $*$-representation
$\mathcal{A}\left(\mathbb{C P}{ }_{q}^{2}\right)$-bimodule of equivariant elements associated to σ :

$$
\begin{aligned}
\mathfrak{M}(\sigma):=\{v \in \mathcal{A}(& \left.S U_{q}(3)\right)^{n} \mid \\
& \left.\sigma\left(S\left(h_{(1)}\right)\right) \cdot\left(v \triangleleft h_{(2)}\right)=\epsilon(h) v, \forall h \in U_{q}(u(2))\right\}
\end{aligned}
$$

These are finitely generated projective right- $\mathcal{A}\left(\mathbb{C P}{ }_{q}^{2}\right)$ modules
$\sigma=\sigma_{\ell, N}$, with $\ell \in \frac{1}{2} \mathbb{N}, N \in \frac{1}{2} \mathbb{Z}$, and condition $\ell+N \in \mathbb{Z}$
denote $\Sigma_{\ell, N}:=\mathfrak{M}\left(\sigma_{\ell, N}\right) ; \quad$ in particular $\Sigma_{0,0}=\mathcal{A}$

Antiholomorphic forms again

$$
\Omega^{0,0}:=\mathcal{A}=\Sigma_{0,0}, \quad \Omega^{0,1}:=\Sigma_{\frac{1}{2}, \frac{3}{2}}, \quad \Omega^{0,2}:=\Sigma_{0,3}
$$

The full differential calculus $\quad \Omega^{\bullet \bullet}=\oplus \Omega^{i, j}$

$\Omega^{i, j} \simeq \Sigma_{\ell, N}$, with suitable values of (ℓ, N)
The double complex: $\partial: \Omega^{p, q} \rightarrow \Omega^{p+1, q}$ and $\bar{\partial}: \Omega^{p, q} \rightarrow \Omega^{p, q+1}$ denote $\partial_{i, j}:=\left.\partial\right|_{\Omega^{i, j}}$ and $\bar{\partial}_{i, j}:=\left.\bar{\partial}\right|_{\Omega^{i, j}} \quad$ and $\quad \mathcal{R}_{h} a:=a \triangleleft h$

$$
\begin{aligned}
& \partial_{0,0}:=\binom{\mathcal{R}_{E_{2}}}{\mathcal{R}_{Y}}, \\
& \bar{\partial}_{0,0}:=\binom{\mathcal{R}_{X}}{\mathcal{R}_{F_{2}}}, \\
& \partial_{1,0}:=-\left(\begin{array}{ll}
\mathcal{R}_{X^{*}} & \mathcal{R}_{E_{2}}
\end{array}\right), \\
& \bar{\partial}_{0,1}:=\left(\begin{array}{ll}
\mathcal{R}_{F_{2}} & \mathcal{R}_{Y^{*}}
\end{array}\right), \\
& \partial_{0,1}:=-\left(\begin{array}{cc}
-\mathcal{R}_{Y} & \mathcal{R}_{E_{2}} \\
\mathcal{R}_{E_{2}} & 0 \\
\mathcal{R}_{Y} & \mathcal{R}_{E_{2}} \\
0 & \mathcal{R}_{Y}
\end{array}\right), \\
& \bar{\partial}_{1,0}:=\left(\begin{array}{cc}
\mathcal{R}_{F_{2}} & -\mathcal{R}_{X} \\
\mathcal{R}_{X} & 0 \\
\mathcal{R}_{F_{2}} & \mathcal{R}_{X} \\
0 & \mathcal{R}_{F_{2}}
\end{array}\right), \\
& \partial_{1,1}:=\left(\begin{array}{cccc}
-\mathcal{R}_{E_{2}} & \mathcal{R}_{X^{*}} & \mathcal{R}_{E_{2}} & 0 \\
\mathcal{R}_{X^{*}} & 0 & \mathcal{R}_{X^{*}} & \mathcal{R}_{E_{2}}
\end{array}\right), \quad \partial_{0,2}:=\binom{\mathcal{R}_{E_{2}}}{\mathcal{R}_{Y}}, \\
& \bar{\partial}_{1,1}:=\left(\begin{array}{cccc}
\mathcal{R}_{Y^{*}} & \mathcal{R}_{F_{2}} & \mathcal{R}_{Y^{*}} & 0 \\
-\mathcal{R}_{F_{2}} & 0 & \mathcal{R}_{F_{2}} & \mathcal{R}_{Y^{*}}
\end{array}\right), \quad \bar{\partial}_{2,0}:=\binom{\mathcal{R}_{X}}{\mathcal{R}_{F_{2}}}, \\
& \partial_{1,2}:=-\left(\begin{array}{ll}
\mathcal{R}_{X^{*}} & \mathcal{R}_{E_{2}}
\end{array}\right), \\
& \bar{\partial}_{2,1}:=\left(\begin{array}{ll}
\mathcal{R}_{F_{2}} & \mathcal{R}_{Y^{*}}
\end{array}\right)
\end{aligned}
$$

One finds: $\quad \partial^{2}=\bar{\partial}^{2}=\partial \bar{\partial}+\bar{\partial} \partial=0 ; \quad d=\partial+\bar{\partial} ; \quad d^{2}=0$
An inner product on $\Omega^{\bullet \bullet}: \quad\langle\omega, \eta\rangle:=\sum_{p, q} \varphi\left(\omega_{p, q}^{\dagger} \eta_{p, q}\right)$
with φ the Haar functional of $\mathcal{A}\left(S U_{q}(3)\right)$
$\Omega^{2,2}$ is a rank one free module with basis a central element vol
use it to define an integral

$$
f \omega:=\langle\operatorname{vol}, \omega\rangle=\varphi\left(\omega_{2,2}\right), \quad \omega \in \Omega^{\bullet}, \bullet
$$

since ∂ and $\bar{\partial}$ are constructed with the right action of elements in $\operatorname{ker} \epsilon$ and the Haar functional is invariant $(\varphi(a \triangleleft x)=\epsilon(x) \varphi(a))$, the integral is closed

$$
f \bar{\partial} \omega=f \partial \omega=0
$$

A spectral triple over $\mathbb{C P}{ }_{q}^{2}$ from antiholomorphic forms

$$
\Omega^{(0,0)} \xrightarrow{\bar{\partial}} \Omega^{(0,1)} \xrightarrow{\bar{\partial}} \Omega^{(0,2)} \rightarrow 0 .
$$

\mathcal{H}_{+}the completion of $\Omega^{(0,0)} \oplus \Omega^{(0,2)}, \quad \mathcal{H}_{-}$of $\Omega^{(0,1)}$,
$\mathcal{H}:=\mathcal{H}_{+} \oplus \mathcal{H}_{-}$

Dolbeault-Dirac operator:

$$
D \omega:=\left(\bar{\partial}^{\dagger} v, \bar{\partial} a+\bar{\partial}^{\dagger} b, \bar{\partial} v\right), \quad \omega=(a, v, b) \in \Omega^{(0, \bullet)}
$$

$\bar{\partial}^{\dagger}$ the Hermitian conjugate of $\bar{\partial}$
$[D, f] \in \mathcal{B}(\mathcal{H})$ for all $f \in \mathcal{A}$

A self-adjoint extension of D defined once it is diagonalized Compactness of $(D+i)^{-1}$ from asymptotic behaviour of $\operatorname{Sp}(D)$
$\operatorname{ker} D=\mathbb{C}$ are the constant 0 -forms; non-zero eigenvalues of D are $(n \geq 1)$

$$
\begin{aligned}
& \pm \sqrt{\frac{2}{[2]}[n][n+2]} \quad \text { with multiplicity }(n+1)^{3} \\
& \pm \sqrt{[n+1][n+2]} \quad \text { with multiplicity } \frac{1}{2} n(2 n+3)(n+3)
\end{aligned}
$$

The spectrum of D is a q-deformation of the spectrum of the Dolbeault-Dirac operator of $\mathbb{C P}^{2}$
$\operatorname{Sp}(D)$ grows exponentially: a 0^{+}-dimensional spectral triple
The spectrum of the Dirac operator from

$$
D^{2} \omega=[2]^{-1} \omega \triangleleft\left(\mathcal{C}_{q}-2\right) \quad \mathcal{C}_{q} \quad \text { is the quadratic Casimir }
$$

The Hodge star operator

the linear operator $*_{H}: \Omega^{i, j} \rightarrow \Omega^{2-j, 2-i}$

$$
f \omega^{*} \wedge_{q} \omega^{\prime}=\left\langle *_{H} \omega, \omega^{\prime}\right\rangle
$$

Since $\Omega^{2,2} \simeq \mathcal{A}$ and the Haar state is faithful, equivalently

$$
\omega^{*} \wedge_{q} \omega^{\prime}=\left\langle *_{H} \omega, \omega^{\prime}\right\rangle \operatorname{vol}
$$

The calculus defined so that $*_{H}^{2} \omega=(-1)^{\operatorname{dg}(\omega)} \omega$

$$
\mathrm{d}^{\dagger}=*_{H} \mathrm{~d} *_{H}
$$

$\mathfrak{e}(\omega)$ the left 'exterior product' : $\mathfrak{e}(\omega) \omega^{\prime}:=\omega \wedge_{q} \omega^{\prime}$
$\mathfrak{i}(\omega)=\mathfrak{e}(\omega)^{\dagger}$ the 'contraction' by ω

$$
_{H} \omega=\mathfrak{i}\left(\omega^{}\right) \mathrm{vol}
$$

Line bundles
$\Sigma_{0, N}$ are line bundles of 'degree' N

As right \mathcal{A}-modules:

$$
\Sigma_{0, N} \simeq P_{N} \mathcal{A}^{r_{N}}, \quad P_{N}=\Psi_{N} \Psi_{N}^{\dagger}
$$

Ψ_{N} is the column vector with components $\psi_{j, k, l}^{N}$:

$$
\begin{array}{ll}
\left(\psi_{j, k, l}^{N}\right)^{*}:=\sqrt{[j, k, l]!} z_{1}^{j} z_{2}^{k} z_{3}^{l}, & \text { if } N \geq 0 ; j+k+l=N \\
\left(\psi_{j, k, l}^{N}\right)^{*}:=q^{-N+j-l} \sqrt{[j, k, l]!}\left(z_{1}^{j} z_{2}^{k} z_{3}^{l}\right)^{*}, & \text { if } N<0 ; j+k+l=-N
\end{array}
$$

$$
\Psi_{N}^{\dagger} \Psi_{N}=1 \quad \Rightarrow \quad\left(P_{N}\right)^{2}=P_{N}
$$

The size is $r_{N}:=\frac{1}{2}(N+1)(N+2)$; think of Ψ_{N} as a column vector of size r_{N}, and of Ψ_{N}^{\dagger} as a row vector of the same size.
[$j, k, l]$! are the q-trinomial coefficients:

$$
[j, k, l]!=q^{-(j k+k l+l j)} \frac{[j+k+l]!}{[j]![k]![l]!}
$$

q-factorial is

$$
[n]!:=[n][n-1] \ldots[2][1], \quad n>0 ; \quad[0]!:=1
$$

The Grassmannn connection:

$$
\nabla: \Sigma_{0, N} \otimes_{\mathcal{A}} \Omega \rightarrow \Sigma_{0, N} \otimes_{\mathcal{A}} \Omega \quad \nabla:=P_{N} \circ \mathrm{~d}
$$

has curvature which is constant:

$$
\nabla_{N}^{2}=q^{N-1}[N] \nabla_{1}^{2} \in \Omega^{(1,1)}
$$

and anti-self-dual:

$$
* \nabla_{N}^{2}=-\nabla_{N}^{2}
$$

the bundles are of rank 1
'first Chern number ' N
'first Chern number' $\frac{1}{2} N(N+1)$

Gauged Laplacian operator

$$
\square_{N}=\nabla_{N}^{\dagger} \nabla_{N}
$$

Related to the Casimir \mathcal{C}_{q}
$\square_{N}=q^{-\frac{3}{2}} \frac{q^{\frac{3}{2}}+q^{-\frac{3}{2}}}{q^{\frac{N}{3}}+q^{-\frac{N}{3}}}\left(\mathcal{C}_{q}-\left[\frac{1}{3} N\right]_{q}^{2}-\left[\frac{1}{3} N+1\right]_{q}^{2}-\left[\frac{2}{3} N+1\right]_{q}^{2}\right)+[2]_{q}[N]_{q}$,

The spectrum $\left\{\lambda_{n, N}\right\}_{n \in \mathbb{N}}$ of \square_{N}

$$
\begin{array}{ll}
\lambda_{n, N}=\left(1+q^{-3}\right)[n]_{q}[n+N+2]_{q}+[2]_{q}[N]_{q} & \text { if } N \geq 0, \\
\lambda_{n, N}=\left(1+q^{-3}\right)[n+2]_{q}[n-N]_{q}+[2]_{q}[N]_{q} & \text { if } N \leq 0 .
\end{array}
$$

with $n \in \mathbb{N}$.
not invariant under the exchange $N \leftrightarrow-N$, not even when sending $q \leftrightarrow q^{-1}$

K-theory and K-homology
the C^{*}-algebra

$$
0 \rightarrow \mathcal{K} \rightarrow C\left(\mathbb{C P}{ }_{q}^{2}\right) \rightarrow C\left(\mathbb{C P}{ }_{q}^{1}\right) \rightarrow 0
$$

$C\left(\mathbb{C P}{ }_{q}^{1}\right) \simeq C\left(S_{q}^{2}\right)=\mathcal{K} \oplus \mathbb{C} 1$
$\begin{array}{ll}K_{0}\left(C\left(\mathbb{C P}{ }_{q}^{2}\right)\right)=\mathbb{Z}^{3}, & K_{1}\left(C\left(\mathbb{C} P_{q}^{2}\right)\right)=0 \\ K^{0}\left(C\left(\mathbb{C P}{ }_{q}^{2}\right)\right)=\mathbb{Z}^{3}, & K^{1}\left(C\left(\mathbb{C P}_{q}^{2}\right)\right)=0\end{array}$

There are interesting twisted cocycles; in particular a twisted volume form
$K_{0}(\mathcal{A})$: the a. group of finitely generated projective \mathcal{A}-module $K^{0}(\mathcal{A})$: the a. group of even Fredholm modules their pairing is via Chern characters; these are cyclic (co)-cycle, a cyclic $2 n$-cocycle: $\quad \tau_{n}: \mathcal{A}^{2 n+1} \rightarrow \mathbb{C} \quad$ which is cyclic:

$$
\tau_{n}\left(a_{0}, a_{1}, \ldots, a_{2 n}\right)=\tau_{n}\left(a_{2 n}, a_{0}, \ldots, a_{n-1}\right),
$$

and Hochschild boundary closed: $\quad b \tau_{n}=0$

$$
\begin{aligned}
& b \tau_{n}\left(a_{0}, \ldots, a_{2 n+1}\right):=\sum_{j=0}^{2 n}(-1)^{j} \tau_{n}\left(a_{0}, \ldots, a_{j} a_{j+1}, \ldots, a_{2 n+1}\right) \\
&-\tau_{n}\left(a_{2 n+1} a_{0}, a_{1}, \ldots, a_{2 n}\right)
\end{aligned}
$$

Even cyclic cocycles $\quad \mathrm{ch}_{n}^{(\pi, \mathcal{H}, F)}, 2 n \geq k$, canonically associated to a $k+1$-summable Fredholm module:
a triple (π, \mathcal{H}, F) :
$\mathcal{H}=\mathcal{H}_{+} \oplus \mathcal{H}_{-}$a \mathbb{Z}_{2}-graded Hilbert space with grading γ
a graded representation $\pi: \mathcal{A} \rightarrow \mathcal{B}\left(\mathcal{H}_{+}\right) \oplus \mathcal{B}\left(\mathcal{H}_{-}\right)$
an odd operator F such that

$$
\left[F, a_{0}\right]\left[F, a_{1}\right] \ldots\left[F, a_{k}\right] \quad \text { is traceclass }
$$

then
$\operatorname{ch}_{n}^{(\pi, \mathcal{H}, F)}\left(a_{0}, \ldots, a_{2 n+1}\right):=\frac{1}{2}(-1)^{n} \operatorname{Tr}_{\mathcal{H}}\left(\gamma F\left[F, a_{0}\right]\left[F, a_{1}\right] \ldots\left[F, a_{2 n}\right]\right)$

The coupling with idempotents:

$$
\begin{aligned}
\langle,\rangle: K^{0}(\mathcal{A}) \times & K_{0}(\mathcal{A}) \rightarrow \mathbb{Z} \\
& \langle[(\pi, \mathcal{H}, F)],[e]\rangle=\frac{1}{2}(-1)^{n} \operatorname{Tr}_{\mathcal{H} \otimes \mathbb{C}^{m}}\left(\gamma F[F, e]^{2 n+1}\right)
\end{aligned}
$$

it is an integer ; the index of a Fredholm operator

Classical Invariants

Back to line bundles over $\mathbb{C} P_{q}^{2}$

The rank
The algebra $\mathcal{A}=\mathcal{A}\left(\mathbb{C} P_{q}^{2}\right)$ with generators $p_{i j}$ has a character (1-dimensional representation):

$$
\tau_{0}: \mathcal{A} \rightarrow \mathbb{C}, \quad \tau_{0}\left(p_{i j}\right):=\delta_{i 3} \delta_{j 3}
$$

then

$$
\begin{aligned}
\left\langle\left[\tau_{0}\right] \mid\left[P_{N}\right]\right\rangle: & =\tau_{0}\left(\operatorname{ch}_{0}\left(P_{N}\right)\right)=\tau_{0}\left(\operatorname{Tr}_{\mathbb{C}_{N}} P_{N}\right) \\
& =1
\end{aligned}
$$

The monopole charge via a Fredholm module on $\mathcal{A}\left(\mathbb{C P}{ }_{q}^{2}\right)$
$\ell^{2}(\mathbb{N})$, with orthonormal basis $|n\rangle$;
the Hilbert space is $\mathcal{H}_{1}:=\ell^{2}(\mathbb{N}) \otimes \mathbb{C}^{2}$, and

$$
F:=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \gamma:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

representation $\pi:=\pi_{+} \oplus \pi_{-}$and

$$
\begin{aligned}
\pi_{ \pm}\left(p_{11}\right) & =\pi_{ \pm}\left(p_{12}\right)=\pi_{ \pm}\left(p_{13}\right), \\
\pi_{-}\left(p_{22}\right) & =\pi_{-}\left(p_{23}\right)=0 \\
\pi_{+}\left(p_{22}\right)|n\rangle & =q^{2 n}|n\rangle, \quad \pi_{+}\left(p_{23}\right)|n\rangle=q^{n+1} \sqrt{1-q^{2(n+1)}}|n+1\rangle,
\end{aligned}
$$

$\pi_{+}\left(p_{i j}\right)-\pi_{-}\left(p_{i j}\right) \quad$ is trace class for all i, j
the Fredholm module is 1-summable; a cyclic 0-cocycle:

$$
\tau_{1}: \mathcal{A}\left(\mathbb{C} P_{q}^{2}\right) \rightarrow \mathbb{C}, \quad \tau_{1}(a):=\frac{1}{2} \operatorname{Tr}_{\mathcal{H}}(\gamma F[F, a])
$$

then

$$
\begin{aligned}
\left\langle\left[\tau_{1}\right] \mid\left[P_{N}\right]\right\rangle: & =\tau_{1}\left(\operatorname{ch}_{0}\left(P_{N}\right)\right)=\frac{1}{2} \operatorname{Tr}_{\mathcal{H} \otimes \mathbb{C}_{N}}\left(\gamma F\left[F, P_{N}\right]\right) \\
& =\ldots \\
& =N
\end{aligned}
$$

The number depends only on the restriction of the bundle to the subspace $\mathbb{C P}{ }_{q}^{1} \simeq S_{q}^{2}$, (a reason to call it the monopole charge)

The instanton charge via a Fredholm module on $\mathcal{A}\left(\mathbb{C P}_{q}^{2}\right)$
the Hilbert space \mathcal{H}_{2} (is two copies of) the linear span of orthonormal vectors $|\ell, m\rangle$, with $\ell \in \frac{1}{2} \mathbb{N}$ and $\ell+m \in \mathbb{N}$
the grading γ and the operator F are like before.
for the representation $\pi_{2}=\pi_{+} \oplus \pi_{-}$

$$
\begin{aligned}
\pi_{+}\left(p_{11}\right) & =\pi_{+}\left(p_{12}\right)=\pi_{+}\left(p_{13}\right)=0, \\
\pi_{+}\left(p_{22}\right)|\ell, m\rangle & = \begin{cases}q^{2(\ell+m)}|\ell, m\rangle & \text { if } m \leq \ell \\
0 & \text { if } m>\ell\end{cases} \\
\pi_{+}\left(p_{23}\right)|\ell, m\rangle & = \begin{cases}q^{\ell+m+1} \sqrt{1-q^{2(\ell+m+1)}}|\ell, m+1\rangle & \text { if } m \leq \ell-1 \\
0 & \text { if } m \geq \ell\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
\pi_{-}\left(p_{11}\right) & =\pi_{-}\left(p_{12}\right)=\pi_{-}\left(p_{13}\right)=0, \\
\pi_{-}\left(p_{22}\right)|\ell, m\rangle & =q^{2(\ell+m)}|\ell, m\rangle, \\
\pi_{-}\left(p_{23}\right)|\ell, m\rangle & =q^{\ell+m+1} \sqrt{1-q^{2(\ell+m+1)}}|\ell, m+1\rangle .
\end{aligned}
$$

$\pi_{+}\left(p_{i j}\right)-\pi_{-}\left(p_{i j}\right) \quad$ is trace class for all i, j
the Fredholm module is 1-summable; a cyclic 0-cocycle:

$$
\tau_{2}: \mathcal{A}\left(\mathbb{C P}_{q}^{2}\right) \rightarrow \mathbb{C}, \quad \tau_{2}(a):=\frac{1}{2} \operatorname{Tr}_{\mathcal{H}}(\gamma F[F, a])
$$

then

$$
\begin{aligned}
\left\langle\left[\tau_{2}\right] \mid\left[P_{N}\right]\right\rangle: & =\tau_{2}\left(\operatorname{ch}_{0}\left(P_{N}\right)\right)=\operatorname{Tr}_{\mathcal{H}_{2} \otimes \mathbb{C}^{m}}\left(\gamma F\left[F, P_{N}\right]\right) \\
& =\ldots \\
& =\frac{1}{2} N(N+1)
\end{aligned}
$$

For any $N \in \mathbb{Z}$, the (right) module $\Sigma_{0, N}$ has
'rank' 1
'monopole charge' N
'instanton number' $\frac{1}{2} N(N+1)$

The three generators $\left\{e_{1}, e_{2}, e_{3}\right\}$ of $K_{0}\left(\mathcal{A}\left(\mathbb{C P}_{q}^{2}\right)\right)$ are:
$e_{1}=[1]$ is the class of the rank one free $\mathcal{A}\left(\mathbb{C P}_{q}^{2}\right)$-module $\Sigma_{0,0}$
e_{2} is the class of $\Sigma_{0,-1}$ (the dual of the tautological bundle)
and e_{3} is the class of $\Sigma_{0,1}$ (the tautological bundle)
The three generators of $K^{0}\left(\mathcal{A}\left(\mathbb{C P}_{q}^{2}\right)\right)$ are the classes of the Fredholm modules $\left(\pi_{i}, \mathcal{H}_{i}, F_{i}\right), i=0,1,2$, given before

Quantum invariants

Classically, invariants of vector bundles are computed by integrating powers of the curvature of a connection on the bundle, the result being independent of the particular chosen connection.

In order to integrate the curvature of a connection on the quantum projective space $\mathbb{C P}_{q}^{2}$ one needs 'twisted integrals'; the result, is no longer an integer but rather its q-analogue

Invariants for $\mathbb{C P}{ }_{q}^{2}$
The Haar state of $\mathcal{A}\left(S U_{q}(3)\right)$

$$
\varphi(a b)=\varphi((K \triangleright b \triangleleft K) a), \quad \text { for } \quad a, b \in \mathcal{A}\left(S U_{q}(3)\right),
$$

that when $a, b \in \mathcal{A}\left(\mathbb{C P}_{q}^{2}\right)$ means

$$
\varphi(a b)=\varphi((K \triangleright b) a)=\varphi(\eta(b) a) .
$$

η-twisted cyclic $2 n$-cocycles: $\quad \tau_{n}: \mathcal{A}^{2 n+1} \rightarrow \mathbb{C}$

$$
\tau_{n}\left(a_{0}, a_{1}, \ldots, a_{2 n}\right)=\tau_{n}\left(\eta\left(a_{2 n}\right), a_{0}, \ldots, a_{n-1}\right)
$$

and Hochschild boundary closed: $\quad b_{\eta} \tau_{n}=0$

$$
\begin{array}{r}
\left.b_{\eta} \tau_{n}\left(a_{0}, \ldots, a_{2 n+1}\right):=\sum_{j=0}^{2 n}(-1)^{j} \tau_{n}\left(a_{0}\right), \ldots, a_{j} a_{j+1}, \ldots, a_{2 n+1}\right) \\
\\
-\tau\left(\eta\left(a_{2 n+1}\right) a_{0}, a_{1}, \ldots, a_{2 n}\right)
\end{array}
$$

The restriction of the Haar state to $\mathcal{A}\left(\mathbb{C P}_{q}^{2}\right)$ is the representative of a class in the cohomology $\left[\tau_{0}\right] \in H C_{\eta}{ }^{0}\left(\mathcal{A}\left(\mathbb{C P}_{q}^{2}\right)\right)$

An element $\left[\tau_{4}\right] \in H C_{\eta}^{4}\left(\mathcal{A}\left(\mathbb{C P}{ }_{q}^{2}\right)\right)$ is constructed as

$$
\tau_{4}\left(a_{0}, \ldots, a_{4}\right):=f a_{0} \mathrm{~d} a_{1} \wedge_{q} \ldots \wedge_{q} \mathrm{~d} a_{4}
$$

A 2-cocycle can be defined in a similar way.
Elements of $\Omega^{1,1}\left(\mathbb{C P}{ }_{q}^{2}\right)$ are $\omega=\left(\alpha, \alpha_{4}\right)$, with $\alpha_{4} \in \mathcal{A}\left(\mathbb{C} P_{q}^{2}\right)$.
Let $\pi: \Omega^{1,1}\left(\mathbb{C P}{ }_{q}^{2}\right) \rightarrow \mathcal{A}\left(\mathbb{C P}{ }_{q}^{2}\right)$ be such that $\pi(\omega)=\alpha_{4}$;
extend it to a projection $\pi: \Omega^{2}\left(\mathbb{C P}{ }_{q}^{2}\right) \rightarrow \mathcal{A}\left(\mathbb{C P}{ }_{q}^{2}\right)$ by $\pi(\omega)=0$ if $\omega \in \Omega^{0,2}$ or $\omega \in \Omega^{2,0}$.

The map

$$
\tau_{2}\left(a_{0}, a_{1}, a_{2}\right):=\varphi \circ \pi\left(a_{0} \mathrm{~d} a_{1} \wedge_{q} \mathrm{~d} a_{2}\right)
$$

is the representative of a class $\left[\tau_{2}\right] \in H C_{\eta}^{2}\left(\mathcal{A}\left(\mathbb{C P}_{q}^{2}\right)\right)$.

Both classes $\left[\tau_{4}\right]$ and $\left[\tau_{2}\right]$ are proven to be not trivial by pairing them with the monopole projections $P_{N}=\Psi_{N} \Psi_{N}^{\dagger}$

The pairing of $\left[\tau_{4}\right]$ with P_{N} :

$$
\begin{aligned}
\left\langle\left[\tau_{4}\right] \mid\left[P_{N}\right]\right\rangle & =f \operatorname{Tr}\left(P_{N}\left(\mathrm{~d} P_{N}\right)^{4} \sigma^{N}\left(K_{1}^{-4} K_{2}^{-4}\right)^{t}\right) \\
& =q^{-2 N} f \nabla_{N}^{2} \wedge_{q} \nabla_{N}^{2} \\
& \sim[N]^{2}
\end{aligned}
$$

For $q=1$, the integral of the square of the curvature is the instanton number of the bundle.

The pairing of $\left[\tau_{2}\right]$ with P_{N} :

$$
\begin{aligned}
\left\langle\left[\tau_{2}\right] \mid\left[P_{N}\right]\right\rangle & =\varphi \circ \operatorname{Tr}\left(\pi\left(P_{N} \mathrm{~d} P_{N} \wedge_{q} \mathrm{~d} P_{N}\right) \sigma^{N}\left(K_{1}^{-4} K_{2}^{-4}\right)^{t}\right) \\
& =q^{-2 N} \varphi \circ \pi\left(\nabla_{N}^{2}\right) \\
& \sim[N]
\end{aligned}
$$

At $q=1$ the integral of the curvature is the monopole number of the bundle.

The pairing of $\left[\tau_{0}\right]$ with P_{N}

$$
\begin{aligned}
\left\langle\left[\tau_{0}\right] \mid\left[P_{N}\right]\right\rangle & \left.=\varphi \circ \operatorname{Tr}\left(P_{N}\right) \sigma^{N}\left(K_{1}^{-4} K_{2}^{-4}\right)^{t}\right) \\
& =q^{-2 N}
\end{aligned}
$$

At $q=1$ this is the rank of the bundle.

If q is trascendental, this means that all $\left[P_{N}\right.$] are independent, i.e. the equivariant K_{0}-group is infinite dimensional

Indeed, were the classes $\left[P_{N}\right.$] not independent, there would exist a sequence $\left\{k_{N}\right\}$ of integers - all zero but for finitely many - such that $\sum_{N} k_{N} q^{-2 N}=0$, and q^{-1} would be the root of a non-zero polynomial with integer coefficients.
thank you !!

