State sum models, induced gravity and the spectral action

John Barrett

School of Mathematical Sciences

University of Nottingham
May 16, 2010

Outline

Background \& previous work

New proposals

Detailed remarks

Spectral action

- Classical action, spacetime M
- Non-commutative geometry F
- Kaluza-Klein unification on $M \times F$
- D, Ψ on $M \times F \longrightarrow S M+$ gravity fields on M
- Bosonic action spectral at unification \longrightarrow predictions

Connes-Chamseddine action (Euclidean)

$$
\operatorname{Tr}(f(D))+(\bar{\Psi}, J D \Psi)
$$

JWB Fermionic action (Lorentzian)

$$
(\bar{\Psi}, D \Psi)
$$

State sum models

- Discrete functional integrals on a triangulated manifold
- Input: gauge group (or category \mathcal{C})
- Optional input: data for a local observable
- Output: partition function $Z \in \mathbb{C}$

Examples from physics

- lattice gauge theory
- 2d Yang-Mills
- 3d quantum gravity
- 4d quantum gravity models

Induced gravity (Sakharov)

-+++ metric and N fermion fields. Cutoff $=c$.
If

$$
I=\int\left(\bar{\psi} D_{c} \psi-2 \Lambda_{0}\right) \mathrm{d} V
$$

Integrating over matter modes gives

$$
S_{\mathrm{eff}}=\int \frac{-c^{2} N}{32 \pi^{2}}-2 \Lambda_{0}+\frac{c N}{192 \pi^{2}} R+\text { etc. } \quad \mathrm{d} V
$$

- Correct sign for R (MTW signs)
- Cosmological constant $\Lambda=\Lambda_{0}+\frac{c^{2} N}{64 \pi^{2}}$
- Needs cutoff (from QG)

Spectral action proposal

D, Ψ on $M \times F, F=$ internal space.
Suggest spectral action

$$
I=(\Psi, D \Psi)_{c}-2 \Lambda_{0} \mathrm{vol}
$$

- Bosonic action induced
- Renormalisability not an issue
- SM exactly correct? Lorentzian vs Euclidean

State sum models - wish list

Constructed from $\mathcal{C} \in$ tricat
Reasonable wish list:

- Diffeomorphism-invariant QFT on 4-manifolds
- Sum over geometries
- Discrete geometry at Planck scale
- Matter couplings
- Matter modes cut off at Planck energy c.
- Cosmological constant ($\Lambda_{0}<0$)
- Continuum limit: SM spectral action
- No Einstein-Hilbert action

Tricategory

A tricategory \mathcal{C} contains

- Objects (0-morphisms)
- 1-morphisms mapping objects
- 2-morphisms mapping 1-morphisms (between the same objects)
- 3-morphisms mapping 2-morphisms (between the same 1-morphisms)
- 3 composition laws
- Structural maps for associativity, compatibility, units

Examples:

- A braided monoidal category (0-1-morphisms trivial)
- Rep(crossed module) (0-morphisms trivial)
- Bicat

Compositions: 3d diagrams (e.g. knot invariaantss)

State sum model

Require tricategory \mathcal{C} :

- Diagrams have diffeomorphism invariance on S^{3}
- Linearity, $\operatorname{End}\left(1_{1_{1}}\right)=\mathbb{C}$. (Quantum Mechanics)
- Finiteness, semisimplicity

Labelling: \boldsymbol{k}-simplexes $\longrightarrow \boldsymbol{k}$-morphisms $\mathbf{k}=0,1,2,3$
Weight of a simplex: closed diagram $\in \mathbb{C}$
State sum: $Z=\sum_{\text {labellings }} \prod_{\text {simplexes }}$ weights

Triangulation independence

Summing over a suitable basis of all morphisms \longrightarrow triangulation independence.

Examples:

- 3d quantum gravity
- Crane-Yetter model for $\mathcal{C}=\operatorname{Rep}\left(\mathrm{U}_{q} G\right)$

Constraints or extra data destroy triangulation independence:

- 4d quantum gravity models
- Lattice gauge theory

‘Diffeomorphism' invariance

M, N triangulated manifolds, $d \leq 4$.

$$
\begin{aligned}
\text { 'Diffeomorphism' } & =\mathrm{PL} \text { homeomorphism: } M \rightarrow N \\
& =\text { Simplicial isomorphism : } M^{\prime} \rightarrow N^{\prime}
\end{aligned}
$$

for some subdivisions M^{\prime}, N^{\prime}.
For $Z(M)$:
triangulation independence \leftrightarrow 'diffeomorphism' invariance
Proof: subdivide.

Geometry

Models with a geometric interpretation:

- $\mathcal{C}=\operatorname{Rep}(\mathrm{SU}(2))$ with constraints: Plebanski gravity
- $\mathcal{C}=\operatorname{Rep}(\mathrm{SU}(2) \times \mathrm{SU}(2))$ with constraints: 4d Euclidean gravity models
- $\mathcal{C}=\operatorname{Rep}(\mathrm{SO}(3,1))$ with constraints: 4d Lorenzian gravity models
- $\mathcal{C}=\operatorname{Rep}(\mathrm{SO}(5))$, etc., with constraints: MacDowell-Mansouri gravity
- $\mathcal{C}=\operatorname{Rep}$ (Poincare 2-group): quantum flat space

Cosmological constant: $G \rightarrow \mathrm{U}_{q} G$, or built in for $\mathrm{SO}(5)$.
More models needed. SM?

Matter couplings $+C$. Meusburger

- Use "tricat". (Functors, Natural transformations . . .)
- In 4d, highest two levels \longrightarrow symmetric monoidal category
- ... fermions and bosons.
- Other levels: strings, membranes??

Fermion functional determinant+J. Louko

Can do this in $d=1$

- Background gauge field
- Functional integral = state sum model
- Fermionic integral on S^{1} induces Wilson loop expectation value
$d>1$: open problem

Relation to 4d quantum gravity models (maybe)

- Asymptotic expansion of fermion integral \longrightarrow series in R^{k}
- Each term R^{k} involves k-nearest neighbours
- Full series is non-local
- Truncation to EH term is nearest-neighbour only
- ... but triangulation independence lost
- Relates to current 4d quantum gravity models?

