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Introduction

It now seems possible to address questions such as

Is the dimensionality of spacetime fixed or dynamical?

Are spacetime geometry and topology inputs or outputs of the
dynamics?

One can at least make models where spacetime emerges from more
primitive structures.
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Older Ideas

An old idea is that Einstein gravity and the Einstein Hilbert action
were induced effects of matter propagating on a predetermined
background. But here the metric is already prescribed. It is the
dynamics that is induced.
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Causal Sets

One very appealing idea is that a discrete causal structure is
sufficient to determine the geometry. This is essentially true for
classical Minkowski signature geometry. However the quantization
is difficult and natrually leads one to search for extensions of
quantum mechanics. So at a quantal level progress has been slow.

See X. Martin, D. O’Connor and R.D. Sorkin, Phys. Rev. D71
024029 2005.
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Geometry from Random matrices.

This idea is that discrete triangulations of random surfaces can be
mapped to random matrices. The random matrices then describe
the surgace and its gravitational fluctuations. Unfortunately, this
appears to be a very Euclidean approach. But it is based on
random matrix theory and so falls into the same circle of ideas as I
will discuss.
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The AdS/CFT correspondence and emergent geometry

In the simplest example, the idea here is that N = 4
supersymmetric Yang-Mills in four dimensional Minkowski space at
weak coupling behaves like a 4-dimensional Yang-Mills theory.
However, at strong coupling it behaves as a 10-dimensional
supergravity theory. Therefore effectively growing 6 extra
dimensions, with gravitational fluctuations.
I hope to shed a little more light on how these extra dimensions
emerge at the end of the lecture.
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The Simplest Matrix Model

Consider the Gaussian probability distribution

P(Φ) =
e−bTr(Φ2)

Z

where Z =
∫

[dΦ]e−bTr(Φ2).
This distribution splits into the normalized Riemannian measure on
SU(N)/U(1)N and a probability distribution for the eigenvalues of
Φ. The latter converges in the large N limit to the Wigner
semi-circle distribution

ρ(λ) =
b

π

√
2N

b
− λ2.
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Unitary invariant random matrix models are typically characterised
by the eigenvalue distribution of the eigenvalues of the random
matrix.

The eigenvalues repell one another.

The eigenvalue distribution consists of a series of cuts.

The spread in eigenvalues grows as
√

N.

Phase transitions occur when cuts merge or separate.
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A pure matrix model

V (φ) = Tr(bφ2 + cφ4) with φ an N × N matrix.

The model is characterized by the distribution of the
eigenvalues of φ.

For c = 0 the eigenvalues have a Wigner semi-circle
distribution.

For c > 0 and b << 0 the eigenvalues fall into two
disconnected regions, i.e. they have a “two cut” distribution.

The transition is 3rd order and occurs at
b = −2

√
Nc .

The random matrix gravity transition occurs for c < 0 and
b > 0.
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A fuzzy field theory model

S(φ) = Tr(−a[La, φ]2 + bφ2 + cφ4)
La are the generators of su(2) in the N dimensional representation.
again with φ an N × N matrix.
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The specific heat Cv =< S2 > − < S >2

S(φ) = bTr(φ2) + cTr(φ4)
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The model for the background geometry.

Let us consider

the most general quartic polynomial single trace matrix model with
global SO(3) symmetry.

Matrix Energy

E = Tr
N (−1

4 [Da,Db]2 + 2i
3 εabcDaDbDc + V (D))

The Potential

V (D) = bD2
a + c(D2

a )2

breaks Da → Da + da1 symmetry.

Partition Function

Z (β, g , b, c) =
∫

[dDa]e−S(D) where S(D) = −βE (D)
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Ground State

The model with V = 0.

The minimum energy configuration is

Da = La with E0 = −N2−1
48 .

The La satisfy

[La, Lb] = iεabcLc and LaLa = N2−1
4 1.

These are the familiar commutation relations of angular
momentum.
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A sphere from matrices

Let Na = 2√
N2−1

La

We get a sphere

N2
1 + N2

2 + N2
3 = 1. A nice round sphere.

But it is non-commutative.

[N1,N2] = 2i√
N2−1

N3

There is an uncertainty principal for spatial position!
But for N →∞ we recover a commutative sphere.
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Our “fuzzy” sphere
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Small fluctuations

Expanding around the minimum solution, Da = La + Aa yields a
noncommutative Yang-Mills action with field strength

Fab = i [La,Ab]− i [Lb,Aa] + εabcAc + i [Aa,Ab]

As written the gauge field includes a scalar field,

Φ =
1√

N2 − 1
(Da − La)2 =

1

2
(NaAa + AaNa +

A2
a√
c2

) ,

as the component of the gauge field normal to the sphere when
viewed as imbeded in R3 with Na = La√

c2
and

c2 =
∑

a L2
a = (N2 − 1)/4.
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Variations of the model have been proposed by H.Steinacker,
Nucl.Phys.B679,66 (2004) and Presnajder Mod.Phys.Lett. A18
(2003) 2415. And a close relative (without the scalar field) has
been solved exactly by H.Steinacker, R.J. Szabo, hep-th/0701041.

The model with V (D) = 0 arises as the low energy limit of a
boundary SU(2) WZW model at level k .

It can be thought of as the low energy dynamics of open strings
moving on S3. The minimum energy configuration corresponds to
a stack of N D0 branes wrapping a fuzzy sphere centered at the
origin.
A. Y. Alekseev, A. Recknagel, V. Schomerus, JHEP 010 0005
(2000).
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Larger context

The model can be obtained by reduction of N = 4 SUSY
Yang-Mills or equivalently from the ADS/CFT corresponding
situation. Or from d = 11 supergravity.

An intermediate model in all of these reductions is the Berenstein,
Maldacena, Nastase matrix model.

In fact this procedure gives a higherarchy of additional models
currently under study.
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Monte Carlo Simulations

The singular part of the entropy is given by S/N2 where
S =< S > and β = α̃4
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The entropy jump

S = 5
12 as the transition is approached from the fuzzy sphere side,

and jumps to S = 3
4 in the high temperature phase.

Note

The infinite temperature entropy does not contribute 1
2 per degree

of freedom.

The model is highly interacting.

In fact the contribution is 1
4 per degree of freedom.
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Specific Heat

The specific heat Cv/N
2 where Cv =< S2 > − < S >2 and

β = α̃4
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Specific Heat Exponent

Entropy Jump

The transition is unusual in that it has a jump in the entropy.
∆S = 1

3 indicating a 1st order transition.

Divergent Specific Heat

But it has a divergent specific heat C = A−(Tc − T )−α typical of
a continuous (or second order) transition. We find the specific
heat exponent α = 1

2 .

Similar Transitions Occur in Dimer and 6-Vertex Models

The dimer and 6-vertex models also have asymmetric transitions
with α = 1

2 .
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Including V (D)

For the matrix potential V (D) we focus on

β Tr
N (V (D)) = m2α̃4

N (−TrD2
a + 2

N2−1
Tr(D2

a )2) .

• This introduces just one new parameter m.

• For m large, it gives a deep well around N2
a = 1.
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Measuring the radius of the sphere

1
r = 2

N(N2−1)
Tr(D2

a )
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The fuzzy sphere expands and evaporates
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Eigenvalues in the low temperature phase

Eigenvalue distribution of D3 for N = 24.
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Eigenvalues in the low temperature phase

Eigenvalue distribution of [D1,D2] for N = 24.
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Eigenvalues in the high temperature phase

Eigenvalue distribution of D3 for N = 24.
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Effective potential

The effective potential, Veff (φ), for φ where Da = φLa.

Veff = β( 1
4φ

4 − 1
3φ

3) + lnφ2
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For the full model

Veff = α̃4
(
φ4

4 −
φ3

3 + m2(φ
4

4 −
φ2

2 )
)

+ log φ2

The location of the minimum gives predictions in excellent
agreement with numerical data for the entropy and specific heat.
It predicts the critical point as βc = ( 8

3 )3 for m = 0 and a critical
exponent α = 1

2 for the divergence of the specific heat.
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A closer look at the transition

Defining

Xa = (
β

N
)

1/4

Da =
α̃

N1/4
Da

And examining the eigenvalue distribution again:
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In the fuzzy sphere phase the eigenvalues fluctuate around the
discrete values corresponding to Da = La, the irreducible
representation of SU(2).

In the matrix phase, the distribution is largely independent of
N and fluctuations are around commuting matrices with

X 2
a = N

E.g for N = 12, the distribution for X3 ranges from −2 to 2.
Following Berenstein et al. (arXiv:0805.4658) one can expand
small fluctuations around commuting diagonal matrices. To
obtain that the distribution of such diagonal elements is S2.

The distribution of eigenvalues of X3 is then:

ρ(x) =
9

4N
(
N

3
− x2)
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A commutative two sphere has emerged but with much smaller
radius than the fuzzy sphere. Thinking dynamically and
suggestively:

A

s the system cools it goes through a phase of rapid expansion.

This is precisely the same phenomenon as happens in the
AdS/CFT correspondence!
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Conclusions

• We have we believe a good understanding of the 3-matrix
model. It provides a concrete model where one can track the
geometry as it passes through a phase transition and
dissapears.
Such transitions belong to a new universality class of
topological phase transitions.
• The transition is from one where the underlying geometry at a

microscopic level is non-commutative, and described by a
fuzzy sphere with matter fluctuations to one a commutative
sphere of much smaller radius.
• The geometrical phase emerges as the system cools. This is

suggestive of a geometrical phase emerging as the universe
cools, or perhaps as the relevant coupling runs to a larger
scale.
• The fluctuations around the fuzzy sphere phase are consistent

with being U(1) gauge fields in the large mass limit.
• We are now obtaining the first results on a SUSY model.
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