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[ why NC Gravity? [
Einstein gravity
» based on smooth manifolds
i. e. spacetime made out of points
% points not physical (black holes!)
". wrong category for short distance gravity space

time

Quantum gravity
» motivation: “get rid of points”
» approaches: Strings, Loop Quantum Gravity, ...
» hardest problem: making contact with the “real world”

“Almost quantum” gravities (cf. EFT methods)
» intermediate step incorporating most important quantum effects
» ideas: infrared expansion, noncommutative geometry, ...
© NC Geometry without points and spacetime uncertainties built in
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Basics of Noncommutative Geometry
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» wanted: coordinate operators [x", XV] = iO*Y(X)
= spacetime uncertainty relations Ax*AxY # 0
» equivalently: use x-products f(x) x g(x) # g(x) * f(x)
» examples:
> Moyal-Weyl product:

M&l@uvav

fxg="fe2

> Reshetikhin-Jambor-Sykora (RJS) product:
fxg=fe2X«@Xpg [Xo; Xpl =0

» NB: RJS and Moyal-Weyl products are obtained from twists

iA
F = oxp(— 50X 8 X ) € UZ@ UZ

Th. Ohl & A. Schenkel (Wirzburg) NC Symmetry Reduction Bayrischzell ‘09



e Flat NG Space |

Physics in Flat NC Space
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[ Flat NC Space [
» most straightforward construction, Moyal plane

5 5 . - Coy
[Xusxv] = |e|,m/ = |Wucz

not excluded, as long as characteristic energy scale Ang large
and corresponding minimal area in the e, /\ e, -plane

small compared to the resolution of experiments.
» standard model of particle physics can be generalized to the
Moyal plane using Seiberg-Witten maps [Wess et al.]
» forbidden and rare decays [Munich/Zagreb group]
» BBN [Zagreb group]
@ strong limits from isotropy
@ IR/UV mixing requires more work . . .
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e Flat NG Space |

» Collider experiments [Wirzburg group],
e.g. azimuthal modulation at LHC

120
SM LHC : JL =100fb~!, /s = 14TeV
100 o NCSM }
Anc = 03TeV, E = (1,0,0)
80 — (Kzyy, Kzzy) = (0.095,0.155)

(2]
S 60—
>
H# 40 —

20

0 ¢
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Using standard acceptance cuts and 85 GeV < my+,- < 97 GeV,
200GeV < mg+¢— < 1TeV, 0 < cos 0] < 0.9,
cos 0z > 0 and cos 6, > 0 (favoring qq over qq!)
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Noncommutative Symmetries and Gravity
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Eﬁ%’éﬁ‘ﬁ* Model Framework BNCESYnlnCIERERNEIE\iY

[Wess group, Madore, . ..]
» classical spaces «w classical symmetries (Lie groups/algebras)
> euclidean space «v euclidean group SO(3) < R3

> Minkowski space «v» Poincaré group SO(3,1) < R*

» NC spaces «» “quantum symmetries” (quantum groups/Hopf algebras)
> g-euclidean space «» g-euclidean Hopf algebra

> Moyal-plane «» 8-Poincaré Hopf algebra
» general feature:
noncommutative spacetime «» noncocommutative Hopf algebra
commutative spacetime «» Lie algebra — cocommutative HA
» Basic idea of (twisted) NC gravity:
Einstein gravity <« diffeomorphism Lie algebra =
NC Einstein gravity «» deformed diffeomorphism Hopf algebra

(=0, 1) = Uz, A, S, €) -5 (UZ, -, Ag, S, €)
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I e Model Framework BNONE{EETllElaRET=Tolul=1iaY%

[Wess group]
/" construction of cov. derivatives and curvature on NC manifolds

basic idea: deform everything using the twist = deformed covariant theory

= NC Einstein equations:

_ 1
Rica, — Egab * R = 871G Ty

» NB:
> nonlocal and nonlinear equations of motion — i.g. complicated
> ambiguities in defining Einstein equations @

? relation to NC vielbein gravity [Chamseddine, Aschieri, Castellani]

» wanted: solutions of NC Einstein equations

Th. Ohl & A. Schenkel (Wirzburg) NC Symmetry Reduction Bayrischzell ‘09 12/27



[5G Symmetry Reduction |

NC Symmetry Reduction:

a first step towards solutions
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EX%’S%‘J&‘NC Symmetry Reduction J\Y/Eligle]e

Classical symmetry reduction:
> isometries = symmetry Lie algebra g
> represent g in terms of vector fields =
» demand L,4(t) = {0} for all symmetric tensor fields
NC symmetry reduction: [TO, AS: JHEP 0901:084,2009]
> isometries = symmetry Lie algebra g
> represent g in terms of vector fields =
» demand L4(t) = {0} for all symmetric tensor fields
+ consistency condition: Lg(T * ') = {0}, if Lg(T) = Ly(T') = {0} !
» NB:
> CC from nontrivial coproduct A in Hopf algebra

> restrictions among twist ¥ and symmetry Lie algebra g
> for RJS twists [X4,al C g, V4 — classification! ©

/" FRW models, Schwarzschild black holes (& black branes, AdS, ...)
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@ﬁ%’éﬁ'&é‘NC Symmetry Reduction JEIEETiile=Nilelg NN ORI (ofo 11

Classification of deformed FRW models:

> g = Span(pi, I_i) with Pi = 04 andL; = eijkxjak
> [Xo, 8] C ggives X = X8 ()0t + 01 + diLi + foxtd;

» taking o € {1, 2} and demanding [X4, X2] = 0 we get

di=d>=0

d;#0,d, =0

Xy = X9(t)d¢ + cio;
X2 = Xg(t)at F C;ai

Xy = X9(t)0¢ + ctd; + diL;
Xo = Xg(t)at + K d;al

X1 = c}ai—kﬂxiai
Xz = X3(t)0:

X1 = c}@i =F d%l_l =F f1Xiai
Xo = X3(t)0¢

(Y’AB
f; =0,
fo =0
fy #0,
fo=0
f1 =0,
fa #0

X1 = X§(t)0,
X2 = Cizai aF fgxiai

X1 = X?(t)at A %d% C]2<€jkiai S d11'L1
X2 = Xg(t)at =F C;ai aF fgxiai

© there is an isotropic twist!
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EX%’S%‘J&‘NC Symmetry Reduction Jggelel=lgiEEReIMN ORI\ Arylole 1

1. favorite model: [t,%'] = iAX(t)xt
> isotropic but nonhomogeneous model (interesting for CMB)
> X(t) can be used to tune away NC effects for large t
> NC can drive gravity (see below!)
@ lies in the model class we understand less

2. next-to-favorite model: [ex/p\icb,%} :Aex/p\itb

> discrete time spectrum o(t) = A(Z + 6)

— singularity avoidance in cosmology!?!

© we understand background dynamics (see below!)
> nonisotropic model: maybe problems with CMB

3. less favored models: e.g. [%!,%7] =iAl]

© NC scale growing with time
© backgrounds and (Q)FT (see below!)
— nice playground for mathematical aspects (e. g. interacting fields)
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EXEE%‘J&‘NC Symmetry Reduction E&JEES e leIpN\NON=]1E e 5 6]lE

Classification of deformed black hole models:

> g = span(po, I_i) with po = 0¢ and L; = €iijjak

> [Xa,

gl C g gives Xo = (c

O(r) + NOt)d; +di L+ fuo(r)xto;

» taking o € {1, 2} and demanding [X4, X2] = 0 we get

Bag | f2(r) =0 fo(r) 20
N? =0, | X; =c(m)d, +ked'L; | Xy =99, + kd'L;
NI =0 | Xo=c3(r)0: + kod'L; | Xo = c3(1)0¢ + kod'Li+f2(1)x10;
NO#0, | X;=(c9(r) + N3y | Xy =(c%(r) + NOt)d, + k1d'L;
N3=0 | Xz =rkad'L; X2 = —%fz( T)red/ (1) + kod'Li + fo(r)x}
N9 =0, | Xy =kid'Ly Xy = (), + k¢d'L; (+ ODE for c9)
N3 #0 | Xo=(c3(r) +NSt)d;y | Xo = (c(r) + N3t)d; + kod'L; + fo(r)x*d;

© there is a twist invariant under all BH symmetries!
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EXEE%‘J&‘NC SV nlnEligAstle[ilelilelsl Properties of NC black hole models

—_

1. isotropic model: [, ] = iAf(r)
> isotropic and time translation invariant
> f(r) can be used to tune away NC effects for large r

2. discrete time model: [ex/p\icb, ’E} = Aexpid
> nonisotropic, but time translation invariant
> quantization of time in orders of A
> can define (Q)FT on this background
3. discrete radius model: [expid * 1] = —2sinh(5f(1)d;)r - expid
> nonisotropic, but time translation invariant
> f(r) =1 — o) ~exp(A(Z +6)) , not nice @

g e f(ry)
> f(r) generically ’

1 > T
— o(F) = AN(Z + 5) for large r, nicer ©
» BH models solve NC Einstein equations using undeformed metric!
» cf. Schupp-Solodukhin NC black hole
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[45° Background Dynamics |

Dynamics of Symmetry Reduced Sectors:

general properties and explicit solutions
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[45° Background Dynamics |

Proposition (10, AS: to appear)

Let F = exp(—20%*F X ® Xp) be a g-compatible RJS twist. Then the
symmetry reduced Riemannian geometry is undeformed if one X4 € g,
for all pairs of vector fields connected by @*F.

» most FRW, black hole (and black brane) models are solvable ©
NB: this does not mean our models are trivial!

» d examples with potential correction to backgrounds

» e.g. [t,%"] =iAk' = NC Friedmann equations:

A(t—iA) A(t+IiA)
A(t—iA) At +IiA)

v

N(t)(A(t—i)\) A(t+i)\)) Y 3<A(t+m f\(t—i)\)) = o

3
2 2 N(t)

4

A(t—iA) A(t+iA)

2

A(t+ir) A(t—iA) )

A(t)A(t)A(t —2iA) " A(t)A(t)N(t —iA) " 3A(1)2A(t —2A)N(t —iA)
At —2IA)N(t —ir)2 2N (t —ir)3 2A(t —2IA)N(t —ir)3
_AMA[)  BAMPA(R-2A)
2N(t—iA)2  2A(t—2A)N(t—iA)2

p(t)

» i.g. extremely complicated ®,
... but de Sitter space + cosmological constant solves it ©
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Field Fluctuations on NC Backgrounds:

a first step towards physics
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Eﬁ%’éﬁ‘iﬁ* Field Fluctuations
Actions for Killing RJS deformed fields:
» fixed Riemannian manifold (M, g) with isometries g
» Definition: Killing twist ¥ € Ug® Ug C U= ® U=
» nice feature: we have Hodge * and thus actions!
» examples: (here (w, w'), == [ w A, *w’ is SP on forms)

> St =—1(d®,dD), ——(cp D), Z Ak (1, D%,

> Sty = KTr(F,F),, F= dA—A/\*A

» NB:
> holds for curved ST; not restricted to Minkowski!
> graded cyclicity — free actions are undeformed ©

> field equations for ®: N

dfd® + m?® + ) k@Y =0
k=3
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Eﬁﬁgﬁﬁiﬁ Field Fluctuations
Deformed covariant phasespace for free scalar field:
» method: deformed Poisson geometry [Aschieri, Lizzi, Vitale ]
{F, G}, = {f*F,f«G} = — {R*G,R4F},
{F.{G,H},}, ={{F,G), , H}, + {R*G, {RaF,H} },
{F,G*H}, ={F, G}, x H+ R*G x {RaF, H},
» ingredients for space-time deformations:

> cov. phasespace Sol = solutions of dTd® + m?® =0
> Peierls bracket: (with A = A% — A™! as fundamental solution)

{F,G} = Jvolxvol 5G

OF
50060 Y 50w)

> lift twist to Sol: #: = — Vec(Sol), v¢ = — [vol £, cD)i

= deformed algebra (A, x,{, },) generated by ®(h) = [ vol ®h
> @(h)* (k) = O(f*h) - D(fok)
> {@(h), ©(k)}, ={®@(h), @(k)} = A(h, k)
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@ﬁﬁgﬁﬁiﬁ Field Fluctuations
Free QFT on Killing RJS backgrounds:
> {@(h), D(K)}, = A(h,k) 5 [d(h), b(k)], =iA(h, k)i
» Fock space construction:
> usual one-particle HS H = Solgos_ with (P1, P2)gc = —iQ (W1, P2)
> use isomorphism A : Cg°(M, C)/Ker(A) — Sol® and define

K:=A""(H), with ([h],[k])x :=IiA(R, k)

= deformed one-particle scalar product

> multi-particle states live in usual Fock space
Ihi,he, ..o ha), == @ (hy) % @f(hg) x -+ x a7 (hy) % |0)

» generalization of existing results [Aschieri, Fiore, Wess, Zahn, ...]
to curved spacetimes with Killing RJS twists
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[55%  Field Fluctuations [N RIES

What about non-Killing twists (as required for cosmology)?
» actions so far only for X € g, Vo @ (b/c Hodge x still missing)

.. but wave equations can be constructed, e.g.
0*® + F[®] =0, where O* =g%« (v;bvza —Tp & * V§C>
» example: free scalar field on de Sitter space
d(x) + 3HD(x) — e 2H*'AD(x) + M2D(x) =0, where

1. d(x) = exp(iA(0: — Hr0,))®(x) for [t,&1] = A%
2. ®(x) = exp(iAHd, ) D(x) for [% pd)} — Aexpid
» NB:

© i.g. linear but nonlocal equations
@ deformed Poisson geometry and quantization still open problem
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5 Conclusions and outiook |

» NCG is interesting step between classical and quantum gravity
» we found approach to NC symmetry reduction
— cosmological, black hole (and black brane) solutions
» distinct NC effects depending on model, e. g.
> discrete time spectra in cosmology
> discrete radius spectra for black holes
»  “realistic” models worth for cosmological studies
» free QFT on curved Killing RJS backgrounds
. still many open questions and undone calculations remain:
symmetry reduction and solutions in NC vielbein gravity
cosmological powerspectra and CMB predictions

>

>

> (Q)FT on curved non-Killing RJS backgrounds

> interacting QFT on curved Killing deformed backgrounds
>
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[E55 citius, attius, fortius .|

~\

(gathering stamina for the long jog ahead ...)
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