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I recall the main aspects of twist deformation quantization and the asso_
ciated deformed symmetries (e.g. Lorentz covariance, general covariance).

Recall the construction of noncommutative gravity.           [Wess group]  
This will be done explicitly using local coordinates.

Show how to glue the local constructions and thus obtain the global    
(coordinate independent) Riemannian connection and its curvature.   

Application:  Describe a class of noncommutative gravity 
solutions (NC Einstein spaces)

[P.A. , L. Castellani] 
hep-th/0906.2774
J.Geom. Phys 2010

**

**[P.A.,Blohmann, Dimitrijevic, Meyer, Schupp, Wess]



I report on progress in a general program in NC geometry, study the geometry
of NC Einstein manifolds and present NC gravity solutions.

Motivations:

-The impossibility to test (also with ideal experimens) the structure of space-
time at infinitesimal distances leads to relax the usual assumtion of spacetime
as a smooth manifold (a continuum of points) and to conceive a more general
structure like a lattice or a noncommutative spacetime that naturally encodes
a discretized or cell-like structure.

-In a noncommutative geometry a dynamical aspect of spacetime is encoded
at a more basic kinematical level.

-It is interesting to understand if on this spacetime one can consistently for-
mulate a gravity theory. I see nc grvity as an effective theory This theory may
capture some aspects of a quantum gravity theory.

-It is then also interesting to study solutions of this deformed gravity theory,
e.g. NC black holes and cosmological solutions.
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NC geometry approaches

• Generators and relations. For example

[x̂i, x̂j] = iθij canonical

[x̂i, x̂j] = ifij
kx̂k Lie algebra

x̂ix̂j − qx̂jx̂i = 0 quantum plane (1)

Quantum groups and quantum spaces are usually described in this way.

• "-product approach, a new product is considered in the usual space of func-
tions, it is given by a bi-differential operator B(f, g) ≡ f " g that is associative,
f " (g " h) = (f " g) " h. (More precisely we need to extend the space of functions by
considering formal power series in the deformation parameter λ).

Example:

(f " h)(x) = e
− i

2λθµν ∂
∂xµ⊗ ∂

∂yν f(x)h(y)
∣∣∣
x=y

.

Notice that if we set

F−1 = e
− i

2λθµν ∂
∂xµ⊗ ∂

∂yν

3

C  algebra completion; representation as operators in Hilbert space       *



then

(f ! h)(x) = µ ◦ F−1(f ⊗ h)(x)

The element F = e
i
2λθµν ∂

∂xµ⊗ ∂
∂yν is called a twist. We have F ∈ UΞ ⊗ UΞ

where UΞ is the universal enveloping algebra of vectorfields.
[Drinfeld ’83, ’85]

A more general example of a twist associated to a manifold M is given by:

F = e−
i
2λθabXa⊗Xb

where [Xa, Xb] = 0. θab is a constant (antisymmetric) matrix.

Another example : a nonabelian example, Jordanian deformations, [Ogievetsky, ’93]

F = e
1
2H⊗log(1+λE) , [H, E] = 2E

We do not consider the most general !-products [Kontsevich], but those that
factorize as ! = µ ◦ F−1 where F is a general Drinfeld twist.|



In general, given a noncommutative algebra, we can ask if there is a notion of   
differential calculus associated to it.  We can also try to construct the associated 

exterior algebra.  

Similarly in the star product case it is interesting to consider not only the NC 
algebra of functions, but also the corresponding deformed tensor algebra and 

exterior algebra. This is a difficult task for general star products that are 
quantization of a given Poisson structure.

In case the star product is given by a twist        then the construction can be done,
this is so because of the factorization                     . More eplicitly, while the 
Poisson structure associated to a given star product is a 2-polivector field (a 
tensorfield), the Poisson structure associated to                       comes from 

elements in         .

Solutions III. The general twist case.

Thm. Given the noncommutative manifold (M,F), consider all undeformed
Einstein metrics g such that the associated Killing Lie algebra gK has the twist
compatibility property

F ∈ UgK ⊗ UgK (4)

Then these undeformed Einstein metrics are also noncommutative Einstein
metrics.

Proof. In this case ∇! = ∇. Then it follows that the NC curvature = unde-
formed curvature.

We can more in general consider gK the Lie algebra of conformal Killing vector fields.

Rmk. We have studied gravity solutions corresponding to three cases of twists
I (Moyal Weyl), II (arbitrary abelian) , III (general). Similar arguments apply also
to NC gravity solutions in the first order formalism studied in [P.A., Castellani
JHEP 2009].
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!-Noncommutative Manifold (M,F)

M smooth manifold

F ∈ UΞ⊗ UΞ

A algebra of smooth functions on M

⇓
A! noncommutative algebra

Usual product of functions:

f ⊗ h
µ−→ fh

!-Product of functions

f ⊗ h
µ!−→ f ! h

µ! = µ ◦ F−1

A and A! are the same as vector spaces, they have different algebra structure

4



Example: M = R4

F = e−
i
2λθµν ∂

∂xµ⊗ ∂
∂xν

(f % h)(x) = e
− i

2λθµν ∂
∂xµ⊗ ∂

∂yν f(x)h(y)
∣∣∣
x=y

Notation
F = fα ⊗ fα F−1 = f̄α ⊗ f̄α

f % h = f̄α(f) f̄α(h)

Define F21 = fα ⊗ fα and define the universal R-matrix:

R := F21F−1 := Rα ⊗ Rα , R−1 := R̄α ⊗ R̄α

It measures the noncommutativity of the %-product:

f % g = R̄α(g) % R̄α(f)

Noncommutativity is controlled by R−1. The operator R−1 gives a represen-
tation of the permutation group on A%.
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F deforms the geometry of M into a noncommutative geometry.

Guiding principle:

given a bilinear map

µ : X × Y → Z

(x, y) #→ µ(x, y) = xy .

deform it into µ! := µ ◦ F−1 ,

µ! : X × Y → Z

(x, y) #→ µ!(x, y) = µ(f̄ α(x), f̄ α(y)) = f̄ α(x)f̄ α(y) .

The action of F ∈ UΞ⊗ UΞ will always be via the Lie derivative.

!-Tensorfields

τ ⊗! τ ′ = f̄α(τ)⊗ f̄α(τ ′) .

In particular h !v , h ! df , df ! h etc...
7
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!-Forms

ϑ ∧! ϑ′ = f̄α(ϑ) ∧ f̄α(ϑ′) .

Exterior forms are totally !-antisymmetric.

For example the 2-form ω ∧! ω′ is the !-antisymmetric combination

ω ∧! ω′ = ω ⊗! ω′ − R̄α(ω′)⊗! R̄α(ω) .

The undeformed exterior derivative

d : A → Ω

satisfies (also) the Leibniz rule

d(h !g ) = dh !g + h ! dg ,

and is therefore also the !-exterior derivative.

The de Rham cohomology ring is undeformed.
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!-Action of vectorfields, i.e., !-Lie derivative

Lv(f) = v(f) usual Lie derivative

L : Ξ×A → A

(v, f) #→ v(f) .

deform it into L! := L ◦F −1 ,

L!
v(f) = f̄α(v)

(
f̄α(f)

)
!-Lie derivative

Deformed Leibnitz rule

L!
v(f ! h) = L!

v(f) ! h + R̄α(f) ! L!
R̄α(v)(h) .

!-Lie algebra of vectorfields Ξ! [P.A., Dimitrijevic, Meyer, Wess, ’06]
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!-Lie algebra of vectorfields Ξ! [P.A., Dimitrijevic, Meyer, Wess, ’06]

Theorem 1. (UΞ, !,∆!, S!, ε) is a Hopf algebra. It is isomorphic to Drinfeld’s
UΞF with coproduct ∆F .

Theorem 2. The bracket

[u, v]! = [̄fα(u), f̄α(v)]

gives the space of vectorfields a !-Lie algebra structure (quantum Lie algebra
in the sense of S. Woronowicz):

[u, v]! = −[R̄α(v), R̄α(u)]! !-antisymmetry

[u, [v, z]!]! = [[u, v]!, z]! + [R̄α(v), [R̄α(u), z]!]! !-Jacoby identity

[u, v]! = L!
u(v)

the !-bracket is
the !-adjoint action

Theorem 3. (UΞ, !,∆!, S!, ε) is the universal enveloping algebra of the !-Lie
algebra of vectorfields Ξ!. In particular [u, v]! = u !v − R̄α(v) ! R̄α(u).

To every undeformed infinitesimal transformation there correspond one and only one deformed

infinitesimal transformation: Lv ↔ L!
v.
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Application:               Twisted Poincare’ symmetry 
versus spontaneously broken Poincare’ symmetry

[Gonera, Kosinski, Maslanka, Giller]     
      [Meyer, Vazquez-Mozo, Alvarez-Gaume’]

                                  [P.A. Dimitrijevic, Kulish, Lizzi, Wess Springer LNP 774, ch. 8]

[Wess],   [Chaichian, Kulish, Tureanu]



There are two persepctives on twist deformed NC field theories:

• spontaneously broken symmetry

• deformed (Hopf algebra) symmetry

In the first approach we say that Poincaré symmetry is spontaneously broken
to the translations group (the subgroup that leaves invariant the Poisson tensor
θµν∂µ ⊗ ∂ν.

In the second approach the breaking of the usual Poincaré symmetry is rein-
terpreted as the presence of a deformed Poincaré symmetry.

This second approach is more powerful, because among the possible ways
we can spontaneaously break a symmetry it singles out the ones that preserve
the deformed Poincaré symmetry: the classical symmetry breaking terms must
appear only in the $-product.

In the case of gravity we have diffeomorphisms symmetry rather than Poincaré
symmetry. This deformed diffeomorphisms symmetry allows us to construct a
NC gravity theory.
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We can now proceed in our study of differential geometry on noncommutative
manifolds.

Covariant derivative:

∇!
h!uv = h !∇!

uv ,

∇!
u(h !v ) = L!

u(h) ! v + R̄α(h) !∇!
R̄α(u)v

our coproduct implies that R̄α(u) is again a vectorfield

On tensorfields:

∇!
u(v ⊗! z) = R̄α(∇!)u(R̄α(v))⊗! z + R̄α(v)⊗!∇!

R̄α(u)(z) .

The torsion T! and the curvature R! associated to a connection∇! are defined
by

T!(u, v) := ∇!
uv −∇!

R̄α(v)R̄α(u)− [u, v]! ,

R!(u, v, z) := ∇!
u∇!

vz −∇!
R̄α(v)∇

!
R̄α(u)z −∇

!
[u,v]!z ,

for all u, v, z ∈ Ξ!. Where [u, v]! ≡ L!
u(v).
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A!-linearity shows that T! and R! are well defined tensors:

T!(f ! u, v) = f ! T!(u, v) , T!(u, f ! v) = R̄α(f) ! T!(R̄α(u), v)

and similarly for the curvature. We also have !-antisymmetry property of
T!(u, v) and R!(u, v, z) in u and v.

Local coordinates description

We denote by {ei} a local frame of vectorfields (subordinate to an open U ⊂
M ) and by {θj} the dual frame of 1-forms:

〈ei , θj〉! = δj
i .

〈ei , θj〉! = 〈f̄ α(ei) , f̄ αθj)〉 .

Connection coefficients Γij
k,

∇!
ei

ej = Γk
ij ! ek

T! =
1

2
θj ∧! θi ! T!

ij
l ⊗! el ,

R! =
1

2
θk ⊗! θj ∧! θi ! R!

ijk
l ⊗! el .
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Example, F = e−
i
2θµν∂µ⊗∂ν

∇$
∂µ

(∂ν) = Γ$ρ
µν $ ∂ρ

T$ρ
µν = Γ$ρ

µν − Γ$ρ
νµ

R$σ
ρµν = ∂µΓ$σ

νρ − ∂νΓ$σ
µρ + Γ$β

νρ $ Γ$σ
µβ − Γ$β

µρ $ Γ$σ
νβ .

Ric$
µν = R$σ

µσν.
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!-Riemaniann geometry

!-symmetric elements:

ω ⊗! ω′ + R̄α(ω′)⊗! R̄α(ω) .

Any symmetric tensor in Ω ⊗Ω is also a !-symmetric tensor in Ω! ⊗! Ω!, proof: expansion
of above formula gives f̄ α(ω)⊗ f̄ α(ω′) + f̄ α(ω′)⊗ f̄ α(ω).

g = gµν ! dxµ ⊗! dxν

Γ!ρ
µν =

1

2
(∂µgνσ + ∂νgσµ − ∂σgµν) ! g!σρ

gνσ ! g!σρ = δρ
ν .

Noncommutative Gravity

Ric! = 0

[P.A., Blohmann, Dimitrijevic, Meyer, Schupp, Wess]
[P.A., Dimitrijevic, Meyer, Wess]
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Metric Connections on NC Manifolds

[P.A., Castellani J. Geom. Phys. 2010]

Generalize the construction of a metric connection to any NC manifold M with
abelian twist

F = e−
i
2λθabXa⊗Xb

where [Xa, Xb] = 0. θab is a constant (antisymmetric) matrix.

Let |span{Xa}| be the dimension of the vectors space spanned by the Xa.

-If |span{Xa}| = const then we are in the previous situation. Use Xa = ∂
∂xa .

-If locally |span{Xa}| = const locally we are in the previous situation.

-Problems may arise when one of the vectorfields Xa vanishes, or more in
general when |span{Xa}| changes. This is a very common case!
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Ex. Manin plane

x !y = qy ! x

is given by the twist F = e−
i
2θ(x∂x⊗y∂y−y∂y⊗x∂x).

We call regular points of F those points P ∈ M such that there exists an open
neighbourhood of P where |span{Xa}| is constant.
As in Poisson geometry regular points of F are an open dense submanifold
Mreg of M .

Thm.1 There is a unique noncommutative Levi-Civita (i.e. metric compatible
and torsion free) connection ∇! on Mreg. Hint: Glue local connections. Transition
functions can be chosen to be insensitive to !-product. Christoffel symbols transforms as in
the commutative case.

Thm.2 The noncommutative Levi-Civita connection ∇! extends by continuity
from Mreg to M .

Rmk.: This is the fundamental theorem of NC Riemannian Geometry!
In other words:

Thm. 2 Given a smooth manifold M with metric g and arbitrary abelian twist
F = e−

i
2λθabXa⊗Xb, there exists a unique noncommutative Levi-Civita con-

nection ∇! on M .
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Noncommutative Einstein Manifolds

[P.A., Castellani J. Geom. Phys. 2010]

Ric! = Λg

Example F = e−
i
2θµν∂µ⊗∂ν

Ric!
µν = Λgµν

Γ!ρ
µν =

1

2
(∂µgνσ + ∂νgσµ − ∂σgµν) ! g!σρ

gνσ ! g!σρ = δρ
ν .

R!σ
ρµν = ∂µΓ!σ

νρ − ∂νΓ!σ
µρ + Γ!β

νρ ! Γ!σ
µβ − Γ!β

µρ ! Γ!σ
νβ .

Ric!
µν = R!σ

µσν.
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Approaches:

- perturbative solutions in power of the deformation parameter

-exact solutions, using symmetry arguments.

-topological solutions (e.g. gravitational instantons).

Motivations:

-understand noncommutative Einstein Manifolds

-Cosmological solutions. Black hole solutions.

We consider here exact solutions. These solutions are present when the
NC and the metric structures are compatible. Inspired by P. Schupp talks
[Bayrischzell 2007, Vienna 2007] where NC and metric structures were re-
lated so that the !-product would ”drop out” of NC equations. This has led to
study exact NC black hole solutions. Symmetry considerations and compati-
bility conditions between metric and twist structures are also present in [Ohl,
Schenkel] JHEP 2008.

Related work has simultaneously appeared in [Schupp, Solodukhin 0906.2724]
[Ohl, Schenkel 0906.2730]
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Solutions I. Moyal-Weyl !-product

Thm. Given the twist F = e−
i
2θµν∂µ⊗∂ν consider all undeformed metrics

g such that the associated Killing Lie algebra gK has the twist compatibility
property

θµν∂µ ⊗ ∂ν ∈ Ξ⊗ gK + gK ⊗Ξ

Then:

i) the NC Riemann tensor and the NC Ricci tensor of the NC Levi-Civita con-
nection are the undeformed ones.

ii) If these metric are Einstein metrics then they are also NC Einstein metrics.

Key point: the star product disappears from the NC Einstein equation.

Notice that even if curvature and Einstein tensors coincide with undeformed ones, we have

∇! %= ∇. (Only the NC and commutative Christoffel symbols in the special ”Moyal-Weyl” basis

are equal).
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Solutions II. Generalize the previous construction to any NC manifold M with
abelian twist

F = e−
i
2λθabXa⊗Xb

where [Xa, Xb] = 0. θab is a constant (antisymmetric) matrix.

Let |span{Xa}| be the dimension of the vectors space spanned by the Xa.

-If |span{Xa}| = const then we are in the previous situation. Use Xa = ∂
∂xa .

-If locally |span{Xa}| = const locally we are in the previous situation. We
have local Einstein metrics as in Solution I.

-Problems may arise when one of the vectorfields Xa vanishes, or more in
general when |span{Xa}| changes. This is a very common case!

Ex. Manin plane

x $y = qy $ x

is given by the twist F = e−
i
2θ(x∂x⊗y∂y−y∂y⊗x∂x).
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Thm. 3 Given the NC manifold M with abelian twist F = e−
i
2θabXa⊗Xb,

consider all metrics g such that the associated Killing Lie algebra gK has the
twist compatibility property

θabXa ⊗Xb ∈ Ξ⊗ gK + gK ⊗Ξ

Then:

i) the NC Riemann tensor and the NC Ricci tensor of the NC Levi-Civita con-
nection are the undeformed ones, (while ∇" %= ∇).

ii) If these metric are Einstein metrics then they are also NC Einstein metrics.

Special case: Isospectral deformations obtained via an isometric torus action
[Connes, Landi], [Connes, Dubois-Violette].
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Solutions III. The general twist case.

Thm. Given the noncommutative manifold (M,F), consider all undeformed
Einstein metrics g such that the associated Killing Lie algebra gK has the twist
compatibility property

F ∈ UgK ⊗ UgK (4)

Then these undeformed Einstein metrics are also noncommutative Einstein
metrics.

Proof. In this case ∇! = ∇. Then it follows that the NC curvature = unde-
formed curvature.

We can more in general consider gK the Lie algebra of conformal Killing vector fields.

Rmk. We have studied gravity solutions corresponding to three cases of twists
I (Moyal Weyl), II (arbitrary abelian) , III (general). Similar arguments apply also
to NC gravity solutions in the first order formalism studied in [P.A., Castellani
JHEP 2009].
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