

Noncommutative Symmetry Reduction: Backgrounds and Quantum Fields

Thorsten Ohl & Alexander Schenkel

Institute for Theoretical Physics and Astrophysics, University of Würzburg

Bayrischzell Workshop 2009

Noncommutativity and physics: Quantum geometry and gravity

Bayrischzell, Germany, May 15-18, 2009

Why Noncommutative Geometry?

Basics of Noncommutative Geometry

Physics in Flat NC Space

Noncommutative Symmetries and Gravity

NC Symmetry Reduction

Dynamics of Symmetry Reduced Sectors

Field Fluctuations on NC Backgrounds

Why Noncommutative Geometry?

Einstein gravity

- based on smooth manifoldsi. e. spacetime made out of points
- points not physical (black holes!)
- ... wrong category for short distance gravity

Quantum gravity

- motivation: "get rid of points"
- approaches: Strings, Loop Quantum Gravity, . . .
- hardest problem: making contact with the "real world"

"Almost quantum" gravities (cf. EFT methods)

- intermediate step incorporating most important quantum effects
- ▶ ideas: infrared expansion, noncommutative geometry, . . .
- © NC Geometry without points and spacetime uncertainties built in

Basics of Noncommutative Geometry

- wanted: coordinate operators $[\hat{x}^{\mu}, \hat{x}^{\nu}] = i\Theta^{\mu\nu}(\hat{x})$
- \Rightarrow spacetime uncertainty relations $\Delta x^{\mu} \Delta x^{\nu} \neq 0$
 - ▶ equivalently: use \star -products $f(x) \star g(x) \neq g(x) \star f(x)$
 - examples:
 - ▶ Moyal-Weyl product:

$$f \star g = f e^{\frac{i\lambda}{2} \stackrel{\leftarrow}{\partial_{\mu}} \Theta^{\mu\nu} \stackrel{\rightarrow}{\partial_{\nu}}} g$$

▶ Reshetikhin-Jambor-Sykora (RJS) product:

$$f\star g=fe^{\frac{i\lambda}{2}\overset{\cdot\lambda}{X_{\alpha}}\Theta^{\alpha\beta}\overset{\cdot\lambda}{X_{\beta}}}g\;,\quad [X_{\alpha},X_{\beta}]=0$$

▶ NB: RJS and Moyal-Weyl products are obtained from twists

$$\mathfrak{F} = \text{exp}\Big(-\frac{\text{i}\lambda}{2} \Theta^{\alpha\beta} X_{\alpha} \otimes X_{\beta} \Big) \in \text{U}\Xi \otimes \text{U}\Xi$$

Physics in Flat NC Space

most straightforward construction, Moyal plane

$$[\hat{x}_{\mu},\hat{x}_{\nu}] = i\theta_{\mu\nu} = i\frac{C_{\mu\nu}}{\Lambda_{NC}^2}$$

not excluded, as long as characteristic energy scale $\Lambda_{\rm NC}$ large and corresponding minimal area in the $e_{\mu} \wedge e_{\nu}$ -plane

$$\alpha_{NC}=l_{NC}^2=1/\Lambda_{NC}^2$$

small compared to the resolution of experiments.

- standard model of particle physics can be generalized to the Moyal plane using Seiberg-Witten maps [Wess et al.]
 - forbidden and rare decays [Munich/Zagreb group]
 - BBN [Zagreb group]
 - strong limits from isotropy
 - IR/UV mixing requires more work . . .

 Collider experiments [Würzburg group], e. g. azimuthal modulation at LHC

Using standard acceptance cuts and 85 GeV $< m_{\ell^+\ell^-} < 97$ GeV, 200 GeV $< m_{\ell^+\ell^-\gamma} < 1$ TeV, $0 < \cos\theta_{\gamma}^* < 0.9$, $\cos\theta_{Z} > 0$ and $\cos\theta_{V} > 0$ (favoring $\bar{q}q$ over $q\bar{q}!$)

Noncommutative Symmetries and Gravity

[Wess group, Madore, ...]

- ▶ classical spaces classical symmetries (Lie groups/algebras)
 - ▷ euclidean space \iff euclidean group $SO(3) \ltimes \mathbb{R}^3$
 - ▶ Minkowski space \iff Poincaré group $SO(3,1) \ltimes \mathbb{R}^4$
- - Moyal-plane ↔ θ-Poincaré Hopf algebra
- general feature: noncommutative spacetime \leftrightarrow noncocommutative Hopf algebra commutative spacetime ← Lie algebra → cocommutative HA
- Basic idea of (twisted) NC gravity: Einstein gravity ↔ diffeomorphism Lie algebra Ξ NC Einstein gravity ↔ deformed diffeomorphism Hopf algebra

$$(\Xi, [\ ,\]) \stackrel{\text{construct}}{\longrightarrow} (U\Xi, \cdot, \Delta, S, \epsilon) \stackrel{\mathcal{F}}{\longrightarrow} (U\Xi, \cdot, \Delta_{\mathcal{F}}, S_{\mathcal{F}}, \epsilon)$$

[Wess group]

- √ construction of cov. derivatives and curvature on NC manifolds basic idea: deform everything using the twist \Rightarrow deformed covariant theory
- ⇒ NC Einstein equations:

$$Ric_{ab} - \frac{1}{2}g_{ab} \star \Re = 8\pi G T_{ab}$$

- ► NB:
 - ▶ nonlocal and nonlinear equations of motion → i.g. complicated
 - ambiguities in defining Einstein equations <a>©
 - ? relation to NC vielbein gravity [Chamseddine, Aschieri, Castellani]
- wanted: solutions of NC Einstein equations

NC Symmetry Reduction:

a first step towards solutions

Classical symmetry reduction:

- ▶ isometries \(\hat{\pm}\) symmetry Lie algebra \(\mathre{\pm}\)
- ▶ represent g in terms of vector fields Ξ
- demand $\mathcal{L}_{\mathfrak{a}}(\tau) = \{0\}$ for all symmetric tensor fields

NC symmetry reduction: [TO, AS: JHEP 0901:084,2009]

- represent g in terms of vector fields Ξ
- \blacktriangleright demand $\mathcal{L}_{\mathfrak{a}}(\tau) = \{0\}$ for all symmetric tensor fields
- + consistency condition: $\mathcal{L}_{\mathfrak{g}}(\tau \star \tau') = \{0\}$, if $\mathcal{L}_{\mathfrak{g}}(\tau) = \mathcal{L}_{\mathfrak{g}}(\tau') = \{0\}$.
- ► NB:
 - \triangleright CC from nontrivial coproduct $\Delta_{\mathcal{F}}$ in Hopf algebra

 - FRW models, Schwarzschild black holes (& black branes, AdS, ...)

Classification of deformed FRW models:

- $g = \text{span}(p_i, L_i)$ with $p_i = \partial_i$ and $L_i = \epsilon_{iik} x^i \partial_k$
- $\blacktriangleright [X_{\alpha}, \mathfrak{q}] \subset \mathfrak{q}$ gives $X_{\alpha} = X_{\alpha}^{0}(t)\partial_{t} + c_{\alpha}^{i}\partial_{i} + d_{\alpha}^{i}L_{i} + f_{\alpha}x^{i}\partial_{i}$
- ▶ taking $\alpha \in \{1, 2\}$ and demanding $[X_1, X_2] = 0$ we get

\mathfrak{C}_{AB}	$\mathbf{d}_1 = \mathbf{d}_2 = 0$	$d_1 \neq 0 \; , d_2 = 0$
$f_1=0,$	$X_1 = X_1^0(t) \vartheta_t + c_1^{\mathfrak{i}} \vartheta_{\mathfrak{i}}$	$X_1 = X_1^0(t) \vartheta_t + c_1^i \vartheta_i + d_1^i L_i$
$f_2 = 0$	$X_2 = X_2^0(t) \vartheta_t + c_2^i \vartheta_i$	$X_2 = X_2^0(t) \vartheta_t + \kappa \ d_1^i \vartheta_i$
$f_1 \neq 0$,	$X_1 = c_1^i \partial_i + f_1 x^i \partial_i$	$X_1 = c_1^i \vartheta_i + d_1^i L_i + f_1 x^i \vartheta_i$
$f_2 = 0$	$X_2 = X_2^0(t) \vartheta_t$	$X_2 = X_2^0(t) \vartheta_t$
$f_1=0,$	$X_1 = X_1^0(t) \vartheta_t$	$X_1 = X_1^0(t) \partial_t + \frac{1}{f_2} d_1^j c_2^k \varepsilon_{jki} \partial_i + d_1^i L_i$
f ₂ ≠ 0	$X_2 = c_2^{\mathfrak{i}} \vartheta_{\mathfrak{i}} + f_2 x^{\mathfrak{i}} \vartheta_{\mathfrak{i}}$	$X_2 = X_2^0(t)\partial_t + c_2^i\partial_i + f_2x^i\partial_i$

there is an isotropic twist!

- 1. <u>favorite model</u>: $[\hat{t}, \hat{x}^i] = i\lambda X(t)x^i$
 - isotropic but nonhomogeneous model (interesting for CMB)

 - NC can drive gravity (see below!)
 - iles in the model class we understand less
- 2. <u>next-to-favorite model:</u> $\left[\widehat{\exp i\phi}, \widehat{t}\right] = \lambda \widehat{\exp i\phi}$
 - \triangleright discrete time spectrum $\sigma(\hat{\mathfrak{t}}) = \lambda(\mathbb{Z} + \delta)$
 - → singularity avoidance in cosmology!?!
 - we understand background dynamics (see below!)
 - nonisotropic model: maybe problems with CMB
- 3. <u>less favored models:</u> e.g. $[\hat{x}^i, \hat{x}^j] = i\lambda^{ij}\hat{1}$
 - NC scale growing with time
 - backgrounds and (Q)FT (see below!)
 - → nice playground for mathematical aspects (e.g. interacting fields)

Classification of deformed black hole models:

- $g = \text{span}(p^0, L_i)$ with $p^0 = \partial_t$ and $L_i = \epsilon_{iik} x^i \partial_k$
- $[X_{\alpha}, g] \subseteq g$ gives $X_{\alpha} = (c_{\alpha}^{0}(r) + N_{\alpha}^{0}t)\partial_{t} + d_{\alpha}^{i}L_{i} + f_{\alpha}(r)x^{i}\partial_{i}$
- ▶ taking $\alpha \in \{1, 2\}$ and demanding $[X_1, X_2] = 0$ we get

\mathfrak{B}_{AB}	$f_2(r)=0$	$f_2(r) \neq 0$
$N_1^0 = 0,$	$X_1 = c_1^0(r) \vartheta_{\rm t} + \kappa_1 d^{\rm i} L_{\rm i}$	$X_1 = c_1^0 \partial_t + \kappa_1 d^i L_i$
$N_2^0 = 0$	$X_2 = c_2^0(r) \vartheta_t + \kappa_2 d^i L_i$	$X_2 = c_2^0(r)\partial_t + \kappa_2 d^i L_i + f_2(r) x^i \partial_i$
$N_1^0 \neq 0$,	$X_1=(c_1^0(r)+N_1^0t)\vartheta_t$	$X_1 = (c_1^0(r) + N_1^0t)\vartheta_t + \kappa_1 d^i L_i$
$N_2^0 = 0$	$X_2 = \kappa_2 d^{\mathfrak{i}} L_{\mathfrak{i}}$	$X_2 = -\frac{1}{N_1^0} f_2(r) r c_1^{0\prime}(r) \partial_t + \kappa_2 d^i L_i + f_2(r) x^i \partial_i$
$N_1^0 = 0$,	$X_1 = \kappa_1 d^{\mathfrak{i}} L_{\mathfrak{i}}$	$X_1 = c_1^0(r) \vartheta_t + \kappa_1 d^i L_i $ (+ ODE for c_1^0)
$N_2^0 \neq 0$	$X_2 = (c_2^0(r) + N_2^0 t) \partial_t$	$X_2 = (c_2^0(r) + N_2^0t)\partial_t + \kappa_2 d^i L_i + f_2(r)x^i \partial_i$

there is a twist invariant under all BH symmetries!

- 1. isotropic model: $[\hat{t}, \hat{r}] = i\lambda f(r)$
 - isotropic and time translation invariant
 - \triangleright f(r) can be used to tune away NC effects for large r
- 2. discrete time model: $\left[\widehat{\exp i\varphi}, \hat{t}\right] = \lambda \widehat{\exp i\varphi}$
 - nonisotropic, but time translation invariant
 - \triangleright quantization of time in orders of λ
 - can define (Q)FT on this background
- 3. <u>discrete radius model:</u> $[\exp i\phi ; r] = -2 \sinh(\frac{\lambda}{2}f(r)\partial_r)r \cdot \exp i\phi$
 - nonisotropic, but time translation invariant
 - ho $f(r) = r \rightarrow \sigma(\hat{r}) \sim \exp(\lambda(\mathbb{Z} + \delta))$, not nice \odot
 - f(r) $f(r_{\infty})$ \triangleright f(r) generically $\rightarrow \sigma(\hat{\mathbf{r}}) \approx \lambda(\mathbb{Z} + \delta)$ for large r, nicer \odot
- BH models solve NC Einstein equations using undeformed metric!
- cf. Schupp-Solodukhin NC black hole

UNIVERSITÄT WÜRZBURG

Dynamics of Symmetry Reduced Sectors:

general properties and explicit solutions

Proposition (TO, AS: to appear)

Let $\mathcal{F}=\exp\left(-\frac{i\lambda}{2}\Theta^{\alpha\beta}X_{\alpha}\otimes X_{\beta}\right)$ be a \mathfrak{g} -compatible RJS twist. Then the symmetry reduced Riemannian geometry is undeformed if one $X_{\alpha}\in\mathfrak{g}$, for all pairs of vector fields connected by $\Theta^{\alpha\beta}$.

- ▶ most FRW, black hole (and black brane) models are solvable ☺
- ▶ NB: this does not mean our models are trivial!
- ▶ ∃ examples with potential correction to backgrounds
- e.g. $[\hat{t}, \hat{x}^i] = i\lambda \hat{x}^i \Rightarrow NC$ Friedmann equations:

$$\begin{split} 3\frac{\dot{A}(t-i\lambda)}{A(t-i\lambda)}\frac{\dot{A}(t+i\lambda)}{A(t+i\lambda)} \,+\, \frac{3}{2}\frac{\dot{N}(t)}{N(t)} \bigg(\frac{\dot{A}(t-i\lambda)}{A(t-i\lambda)} \,-\, \frac{\dot{A}(t+i\lambda)}{A(t+i\lambda)}\bigg) \,+\, \frac{3}{2} \bigg(\frac{\ddot{A}(t+i\lambda)}{A(t+i\lambda)} \,-\, \frac{\ddot{A}(t-i\lambda)}{A(t-i\lambda)}\bigg) &= \rho(t) \\ \\ -\frac{A(t)\dot{A}(t)\dot{A}(t)\dot{A}(t-2i\lambda)}{A(t-2i\lambda)N(t-i\lambda)^2} \,+\, \frac{A(t)\dot{A}(t)\dot{N}(t-i\lambda)}{2N(t-i\lambda)^3} \,+\, \frac{3A(t)^2\dot{A}(t-2i\lambda)\dot{N}(t-i\lambda)}{2A(t-2i\lambda)N(t-i\lambda)^3} \\ \\ -\frac{A(t)\ddot{A}(t)}{2N(t-i\lambda)^2} \,-\, \frac{3A(t)^2\ddot{A}(t-2i\lambda)}{2A(t-2i\lambda)N(t-i\lambda)^2} \,= p(t) \end{split}$$

- ▶ i. g. extremely complicated ②,
 - ... but de Sitter space + cosmological constant solves it ©

Field Fluctuations on NC Backgrounds:

a first step towards physics

Actions for Killing RJS deformed fields:

- ▶ fixed Riemannian manifold (M, g) with isometries g
- Definition: **Killing twist** $\mathcal{F} \in Ug \otimes Ug \subseteq U\Xi \otimes U\Xi$
- nice feature: we have Hodge * and thus actions!
- **EXAMPLES:** (here $(\omega, \omega')_{\star} := \int \omega \wedge_{\star} *\omega'$ is SP on forms)

$$\ \ \, S_{\Phi}^{\star} = -\tfrac{1}{2}(d\Phi,d\Phi)_{\star} - \tfrac{m^2}{2}(\Phi,\Phi)_{\star} - \tfrac{N}{k=3}\lambda_k(1,\Phi^{\star k})_{\star}$$

$$\, \triangleright \, \, S^{\star}_{YM} = \kappa \text{Tr}(F,F)_{\star} \; , \quad \, F = dA - A \wedge_{\star} A$$

- ▶ NB:
 - holds for curved ST; not restricted to Minkowski!

 - \triangleright field equations for Φ :

$$d^{\dagger}d\Phi + m^2\Phi + \sum_{k=3}^{N} k\lambda_k \Phi^{\star(k-1)} = 0$$

Deformed covariant phasespace for free scalar field:

method: deformed Poisson geometry [Aschieri, Lizzi, Vitale]

$$\begin{split} \left\{F,G\right\}_{\star} &= \left\{\bar{f}^{\alpha}F,\bar{f}_{\alpha}G\right\} = -\left\{\bar{R}^{\alpha}G,\bar{R}_{\alpha}F\right\}_{\star} \\ \left\{F,\left\{G,H\right\}_{\star}\right\}_{\star} &= \left\{\left\{F,G\right\}_{\star},H\right\}_{\star} + \left\{\bar{R}^{\alpha}G,\left\{\bar{R}_{\alpha}F,H\right\}_{\star}\right\}_{\star} \\ \left\{F,G\star H\right\}_{\star} &= \left\{F,G\right\}_{\star}\star H + \bar{R}^{\alpha}G\star \left\{\bar{R}_{\alpha}F,H\right\}_{\star} \end{split}$$

- ingredients for space-time deformations:
 - \triangleright cov. phasespace **Sol** $\hat{=}$ solutions of $d^{\dagger}d\Phi + m^2\Phi = 0$
 - ▶ Peierls bracket: (with $\Delta = \Delta^{av} \Delta^{ret}$ as fundamental solution)

$$\{F,G\} = \int \text{vol}_x \text{vol}_y \frac{\delta F}{\delta \Phi(x)} \Delta(x,y) \frac{\delta G}{\delta \Phi(y)}$$

- ▶ **lift** twist to **Sol**: \sharp : Ξ → Vec(**Sol**), $v^{\sharp} = -\int \text{vol } \mathcal{L}_{v}(\Phi) \frac{\delta}{\delta \Phi}$
- \Rightarrow deformed algebra $(A, \star, \{, \}_{\star})$ generated by $\Phi(h) = \int \text{vol } \Phi h$
 - $\triangleright \Phi(h) \star \Phi(k) = \Phi(\bar{f}^{\alpha}h) \cdot \Phi(\bar{f}_{\alpha}k)$
 - $\triangleright \{\Phi(h), \Phi(k)\}_{\star} = \{\Phi(h), \Phi(k)\} = \Delta(h, k)$

Free QFT on Killing RJS backgrounds:

- $\qquad \qquad \left\{ \Phi(h), \Phi(k) \right\}_{\star} = \Delta(h, k) \quad \stackrel{\text{quant}}{\longrightarrow} \quad \left[\hat{\Phi}(h), \hat{\Phi}(k) \right]_{\star} = i\Delta(h, k) \hat{\mathbf{1}}$
- Fock space construction:
 - \triangleright usual one-particle HS $\mathcal{H} = \mathbf{Sol}_{\mathsf{pos.}}^{\mathbb{C}}$ with $(\psi_1, \psi_2)_{\mathcal{H}} = -\mathrm{i}\Omega(\bar{\psi}_1, \psi_2)$
 - \triangleright use isomorphism $\Delta: C_0^{\infty}(\mathcal{M}, \mathbb{C})/\text{Ker}(\Delta) \to \text{Sol}^{\mathbb{C}}$ and define

$$\mathfrak{K} := \Delta^{-1}(\mathfrak{H}) \;, \quad \text{with} \quad ([h], [k])_{\mathfrak{K}} := i\Delta(\bar{h}, k)$$

⇒ deformed one-particle scalar product

$$([h],[k])_{\mathcal{K}}^{\star} = i\Delta(\bar{f}^{\alpha}\bar{h},\bar{f}_{\alpha}k) = i\Delta(\bar{h},k)$$

multi-particle states live in usual Fock space

$$\left|h_1,h_2,\ldots,h_n\right\rangle_\star\coloneqq\hat{a}^\dagger(h_1)\star\hat{a}^\dagger(h_2)\star\cdots\star\hat{a}^\dagger(h_n)\star\left|0\right\rangle$$

generalization of existing results [Aschieri, Fiore, Wess, Zahn, ...] to curved spacetimes with Killing RJS twists

What about non-Killing twists (as required for cosmology)?

- **actions** so far only for $X_{\alpha} \in \mathfrak{g}$, $\forall_{\alpha} \odot$ (b/c Hodge * still missing)
- ...but wave equations can be constructed, e.g.

$$\Box^{\star}\Phi + F[\Phi] = 0 \;, \quad \text{where} \quad \Box^{\star} = \mathfrak{g}^{\mathfrak{a}\mathfrak{b}} \star \left(\nabla^{\star}_{e_{\mathfrak{b}}} \nabla^{\star}_{e_{\mathfrak{a}}} - \Gamma_{\!\mathfrak{b}}{}^{c}_{\mathfrak{a}} \star \nabla^{\star}_{e_{\mathfrak{c}}} \right)$$

example: free scalar field on de Sitter space

$$\ddot{\Phi}(x) + 3H\dot{\Phi}(x) - e^{-2Ht}\Delta\tilde{\Phi}(x) + M^2\Phi(x) = 0 \; , \quad \text{where} \;$$

- 1. $\tilde{\Phi}(\mathbf{x}) = \exp(i\lambda(\partial_t Hr\partial_r))\Phi(\mathbf{x})$ for $[\hat{\mathbf{t}}, \hat{\mathbf{x}}^i] = i\lambda\hat{\mathbf{x}}^i$
- 2. $\tilde{\Phi}(\mathbf{x}) = \exp(\mathrm{i}\lambda H \partial_{\Phi})\Phi(\mathbf{x})$ for $\left[\hat{\mathbf{t}}, \widehat{\exp\mathrm{i}\Phi}\right] = \lambda \widehat{\exp\mathrm{i}\Phi}$
- ► NB:
 - i.g. linear but nonlocal equations
 - deformed Poisson geometry and quantization still open problem

- NCG is interesting step between classical and quantum gravity
- we found approach to NC symmetry reduction
- → cosmological, black hole (and black brane) solutions
- distinct NC effects depending on model, e.g.
 - discrete time spectra in cosmology
 - discrete radius spectra for black holes
- ▶ ∃ "realistic" models worth for cosmological studies
- free QFT on curved Killing RJS backgrounds
- ... still many open questions and undone calculations remain:
 - symmetry reduction and solutions in NC vielbein gravity
 - cosmological powerspectra and CMB predictions
 - ▷ (Q)FT on curved non-Killing RJS backgrounds
 - ▶ interacting QFT on curved Killing deformed backgrounds
 - **>** ...

(gathering stamina for the long jog ahead ...)