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The Problem

No unitary representation U of L can make the relations

[x̂µθ , x̂
ν
θ ] = iθµν I

covariant. On one side,

U(Λ)−1[x̂µθ , x̂
ν
θ ]U(Λ) = Λµ′µΛ

µ′
µ[x̂µθ , x̂

ν
θ ] = iθ′µν I = iΛµµ′Λµµ′θµ

′ν′ I;

On the other

U(Λ)−1(iθµν I)U(Λ) = iθµνU(Λ)−1U(Λ) = iθµν I

and
θ 6= θ′

unless Λ is in the stabiliser of θ.
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Approaches to The Problem

1 Give up and replace L with the stabiliser;
2 keep same θ in all frames, and deform (the action of) L;
3 keep undeformed action of L, and let θ transform as a

tensor;
4 DFR model (actually the first proposal, 1994).

I wish to convince you that 2 = 3, that 3 leads naturally to 4,
and can be recovered from it up to an additional assumption I
wish to criticise.
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Star Product

Conservative approach based on Weyl quantisation:

f 7→Wθ(f ) =

∫
dk f̌ (k)eikµx̂µ

θ ,

where
f̌ (k) =

1
(2π)4

∫
dxf (x)e−ikµxµ

θ .

Twisted product = auxiliary tool defined by:

Wθ(f ?θ g) = Wθ(f )Wθ(g) ( operator product)

One finds
f ?θ g = (m ◦ Fθ)(f ⊗ g),

where m = commutative product: m(f ⊗ g)(x) = f (x)g(x), and

Fθ = e
1
2 θ

µν∂µ⊗∂ν

on an appropriate class of symbols (HIC SUNT LEONES).
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The Problem - Again

With the Lorentz action

(αΛf )(x) = f ′(x) = f (Λ−1x),

on symbols, we have

Wθ(f ′)Wθ(f ′) 6= Wθ((αΛf ′) ?θ (αΛf ′))

in general.
The above can be rewritten using ?-products:

f ′ ?θ g′ 6= (f ?θ g)′.
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Twisted Covariance

• keep action on functions of one variable: f 7→ αΛf
• deform action on functions of two variables1

f ⊗ g 7→
(
F−1
θ ◦ (αΛ ⊗ αΛ) ◦ Fθ

)
(f ⊗ g).

It is an action:(
F−1
θ ◦(αΛ⊗αΛ)◦Fθ

)(
F−1
θ ◦(αM⊗αM)◦Fθ

)
=
(
F−1
θ ◦(αΛM⊗αΛM)◦Fθ

)
It solves the problem:

mθ(
(
F−1
θ ◦ (αΛ ⊗ αΛ) ◦ Fθ

)
(f ⊗ g) = αΛmθ(f ⊗ g).

1Notation:

(f ⊗ g)(x , y) = f (x)g(y),

(αΛ ⊗ αΛ)(f ⊗ g)(x , y) : f (Λ−1x)g(Λ−1y).
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Concrete Actions vs Abstract algebra

Twisted action: computing

mθ

(
(F−1
θ ◦ (αΛ⊗αΛ) ◦Fθ)(f ⊗ g)

)
=
(

m ◦ (αΛ⊗αΛ) ◦Fθ
)

(f ⊗ g)

means:
1 f ⊗ g 7→ Fθf ⊗ g = e

1
2 θ

µν∂µ⊗∂ν f ⊗ g

2 Fθf ⊗g 7→ (αΛ⊗αΛ)(Fθf ⊗g) = e
1
2 θ
′µν∂µ⊗∂ν(αΛf )⊗(αΛg) =

= Fθ′(αΛf )⊗ (αΛf ).

3
(

m ◦ Fθ′(αΛf )⊗ (αΛg)
)

(f ⊗ g) = mθ′(f ′ ⊗ g′) = f ′ ?′θ g′.

Hence twisted covariance is equivalent to

(f ?θ g)′ = f ′ ?θ′ g′.



Concrete Actions vs Abstract algebra

Twisted action: computing

mθ

(
(F−1
θ ◦ (αΛ⊗αΛ) ◦Fθ)(f ⊗ g)

)
=
(

m ◦ (αΛ⊗αΛ) ◦Fθ
)

(f ⊗ g)

means:
1 f ⊗ g 7→ Fθf ⊗ g = e

1
2 θ

µν∂µ⊗∂ν f ⊗ g

2 Fθf ⊗g 7→ (αΛ⊗αΛ)(Fθf ⊗g) = e
1
2 θ
′µν∂µ⊗∂ν(αΛf )⊗(αΛg) =

= Fθ′(αΛf )⊗ (αΛf ).

3
(

m ◦ Fθ′(αΛf )⊗ (αΛg)
)

(f ⊗ g) = mθ′(f ′ ⊗ g′) = f ′ ?′θ g′.

Hence twisted covariance is equivalent to

(f ?θ g)′ = f ′ ?θ′ g′.



Concrete Actions vs Abstract algebra

Twisted action: computing

mθ

(
(F−1
θ ◦ (αΛ⊗αΛ) ◦Fθ)(f ⊗ g)

)
=
(

m ◦ (αΛ⊗αΛ) ◦Fθ
)

(f ⊗ g)

means:
1 f ⊗ g 7→ Fθf ⊗ g = e

1
2 θ

µν∂µ⊗∂ν f ⊗ g

2 Fθf ⊗g 7→ (αΛ⊗αΛ)(Fθf ⊗g) = e
1
2 θ
′µν∂µ⊗∂ν(αΛf )⊗(αΛg) =

= Fθ′(αΛf )⊗ (αΛf ).

3
(

m ◦ Fθ′(αΛf )⊗ (αΛg)
)

(f ⊗ g) = mθ′(f ′ ⊗ g′) = f ′ ?′θ g′.

Hence twisted covariance is equivalent to

(f ?θ g)′ = f ′ ?θ′ g′.



Concrete Actions vs Abstract algebra

Twisted action: computing

mθ

(
(F−1
θ ◦ (αΛ⊗αΛ) ◦Fθ)(f ⊗ g)

)
=
(

m ◦ (αΛ⊗αΛ) ◦Fθ
)

(f ⊗ g)

means:
1 f ⊗ g 7→ Fθf ⊗ g = e

1
2 θ

µν∂µ⊗∂ν f ⊗ g

2 Fθf ⊗g 7→ (αΛ⊗αΛ)(Fθf ⊗g) = e
1
2 θ
′µν∂µ⊗∂ν(αΛf )⊗(αΛg) =

= Fθ′(αΛf )⊗ (αΛf ).

3
(

m ◦ Fθ′(αΛf )⊗ (αΛg)
)

(f ⊗ g) = mθ′(f ′ ⊗ g′) = f ′ ?′θ g′.

Hence twisted covariance is equivalent to

(f ?θ g)′ = f ′ ?θ′ g′.



The Situation Now

Notation: θ fixed once and for all by a privileged observer, σ
dummy element of Σ. Then
• Σ = orbit of (θµν) under Lorentz action;
• to each (σµν), there is a ?σ defining an algebra Aσ;
• there is an action of Lorentz group αΛ sending

f ∈ Aσ 7→ f ◦ Λ−1 ∈ Aσ′ , where σ′µν = Λµµ′Λ
µ
µ′σ

µ′ν′ ;
• this map respects ?-products at the cost of using the right
σ in every Aσ in the family {Aσ : σ ∈ Σ}.
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Tensor or not? Back to Interpretation!

Untwisted form covariance + tensoriality of θ may seem
appealing, but form covariance alone not a guidance, when
equivalence of observers is broken at a fundamental level. Up
to now the two formalisms have same dignity.
Problem is: above only formal remark. To decide, go back to
interpretation of iθ as the commutator of the coordinates.
Assume Jack=preferred observer, Jane=observer connected to
Jack by Λ.
Jane:
• [ŷµ, ŷν ] =? (no a priori assumption),
• W ′(f ′) =

∫
dk f̌ ′(k)eik ŷ (same physics),

• W ′(mθ(α
(2)
θ (f ⊗ g)) = W ′(f ′)W ′(g′) (twisted cov).
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Weyl quantisation requires θ tensor

We first compute )

W ′(f ′)W (g′) =

(∫
dhf̌ ′(h)eihŷ

)(∫
dhǧ′(k)eik ŷ

)
=

=

∫
dh
∫

dk f̌ ′(h)ǧ′(k)eihŷeik ŷ ,

W ′(mθ(α
(2)
θ )(f ⊗ g)) =

∫
dk eik ŷ

∫
dh e−

i
2 hθke

i
2 (hθk−hθ′k)

f̌ ′(h)ǧ′(k − h) =

=

∫
dk ei(h+k)ŷ

∫
dh f̌ ′(h)ǧ′(k)e−

i
2 hθ′(k+6h)

where θ′µν = Λµµ′Λ
ν
ν′θ

µ′ν′ . It follows

eihŷeik ŷ = e−
i
2 hθ′kei(h+k)ŷ ,

i.e. the Weyl form of [ŷµ, ŷν ] = iθ′µν . Conclusion: ŷ = x̂θ′ and θ
is a tensor!
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i
2 hθ′kei(h+k)ŷ ,
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On the way to the DFR model

Now the situation is that to each observer there is: (1) a σ, (2)
coordinates with commutator iσ, (3) the corresponding Weyl
quantisation Wσ. . .

. . . and there is an action of the Lorentz group on the family of
functions A = {Aσ : σ ∈ Σ}.

This suggests to consider the family A as a bundle of algebras
over Σ, where each Aσ is the fibre over σ ∈ Σ.
Sections can be thought as functions f = f (σ; x), where
f (σ; ·) ∈ Aσ.
The product is taken fibrewise:

(f ? g)(σ; ·) = f (σ; ·) ?σ f (σ; ·).
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over Σ, where each Aσ is the fibre over σ ∈ Σ.
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f (σ; ·) ∈ Aσ.
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DFR C*algebra

The fibrewise product ? turns the bundle {Aσ : σ ∈ Σ} into a
well defined algebra.
The action is

(αΛf )(σ; x) = (detΛ)f (Λ−1σΛ−1t
, Λ−1x).

Theorem [DFR 95]; If Σ contains the standard symplectic
matrix, there is a unique C*-norm on A; the corresponding
C*-completion is isomorphic (as a continuous field of
C*-algebras) to C0(Σ,K), K=compact operators. The
Lorentz group acts by endomorphisms.
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A certain class of localisation states

A localisation state on DFR algebra is a linear functional
formally written as

f 7→
∫∫

dσ dk K (σ; x)f (σ; x)

with K such to ensure positivity (w.r.t. ?) and normalisation.We
wish to select the states with kernel of the form

K (σ; x) = δ(σ − θ)w(x),

which give

f 7→
∫

dk w(x)f (θ; x)

More cleanly: we define the projection on the fibre over θ:

Πθ[f ](x) = f (θ; x);

extend it by continuity to a map Πθ : C(Σ,K)→ K. Then we are
interested in the states of the form ω ◦ Πθ with ω ∈ S(K).
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θ-Universality

We now make an additional assumption: while in the DFR
model all localisation states are available to each observer, we
superpose on it the extra assumption of

θ-universality.
• There is a privileged class of observers;
• The privileged observers are connected by Λ’s in the

stabiliser of θ;
• The only available localisation states are those which, in

the reference frame of a privileged observer, are of the
form ω ◦ Πθ, where ω ∈ S(K);

Unprivileged observers connected to privileged observers by
some Λ only may localise with states of the form ω ◦ Πθ′ , where
θ′ = ΛθΛt .
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Twisted Covariance Recovered

The privileged observer can test the algebra only at θ; he only
sees θ-twisted products:

Πθf ? g = (Πθf ) ?θ (Πθg)

Let
f ′(σ; k) = (detΛ)f (Λ−1σΛ−1t

;Λ−1x)

be the Lorentz transform of f , and analogously for g′; the
(possibly) unprivileged primed observer only sees the fibre over
θ′ = ΛθΛt :

(Πθ′ f ′)(x) = f ′(θ′; x) = (detΛ)f (θ;Λ−1x),

as expected.Finally the primed observer only sees θ′-twisted
products:

Πθ′(f ′ ? g′) = (Πθ′ f ′) ?θ′ (Πθ′g′).
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Conclusions 1

We have shown that (twisted covariance + θ invariant) is
equivalent to (untwisted covariance + θ covariant), and given an
argument in favour of the latter, based on physical
interpretation.

Moreover, we have seen that the latter is equivalent to (DFR
model + θ-universality).

Now one may raise the question: which are the physical
motivations for restricting the admissible localisation states?
Namely why θ?
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Conclusions 2

Let me more precise by means of a trivial example: consider
Newton laws for motions of a point mass in the 3-space. Let’s
say that we state “z-universality”: the preferred observers only
can see motions with z(0) > 0. Then we may distinguish the
privileged observers from unprivileged ones; e.g. Jane, who is
rotated by 180◦ around x axis, only sees z ′(0) < 0.
The principle of relativity requires instead that, together with
each admissible state, all the states which can be reached by a
symmetry of the system must be available to all observers,
including the privileged ones.
In the same way, on QST any transformed θ′ should be
available together with θ to a privileged (or not) observer.
To say it differently, it is not sufficient that the set of admissible
localisation states is form-covariant; it must be invariant.
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Conclusions 3

In this class of models, the formalism does not at all forces
θ-universality upon us.

More cogent physical motivations should be provided in order
to take seriously the idea that θ is a universal datum breaking
covariance, within this class of models!!

Although radical revisions of the concept of covariance might
be necessary and welcome, within this approach deformations
of Lorentz action would break the classification of Wigner
particles, which could not be expected not to have
consequences at “macroscopic” scale (> 10−19cm).
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