The Dear Old Undeformed Lorentz Action and NC Spacetime

Gherardo Piacitelli SISSA - Trieste
e-mail: piacitel@sissa.it

Bayrischzell, May 17, 2009

The Problem

No unitary representation U of \mathcal{L} can make the relations

$$
\left[\hat{x}_{\theta}^{\mu}, \hat{x}_{\theta}^{\nu}\right]=i \theta^{\mu \nu} I
$$

covariant. On one side,
$U(\Lambda)^{-1}\left[\hat{x}_{\theta}^{\mu}, \hat{x}_{\theta}^{\nu}\right] U(\Lambda)=\Lambda^{\mu \prime}{ }_{\mu} \Lambda^{\mu \prime}{ }_{\mu}\left[\hat{x}_{\theta}^{\mu}, \hat{x}_{\theta}^{\nu}\right]=i \theta^{\prime \mu \nu} I=i \Lambda^{\mu}{ }_{\mu^{\prime}} \Lambda^{\mu}{ }_{\mu^{\prime}} \theta^{\mu^{\prime} \nu^{\prime}} I ;$
On the other

$$
U(\Lambda)^{-1}\left(i \theta^{\mu \nu} I\right) U(\Lambda)=i \theta^{\mu \nu} U(\Lambda)^{-1} U(\Lambda)=i \theta^{\mu \nu} l
$$

unless Λ is in the stabiliser of θ.

The Problem

No unitary representation U of \mathcal{L} can make the relations

$$
\left[\hat{x}_{\theta}^{\mu}, \hat{x}_{\theta}^{\nu}\right]=i \theta^{\mu \nu} I
$$

covariant. On one side,

$$
U(\Lambda)^{-1}\left[\hat{x}_{\theta}^{\mu}, \hat{x}_{\theta}^{\nu}\right] U(\Lambda)=\Lambda_{\mu}^{\mu \prime} \Lambda_{\mu}^{\mu \prime}\left[\hat{x}_{\theta}^{\mu}, \hat{x}_{\theta}^{\nu}\right]=i \theta^{\prime \mu \nu} I=i \Lambda_{\mu^{\prime}}^{\mu} \Lambda_{\mu^{\prime}}^{\mu} \theta^{\mu^{\prime} \nu^{\prime}} I ;
$$

On the other

$$
U(\Lambda)^{-1}\left(i \theta^{\mu \nu} l\right) U(\Lambda)=i \theta^{\mu \nu} U(\Lambda)^{-1} U(\Lambda)=i \theta^{\mu \nu} l
$$

unless Λ is in the stabiliser of θ.

The Problem

No unitary representation U of \mathcal{L} can make the relations

$$
\left[\hat{x}_{\theta}^{\mu}, \hat{x}_{\theta}^{\nu}\right]=i \theta^{\mu \nu} I
$$

covariant. On one side,
$U(\Lambda)^{-1}\left[\hat{x}_{\theta}^{\mu}, \hat{x}_{\theta}^{\nu}\right] U(\Lambda)=\Lambda^{\mu \prime}{ }_{\mu} \Lambda^{\mu \prime}{ }_{\mu}\left[\hat{x}_{\theta}^{\mu}, \hat{x}_{\theta}^{\nu}\right]=i \theta^{\prime \mu \nu} I=i \Lambda^{\mu}{ }_{\mu^{\prime}} \Lambda^{\mu}{ }_{\mu^{\prime}} \theta^{\mu^{\prime} \nu^{\prime}} I ;$
On the other

$$
U(\Lambda)^{-1}\left(i \theta^{\mu \nu} l\right) U(\Lambda)=i \theta^{\mu \nu} U(\Lambda)^{-1} U(\Lambda)=i \theta^{\mu \nu} l
$$

and

$$
\theta \neq \theta^{\prime}
$$

unless Λ is in the stabiliser of θ.

Approaches to The Problem

(1) Give up and replace \mathcal{L} with the stabiliser;

2 keep same θ in all frames, and deform (the action of) \mathcal{L};
(3) keep undeformed action of \mathcal{L}, and let θ transform as a tensor;
(4) DFR model (actually the first proposal, 1994).

I wish to convince you that $2=3$, that 3 leads naturally to 4 , and can be recovered from it up to an additional assumption I wish to criticise.

Approaches to The Problem

(1) Give up and replace \mathcal{L} with the stabiliser;

2 keep same θ in all frames, and deform (the action of) \mathcal{L};
(3) keep undeformed action of \mathcal{L}, and let θ transform as a tensor;

4 DFR model (actually the first proposal, 1994).
I wish to convince you that $2=3$, that 3 leads naturally to 4 , and can be recovered from it up to an additional assumption I wish to criticise.

Approaches to The Problem

(1) Give up and replace \mathcal{L} with the stabiliser;

2 keep same θ in all frames, and deform (the action of) \mathcal{L};
(3) keep undeformed action of \mathcal{L}, and let θ transform as a tensor;
(4) DFR model (actually the first proposal, 1994).

I wish to convince you that $2=3$, that 3 leads naturally to 4 , and can be recovered from it up to an additional assumption wish to criticise.

Approaches to The Problem

(1) Give up and replace \mathcal{L} with the stabiliser;
(2) keep same θ in all frames, and deform (the action of) \mathcal{L};
(3) keep undeformed action of \mathcal{L}, and let θ transform as a tensor;
(4) DFR model (actually the first proposal, 1994).

I wish to convince you that $2=3$, that 3 leads naturally to 4 , and can be recovered from it up to an additional assumption I wish to criticise.

Star Product

Conservative approach based on Weyl quantisation:

$$
f \mapsto W_{\theta}(f)=\int d \check{ } \check{f}(k) e^{i k_{\mu} \hat{x}_{\theta}^{\mu}},
$$

where

$$
\check{f}(k)=\frac{1}{(2 \pi)^{4}} \int d x f(x) e^{-i k_{\mu} x_{\theta}^{\mu}} .
$$

Twisted product $=$ auxiliary tool defined by:

$$
W_{\theta}\left(f \star_{\theta} g\right)=W_{\theta}(f) W_{\theta}(g) \quad(\text { operator product })
$$

One finds

$$
f \star_{\theta} g=\left(m \circ F_{\theta}\right)(f \otimes g),
$$

where $m=$ commutative product: $m(f \otimes g)(x)=f(x) g(x)$, and

$$
F_{\theta}=e^{\frac{1}{2} \mu^{\mu \nu} \partial_{\mu} \otimes \otimes \partial .}
$$

Star Product

Conservative approach based on Weyl quantisation:

$$
f \mapsto W_{\theta}(f)=\int d \check{ } \check{f}(k) e^{i k_{\mu} \hat{x}_{\theta}^{\mu}},
$$

where

$$
\check{f}(k)=\frac{1}{(2 \pi)^{4}} \int d x f(x) e^{-i k_{\mu} x_{\theta}^{\mu}} .
$$

Twisted product $=$ auxiliary tool defined by:

$$
\left.W_{\theta}\left(f \star_{\theta} g\right)=W_{\theta}(f) W_{\theta}(g) \quad \text { (operator product }\right)
$$

One finds

$$
f_{\star_{\theta}} g=\left(m \circ F_{\theta}\right)(f \otimes g),
$$

where $m=$ commutative product: $m(f \otimes g)(x)=f(x) g(x)$, and

Star Product

Conservative approach based on Weyl quantisation:

$$
f \mapsto W_{\theta}(f)=\int d k \check{k}(k) e^{i k_{\mu} \hat{x}_{\theta}^{\mu}},
$$

where

$$
\check{f}(k)=\frac{1}{(2 \pi)^{4}} \int d x f(x) e^{-i k_{\mu} x_{\theta}^{\mu}} .
$$

Twisted product = auxiliary tool defined by:

$$
W_{\theta}\left(f \star_{\theta} g\right)=W_{\theta}(f) W_{\theta}(g) \quad(\text { operator product })
$$

One finds

$$
f \star_{\theta} g=\left(m \circ F_{\theta}\right)(f \otimes g),
$$

where $m=$ commutative product: $m(f \otimes g)(x)=f(x) g(x)$, and

$$
F_{\theta}=e^{\frac{1}{2} \theta^{\mu \nu} \partial_{\mu} \otimes \partial_{\nu}}
$$

on an appropriate class of symbols (HIC SUNT LEONES).

The Problem - Again

With the Lorentz action

$$
\left(\alpha_{\Lambda} f\right)(x)=f^{\prime}(x)=f\left(\Lambda^{-1} x\right)
$$

on symbols, we have

$$
W_{\theta}\left(f^{\prime}\right) W_{\theta}\left(f^{\prime}\right) \neq W_{\theta}\left(\left(\alpha_{\Lambda} f^{\prime}\right) \star_{\theta}\left(\alpha_{\Lambda} f^{\prime}\right)\right)
$$

in general.
The above can be rewritten using *-products:

$$
f^{\prime} \star_{\theta} g^{\prime} \neq\left(f \star_{\theta} g\right)^{\prime} .
$$

The Problem - Again

With the Lorentz action

$$
\left(\alpha_{\Lambda} f\right)(x)=f^{\prime}(x)=f\left(\Lambda^{-1} x\right)
$$

on symbols, we have

$$
W_{\theta}\left(f^{\prime}\right) W_{\theta}\left(f^{\prime}\right) \neq W_{\theta}\left(\left(\alpha_{\Lambda} f^{\prime}\right) \star_{\theta}\left(\alpha_{\Lambda} f^{\prime}\right)\right)
$$

in general.
The above can be rewritten using *-products:

$$
f^{\prime} \star_{\theta} g^{\prime} \neq\left(f \star_{\theta} g\right)^{\prime} .
$$

Twisted Covariance

- keep action on functions of one variable: $f \mapsto \alpha_{\Lambda} f$
- deform action on functions of two variables

$$
f \otimes g \mapsto\left(F_{\theta}^{-1} \circ\left(\alpha_{\Lambda} \otimes \alpha_{\Lambda}\right) \circ F_{\theta}\right)(f \otimes g)
$$

It is an action:

$\left(F_{\theta}^{-1} \circ\left(\alpha_{\Lambda} \otimes \alpha_{\Lambda}\right) \circ F_{\theta}\right)\left(F_{\theta}^{-1} \circ\left(\alpha_{M} \otimes \alpha_{M}\right) \circ F_{\theta}\right)=\left(F_{\theta}^{-1} \circ\left(\alpha_{A M} \otimes \alpha_{A M}\right) \circ F_{\theta}\right)$

It solves the problem:

$$
m_{\theta}\left(\left(F_{\theta}^{-1} \circ\left(\alpha_{\Lambda} \otimes \alpha_{\Lambda}\right) \circ F_{\theta}\right)(f \otimes g)=\alpha_{\Lambda} m_{\theta}(f \otimes g)\right.
$$

[^0]$$
(f \otimes g)(x, y)=f(x) g(y)
$$

Twisted Covariance

- keep action on functions of one variable: $f \mapsto \alpha_{\Lambda} f$
- deform action on functions of two variables ${ }^{1}$

$$
f \otimes g \mapsto\left(F_{\theta}^{-1} \circ\left(\alpha_{\Lambda} \otimes \alpha_{\Lambda}\right) \circ F_{\theta}\right)(f \otimes g)
$$

It is an action:

It solves the problem:

${ }^{1}$ Notation:

$$
\begin{gathered}
(f \otimes g)(x, y)=f(x) g(y) \\
\left(\alpha_{\Lambda} \otimes \alpha_{\Lambda}\right)(f \otimes g)(x, y): f\left(\Lambda^{-1} x\right) g\left(\Lambda^{-1} y\right)
\end{gathered}
$$

Twisted Covariance

- keep action on functions of one variable: $f \mapsto \alpha_{\Lambda} f$
- deform action on functions of two variables ${ }^{1}$

$$
f \otimes g \mapsto\left(F_{\theta}^{-1} \circ\left(\alpha_{\Lambda} \otimes \alpha_{\Lambda}\right) \circ F_{\theta}\right)(f \otimes g)
$$

It is an action:
$\left(F_{\theta}^{-1} \circ\left(\alpha_{\Lambda} \otimes \alpha_{\Lambda}\right) \circ F_{\theta}\right)\left(F_{\theta}^{-1} \circ\left(\alpha_{M} \otimes \alpha_{M}\right) \circ F_{\theta}\right)=\left(F_{\theta}^{-1} \circ\left(\alpha_{\Lambda M} \otimes \alpha_{\Lambda M}\right) \circ F_{\theta}\right)$
It solves the problem:
${ }^{1}$ Notation:

$$
\begin{gathered}
(f \otimes g)(x, y)=f(x) g(y) \\
\left(\alpha_{\Lambda} \otimes \alpha_{\Lambda}\right)(f \otimes g)(x, y): f\left(\Lambda^{-1} x\right) g\left(\Lambda^{-1} y\right)
\end{gathered}
$$

Twisted Covariance

- keep action on functions of one variable: $f \mapsto \alpha_{\Lambda} f$
- deform action on functions of two variables ${ }^{1}$

$$
f \otimes g \mapsto\left(F_{\theta}^{-1} \circ\left(\alpha_{\Lambda} \otimes \alpha_{\Lambda}\right) \circ F_{\theta}\right)(f \otimes g)
$$

It is an action:
$\left(F_{\theta}^{-1} \circ\left(\alpha_{\Lambda} \otimes \alpha_{\Lambda}\right) \circ F_{\theta}\right)\left(F_{\theta}^{-1} \circ\left(\alpha_{M} \otimes \alpha_{M}\right) \circ F_{\theta}\right)=\left(F_{\theta}^{-1} \circ\left(\alpha_{\Lambda M} \otimes \alpha_{\Lambda M}\right) \circ F_{\theta}\right)$
It solves the problem:

$$
m_{\theta}\left(\left(F_{\theta}^{-1} \circ\left(\alpha_{\Lambda} \otimes \alpha_{\Lambda}\right) \circ F_{\theta}\right)(f \otimes g)=\alpha_{\Lambda} m_{\theta}(f \otimes g)\right.
$$

${ }^{1}$ Notation:

$$
\begin{gathered}
(f \otimes g)(x, y)=f(x) g(y) \\
\left(\alpha_{\Lambda} \otimes \alpha_{\Lambda}\right)(f \otimes g)(x, y): f\left(\Lambda^{-1} x\right) g\left(\Lambda^{-1} y\right)
\end{gathered}
$$

Concrete Actions vs Abstract algebra

Twisted action: computing

$$
m_{\theta}\left(\left(F_{\theta}^{-1} \circ\left(\alpha_{\Lambda} \otimes \alpha_{\Lambda}\right) \circ F_{\theta}\right)(f \otimes g)\right)=\left(m \circ\left(\alpha_{\Lambda} \otimes \alpha_{\Lambda}\right) \circ F_{\theta}\right)(f \otimes g)
$$

means:

$$
\text { (1) } f \otimes g \mapsto F_{\theta} f \otimes g=e^{\frac{1}{2} \theta^{\mu} \nu \partial_{\mu} \otimes \partial \nu} f \otimes g
$$

(3) $\left(m \circ F_{\theta^{\prime}}\left(\alpha_{\Lambda} f\right) \otimes\left(\alpha_{\Lambda} g\right)\right)(f \otimes g)=m_{\theta^{\prime}}\left(f^{\prime} \otimes g^{\prime}\right)=f^{\prime} \star_{\theta}^{\prime} g^{\prime}$.
Hence twisted covariance is equivalent to

Concrete Actions vs Abstract algebra

Twisted action: computing

$$
m_{\theta}\left(\left(F_{\theta}^{-1} \circ\left(\alpha_{\Lambda} \otimes \alpha_{\Lambda}\right) \circ F_{\theta}\right)(f \otimes g)\right)=\left(m \circ\left(\alpha_{\Lambda} \otimes \alpha_{\Lambda}\right) \circ F_{\theta}\right)(f \otimes g)
$$

means:
(1) $f \otimes g \mapsto F_{\theta} f \otimes g=e^{\frac{1}{2} \theta^{\mu} \nu \partial_{\mu} \otimes \partial \nu} f \otimes g$
(2) $F_{\theta} f \otimes \boldsymbol{g} \mapsto\left(\alpha_{\Lambda} \otimes \alpha_{\Lambda}\right)\left(F_{\theta} f \otimes \boldsymbol{g}\right)=e^{\frac{1}{2} \theta^{\prime \mu} \nu \partial_{\mu} \otimes \partial \nu}\left(\alpha_{\Lambda} f\right) \otimes\left(\alpha_{\Lambda} g\right)=$

$$
=F_{\theta^{\prime}}\left(\alpha_{\Lambda} f\right) \otimes\left(\alpha_{\Lambda} f\right)
$$

Hence twisted covariance is equivalent to

Concrete Actions vs Abstract algebra

Twisted action: computing

$$
m_{\theta}\left(\left(F_{\theta}^{-1} \circ\left(\alpha_{\Lambda} \otimes \alpha_{\Lambda}\right) \circ F_{\theta}\right)(f \otimes g)\right)=\left(m \circ\left(\alpha_{\Lambda} \otimes \alpha_{\Lambda}\right) \circ F_{\theta}\right)(f \otimes g)
$$

means:
(1) $f \otimes g \mapsto F_{\theta} f \otimes g=e^{\frac{1}{2} \theta^{\mu} \nu \partial_{\mu} \otimes \partial \nu} f \otimes g$
(2) $F_{\theta} f \otimes \boldsymbol{g} \mapsto\left(\alpha_{\Lambda} \otimes \alpha_{\Lambda}\right)\left(F_{\theta} f \otimes \boldsymbol{g}\right)=e^{\frac{1}{2} \theta^{\prime \mu} \nu \partial_{\mu} \otimes \partial \nu}\left(\alpha_{\Lambda} f\right) \otimes\left(\alpha_{\Lambda} g\right)=$

$$
=F_{\theta^{\prime}}\left(\alpha_{\Lambda} f\right) \otimes\left(\alpha_{\Lambda} f\right)
$$

(3) $\left(m \circ F_{\theta^{\prime}}\left(\alpha_{\Lambda} f\right) \otimes\left(\alpha_{\Lambda} g\right)\right)(f \otimes g)=m_{\theta^{\prime}}\left(f^{\prime} \otimes g^{\prime}\right)=f^{\prime} \star_{\theta}^{\prime} g^{\prime}$.

Concrete Actions vs Abstract algebra

Twisted action: computing

$$
m_{\theta}\left(\left(F_{\theta}^{-1} \circ\left(\alpha_{\Lambda} \otimes \alpha_{\Lambda}\right) \circ F_{\theta}\right)(f \otimes g)\right)=\left(m \circ\left(\alpha_{\Lambda} \otimes \alpha_{\Lambda}\right) \circ F_{\theta}\right)(f \otimes g)
$$

means:
(1) $f \otimes g \mapsto F_{\theta} f \otimes g=e^{\frac{1}{2} \theta^{\mu} \nu \partial_{\mu} \otimes \partial \nu} f \otimes g$
(2) $F_{\theta} f \otimes \boldsymbol{g} \mapsto\left(\alpha_{\Lambda} \otimes \alpha_{\Lambda}\right)\left(F_{\theta} f \otimes g\right)=e^{\frac{1}{2} \theta^{\prime \mu} \nu \partial_{\mu} \otimes \partial \nu}\left(\alpha_{\Lambda} f\right) \otimes\left(\alpha_{\Lambda} g\right)=$

$$
=F_{\theta^{\prime}}\left(\alpha_{\Lambda} f\right) \otimes\left(\alpha_{\Lambda} f\right)
$$

(3) $\left(m \circ F_{\theta^{\prime}}\left(\alpha_{\Lambda} f\right) \otimes\left(\alpha_{\Lambda} g\right)\right)(f \otimes g)=m_{\theta^{\prime}}\left(f^{\prime} \otimes g^{\prime}\right)=f^{\prime} \star_{\theta}^{\prime} g^{\prime}$.

Hence twisted covariance is equivalent to

$$
\left(f \star_{\theta} g\right)^{\prime}=f^{\prime} \star_{\theta^{\prime}} g^{\prime}
$$

The Situation Now

Notation: θ fixed once and for all by a privileged observer, σ dummy element of Σ. Then

- $\Sigma=$ orbit of $\left(\theta^{\mu \nu}\right)$ under Lorentz action;
- to each $\left(\sigma^{\mu \nu}\right)$, there is a \star_{σ} defining an algebra \mathcal{A}_{σ};
- there is an action of Lorentz group α_{Λ} sending $f \in \mathcal{A}_{\sigma} \mapsto f \circ \Lambda^{-1} \in \mathcal{A}_{\sigma^{\prime}}$, where $\sigma^{\prime \mu \nu}=\Lambda^{\mu}{ }_{\mu^{\prime}} \Lambda^{\mu}{ }_{\mu^{\prime}} \sigma^{\mu^{\prime} \nu^{\prime}} ;$
- this map respects $*$-products at the cost of using the right σ in every \mathcal{A}_{σ} in the family $\left\{\mathcal{A}_{\sigma}: \sigma \in \Sigma\right\}$

The Situation Now

Notation: θ fixed once and for all by a privileged observer, σ dummy element of Σ. Then

- $\Sigma=$ orbit of $\left(\theta^{\mu \nu}\right)$ under Lorentz action;
- to each $\left(\sigma^{\mu \nu}\right)$, there is a \star_{σ} defining an algebra \mathcal{A}_{σ};
- there is an action of Lorentz group α_{Λ} sending
- this map respects $*$-products at the cost of using the right σ in every \mathcal{A}_{σ} in the family $\left\{\mathcal{A}_{\sigma}: \sigma \in \Sigma\right\}$

The Situation Now

Notation: θ fixed once and for all by a privileged observer, σ dummy element of Σ. Then

- $\Sigma=$ orbit of $\left(\theta^{\mu \nu}\right)$ under Lorentz action;
- to each $\left(\sigma^{\mu \nu}\right)$, there is a \star_{σ} defining an algebra \mathcal{A}_{σ};
- there is an action of Lorentz group α_{Λ} sending $f \in \mathcal{A}_{\sigma} \mapsto f \circ \Lambda^{-1} \in \mathcal{A}_{\sigma^{\prime}}$, where $\sigma^{\prime \mu \nu}=\Lambda^{\mu}{ }_{\mu^{\prime}} \Lambda^{\mu}{ }_{\mu^{\prime}} \sigma^{\mu^{\prime} \nu^{\prime}} ;$
- this map respects $*$-products at the cost of using the right σ in every \mathcal{A}_{σ} in the family $\left\{\mathcal{A}_{\sigma}: \sigma \in \Sigma\right\}$

The Situation Now

Notation: θ fixed once and for all by a privileged observer, σ dummy element of Σ. Then

- $\Sigma=$ orbit of $\left(\theta^{\mu \nu}\right)$ under Lorentz action;
- to each $\left(\sigma^{\mu \nu}\right)$, there is a \star_{σ} defining an algebra \mathcal{A}_{σ};
- there is an action of Lorentz group α_{Λ} sending $f \in \mathcal{A}_{\sigma} \mapsto f \circ \Lambda^{-1} \in \mathcal{A}_{\sigma^{\prime}}$, where $\sigma^{\prime \mu \nu}=\Lambda^{\mu}{ }_{\mu^{\prime}} \Lambda^{\mu}{ }_{\mu^{\prime}} \sigma^{\mu^{\prime} \nu^{\prime}} ;$
- this map respects \star-products at the cost of using the right σ in every \mathcal{A}_{σ} in the family $\left\{\mathcal{A}_{\sigma}: \sigma \in \Sigma\right\}$.

Tensor or not? Back to Interpretation!

Untwisted form covariance + tensoriality of θ may seem appealing, but form covariance alone not a guidance, when equivalence of observers is broken at a fundamental level. Up to now the two formalisms have same dignity.

> Problem is: above only formal remark. To decide, go back to interpretation of $i \theta$ as the commutator of the coordinates. Assume Jack=preferred observer, Jane=observer connected to Jack by 1 . Jane:

Tensor or not? Back to Interpretation!

Untwisted form covariance + tensoriality of θ may seem appealing, but form covariance alone not a guidance, when equivalence of observers is broken at a fundamental level. Up to now the two formalisms have same dignity.
Problem is: above only formal remark. To decide, go back to interpretation of $i \theta$ as the commutator of the coordinates. Assume Jack=preferred observer, Jane=observer connected to Jack by Λ.
Jane:

Tensor or not? Back to Interpretation!

Untwisted form covariance + tensoriality of θ may seem appealing, but form covariance alone not a guidance, when equivalence of observers is broken at a fundamental level. Up to now the two formalisms have same dignity.
Problem is: above only formal remark. To decide, go back to interpretation of i θ as the commutator of the coordinates. Assume Jack=preferred observer, Jane=observer connected to Jack by Λ. Jane:

- $\left[\hat{y}^{\mu}, \hat{y}^{\nu}\right]=$? (no a priori assumption),

Tensor or not? Back to Interpretation!

Untwisted form covariance + tensoriality of θ may seem appealing, but form covariance alone not a guidance, when equivalence of observers is broken at a fundamental level. Up to now the two formalisms have same dignity.
Problem is: above only formal remark. To decide, go back to interpretation of i θ as the commutator of the coordinates. Assume Jack=preferred observer, Jane=observer connected to Jack by Λ. Jane:

- $\left[\hat{y}^{\mu}, \hat{y}^{\nu}\right]=$?
- $W^{\prime}\left(f^{\prime}\right)=\int d k \check{f}^{\prime}(k) e^{i k \hat{y}}$
(no a priori assumption),
(same physics),

Tensor or not? Back to Interpretation!

Untwisted form covariance + tensoriality of θ may seem appealing, but form covariance alone not a guidance, when equivalence of observers is broken at a fundamental level. Up to now the two formalisms have same dignity.
Problem is: above only formal remark. To decide, go back to interpretation of $i \theta$ as the commutator of the coordinates. Assume Jack=preferred observer, Jane=observer connected to Jack by Λ. Jane:

- $\left[\hat{y}^{\mu}, \hat{y}^{\nu}\right]=$?
- $W^{\prime}\left(f^{\prime}\right)=\int d k \check{f}^{\prime}(k) e^{i k \hat{y}}$
- $W^{\prime}\left(m_{\theta}\left(\alpha_{\theta}^{(2)}(f \otimes g)\right)=W^{\prime}\left(f^{\prime}\right) W^{\prime}\left(g^{\prime}\right)\right.$
(no a priori assumption),
(same physics),
(twisted cov).

Weyl quantisation requires θ tensor

We first compute)

$$
\begin{aligned}
W^{\prime}\left(f^{\prime}\right) W\left(g^{\prime}\right) & =\left(\int d h \check{f}^{\prime}(h) e^{i h \hat{y}}\right)\left(\int d h \check{g}^{\prime}(k) e^{i k \hat{y}}\right)= \\
& =\int d h \int d k \check{f}^{\prime}(h) \check{g}^{\prime}(k) e^{i h \hat{y}} e^{i k \hat{y}}
\end{aligned}
$$

$W^{\prime}\left(m_{\theta}\left(\alpha_{\theta}^{(2)}\right)(f \otimes g)\right)=\int d k e^{i k \hat{y}} \int d h e^{-\frac{1}{2} h \theta k} e^{\frac{1}{2}\left(h \theta k-h \theta^{\prime} k\right)}$ $\check{f}^{\prime}(h) \check{g}^{\prime}(k-h)=$

$$
=\int d k e^{i(h+k) y} \int d h \breve{f}^{\prime}(h) g^{\prime}(k) e^{-\frac{1}{2} h \theta^{\prime}(k+h)}
$$

where $\theta^{\prime \mu \nu}=\Lambda^{\mu}{ }_{\mu^{\prime}} \Lambda^{\nu}{ }_{\nu^{\prime}} \theta^{\mu^{\prime} \nu^{\prime}}$. It follows

$$
e^{i h \hat{y}} e^{i k \hat{y}}=e^{-\frac{i}{2} h \theta^{\prime} k} e^{i(h-k) \hat{y}}
$$

Weyl quantisation requires θ tensor

We first compute)

$$
\begin{aligned}
W^{\prime}\left(f^{\prime}\right) W\left(g^{\prime}\right) & =\left(\int d h \check{f}^{\prime}(h) e^{i h \hat{y}}\right)\left(\int d h \check{g}^{\prime}(k) e^{i k \hat{y}}\right)= \\
& =\int d h \int d k \check{f}^{\prime}(h) \check{g}^{\prime}(k) e^{i h \hat{y}} e^{i k \hat{y}}, \\
W^{\prime}\left(m_{\theta}\left(\alpha_{\theta}^{(2)}\right)(f \otimes g)\right) & =\int d k e^{i k \hat{y}} \int d h e^{-\frac{i}{2} h \theta k} e^{\frac{i}{2}\left(h \theta k-h \theta^{\prime} k\right)} \\
& =\int d k e^{i(h+k) \hat{y}} \int d h \check{g}^{\prime}(k-h)= \\
& =\int \check{f}^{\prime}(h) \check{g}^{\prime}(k) e^{-\frac{i}{2} h \theta^{\prime}(k+h)}
\end{aligned}
$$

where $\theta^{\prime \mu \nu}=\Lambda^{\mu}{ }_{\mu^{\prime}} \Lambda^{\nu}{ }_{\nu^{\prime}} \theta^{\mu^{\prime} \nu^{\prime}}$. It follows

Weyl quantisation requires θ tensor

We first compute)

$$
\begin{aligned}
W^{\prime}\left(f^{\prime}\right) W\left(g^{\prime}\right) & =\left(\int d h \check{f}^{\prime}(h) e^{i h \hat{y}}\right)\left(\int d h \check{g}^{\prime}(k) e^{i k \hat{y}}\right)= \\
& =\int d h \int d k \check{f}^{\prime}(h) \check{g}^{\prime}(k) e^{i h \hat{y}} e^{i k \hat{y}}, \\
W^{\prime}\left(m_{\theta}\left(\alpha_{\theta}^{(2)}\right)(f \otimes g)\right) & =\int d k e^{i k \hat{y}} \int d h e^{-\frac{i}{2} h \theta k} e^{\frac{i}{2}\left(h \theta k-h \theta^{\prime} k\right)} \\
& =\int d k e^{i(h+k) \hat{y}} \int d h \check{g}^{\prime}(k-h)= \\
& =\int \check{f}^{\prime}(h) \check{g}^{\prime}(k) e^{-\frac{i}{2} h \theta^{\prime}(k+\text { 片 }}
\end{aligned}
$$

where $\theta^{\prime \mu \nu}=\Lambda^{\mu}{ }_{\mu^{\prime}} \Lambda^{\nu}{ }_{\nu^{\prime}} \theta^{\mu^{\prime} \nu^{\prime}}$. It follows

Weyl quantisation requires θ tensor

We first compute)

$$
\begin{aligned}
W^{\prime}\left(f^{\prime}\right) W\left(g^{\prime}\right) & =\left(\int d h \check{f}^{\prime}(h) e^{i h \hat{y}}\right)\left(\int d h \check{g}^{\prime}(k) e^{i k \hat{y}}\right)= \\
& =\int d h \int d k \check{f}^{\prime}(h) \check{g}^{\prime}(k) e^{i h \hat{y}} e^{i k \hat{y}}
\end{aligned}
$$

$W^{\prime}\left(m_{\theta}\left(\alpha_{\theta}^{(2)}\right)(f \otimes g)\right)=\int d k e^{i k \hat{y}} \int d h e^{-\frac{i}{2} h \theta k} e^{\frac{i}{2}\left(h \theta k-h \theta^{\prime} k\right)}$

$$
\begin{aligned}
& \check{f}^{\prime}(h) \check{g}^{\prime}(k-h)= \\
= & \int d k e^{i(h+k) \hat{y}} \int d h \check{f}^{\prime}(h) \check{g}^{\prime}(k) e^{-\frac{i}{2} h \theta^{\prime}(k+h \not)}
\end{aligned}
$$

where $\theta^{\prime \mu \nu}=\Lambda^{\mu}{ }_{\mu^{\prime}} \Lambda^{\nu}{ }_{\nu^{\prime}} \theta^{\mu^{\prime} \nu^{\prime}}$. It follows

$$
e^{i h \hat{y}} e^{i k \hat{y}}=e^{-\frac{i}{2} h \theta^{\prime} k} e^{i(h+k) \hat{y}},
$$

i.e. the Weyl form of $\left[\hat{y}^{\mu}, \hat{y}^{\nu}\right]=i \theta^{\prime \mu \nu}$. Conclusion: $\hat{y}=\hat{x}_{\theta^{\prime}}$ and θ is a tensor!

On the way to the DFR model

Now the situation is that to each observer there is: (1) a σ, (2) coordinates with commutator $i \sigma$, (3) the corresponding Weyl quantisation $W_{\sigma} \ldots$
> and there is an action of the Lorentz group on the family of functions $\mathcal{A}=\left\{\mathcal{A}_{\sigma}: \sigma \in \Sigma\right\}$.

> This suggests to consider the family \mathcal{A} as a bundle of algebras
> over Σ, where each \mathcal{A}_{σ} is the fibre over $\sigma \in \Sigma$.
> Sections can be thought as functions $f=f(\sigma ; x)$, where $f(\sigma ; \cdot) \in \mathcal{A}_{\sigma}$.
> The product is taken fibrewise:

$$
(f \star g)\left(\sigma_{;} \cdot \cdot\right)=f\left(\sigma_{;} \cdot\right) \star_{\sigma} f\left(\sigma_{;} \cdot\right) .
$$

On the way to the DFR model

Now the situation is that to each observer there is: (1) a σ, (2) coordinates with commutator $i \sigma$, (3) the corresponding Weyl quantisation $W_{\sigma} \ldots$
... and there is an action of the Lorentz group on the family of functions $\mathcal{A}=\left\{\mathcal{A}_{\sigma}: \sigma \in \Sigma\right\}$.

This suggests to consider the family \mathcal{A} as a bundle of algebras
over Σ, where each \mathcal{A}_{σ} is the fibre over $\sigma \in \Sigma$.
Sections can be thought as functions $f=f(\sigma ; x)$, where $f(\sigma ; \cdot) \in \mathcal{A}_{\sigma}$.
The product is taken fibrewise:

$$
(f * g)\left(\sigma_{i}\right)=f\left(\sigma_{i}\right) \star_{\sigma} f\left(\sigma_{i}\right) .
$$

On the way to the DFR model

Now the situation is that to each observer there is: (1) a σ, (2) coordinates with commutator $i \sigma$, (3) the corresponding Weyl quantisation $W_{\sigma} \ldots$
... and there is an action of the Lorentz group on the family of functions $\mathcal{A}=\left\{\mathcal{A}_{\sigma}: \sigma \in \Sigma\right\}$.

This suggests to consider the family \mathcal{A} as a bundle of algebras over Σ, where each \mathcal{A}_{σ} is the fibre over $\sigma \in \Sigma$.
Sections can be thought as functions $f=f(\sigma ; x)$, where

The product is taken fibrewise:

On the way to the DFR model

Now the situation is that to each observer there is: (1) a σ, (2) coordinates with commutator $i \sigma$, (3) the corresponding Weyl quantisation $W_{\sigma} \ldots$
... and there is an action of the Lorentz group on the family of functions $\mathcal{A}=\left\{\mathcal{A}_{\sigma}: \sigma \in \Sigma\right\}$.

This suggests to consider the family \mathcal{A} as a bundle of algebras over Σ, where each \mathcal{A}_{σ} is the fibre over $\sigma \in \Sigma$. Sections can be thought as functions $f=f(\sigma ; x)$, where $f(\sigma ; \cdot) \in \mathcal{A}_{\sigma}$.
The product is taken fibrewise:

On the way to the DFR model

Now the situation is that to each observer there is: (1) a σ, (2) coordinates with commutator $i \sigma$, (3) the corresponding Weyl quantisation $W_{\sigma} \ldots$
... and there is an action of the Lorentz group on the family of functions $\mathcal{A}=\left\{\mathcal{A}_{\sigma}: \sigma \in \Sigma\right\}$.

This suggests to consider the family \mathcal{A} as a bundle of algebras over Σ, where each \mathcal{A}_{σ} is the fibre over $\sigma \in \Sigma$. Sections can be thought as functions $f=f(\sigma ; x)$, where $f(\sigma ; \cdot) \in \mathcal{A}_{\sigma}$.
The product is taken fibrewise:

$$
(f \star g)(\sigma ; \cdot)=f(\sigma ; \cdot) \star_{\sigma} f(\sigma ; \cdot)
$$

DFR C*algebra

The fibrewise product \star turns the bundle $\left\{\mathcal{A}_{\sigma}: \sigma \in \Sigma\right\}$ into a well defined algebra.
The action is

$$
\left(\alpha_{\Lambda} f\right)(\sigma ; x)=(\operatorname{det} \Lambda) f\left(\Lambda^{-1} \sigma \Lambda^{-1}{ }^{t}, \Lambda^{-1} x\right) .
$$

Theorem [DFR 95]; If Σ contains the standard symplectic matrix, there is a unique C^{\star}-norm on \mathcal{A}; the corresponding C^{+}-completton is isomorphic (as a continuous fleld of C^{\star}-algebras) to $\mathrm{C}_{0}(\Sigma, \mathcal{K}), \mathcal{K}=$ compact operators. The Lorentz group acts by endomorphisms.

DFR C*algebra

The fibrewise product \star turns the bundle $\left\{\mathcal{A}_{\sigma}: \sigma \in \Sigma\right\}$ into a well defined algebra.
The action is

$$
\left(\alpha_{\Lambda} f\right)(\sigma ; x)=(\operatorname{det} \Lambda) f\left(\Lambda^{-1} \sigma \Lambda^{-1}, \Lambda^{-1} x\right) .
$$

Theorem [DFR 95]; If Σ contains the standard symplectic matrix, there is a unique \mathbf{C}^{\star}-norm on \mathcal{A}; the corresponding C^{*}-completion is isomorphic (as a continuous field of C^{*}-algebras) to $\mathcal{C}_{0}(\Sigma, \mathcal{K}), \mathcal{K}=$ compact operators. The Lorentz group acts by endomorphisms.

A certain class of localisation states

A localisation state on DFR algebra is a linear functional formally written as

$$
f \mapsto \iint d \sigma d k K(\sigma ; x) f(\sigma ; x)
$$

with K such to ensure positivity (w.r.t. \star) and normalisation. We
wish to select the states with kernel of the form

$$
K(\sigma ; x)=\delta(\sigma-\theta) w(x)
$$

which give

$$
f \mapsto \int d k w(x) f(\theta ; x)
$$

More cleanly: we define the projection on the fibre over θ :

$$
\Pi_{0}[f](x)=f(\theta ; x)
$$

A certain class of localisation states

A localisation state on DFR algebra is a linear functional formally written as

$$
f \mapsto \iint d \sigma d k K(\sigma ; x) f(\sigma ; x)
$$

with K such to ensure positivity (w.r.t. \star) and normalisation.We wish to select the states with kernel of the form

$$
K(\sigma ; x)=\delta(\sigma-\theta) w(x)
$$

which give

$$
f \mapsto \int d k w(x) f(\theta ; x)
$$

More cleanly: we define the projection on the fibre over θ :
\square

A certain class of localisation states

A localisation state on DFR algebra is a linear functional formally written as

$$
f \mapsto \iint d \sigma d k K(\sigma ; x) f(\sigma ; x)
$$

with K such to ensure positivity (w.r.t. \star) and normalisation.We wish to select the states with kernel of the form

$$
K(\sigma ; x)=\delta(\sigma-\theta) w(x)
$$

which give

$$
f \mapsto \int d k w(x) f(\theta ; x)
$$

More cleanly: we define the projection on the fibre over θ :

$$
\Pi_{\theta}[f](x)=f(\theta ; x)
$$

extend it by continuity to a map $\Pi_{\theta}: \mathcal{C}(\Sigma, \mathcal{K}) \rightarrow \mathcal{K}$. Then we are interested in the states of the form $\omega \circ \Pi_{\theta}$ with $\omega \in \mathcal{S}(\mathcal{K})$.

θ-Universality

We now make an additional assumption: while in the DFR model all localisation states are available to each observer, we superpose on it the extra assumption of
θ-universality.

- There is a privileged class of observers;
- The privileged observers are connected by Λ 's in the stabiliser of θ;
- The only available localisation states are those which, in the reference frame of a privileged observer, are of the form $\omega \circ \Pi_{\theta}$, where $\omega \in \mathcal{S}(\mathcal{K})$;
Unprivileged observers connected to privileged observers by some Λ only may localise with states of the form $\omega \circ \Pi_{\theta^{\prime}}$, where $\theta^{\prime}=10 A^{t}$

θ-Universality

We now make an additional assumption: while in the DFR model all localisation states are available to each observer, we superpose on it the extra assumption of
θ-universality.

- There is a privileged class of observers;
- The privileged observers are connected by Λ 's in the stabiliser of θ;
- The only available localisation states are those which, in the reference frame of a privileged observer, are of the form $\omega \circ \Pi_{\theta}$, where $\omega \in \mathcal{S}(\mathcal{K})$;
Unprivileged observers connected to privileged observers by some Λ only may localise with states of the form $\omega \circ \Pi_{\theta^{\prime}}$, where $\theta^{\prime}=\Lambda \theta \Lambda^{t}$.

θ-Universality

We now make an additional assumption: while in the DFR model all localisation states are available to each observer, we superpose on it the extra assumption of

θ-universality.

- There is a privileged class of observers;
- The privileged observers are connected by Λ 's in the stabiliser of θ;
- The only available localisation states are those which, in the reference frame of a privileged observer, are of the form $\omega \circ \Pi_{\theta}$, where $\omega \in \mathcal{S}(\mathcal{K})$;
Unprivileged observers connected to privileged observers by some Λ only may localise with states of the form $\omega \circ \Pi_{\theta^{\prime}}$, where

θ-Universality

We now make an additional assumption: while in the DFR model all localisation states are available to each observer, we superpose on it the extra assumption of

θ-universality.

- There is a privileged class of observers;
- The privileged observers are connected by Λ 's in the stabiliser of θ;
- The only available localisation states are those which, in the reference frame of a privileged observer, are of the form $\omega \circ \Pi_{\theta}$, where $\omega \in \mathcal{S}(\mathcal{K})$;
Unprivileged observers connected to privileged observers by some Λ only may localise with states of the form $\omega \circ \Pi_{\theta^{\prime}}$, where $\theta^{\prime}=\Lambda \theta \Lambda^{t}$.

Twisted Covariance Recovered

The privileged observer can test the algebra only at θ; he only sees θ-twisted products:

$$
\Pi_{\theta} f \star g=\left(\Pi_{\theta} f\right) \star_{\theta}\left(\Pi_{\theta} g\right)
$$

Let

$$
f^{\prime}(\sigma ; k)=(\operatorname{det} \Lambda) f\left(\Lambda^{-1} \sigma \Lambda^{-1 t} ; \Lambda^{-1} x\right)
$$

be the Lorentz transform of f, and analogously for g^{\prime}; the (possibly) unprivileged primed observer only sees the fibre over $\theta^{\prime}=10 A^{t}$

$$
\left(\Pi_{\theta^{\prime}} f^{\prime}\right)(x)=f^{\prime}\left(\theta^{\prime} ; x\right)=(\operatorname{det} \Lambda) f\left(\theta ; \Lambda^{-1} x\right),
$$

as expected. Finally the primed observer only sees θ^{\prime}-twisted products:

$$
\Pi_{\theta}\left(f^{\prime \prime} * g^{\prime}\right)=\left(\Pi_{\theta,} \prime^{\prime \prime}\right) *_{\theta \prime}\left(\Pi_{\theta} g^{\prime}\right) .
$$

Twisted Covariance Recovered

The privileged observer can test the algebra only at θ; he only sees θ-twisted products:

$$
\Pi_{\theta} f \star g=\left(\Pi_{\theta} f\right) \star_{\theta}\left(\Pi_{\theta} g\right)
$$

Let

$$
f^{\prime}(\sigma ; k)=(\operatorname{det} \Lambda) f\left(\Lambda^{-1} \sigma \Lambda^{-1 t} ; \Lambda^{-1} x\right)
$$

be the Lorentz transform of f, and analogously for g^{\prime}; the (possibly) unprivileged primed observer only sees the fibre over $\theta^{\prime}=\Lambda \theta \Lambda^{t}$:

$$
\left(\Pi_{\theta^{\prime}} f^{\prime}\right)(x)=f^{\prime}\left(\theta^{\prime} ; x\right)=(\operatorname{det} \Lambda) f\left(\theta ; \Lambda^{-1} x\right)
$$

as expected. Finally the p

Twisted Covariance Recovered

The privileged observer can test the algebra only at θ; he only sees θ-twisted products:

$$
\Pi_{\theta} f \star g=\left(\Pi_{\theta} f\right) \star_{\theta}\left(\Pi_{\theta} g\right)
$$

Let

$$
f^{\prime}(\sigma ; k)=(\operatorname{det} \Lambda) f\left(\Lambda^{-1} \sigma \Lambda^{-1 t} ; \Lambda^{-1} x\right)
$$

be the Lorentz transform of f, and analogously for g^{\prime}; the (possibly) unprivileged primed observer only sees the fibre over $\theta^{\prime}=\Lambda \theta \Lambda^{t}$:

$$
\left(\Pi_{\theta^{\prime}} f^{\prime}\right)(x)=f^{\prime}\left(\theta^{\prime} ; x\right)=(\operatorname{det} \Lambda) f\left(\theta ; \Lambda^{-1} x\right)
$$

as expected.Finally the primed observer only sees θ^{\prime}-twisted products:

$$
\Pi_{\theta^{\prime}}\left(f^{\prime} \star g^{\prime}\right)=\left(\Pi_{\theta^{\prime}} f^{\prime}\right) \star_{\theta^{\prime}}\left(\Pi_{\theta^{\prime}} g^{\prime}\right)
$$

Conclusions 1

We have shown that (twisted covariance $+\theta$ invariant) is equivalent to (untwisted covariance $+\theta$ covariant), and given an argument in favour of the latter, based on physical interpretation.

Moreover, we have seen that the latter is equivalent to (DFR model $+\theta$-universality).

Now one may raise the question: which are the physical motivations for restricting the admissible localisation states? Namely why θ ?

Conclusions 1

We have shown that (twisted covariance $+\theta$ invariant) is equivalent to (untwisted covariance $+\theta$ covariant), and given an argument in favour of the latter, based on physical interpretation.

Moreover, we have seen that the latter is equivalent to (DFR model $+\theta$-universality).

Now one may raise the question: which are the physical motivations for restricting the admissible localisation states? Namely why θ ?

Conclusions 1

We have shown that (twisted covariance $+\theta$ invariant) is equivalent to (untwisted covariance $+\theta$ covariant), and given an argument in favour of the latter, based on physical interpretation.

Moreover, we have seen that the latter is equivalent to (DFR model $+\theta$-universality).

Now one may raise the question: which are the physical motivations for restricting the admissible localisation states? Namely why θ ?

Conclusions 2

Let me more precise by means of a trivial example: consider Newton laws for motions of a point mass in the 3-space. Let's say that we state "z-universality": the preferred observers only can see motions with $z(0)>0$. Then we may distinguish the privileged observers from unprivileged ones; e.g. Jane, who is rotated by 180° around x axis, only sees $z^{\prime}(0)<0$.

> The principle of relativity requires instead that, together with each admissible state, all the states which can be reached by a symmetry of the system must be available to all observers, including the privileged ones.
> In the same way, on QST any transformed θ^{\prime} should be available together with θ to a privileged (or not) observer. To say it differently, it is not sufficient that the set of admissible localisation states is form-covariant; it must be invariant.

Conclusions 2

Let me more precise by means of a trivial example: consider Newton laws for motions of a point mass in the 3-space. Let's say that we state "z-universality": the preferred observers only can see motions with $z(0)>0$. Then we may distinguish the privileged observers from unprivileged ones; e.g. Jane, who is rotated by 180° around x axis, only sees $z^{\prime}(0)<0$.
The principle of relativity requires instead that, together with each admissible state, all the states which can be reached by a symmetry of the system must be available to all observers, including the privileged ones.
available together with θ to a privileged (or not) observer.
To say it differently, it is not sufficient that the set of admissible
localisation states is form-covariant; it must be invariant.

Conclusions 2

Let me more precise by means of a trivial example: consider Newton laws for motions of a point mass in the 3-space. Let's say that we state "z-universality": the preferred observers only can see motions with $z(0)>0$. Then we may distinguish the privileged observers from unprivileged ones; e.g. Jane, who is rotated by 180° around x axis, only sees $z^{\prime}(0)<0$.
The principle of relativity requires instead that, together with each admissible state, all the states which can be reached by a symmetry of the system must be available to all observers, including the privileged ones.
In the same way, on QST any transformed θ^{\prime} should be available together with θ to a privileged (or not) observer.
localisation states is form-covariant; it must be invariant.

Conclusions 2

Let me more precise by means of a trivial example: consider Newton laws for motions of a point mass in the 3-space. Let's say that we state "z-universality": the preferred observers only can see motions with $z(0)>0$. Then we may distinguish the privileged observers from unprivileged ones; e.g. Jane, who is rotated by 180° around x axis, only sees $z^{\prime}(0)<0$.
The principle of relativity requires instead that, together with each admissible state, all the states which can be reached by a symmetry of the system must be available to all observers, including the privileged ones.
In the same way, on QST any transformed θ^{\prime} should be available together with θ to a privileged (or not) observer. To say it differently, it is not sufficient that the set of admissible localisation states is form-covariant; it must be invariant.

Conclusions 3

In this class of models, the formalism does not at all forces θ-universality upon us.

More cogent physical motivations should be provided in order to take seriously the idea that θ is a universal datum breaking covariance, within this class of models!!

Although radical revisions of the concept of covariance might be necessary and welcome, within this approach deformations of Lorentz action would break the classification of Wigner particles, which could not be expected not to have consequences at "macroscopic" scale ($>10^{-19} \mathrm{~cm}$).

Bibliography

This talk based on the following preprints:

- G.P., [arXiv:0901.3109] (short letter).
- G.P., [arXiv:0902.0575] (long, technical).

Other References:

- Doplicher et al, [arXiv:hep-th/0303037] (DFR model, 1994/5). See also less technical [arXiv:hep-th/0105251]).
- Chaichian et al, [arxiv:hep-th/0408069], Wess [arxiv:hep-th/0408080]. (on twisted covariance, 2004).
- Gracia-Bondia et al, [arXiv:hep-th/0604206].

Unrelated "advertisement":

- G.P. [arxiv:hep-th/0511282]. (on Feynman diagrams in NC

Dyson perturbation theory).

Bibliography

This talk based on the following preprints:

- G.P., [arXiv:0901.3109] (short letter).
- G.P., [arXiv:0902.0575] (long, technical).

Other References:

- Doplicher et al, [arXiv:hep-th/0303037] (DFR model, 1994/5). See also less technical [arXiv:hep-th/0105251]).
- Chaichian et al, [arxiv:hep-th/0408069], Wess [arxiv:hep-th/0408080]. (on twisted covariance, 2004).
- Gracia-Bondia et al, [arXiv:hep-th/0604206].

Bibliography

This talk based on the following preprints:

- G.P., [arXiv:0901.3109] (short letter).
- G.P., [arXiv:0902.0575] (long, technical).

Other References:

- Doplicher et al, [arXiv:hep-th/0303037] (DFR model, 1994/5). See also less technical [arXiv:hep-th/0105251]).
- Chaichian et al, [arxiv:hep-th/0408069], Wess [arxiv:hep-th/0408080]. (on twisted covariance, 2004).
- Gracia-Bondia et al, [arXiv:hep-th/0604206].

Unrelated "advertisement":

- G.P. [arxiv:hep-th/0511282]. (on Feynman diagrams in NC Dyson perturbation theory).

[^0]: ${ }^{1}$ Notation:

