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INTRODUCTION

» algebras of current type, only recently introduced

» generalisations of affine Lie algebras of Krichever-Novikov
type — they are generalisations of classical affine Lie
algebras

» related to integrable systems
» related to the moduli space of bundles over compact
Riemann surfaces

Goal: Classify almost-graded central extensions of these
algebras

Joint work with Oleg Sheinman (appeared in Russ. Math.
Surveys 63(4), 727-766 (2008)



GEOMETRIC SET-UP

¥ a compact Riemann surface,
A = |U O disjoint union of finitely many points,/ and O
non-empty (hereonly / = {P;} and O = {P_})

Tyurin data: n- g points (n € N, g genus of ¥)
W:={yseX\{P+,P_}|s=1,...,ng}.

vs — as € C", T:={(ys,05) €L xC"|s=1,...,ng}

relation to the moduli space of semi-stable framed algebraic
vector bundles of rank n and degree n- g

fix local coordinates z at Py and zgatvs, s=1,...,ng



ALGEBRAIC SET-UP

g be one of the matrix algebras gl(n), sl(n), so(n), sp(2n), or
s(n) (the algebra of scalar matrices)

Consider meromorphic functions (more precisely trivialisations
of sections of a bundle)

L: Y — g,

which are
1. holomorphic outside W U {P, P_},

2. have atmost poles of order one (resp. of order two for
sp(2n)) at the points in W,

3. and fulfill certain conditions at W depending on T and g.



ALGEBRAIC SET-UP

The singularities at W are called weak singularities.

What are the additional properties? (Here only for gl(n))
Fors=1,...,ng there exist 35 € C" and ks € C such that we
get the expansion at vs € W

Ls_1
L(ZS) = SZ’S + LS,O + Z L57k2§
k>0

with
Ls,f1 - astﬁ& tr(Ls,—1) = tﬁsas =0, Ls,O s = KgQg.

In particular,if as # 0 Ls _4 is a rank 1 matrix, and «; is an
eigenvector of Lg .



ALGEBRAIC SET-UP

sl(n) matrices are trace-less

s(n) matrices are scalar matrices

so(n) and (n) matrices of the corresponding type, with modified
additional conditions.

THEOREM

Under the pointwise matrix commutator these objects constitute
a Lie algebra, denoted by g if the finite Lie algebra is denoted
by g.



ALGEBRAIC SET-UP

If all s = 0 classical KN current algebras.
If g = 0 then classical current algebras.

A associative algebra of meromorphic functions on

holomorphic outside of A
L Lie algebra of meromorphic vector fields on £ holomorphic

outside of A
classical KN current algebra:

g=900®A [xofyegl=[Xylefg

g =0, ¥ =P'(C), points 0, co,
A=Clz,z7"], g=g®Clz,z7].



ALMOST-GRADED STRUCTURE

Grading is important for infinite dimensional Lie algebras
but a weaker concept almost-grading will do
DEFINITION

V an arbitrary Lie algebra is called almost-graded if
(1) V=8&,cz Va, dim V,; < oo as vector space
(2) There exists Ly, L, € Z such that

n+m+Lo
VoVl € & Vi,  ¥nm
h=n+m+L,4

A, L, and the current algebras of KN type are almost-graded.

.



ALMOST-GRADED STRUCTURE

THEOREM
g is almost-graded, i.e. g = P g,,, dimg,, = dimg, and

n+m+M

[Gmal € D an

h=m+n

The generic bound is M = g, the genus of ¥.

Given X € g: there exists a unique X, € g,, such that
Xm = X2 + O(zT).
classical situation: we get the well-known grading



CENTRAL EXTENSIONS

» Goal: Construct and classify central extensions of the Lax
operator algebras

» Why: Needed by the applications, like regularisation, 2nd
quantization, etc.

» Mathematical back-ground: by regularisation we obtain
only projective action of g, they correspond to linear
actions of a central extension g

» Strictly speaking: from these application we need only
central extensions of g which allow to extend the
almost-grading to g.



CENTRAL EXTENSIONS

How are central extensions constructed?
g =g @ Ctas vector space (t is the central element)

L1, L) = [Ly, L] + (L, L)t

gis a Lie algebra if and only if ¢ is a Lie algebra 2-cocycle, i.e.
(1) v is antisymmetric
(2) ¥([L1, Lo], Ls) + ¥([L2, L], L1) + ¢([Ls, L1], L2) = O.

Two different central extensions are equivalent iff difference of
the two 2-cocycles is a coboundary (¢ a linear form)

Y1(Ly, Lp) — 2(Lq, L2) = ¢([L1, L2])



CENTRAL EXTENSIONS

Hence, we need 2-cocycles

For current type KN algebras: (x,y €g,9,he€ A)

Yv(x®g,y®h) = (x,y) /ngh.

(.,.) invariant symmetric bilinear form,
C aclosed contour on X\ A.

For Lax operator algebras we do not have such a splitting
our functions are not really functions but sections,

before defining a differentiation we need to choose a
connection.



CENTRAL EXTENSIONS

The connection V¥ is defined with the help of w

(1) a g-valued meromorphic 1-form

(2) holomorphic outside of Aand W

(3) obey certain conditions at the weak singularity points:
points vs € W with ag = 0: w is regular there

points s with ag # 0: the expansion

Ws, 1
(.U(ZS) = ( SZ +CUS’O + Zw&kzg) dZS

s k>1
there exist 3s € C" and #s € C such that

~ _ '
Ws,—1 = as'Bs, Ws,0 Os = fslas, tr(ws,—1) = "fsas = 1.



CENTRAL EXTENSIONS

Such w exist
we can choose an w holomorphic at P

V@ =d+ 1w, ]

covariant derivative

" d
vl = dz(e) - +lw(e). ], ect

THEOREM

The covariant derivative makes g to an almost-graded Lie
module over L.



GEOMETRIC COCYCLES

Define

1
ol L) = oo [ WLV, Li'eq

and
1
) (w) ! L
Y2.w.c(L, L) = zm/tr(L) tr(V/L), L L eg.

indeed these are cocycles

Y2.w.c does not depend on w, vanishes for g # gl(n),s(n)
71 w,c for different w are cohnomologous

cocycles depend on the integration path



GEOMETRIC COCYCLES

DEFINITION
A cocycle « for g is called L-invariant (with respect to w) if

YV L) + (L VL) =0, Vee £, VL L eg.

DEFINITION

A cocycle ~ for g is called local if there exists My, M> € 7Z such
that for all n, m

Y(Om:8n) #0, = My <n+m< M.

Almost-grading can be extended to the central extension if and
only if the defining cocycle is local. .
.l



GEOMETRIC COCYCLES

For cohomology classes use the definition if one representative
is of this type.
Warning: not all elements in the class of certain type are of this

type.
THEOREM
The cocycles 1, c and . ¢ are L-invariant.

locality is in general not true.

essentially different integration cycles yield essentially different
2-cocycle classes = a lot of non-equivalent central
extensions appear

but, denote by Cs an integration cycle separating the point in /
from the points in O.



GEOMETRIC COCYCLES

THEOREM

The cocycles 1, c and . ¢ with integration over a separating
cycle C = Cg are local.

Question: is the opposite true?

Essentially uniqueness of almost-graded central extensions
Answer:

In the simple case: yes

In the gl(n) case: we have to add L-invariance and then obtain
a two-dimensional family of central extensions.

Mw = Nw,Css Y2 = 72,Cq



MAIN RESULTS

THEOREM

If g is simple (i.e. g = sl(n),so(n),sp(2n)) then the space of
local cohomology classes is one-dimensional. The space will
be generated by the class of v ,,. Every L-invariant local
cocycle is a scalar multiple of 1 .

THEOREM

Forg = gl(n) the space of local cohomology classes which are
L-invariant having been restricted to the scalar subalgebra is
two-dimensional. The space will be generated by the classes of
the cocycles v ., and v2. Every L-invariant local cocycle is a
linear combination of v4 ,, and .

.



SOME WORDS ON THE PROOF

» start with local and L-invariant cocycle

» use almost-graded structure to show that everything can
be reduced to level zero — (Lp, L) is of level n+ m

» reduced means: y(Lp, Lm) = 0 if n+ m > 0 and is fixed by
knowing the values of ~ at level zero

» Hence, we only have to show that at level zero it is of the
required form.

» Now: we have to get rid of the condition of L-invariance

» abelian part it is 0.k. as there we put it into the
requirements



SOME WORDS ON THE PROOF

simple part: we show that in every class there is a £
invariant representative

for this: consider the Chevalley generators of the
finite-dimensional simple Lie algebra

use almost-gradedness inside of g and boundedness from
above of the cocycle to make cohomologous changes -
stay in the same class

show that for the modified cocycle everything depends on
one cocycle value evaluated for a fixed pair of elements

» hence, the cohomogy space is at most one-dimensional

71 IS @ local cocycle which is not a coboundary, hence it
is a generator and the space is one-dimensional

> but v, is also L-invariant.

v

ives the proof .
g P i lu



SOME WORDS ON THE PROOF

Remark:

For the abelian part L-invariance is really needed. Otherwise,
uniqueness can never be true.

Coming from applications (e.g. regularisation of fermionic Fock
space representations) L-invariance of the defining 2-cocycle is
very often automatic

Reason is that the representation there is in fact a
representation of an by the vector field augmented algebra.



SOME MORE DETAILS

First part (start with £-invariance):

epc L, ep=2""" 42 of degree p

L, LS € gof degree mand n

recall that for X € g we have a unique X, € g,,, with
Xm = X2 + O(zT)

almost-graded action:

Ve, Ly = le{:,er + L' with L’ of higher order

the L-invariance
’y(vepo’n? Lf)) + 7(1—277 Vepl_g) =0
implies

my(Lpm, L7) + my(Lh, L34 p) = cocycle value at higher level

i I



SOME MORE DETAILS

In particular, for p =0

(m+ n)y(Lp,, L3) is of higher level

This shows that for (m + n) # 0 the value is given by higher
level values.

Hence, everything reduces to level zero.

Further analysis shows

v(L§, L3) =0, y(Lp, L2,) = ny(L, LS ;) + higher level.

Hence, v(L], L* ,) fixes everything.

i I



SOME MORE DETAILS

Given ~ consider the map

Yyigxg—=C, Yy (X, Y) =(X, Yoa).
1 is @ symmetric, invariant bilinear form on g.
For g simple it is a multiple of the Cartan-Killing form.

For gl(n) = s(n) @ sl(n) the cocycle splits.
As s(n) = A we can use a earlier result of mine on the
uniqueness of L-invariant cocycles for the abelian part.



SOME MORE DETAILS

for g simple in every class there is an £ invariant one:
E« E~* H* Chevalley generators of g
Chevalley-Serre relations for the finite-dimensional g.

these structure equations are also structure equations in g
modulo higher level terms (comes from the almost-graded
structure)



SOME MORE DETAILS

by almost-gradedness and boundedness of the cocycle we can
change the cocycle in a cohomologous way such that finally
zero is an upper bound for nonvanishing level and that for the
level < 0 everything is fixed by level zero

this modified cocycle is called normalized cocycle

at level zero all cocycle values (normalized) can be expessed in
relation to the cocycle value ~(Hy', H*,) for a single fixed simple
root

hence up to coboundary all local cocycles are multiples of a
single one



