
Motivation
Manifolds with SU(3)-structure

Dimensional Reduction
Four-dimensional models

Conclusions

Dimensional reduction of the heterotic string over
homogeneous nearly-Kähler manifolds

Athanasios Chatzistavrakidis

National Technical University and NCSR Demokritos, Athens

A.C .,P.Manousselis,G .Zoupanos : arXiv : 0811.2182

A.C .,G .Zoupanos : arXiv : 0905.2398

Bayrischzell Workshop 2009

Athanasios Chatzistavrakidis Dimensional reduction of the heterotic string over homogeneous nearly-Kähler manifolds



Motivation
Manifolds with SU(3)-structure

Dimensional Reduction
Four-dimensional models

Conclusions

Overview

1 Motivation

2 Manifolds with SU(3)-structure

3 Dimensional Reduction

4 Four-dimensional models

5 Conclusions

Athanasios Chatzistavrakidis Dimensional reduction of the heterotic string over homogeneous nearly-Kähler manifolds



Motivation
Manifolds with SU(3)-structure

Dimensional Reduction
Four-dimensional models

Conclusions

Motivation

Heterotic string theory: promising candidate for realistic
low-energy phenomenology.

It includes chiral fermions, its gauge group is large enough to
accommodate the gauge group of the standard model.

� search for vacua of the form M4 × B (with compact B).

Determine effective four-dimensional theory by dimensionally
reducing over B, find contact with low-energy phenomenology.
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Requirement of N = 1 susy in four dimensions  Calabi-Yau
threefolds (SU(3)-holonomy)

Complicated geometry (e.g. unknown metric)
Moduli stabilization problem  limited predictive power
How is susy broken?

Flux compactifications  backgrounds other than CY
(SU(3)-structure)

Much simpler geometry
Fluxes can generate potentials which stabilize the moduli
Vacua with (softly) broken susy
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Simple examples of manifolds admitting an SU(3) structure:
non-symmetric coset spaces

Supersymmetric compactifications of the heterotic string
theory of the form AdS4 × S/R exist when H-flux and fermion
condensates are present (uplifting to Minkowski?).

Perform reduction employing the Coset Space Dimensional
Reduction scheme which provides

Gauge-Higgs-Yukawa unification
Interesting GUT models with chiral fermions in 4-dims
N = 1 softly broken susy Lagrangians
Consistency
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A manifold admits a G -structure when the structure group of its
frame bundle can be reduced to G .

 all tensors/spinors can be globally decomposed into reps of G .

The G -structure is classified by the intrinsic torsion ↪→ measures
the failure of tensors/spinors to be covariantly constant w.r.t. the
Levi-Civita connection.
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In six-dimensions: SU(3)-structure ↪→ amounts to the reduction of
SO(6) to SU(3).
Define:

nowhere-vanishing, globally-defined spinor η, the singlet of the
decomposition 4 = 3 + 1,

structure forms: 2-form J and 3-form Ω,

all covariantly constant w.r.t. a connection with torsion.
J and Ω satisfy:

dJ =
3

4
i(W1Ω∗ −W∗1 Ω) +W4 ∧ J +W3,

dΩ = W1J ∧ J +W2 ∧ J +W∗5 ∧ Ω.

 five intrinsic torsion classes Wi
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Torsion classes provide classification of manifolds, e.g.

Complex: W1=W2=0

Symplectic: W1=W3=W4=0

Kähler: W1−4=0

Calabi-Yau: all torsion classes vanish

nearly-Kähler: W2−5=0
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6-dim nearly-Kähler manifolds:

G2/SU(3)

Sp4/(SU(2)× U(1))non−max

SU(3)/U(1)× U(1)

SU(2)× SU(2)

The first three manifolds are also the only non-symmetric coset
spaces S/R in 6 dims. They admit 1,2 and 3 different radii
respectively. Also they admit S-invariant 2-forms ωi and 3-forms
ρ1, ρ2.

Structure forms: J = R2
i ωi , Ω ∝ (ρ2 + iρ1)

 use the S-invariant forms to expand fields
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Spectrum and Lagrangian

Heterotic Supergravity-Yang-Mills spectrum =

N = 1 sugra multiplet + N = 1 vector supermultiplet:

eN
M , ψM ,BMN , λ, φ and AM , χ

Gauge group E8 × E8.

Reduction of the bosonic part ↪→ obtain Kähler potential K and
superpotential W ↪→ sufficient to find sugra description in 4 dims

Bosonic Lagrangian:

ê−1LB = − 1

2κ̂2

(
R̂ ∗̂1+

1

2
d φ̂∧∗̂d φ̂+

1

2
e−φ̂Ĥ∧∗̂Ĥ+

α′

2
e−

1
2
φ̂TrF̂∧∗̂F̂

)
.
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Metric & dilaton

Metric ansatz:

dŝ2 = e2αϕ(x)ηmnemen + e2βϕ(x)γab(x)eaeb.

Note:

the metric is S-invariant

consistency requirement imposes the vanishing of
Kaluza-Klein gauge fields, only scalar fluctuations

γab is unimodular and generically contains extra scalars
parametrizing the internal metric
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Using this ansatz we obtain:

L = − 1

2κ2
(R ∗ 1 + Pab ∧ ∗Pab +

1

2
dϕ ∧ ∗dϕ)− V ,

 Pab provide kinetic terms for the additional metric moduli.
The potential is:

V = − 1

8κ2
e2(α−β)ϕ(γabγ

cdγef f a
ce f b

df + 2γabf c
daf d

cb + 4γabfiac f ic
b )

i: R-index
a: coset index

Higher-dimensional dilaton: φ̂(x , y) = φ(x)
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Gauge fields

CSDR principle: LX I Â = DWI ,
where WI→ gauge transformation parameter, X I→ Killing vectors.

Ansatz for the gauge field: ÂI = AI + φI
AeA

Constraints: DφI
i = F I

ai = F I
ij = 0.

Then, in four dimensions:

Lgauge = − α′

4κ2
e−

1
2
φ

[
F I ∧ ∗F I + γabDφI

a ∧ ∗DφI
b

]
−Vgauge ,

where the initial gauge group G is broken to H = CG (R). In the
present framework H = E6. The potential reads

Vgauge =
α′

8κ2
e−

1
2
φγacγbdFabFcd .
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Three-form

Multidimensional 3-form flux: Ĥ = d̂ B̂ − α′

2 (ω̂YM − ω̂L).
where the abelian 2-form potential is expanded as:

B̂ = B(x) + bi (x)ωi (y).

ωi (y): the S-invariant 2-forms of the internal space.
ωYM and ωL: the Yang-Mills and Lorentz Chern-Simons forms.
Then in four dimensions:

LH = − 1

4κ2
e−φ

[
dθ ∧ ∗dθ − θF I ∧ F I + mdbi ∧ ∗dbi

+ α′εabi dbi ∧ Tr(φa ∗ Dφb)

+
α′2

4
Tr(φa

←→
D φb) ∧ Tr(φa ∗

←→
D φb)

]
−VH ,
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The potential has the form

VH =
1

4κ2
e−φ

[
bibj(n1δij + n2εij)−

2α′

3
εabc
i biTr(φaφbφc)

+
α′

2
εabc
i biTr(f d

abφcφd) +
2α′2

3
Tr(φaφbφc)2

+
α′2

16
Tr(f d

abφcφd)Tr(f d
[abφc]φd)

− α′2Tr(φaφbφc)Tr(f d
abφcφd)

]
,

θ is the pseudoscalar obtained by duality transformation on
dB.

m, n1 and n2 are fixed constants for each manifold.
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Counting scalar moduli:

G2/SU(3)

one radius + one G2-invariant 2-form
four moduli: φ, θ, ϕ, b1 + one 27 multiplet βi in E6 from the
internal components of the gauge field.

Sp4/(SU(2)× U(1))non−max

two radii + two Sp4-invariant 2-forms
six moduli: φ, θ, ϕ, χ, b1, b2 + two multiplets βi , γ i .

SU(3)/U(1)× U(1)

three radii + three SU(3)-invariant 3-forms
eight moduli φ, θ, ϕ, χ, ψ, b1, b2, b3 + three multiplets
αi , βi , γ i .
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G2/SU(3) case

gravity : Vgrav = − 15
κ2

1
R2

1
,

gauge: Vgauge = α′

8κ2 e−
1
2
φ

(
8

R4
1
− 40

3R2
1
β2 −

[
4
R1

dijkβ
iβjβk + h.c

]
+

βiβjdijkdklmβlβm + 11
4

∑
α β

i (Gα)jiβjβ
k (Gα)lkβl

)
,

flux : VH = 1
κ2 e−φ

[
b2

R6
1

+
√

2
R3

1
iα′b(dijkβ

iβjβk − h.c.) + 2α′2βiβjβkdijkd lmnβlβmβn +

3
R2

1
α′2(β2)2 −

√
6

R1
α′2β2(dijkβ

iβjβk + h.c.)

]
.

 possible soft susy breaking terms
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4-dim sugra description

Determine the superpotential by the Gukov-Vafa-Witten formula:
W = 1

4

∫
S/R Ω ∧ (Ĥ + idJ)

and the Kähler potential by special Kähler geometry:
K = KS + KT ,
where KS = −ln(S + S∗) in terms of the superfield S = eφ + iθ
and KT = −ln(1

6

∫
S/R J ∧ J ∧ J)
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Then:

G2/SU(3)

W = 3T1 −
√

2α′dijkB iB jBk

K = −ln(S + S∗)(T1 + T ∗1 − 2α′BiB
i )3

Sp4/(SU(2)× U(1))non−max

W = 2T1 + T2 −
√

2α′dijkB iB jΓk

K = −ln(S + S∗)(T1 + T ∗1 − 2α′BiB
i )2(T2 + T ∗2 − 2α′ΓiΓ

i )

SU(3)/U(1)× U(1)

W = T1 + T2 + T3 −
√

2α′dijkAiB jΓk

K = −ln(S + S∗)(T1 + T ∗1 − 2α′AiA
i )(T2 + T ∗2 − 2α′BiB

i )×
×(T3 + T ∗3 − 2α′ΓiΓ

i )

with the superfields Ti = R2
i + ibi and A,B, Γ the superfields of

α, β, γ.
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Conclusions

The four-dimensional action resulting by dimensionally
reducing the heterotic supergravity-Yang-Mills theory over
nearly-Kähler manifolds has been derived.

A detailed case by case analysis has been performed for all the
nearly-Kähler coset manifolds.

Due to their simple geometry, nearly-Kähler manifolds provide
interesting realizations of the general formalism of
SU(3)-structure compactifications.

The potential contains possible soft susy breaking terms (in
case an uplifting mechanism would provide a Minkowski
vacuum, e.g. with non-perturbative effects). This possibility
could also have a significant effect in the stabilization of all
the moduli.
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