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INTRODUCTION

I algebras of current type, only recently introduced
I generalisations of affine Lie algebras of Krichever-Novikov

type – they are generalisations of classical affine Lie
algebras

I related to integrable systems
I related to the moduli space of bundles over compact

Riemann surfaces

Goal: Classify almost-graded central extensions of these
algebras

Joint work with Oleg Sheinman (appeared in Russ. Math.
Surveys 63(4), 727-766 (2008)



GEOMETRIC SET-UP

Σ a compact Riemann surface,
A = I ∪O disjoint union of finitely many points,I and O
non-empty (here only I = {P+} and O = {P−})

Tyurin data: n · g points (n ∈ N, g genus of Σ)

W := {γs ∈ Σ \ {P+,P−} | s = 1, . . . ,ng}.

γs 7→ αs ∈ Cn, T := {(γs, αs) ∈ Σ× Cn | s = 1, . . . ,ng}

relation to the moduli space of semi-stable framed algebraic
vector bundles of rank n and degree n · g

fix local coordinates z± at P± and zs at γs, s = 1, . . . ,ng



ALGEBRAIC SET-UP

g be one of the matrix algebras gl(n), sl(n), so(n), sp(2n), or
s(n) (the algebra of scalar matrices)
Consider meromorphic functions (more precisely trivialisations
of sections of a bundle)

L : Σ → g,

which are
1. holomorphic outside W ∪ {P+,P−},
2. have atmost poles of order one (resp. of order two for

sp(2n)) at the points in W ,
3. and fulfill certain conditions at W depending on T and g.



ALGEBRAIC SET-UP

The singularities at W are called weak singularities.

What are the additional properties? (Here only for gl(n))
For s = 1, . . . ,ng there exist βs ∈ Cn and κs ∈ C such that we
get the expansion at γs ∈W

L(zs) =
Ls,−1

zs
+ Ls,0 +

∑
k>0

Ls,kzk
s

with

Ls,−1 = αs
tβs, tr(Ls,−1) = tβsαs = 0, Ls,0 αs = κsαs.

In particular,if αs 6= 0 Ls,−1 is a rank 1 matrix, and αs is an
eigenvector of Ls,0.



ALGEBRAIC SET-UP

sl(n) matrices are trace-less
s(n) matrices are scalar matrices
so(n) and (n) matrices of the corresponding type, with modified
additional conditions.

THEOREM

Under the pointwise matrix commutator these objects constitute
a Lie algebra, denoted by g if the finite Lie algebra is denoted
by g.



ALGEBRAIC SET-UP

If all αs = 0 classical KN current algebras.
If g = 0 then classical current algebras.

A associative algebra of meromorphic functions on Σ
holomorphic outside of A
L Lie algebra of meromorphic vector fields on Σ holomorphic
outside of A

classical KN current algebra:

g = g⊗A, [x ⊗ f , y ⊗ g] := [x , y ]⊗ fg

g = 0, Σ = P1(C), points 0,∞,
A = C[z, z−1], g = g⊗ C[z, z−1].



ALMOST-GRADED STRUCTURE

Grading is important for infinite dimensional Lie algebras
but a weaker concept almost-grading will do

DEFINITION

V an arbitrary Lie algebra is called almost-graded if
(1) V =

⊕
n∈Z Vn, dim Vn <∞ as vector space

(2) There exists L1,L2 ∈ Z such that

[Vn,Vm] ⊆
n+m+L2⊕

h=n+m+L1

Vh, ∀n,m

A, L, and the current algebras of KN type are almost-graded.



ALMOST-GRADED STRUCTURE

THEOREM

g is almost-graded, i.e. g =
⊕

gm, dim gm = dim g, and

[gm, gn] ⊆
n+m+M⊕
h=m+n

gh

The generic bound is M = g, the genus of Σ.
Given X ∈ g: there exists a unique Xm ∈ gm such that
Xm = Xzm

+ + O(zm+1
+ ).

classical situation: we get the well-known grading



CENTRAL EXTENSIONS

I Goal: Construct and classify central extensions of the Lax
operator algebras

I Why: Needed by the applications, like regularisation, 2nd
quantization, etc.

I Mathematical back-ground: by regularisation we obtain
only projective action of g, they correspond to linear
actions of a central extension ĝ

I Strictly speaking: from these application we need only
central extensions of g which allow to extend the
almost-grading to ĝ.



CENTRAL EXTENSIONS

How are central extensions constructed?
ĝ = g⊕ C t as vector space (t is the central element)

[L̂1, L̂2] = ̂[L1,L2] + ψ(L1,L2)t

ĝ is a Lie algebra if and only if ψ is a Lie algebra 2-cocycle, i.e.
(1) ψ is antisymmetric
(2) ψ([L1,L2],L3) + ψ([L2,L3],L1) + ψ([L3,L1],L2) = 0.

Two different central extensions are equivalent iff difference of
the two 2-cocycles is a coboundary (φ a linear form)

ψ1(L1,L2)− ψ2(L1,L2) = φ([L1,L2])



CENTRAL EXTENSIONS

Hence, we need 2-cocycles

For current type KN algebras: (x , y ∈ g, g,h ∈ A)

ψ(x ⊗ g, y ⊗ h) = 〈x , y〉
∫

C
gdh.

〈., .〉 invariant symmetric bilinear form,
C a closed contour on Σ \ A.

For Lax operator algebras we do not have such a splitting
our functions are not really functions but sections,
before defining a differentiation we need to choose a
connection.



CENTRAL EXTENSIONS

The connection ∇ω is defined with the help of ω
(1) a g-valued meromorphic 1-form
(2) holomorphic outside of A and W
(3) obey certain conditions at the weak singularity points:
points γs ∈W with αs = 0: ω is regular there
points γs with αs 6= 0: the expansion

ω(zs) =

ωs,−1

zs
+ ωs,0 +

∑
k≥1

ωs,kzk
s

 dzs.

there exist β̃s ∈ Cn and κ̃s ∈ C such that

ωs,−1 = αs
t β̃s, ωs,0 αs = κ̃s

tαs, tr(ωs,−1) = t β̃sαs = 1.



CENTRAL EXTENSIONS

Such ω exist
we can choose an ω holomorphic at P+

∇(ω) = d + [ω, .]

covariant derivative

∇(ω)
e = dz(e)

d
dz

+ [ω(e), .], e ∈ L

THEOREM

The covariant derivative makes g to an almost-graded Lie
module over L.



GEOMETRIC COCYCLES

Define

γ1,ω,C(L,L′) =
1

2πi

∫
C

tr(L · ∇(ω)L′), L,L′ ∈ g,

and

γ2,ω,C(L,L′) =
1

2πi

∫
C

tr(L) · tr(∇(ω)L′), L,L′ ∈ g.

indeed these are cocycles
γ2,ω,C does not depend on ω, vanishes for g 6= gl(n), s(n)
γ1,ω,C for different ω are cohomologous
cocycles depend on the integration path



GEOMETRIC COCYCLES

DEFINITION

A cocycle γ for g is called L-invariant (with respect to ω) if

γ(∇(ω)
e L,L′) + γ(L,∇(ω)

e L′) = 0, ∀e ∈ L, ∀L,L′ ∈ g.

DEFINITION

A cocycle γ for g is called local if there exists M1,M2 ∈ Z such
that for all n,m

γ(gm, gn) 6= 0, =⇒ M1 ≤ n + m ≤ M2.

Almost-grading can be extended to the central extension if and
only if the defining cocycle is local.



GEOMETRIC COCYCLES

For cohomology classes use the definition if one representative
is of this type.
Warning: not all elements in the class of certain type are of this
type.

THEOREM

The cocycles γ1,ω,C and γ2,C are L-invariant.

locality is in general not true.
essentially different integration cycles yield essentially different
2-cocycle classes =⇒ a lot of non-equivalent central
extensions appear
but, denote by CS an integration cycle separating the point in I
from the points in O.



GEOMETRIC COCYCLES

THEOREM

The cocycles γ1,ω,C and γ2,C with integration over a separating
cycle C = CS are local.

Question: is the opposite true?
Essentially uniqueness of almost-graded central extensions
Answer:
In the simple case: yes
In the gl(n) case: we have to add L-invariance and then obtain
a two-dimensional family of central extensions.

γ1,ω := γ1,ω,CS
, γ2 := γ2,CS



MAIN RESULTS

THEOREM

If g is simple (i.e. g = sl(n), so(n), sp(2n)) then the space of
local cohomology classes is one-dimensional. The space will
be generated by the class of γ1,ω. Every L-invariant local
cocycle is a scalar multiple of γ1,ω.

THEOREM

For g = gl(n) the space of local cohomology classes which are
L-invariant having been restricted to the scalar subalgebra is
two-dimensional. The space will be generated by the classes of
the cocycles γ1,ω and γ2. Every L-invariant local cocycle is a
linear combination of γ1,ω and γ2.



SOME WORDS ON THE PROOF

I start with local and L-invariant cocycle
I use almost-graded structure to show that everything can

be reduced to level zero – γ(Ln,Lm) is of level n + m
I reduced means: γ(Ln,Lm) = 0 if n + m > 0 and is fixed by

knowing the values of γ at level zero
I Hence, we only have to show that at level zero it is of the

required form.
I Now: we have to get rid of the condition of L-invariance
I abelian part it is o.k. as there we put it into the

requirements



SOME WORDS ON THE PROOF

I simple part: we show that in every class there is a L
invariant representative

I for this: consider the Chevalley generators of the
finite-dimensional simple Lie algebra

I use almost-gradedness inside of g and boundedness from
above of the cocycle to make cohomologous changes -
stay in the same class

I show that for the modified cocycle everything depends on
one cocycle value evaluated for a fixed pair of elements

I hence, the cohomogy space is at most one-dimensional
I γ1,ω is a local cocycle which is not a coboundary, hence it

is a generator and the space is one-dimensional
I but γ1,ω is also L-invariant.
I gives the proof



SOME WORDS ON THE PROOF

Remark:

For the abelian part L-invariance is really needed. Otherwise,
uniqueness can never be true.
Coming from applications (e.g. regularisation of fermionic Fock
space representations) L-invariance of the defining 2-cocycle is
very often automatic
Reason is that the representation there is in fact a
representation of an by the vector field augmented algebra.



SOME MORE DETAILS

First part (start with L-invariance):
ep ∈ L, ep = zp+1

+
d

dz+
of degree p

Lr
m,Ls

n ∈ g of degree m and n
recall that for X ∈ g we have a unique Xm ∈ gm with
Xm = Xzm

+ + O(zm+1
+ )

almost-graded action:
∇epLr

m = mLr
p+m + L′ with L′ of higher order

the L-invariance

γ(∇epLr
m,L

s
n) + γ(Lr

m,∇epLs
n) = 0

implies

mγ(Lr
p+m,L

s
n) + nγ(Lr

m,L
s
n+p) = cocycle value at higher level



SOME MORE DETAILS

In particular, for p = 0
(m + n)γ(Lr

m,Ls
n) is of higher level

This shows that for (m + n) 6= 0 the value is given by higher
level values.
Hence, everything reduces to level zero.

Further analysis shows

γ(Lr
0,L

s
0) = 0, γ(Lr

n,L
s
−n) = nγ(Lr

1,L
s
−1) + higher level.

Hence, γ(Lr
1,L

s
−1) fixes everything.



SOME MORE DETAILS

Given γ consider the map

ψγ : g× g→ C, ψγ(X ,Y ) = γ(X1,Y−1).

ψγ is a symmetric, invariant bilinear form on g.
For g simple it is a multiple of the Cartan-Killing form.

For gl(n) = s(n)⊕ sl(n) the cocycle splits.
As s(n) ∼= A we can use a earlier result of mine on the
uniqueness of L-invariant cocycles for the abelian part.



SOME MORE DETAILS

for g simple in every class there is an L invariant one:

Eα,E−α,Hα Chevalley generators of g

Chevalley-Serre relations for the finite-dimensional g.

these structure equations are also structure equations in g

modulo higher level terms (comes from the almost-graded
structure)



SOME MORE DETAILS

by almost-gradedness and boundedness of the cocycle we can
change the cocycle in a cohomologous way such that finally
zero is an upper bound for nonvanishing level and that for the
level < 0 everything is fixed by level zero

this modified cocycle is called normalized cocycle

at level zero all cocycle values (normalized) can be expessed in
relation to the cocycle value γ(Hα

1 ,H
α
−1) for a single fixed simple

root

hence up to coboundary all local cocycles are multiples of a
single one


