UV/IR DUALITY IN NONCOMMUTATIVE QUANTUM FIELD THEORY

Richard Szabo

Heriot–Watt University, Edinburgh
Maxwell Institute for Mathematical Sciences

The Landau problem

$$\mathcal{L}_m = \frac{m}{2}\dot{\mathbf{x}}^2 - \frac{e}{c}\dot{\mathbf{x}} \cdot \mathbf{A} ; \qquad A_x = -\frac{B}{2}y , A_y = \frac{B}{2}x$$

In strong field limit $e B \gg m$ (lowest Landau level projection):

$$\mathcal{L}_0 = -\frac{e B}{2c} (\dot{x} y - \dot{y} x)$$

Canonical quantization gives noncommutative space:

$$[x,y] = i\theta, \qquad \theta = \frac{\hbar c}{eB}$$

UV/IR mixing - The problem

Interactions:

$$\widetilde{\phi}(k)\,\widetilde{\phi}(q)\,\longrightarrow\,\widetilde{\phi}(k)\,\widetilde{\phi}(q)\,\,{\,{
m e}}^{\,\,{
m i}\,k imes q}\,\,,\qquad k imes q\,\,=\,\,{1\over2}\,k_\mu\,\theta^{\mu
u}\,q_
u$$

with
$$k_1 + k_2 + ... + k_n = 0$$
; effective at energies E with $E \sqrt{\theta} \ll 1$

- ▶ Non-planar graphs: UV cutoff $\Lambda \implies$ Effective IR cutoff $\Lambda_0 = \frac{1}{\theta \Lambda}$ (Minwalla, Van Raamsdonk & Seiberg '99)
- ▶ The field theory cannot be renormalized!!!

UV/IR mixing - The physics

IR dynamics: "dipoles" with dipole moment $\Delta x^{\mu} = \theta^{\mu\nu} \, \mathbf{k}_{\nu}$ Like electron-hole bound state in strong magnetic field Dipoles interact by joining at their ends

(Sheikh-Jabbari '99, Bigatti & Susskind '99)

$$W_k[\phi] = \operatorname{Tr} \exp(i|k|\phi(x))$$

- \blacktriangleright UV dynamics: Elementary quantum fields ϕ , pointlike momenta k_{μ}
- ► UV/IR "duality" (Rey '02)

UV/IR mixing - The cure

(Langmann & RS '02, Grosse & Wulkenhaar '04)

- ▶ Covariant version renders UV, IR regimes indistinguishable
- Make UV/IR "duality" symmetric:

$$k_{\mu} \longmapsto K_{\mu} = k_{\mu} + B_{\mu\nu} x^{\nu}$$
 ("Landau" momenta)

 $B_{\mu\nu}$ = "magnetic" background

"Noncommutative momentum space": $[K_{\mu}, K_{\nu}] = 2i B_{\mu\nu}$

▶ **Grosse–Wulkenhaar model:** Real Euclidean scalar $\lambda \phi_{2d}^{\star 4}$ -theory in background harmonic oscillator potential:

$$\partial_{\mu}^{2} \longmapsto \partial_{\mu}^{2} + \frac{\omega^{2}}{2} \widetilde{x}_{\mu}^{2}, \qquad \widetilde{x}_{\mu} = 2\theta_{\mu\nu}^{-1} x^{\nu}$$

QFT symmetric under Fourier transformation of fields: $k_{\mu} \leftrightarrow \widetilde{\chi}_{\mu}$

Renormalization

```
(Langmann, RS & Zarembo '04; Grosse & Wulkenhaar '05; Rivasseau et al. '05 . . . )
```

- ▶ Covariant model is renormalizable to all orders in λ !
- Described by matrix model (no spacetime!) with cutoff the matrix size N (degeneracy of Landau levels)
 N × N matrix model is related to an integrable KP-hierarchy
- ▶ At $\omega=1$ (self-dual point), $\beta_{\lambda,\omega}=0$ \Longrightarrow renormalized coupling flows to finite bare coupling (wavefunction renormalization compensates coupling constant renormalization, $\lambda \phi^4$ invariant)
- ▶ No Landau ghost (renormalons)! (without asymptotic freedom)
- Non-perturbative completion believed possible

Classical duality

▶ Charged scalar fields $\phi(x)$ on Euclidean \mathbb{R}^{2d} :

$$S[\phi] = \int d^{2d}x \left(\phi^{\dagger} \left(D_{\mu}^{2} + \mu^{2} \right) \phi + g^{2} \phi^{\dagger} \star \phi \star \phi^{\dagger} \star \phi \right)$$

$$D_{\mu} = \frac{1}{\sqrt{2}} \left(-i \partial_{\mu} + B_{\mu\nu} x^{\nu} \right)$$

▶ Invariant under duality transformation of order 2:

$$\begin{array}{ccc} \phi(x) & \longrightarrow & \widehat{\phi}(x) & = & \sqrt{|\det(B)|} \; \widetilde{\phi}(B \cdot x) \\ \theta & \longrightarrow & \widehat{\theta} & = & -4B^{-1} \, \theta^{-1} \, B^{-1} \\ g & \longrightarrow & \widehat{g} & = & 2^d \, |\det(B \, \theta)|^{-1/2} \, g \end{array}$$

▶ Self-dual point: $\theta = 2B^{-1}$

Quantum duality

Generating functional of connected Green's functions:

$$\begin{split} \mathcal{G}(J) \; = \; -\log \frac{Z[J]}{Z[0]} \\ Z[J] \; = \; \int \, \mathcal{D}\phi \; \mathcal{D}\phi^\dagger \; \exp \Big(-S[\phi] - \int \, \mathrm{d}^{2d}x \; \left(\phi^\dagger \, J + \phi \, J^\dagger \right) \Big) \end{split}$$

▶ **Formally** invariant under duality transformation of Schwartz functions $\phi \mapsto \widehat{\phi}$ on \mathbb{R}^{2d} :

$$G(J; B, g, \theta) = G(\widehat{J}; B, \widehat{g}, \widehat{\theta})$$

Requires duality invariant regularization G → GΛ
 — all Feynman diagrams converge

Quantum duality

Expand fields in "matrix basis" $f_{n,m} \in L^2(\mathbb{R}^2)$, $n,m=0,1,\ldots$ of Landau wavefunctions:

$$\phi(x) = \sum_{n,m} f_{n,m}(x) \phi_{n,m}$$

$$D_{\mu}^{2}f_{n,m} = 2B\left(n + \frac{1}{2}\right)f_{n,m} =: E_{n}f_{n,m}, \qquad D_{\mu}^{2}\big|_{B \to -B}f_{n,m} = E_{m}f_{n,m}$$

▶ For suitable cut-off function *F*, replace free propagator:

$$C(n,m) = (E_n + \mu^2)^{-1} \longrightarrow C_{\Lambda}(n,m) = (E_n + \mu^2)^{-1} F(\Lambda^{-2}(E_n + E_m))$$

Feynman diagrams = $\sum_{n_1,m_1,...,n_K,m_K} \prod_{k=1}^{n} C_{\Lambda}(n_k,m_k) \times \text{(vertices)}$ (finite sums)

Matrix model

▶ Mapping to a matrix model $(d = 2, \theta = 2B^{-1})$:

$$f_{n,m} \star f_{n',m'} \; = \; \delta_{m,n'} \; f_{n,m'} \; , \qquad \int \mathrm{d}^2 x \; f_{n,m} \; = \; \delta_{n,m}$$

$$S[\phi] = \operatorname{Tr}\left(\phi^{\dagger} \mathcal{B} \phi + \mu^{2} \phi^{\dagger} \phi + g^{2} (\phi^{\dagger} \phi)^{2}\right)$$

$$\phi = (\phi_{n,m}), \qquad \mathcal{B}_{n,m} = \theta^{-1} \left(n + \frac{1}{2}\right)$$

▶ QFT has $U(\infty)$ symmetry $\phi \longrightarrow U^{\dagger} \phi U$ and is $N \longrightarrow \infty$ limit of $N \times N$ complex matrix model in external field:

$$Z_N = \int \prod_{n=1}^N \mathrm{d}\phi_{n,m} \, \mathrm{d}\phi_{n,m}^{\dagger} \, \mathrm{e}^{-S[\phi]}$$

Related to Kontsevich-Penner model

Analytic continuation to Minkowski signature

- ▶ Naively $x^0 \longrightarrow \pm i t$, $B_{0i} \longrightarrow \pm i E_i$, but this is "wrong"
- ▶ Perturbative dynamics of (non-covariant) NCFT cannot be obtained by Wick rotation (Bahns et al. '02, Liao & Sibold '02, Rim & Yee '03)
- ► Time-ordering and two-point function do not combine into Feynman propagators in non-planar graphs
- ► Renormalization properties (in S-matrix framework) very different
 - UV/IR mixing may be far less severe or even absent (Bahns '07)

Analytic continuation to Minkowski signature - Results

(Fischer & RS '09)

► There is a dense domain $\phi \in \Phi \subset L^2(\mathbb{R}^2)$ and "electric Landau wavefunctions" $f_{n,m}^{\pm} \in \Phi'$, $n,m=0,1,\ldots$ such that

$$\phi(x) = \frac{1}{2} \sum_{n,m} \left(f_{n,m}^+(x) \ \phi_{n,m}^- + f_{n,m}^-(x) \ \phi_{n,m}^+ \right)$$

$$\begin{split} D_{\mu}^{2}f_{n,m}^{\pm} \; = \; \pm \mathrm{i}\,E_{n}\,f_{n,m}^{\pm} \;, \qquad D_{\mu}^{2}\big|_{B\to -B}f_{n,m}^{\pm} \; = \; \pm \mathrm{i}\,E_{m}\,f_{n,m}^{\pm} \\ f_{n,m}^{\pm} \,^{*} \; = \; f_{m,n}^{\mp} \;, \quad \langle f_{n,m}^{\pm}|f_{n',m'}^{\mp}\rangle \; = \; \delta_{m,n'}\,\delta_{n,m'} \;, \quad f_{n,m}^{\pm}\star f_{n',m'}^{\pm} \; = \; \delta_{m,n'}\,f_{n,m'}^{\pm} \end{split}$$

- ▶ Unitarity and causality: Both matrix bases required to ensure:
 - 1. Stability (manifestly real action)
 - 2. CT-invariance $(\phi_{n,m}^{\mp} = C T \phi_{n,m}^{\pm})$

Analytic continuation to Minkowski signature - Results

Quantum duality: Regulated propagators in Minkowski space:

$$C^{\pm}(n,m) = \langle \phi_{m,n}^{\pm} * \phi_{m,n}^{\mp} \rangle$$

$$\longrightarrow C_{\Lambda}^{\pm}(n,m) = 2i (\pm i E_n + \mu^2)^{-1} F(\Lambda^{-2} |E_n + E_m|)$$

Represent incoming (resp. outgoing) particles (resp. antiparticles)

► Coupled complex two-matrix model: At self-dual point:

$$S = \frac{1}{2} \sum_{s=\pm} \operatorname{Tr} \left(4s \, \phi_s^{\dagger} \, \mathrm{i} \, \mathcal{B} \, \phi_{-s} + \mu^2 \, \phi_s^{\dagger} \, \phi_{-s} + g^2 \left(\phi_s^{\dagger} \, \phi_{-s} \right)^2 \right)$$

$$GL(\infty) \times GL(\infty)$$
 symmetry: $\phi_s \longmapsto \phi_s \, U_s$, $\phi_s^\dagger \longmapsto U_{-s}^{-1} \, \phi_s^\dagger$ CT-symmetry: $(\phi_s \, , \, \phi_s^\dagger) \longmapsto (\phi_{-s} \, , \, \phi_{-s}^\dagger)$, $\theta \longmapsto -\theta$

Inverted harmonic oscillator

(Chruscinski '04)

$$H = \frac{1}{2} \left(P^2 - \omega^2 Q^2 \right)$$

- ▶ Related to usual harmonic oscillator by complex scaling $\omega \longrightarrow \pm i \omega$
- ▶ H selfadjoint on $L^2(\mathbb{R})$ with $\operatorname{Spec}(H) = \mathbb{R}$, but has generalized eigenfunctions with **imaginary** eigenvalues
- Occur as residues of original eigenfunctions analytically continued to complex energy plane
 - closing contour of integration in eigenfunction expansion gives analog of **discrete** expansion in Landau wavefunctions
- Analogous to (controversial) Bohm–Gadella theory of resonant states in quantum mechanics

Rigged Hilbert spaces

$$\Phi \subset \mathcal{H} \subset \Phi'$$

- Φ = dense subspace of Hilbert space \mathcal{H} with dual Φ'
 - ▶ Generalized eigenvectors: $\langle \phi | AF_{\lambda} \rangle := \langle A\phi | F_{\lambda} \rangle = \lambda \langle \phi | F_{\lambda} \rangle$ where $\lambda \in \mathbb{C}$, $\phi \in \Phi$, $F_{\lambda} \in \Phi'$, $A \in \operatorname{End}(\mathcal{H})$
 - ► Gel'fand–Maurin Theorem: For any $|\phi\rangle \in \Phi$, there exists $|F_{\lambda}\rangle \in \Phi'$ such that

$$|\phi\rangle = \int_{\mathrm{Spec}(A)} \mathrm{d}\mu(\lambda) |F_{\lambda}\rangle \langle F_{\lambda}|\phi\rangle$$

Example: For inverted oscillator $\mathcal{S}(\mathbb{R}) \subset L^2(\mathbb{R}) \subset \mathcal{S}'(\mathbb{R})$

Resonance expansion

▶ By P-invariance, each $\mathcal{E} \in \operatorname{Spec}(H)$ has 2-fold degenerate eigenfunctions $\chi_{\pm}^{\mathcal{E}}$, $\eta_{\pm}^{\mathcal{E}}$ given by parabolic cylinder functions (only two linearly independent), so for any $\phi \in \mathcal{S}(\mathbb{R})$:

$$\phi(q) = \sum_{s=\pm} \int d\mathcal{E} \, \chi_s^{\mathcal{E}}(q) \, \langle \chi_s^{\mathcal{E}} \, | \, \phi \rangle = \sum_{s=\pm} \int d\mathcal{E} \, \eta_s^{\mathcal{E}}(q) \, \langle \eta_s^{\mathcal{E}} \, | \, \phi \rangle$$

- ▶ H also has generalized eigenfunctions f_n^\pm with discrete eigenvalues $\pm \mathrm{i}\,\theta^{-1}\left(n+\frac{1}{2}\right)$, $n=0,1,\ldots$, occurring as residues of $\chi_\pm^\mathcal{E}/\eta_\pm^\mathcal{E}$ in upper / lower complex half-plane
- ▶ In suitable domain $\phi \in \Phi \subset \mathcal{S}(\mathbb{R})$:

$$\phi(q) = \frac{1}{2} \sum_{s=+}^{\infty} \sum_{n=0}^{\infty} f_n^s(q) \left\langle f_n^{-s} \middle| \phi \right\rangle$$

Configuration space Φ

$$\mathcal{S}^{\alpha}_{\alpha}(\mathbb{R}) \subset L^{2}(\mathbb{R}) \subset \mathcal{S}^{\alpha}_{\alpha}(\mathbb{R})'$$

 $S^{\alpha}_{\alpha}(\mathbb{R}) = \text{Gel'fand-Shilov space with } \alpha \geq \frac{1}{2}$ $S^{\alpha}_{\alpha}(\mathbb{R})' = \text{space of tempered ultra-distributions of Roumieu type}$

Gel'fand–Shilov spaces: Entire functions $\phi(q)$ on $\mathbb C$ restricted to $\mathbb R$, with $\|q^m \partial_q^n \phi\|_{\infty} \leq C M^{n+m} n^{\alpha n} m^{\alpha m}$

 $\mathcal{S}^{\alpha}_{\alpha}(\mathbb{R}) \subset \mathcal{S}(\mathbb{R}) = \mathcal{S}^{\infty}_{\infty}(\mathbb{R})$ closed under Fourier transformation, star-product (Soloviev '07, Chaichian et al. '08), basis given by harmonic oscillator wavefunctions (Lozanov-Crvenković & Perišić '07)

Theorem (Fischer–RS): For any $\phi \in \mathcal{S}^{\alpha}_{\alpha}(\mathbb{R})$, one has $\lim_{\mathcal{E} \to \infty} \left\langle \eta^{\mathcal{E}}_{\pm} \middle| \phi \right\rangle = 0$ (resp. $\lim_{\mathcal{E} \to \infty} \left\langle \chi^{\mathcal{E}}_{\pm} \middle| \phi \right\rangle = 0$) over \mathcal{E} in upper (resp. lower) complex half-plane

Open problems

- ▶ Physical meaning of "electric Landau wavefunctions" $f_{n,m}^{\pm}$ relation to time-ordered perturbation theory?
- ▶ Resonance expansion **proves** electric-magnetic duality
 B_{0i} → ± i E_i of QED effective action simple explanation of electric-type noncommutativity like lowest Landau level projection?
- ► Analytic continuation of Grosse–Wulkenhaar model to Minkowski signature (inverted harmonic oscillator potential)
 - renormalization?
- ▶ Meaning of duality covariance, beyond Moyal spaces:
 - UV/IR duality as metaplectic representations of Heisenberg group (Grosse–Wulkenhaar model on solvable symmetric spaces) (Bieliavsky, Gurau & Rivasseau '08)
 - 2. UV/IR mixing on κ -deformed space (Grosse & Wohlgenannt '06) related to quantum group dualities?