Emerging Geometries D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

Schwarzschild Geometry Emerging from Matrix Models

Talk presented by Daniel N. Blaschke

Faculty of Physics, Mathematical Physics Group

Collaborator: H. Steinacker

May 15, 2010

Outline

Emerging Geometries

D. Blaschke

Outline

- Introduction
- Curvature & Gravity
- Schwarzschild Geometry
- RN Geometry
- Conclusion

1 Introduction

- 2 Curvature and Gravity Actions for Matrix Models
- 3 Schwarzschild Geometry
- 4 Reissner-Nordström Geometry
- 5 Conclusion and Outlook

Matrix models of Yang-Mills type

Emerging Geometries D. Blaschke

Outline

Introduction

Curvature Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

$$\begin{split} S_{YM} &= -\mathsf{Tr}[X^a, X^b][X^c, X^d]\eta_{ac}\eta_{bd}\\ \rightarrow \text{ e.o.m: } [X^a, [X^b, X^c]]\eta_{ab} = 0 \end{split}$$

- X^a are Hermitian matrices acting on a Hilbert space H, and η_{ab} is D dimensional flat background metric — fixes signature
- simplest solution of e.o.m.: [X^a, X^b] = iθ^{ab} = constant
 ⇒ flat Groenewold-Moyal space ℝ_θ
- $X^a = (X^{\mu}, \Phi^i), \ \mu = 1, \dots, 2n, \ i = 1, \dots, D 2n,$ so that $\Phi^i(X) \sim \phi^i(x)$ define embedding $\mathcal{M}^{2n} \hookrightarrow \mathbb{R}^D$ (in semi-classical limit)

Matrix models of Yang-Mills type

Emerging Geometries D. Blaschke

Outline

Introduction

Curvature Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

$$\begin{split} S_{YM} &= -\mathsf{Tr}[X^a, X^b][X^c, X^d]\eta_{ac}\eta_{bd} \\ \rightarrow \text{ e.o.m: } [X^a, [X^b, X^c]]\eta_{ab} = 0 \end{split}$$

- X^a are Hermitian matrices acting on a Hilbert space H, and η_{ab} is D dimensional flat background metric — fixes signature
- simplest solution of e.o.m.: $[X^a, X^b] = i\theta^{ab} = \text{constant}$ ⇒ flat Groenewold-Moyal space \mathbb{R}_{θ}
- $X^a = (X^{\mu}, \Phi^i), \ \mu = 1, \dots, 2n, \ i = 1, \dots, D-2n,$ so that $\Phi^i(X) \sim \phi^i(x)$ define embedding $\mathcal{M}^{2n} \hookrightarrow \mathbb{R}^D$ (in semi-classical limit)

Matrix models of Yang-Mills type

Emerging Geometries

D. Blaschke

Outline

Introduction

- Curvature Gravity
- Schwarzschild Geometry
- RN Geometry
- Conclusion

$$S_{YM} = -\mathsf{Tr}[X^a, X^b][X^c, X^d]\eta_{ac}\eta_{bd}$$

$$\rightarrow \text{ e.o.m: } [X^a, [X^b, X^c]]\eta_{ab} = 0$$

- X^a are Hermitian matrices acting on a Hilbert space H, and η_{ab} is D dimensional flat background metric — fixes signature
- simplest solution of e.o.m.: $[X^a, X^b] = i\theta^{ab} = \text{constant}$ ⇒ flat Groenewold-Moyal space \mathbb{R}_{θ}
- $X^a = (X^{\mu}, \Phi^i), \ \mu = 1, \dots, 2n, \ i = 1, \dots, D 2n,$ so that $\Phi^i(X) \sim \phi^i(x)$ define embedding $\mathcal{M}^{2n} \hookrightarrow \mathbb{R}^D$ (in semi-classical limit)

n p p $g_{\mu\nu}(x)$ \mathcal{M}^{2n}

lacksim induced metric of 2n dimensional submanifold $\mathcal{M}^{2n} \in \mathbb{R}^D$

$$g_{\mu\nu}(x) = \partial_{\mu}x^{a}\partial_{\nu}x^{b}\eta_{ab}$$
$$= \eta_{\mu\nu} + \partial_{\mu}\phi^{i}\partial_{\nu}\phi^{j}\eta_{ij}$$

Emerging Geometries

D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

• \mathcal{M}^{2n} endowed with a Poisson structure $-i[X^{\mu}, X^{\nu}] \sim \{x^{\mu}, x^{\nu}\}_{PB} = \theta^{\mu\nu}(x)$ \Rightarrow "effective" metric

• special case: $2n = 4 \Rightarrow \det G_{\mu\nu} = \det g_{\mu\nu}$

• opens possibility for special class of geometries where $G_{\mu\nu} = g_{\mu\nu} \quad \leftrightarrow \quad \mathcal{J}^2 = -1$

• corresponds to a self-dual symplectic form $\theta_{\mu\nu}^{-1}$, i.e. $\Theta = \frac{1}{2} \theta_{\mu\nu}^{-1} dx^{\mu} \wedge dx^{\nu}$, $\star \Theta = \pm i\Theta$ \Rightarrow e.o.m. $\nabla^{\mu} \theta^{-1} = 0$

Emerging Geometries

D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometr

Conclusion

• \mathcal{M}^{2n} endowed with a Poisson structure $-i[X^{\mu}, X^{\nu}] \sim \{x^{\mu}, x^{\nu}\}_{PB} = \theta^{\mu\nu}(x)$ \Rightarrow "effective" metric

• special case: $2n = 4 \Rightarrow \det G_{\mu\nu} = \det g_{\mu\nu}$

• opens possibility for special class of geometries where $G_{\mu\nu} = g_{\mu\nu} \quad \leftrightarrow \quad \mathcal{J}^2 = -1$

corresponds to a self-dual symplectic form $\theta_{\mu\nu}^{-1}$, i.e. $\Theta = \frac{1}{2} \theta_{\mu\nu}^{-1} dx^{\mu} \wedge dx^{\nu}$, $\star \Theta = \pm i\Theta$ \Rightarrow e.o.m. $\nabla^{\mu} \theta^{-1} = 0$

Emerging Geometries

D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometr

Conclusion

• \mathcal{M}^{2n} endowed with a Poisson structure $-i[X^{\mu}, X^{\nu}] \sim \{x^{\mu}, x^{\nu}\}_{PB} = \theta^{\mu\nu}(x)$ \Rightarrow "effective" metric

$$\begin{aligned} G^{\mu\nu} &= e^{-\sigma} \theta^{\mu\rho} \theta^{\nu\sigma} g_{\rho\sigma} \\ &= -(\mathcal{J}^2)^{\mu}_{\rho} g^{\rho\nu} \quad , \qquad e^{-\sigma} \equiv \frac{\sqrt{\det \theta_{\mu\nu}^{-1}}}{\sqrt{\det G_{\rho\sigma}}} \end{aligned}$$

• special case: $2n = 4 \implies \det G_{\mu\nu} = \det g_{\mu\nu}$

• opens possibility for special class of geometries where $G_{\mu\nu} = g_{\mu\nu} \quad \leftrightarrow \quad \mathcal{J}^2 = -1$

• corresponds to a self-dual symplectic form $\theta_{\mu\nu}^{-1}$, i.e. $\Theta = \frac{1}{2} \theta_{\mu\nu}^{-1} dx^{\mu} \wedge dx^{\nu}$, $\star \Theta = \pm i\Theta$ \Rightarrow e.o.m. $\nabla^{\mu} \theta_{\mu\nu}^{-1} = 0$

Emerging Geometries

D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometr

Conclusion

• \mathcal{M}^{2n} endowed with a Poisson structure $-i[X^{\mu}, X^{\nu}] \sim \{x^{\mu}, x^{\nu}\}_{PB} = \theta^{\mu\nu}(x)$ \Rightarrow "effective" metric

$$\begin{aligned} G^{\mu\nu} &= e^{-\sigma} \theta^{\mu\rho} \theta^{\nu\sigma} g_{\rho\sigma} \\ &= -(\mathcal{J}^2)^{\mu}_{\rho} g^{\rho\nu} \quad , \qquad e^{-\sigma} \equiv \frac{\sqrt{\det \theta_{\mu\nu}^{-1}}}{\sqrt{\det G_{\rho\sigma}}} \end{aligned}$$

• special case: $2n = 4 \implies \det G_{\mu\nu} = \det g_{\mu\nu}$

• opens possibility for special class of geometries where $G_{\mu\nu} = g_{\mu\nu} \quad \leftrightarrow \quad \mathcal{J}^2 = -1$

• corresponds to a self-dual symplectic form $\theta_{\mu\nu}^{-1}$, i.e. $\Theta = \frac{1}{2} \theta_{\mu\nu}^{-1} dx^{\mu} \wedge dx^{\nu}$, $\star \Theta = \pm i\Theta$ \Rightarrow e.o.m. $\nabla^{\mu} \theta_{\mu\nu}^{-1} = 0$

Emerging Geometries

D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

• example: scalar field ϕ on \mathcal{M}^4 in the semi-classical limit where $X^a \sim x^a$ are mere coordinates

$$\begin{split} S[\phi] &= -\mathrm{Tr}[X^{a},\phi][X^{c},\phi]\eta_{ac} \\ &\sim \int \!\! d^{4}x \sqrt{\det \theta_{\mu\nu}^{-1}} \, \{X^{a},\phi\}_{PB} \, \{X^{c},\phi\}_{PB} \, \eta_{ac} \\ &= \int \!\! d^{4}x \sqrt{\det G_{\mu\nu}} \, e^{-\sigma} \, \theta^{\mu\nu} \underline{\partial_{\mu}x^{a}} \partial_{\nu}\phi \, \theta^{\rho\sigma} \underline{\partial_{\rho}x^{c}} \partial_{\sigma}\phi \, \underline{\eta_{ac}} \\ &= \int \!\! d^{4}x \sqrt{\det G_{\mu\nu}} \, G^{\nu\sigma} \partial_{\nu}\phi \partial_{\sigma}\phi \,, \end{split}$$

• natural vector fields: $e^a(f) := -i[X^a, f] \sim \theta^{\mu\nu} \partial_\mu x^a \partial_\nu f$

Emerging Geometries

D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

• example: scalar field ϕ on \mathcal{M}^4 in the semi-classical limit where $X^a \sim x^a$ are mere coordinates

$$\begin{split} S[\phi] &= -\mathrm{Tr}[X^{a},\phi][X^{c},\phi]\eta_{ac} \\ &\sim \int \!\! d^{4}x \sqrt{\det \theta_{\mu\nu}^{-1}} \, \{X^{a},\phi\}_{PB} \, \{X^{c},\phi\}_{PB} \, \eta_{ac} \\ &= \int \!\! d^{4}x \sqrt{\det G_{\mu\nu}} \, e^{-\sigma} \, \theta^{\mu\nu} \underline{\partial_{\mu}x^{a}} \partial_{\nu}\phi \, \theta^{\rho\sigma} \underline{\partial_{\rho}x^{c}} \partial_{\sigma}\phi \, \underline{\eta_{ac}} \\ &= \int \!\! d^{4}x \sqrt{\det G_{\mu\nu}} \, G^{\nu\sigma} \partial_{\nu}\phi \partial_{\sigma}\phi \,, \end{split}$$

 \blacksquare natural vector fields: $e^a(f):=-i[X^a,f]\sim\theta^{\mu\nu}\partial_\mu x^a\partial_\nu f$

Emerging Geometries

D. Blaschke

Outline

Introduction

Curvature Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

Also possible to add U(N) gauge fields A to the matrix model (for simplicity, consider only 4 dimensions):

 $Y^{\mu} = X^{\mu} - \theta^{\mu\nu} A_{\nu}$ "covariant coordinates"

where the A_{μ} are some U(N) valued fields.

Field strength tensor appears in semiclassical limit of commutator:

 $[Y^{\mu}, Y^{\nu}] \sim i \left(1 - \theta^{\rho\sigma} A_{\sigma} \partial_{\rho}\right) \theta^{\mu\nu} - i \theta^{\mu\rho} \theta^{\nu\sigma} F_{\rho\sigma}$

 $ightarrow S_{YM} \sim$ Yang-Mills action

Turns out, that this describes SU(N) gauge fields coupled to gravity — where U(1) gauge field becomes geometrical d.o.f. (see e.g. review of H. Steinacker, arXiv:1003.4134)

Emerging Geometries

D. Blaschke

Outline

Introduction

Curvature Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

Also possible to add U(N) gauge fields A to the matrix model (for simplicity, consider only 4 dimensions):

 $Y^{\mu} = X^{\mu} - \theta^{\mu\nu} A_{\nu}$ "covariant coordinates"

where the A_{μ} are some U(N) valued fields.

Field strength tensor appears in semiclassical limit of commutator:

 $[Y^{\mu}, Y^{\nu}] \sim i \left(1 - \theta^{\rho\sigma} A_{\sigma} \partial_{\rho}\right) \theta^{\mu\nu} - i \theta^{\mu\rho} \theta^{\nu\sigma} F_{\rho\sigma}$

$ightarrow S_{YM} \sim$ Yang-Mills action

Turns out, that this describes SU(N) gauge fields coupled to gravity — where U(1) gauge field becomes geometrical d.o.f. (see e.g. review of H. Steinacker, arXiv:1003.4134)

Emerging Geometries D. Blaschke

~ !!

Introduction

Curvature o Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

Also possible to add U(N) gauge fields A to the matrix model (for simplicity, consider only 4 dimensions):

 $Y^{\mu} = X^{\mu} - \theta^{\mu\nu} A_{\nu}$ "covariant coordinates"

where the A_{μ} are some U(N) valued fields.

Field strength tensor appears in semiclassical limit of commutator:

 $[Y^{\mu}, Y^{\nu}] \sim i \left(1 - \theta^{\rho\sigma} A_{\sigma} \partial_{\rho}\right) \theta^{\mu\nu} - i \theta^{\mu\rho} \theta^{\nu\sigma} F_{\rho\sigma}$

 $ightarrow S_{YM} \sim$ Yang-Mills action

 Turns out, that this describes SU(N) gauge fields coupled to gravity — where U(1) gauge field becomes geometrical d.o.f. (see e.g. review of H. Steinacker, arXiv:1003.4134)

Emerging Geometries D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

$$\begin{split} S_{YM} \propto \mathrm{Tr}[X^a, X^b]^2 : & T^{ab} = H^{ab} - \frac{H}{4} \eta^{ab} \,, \\ H^{ab} &= \frac{1}{2} \left[[X^a, X^c], [X^b, X^{c'}] \right]_+ \eta_{cc'} \,, \\ H &= H^{ab} \eta_{ab} \,, \end{split}$$

matrix ward-identity: $[X^a, T^{a'b}]\eta_{aa'} = 0$

• semiclassical limit:

 $T^{ab} \sim e^{\sigma} \mathcal{P}_N^{ab}, \qquad H^{ab} \sim -e^{\sigma} \mathcal{P}_T^{ab},$ $\mathcal{P}_T^{ab} = g^{\mu\nu} \partial_{\mu} x^a \partial_{\nu} x^b, \qquad \mathcal{P}_N^{ab} = \eta^{ab} - \mathcal{P}_T^{ab}$

where $\mathcal{P}_{N,T}$ are the projectors on the normal resp. tangential space at $p \in \mathcal{M}^4$. This means that

$$\mathcal{P}_T^{ab}\partial_\mu x_b = \partial_\mu x^a , \qquad \mathcal{P}_N^{ab}\partial_\mu x_b = 0 ,$$

$$\mathcal{P}_T^2 = \mathcal{P}_T, \qquad \qquad \mathcal{P}_N^2 = \mathcal{P}_N$$

Emerging Geometries D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

$$\begin{split} S_{YM} \propto \text{Tr}[X^a, X^b]^2 : & T^{ab} = H^{ab} - \frac{H}{4} \eta^{ab} \,, \\ H^{ab} &= \frac{1}{2} \left[[X^a, X^c], [X^b, X^{c'}] \right]_+ \eta_{cc'} \,, \\ H &= H^{ab} \eta_{ab} \,, \\ \text{matrix ward-identity:} & [X^a, T^{a'b}] \eta_{aa'} = 0 \end{split}$$

 $T^{ab} \sim e^{\sigma} \mathcal{P}_N^{ab}, \qquad H^{ab} \sim -e^{\sigma} \mathcal{P}_T^{ab},$

where $\mathcal{P}_{N,T}$ are the projectors on the normal resp. tangential space at $p \in \mathcal{M}^4$. This means that

$$\mathcal{P}_T^{ab}\partial_\mu x_b = \partial_\mu x^a , \qquad \mathcal{P}_N^{ab}\partial_\mu x_b = 0 ,$$

$$\mathcal{P}_T^2 = \mathcal{P}_T, \qquad \qquad \mathcal{P}_N^2 = \mathcal{P}_N$$

Emerging Geometries D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

$$\begin{split} S_{YM} \propto \mathsf{Tr}[X^a, X^b]^2 : & T^{ab} = H^{ab} - \frac{H}{4} \eta^{ab} \,, \\ H^{ab} &= \frac{1}{2} \left[[X^a, X^c], [X^b, X^{c'}] \right]_+ \eta_{cc'} \,, \\ H &= H^{ab} \eta_{ab} \,, \\ & \text{matrix ward-identity:} \quad [X^a, T^{a'b}] \eta_{aa'} = 0 \end{split}$$

• semiclassical limit:

 $T^{ab} \sim e^{\sigma} \mathcal{P}_N^{ab}, \qquad H^{ab} \sim -e^{\sigma} \mathcal{P}_T^{ab},$ $\mathcal{P}_T^{ab} = g^{\mu\nu} \partial_{\mu} x^a \partial_{\nu} x^b, \qquad \mathcal{P}_N^{ab} = \eta^{ab} - \mathcal{P}_T^{ab}$

where $\mathcal{P}_{N,T}$ are the projectors on the normal resp. tangential space at $p\in \mathcal{M}^4$. This means that

$$\mathcal{P}_T^{ab} \partial_\mu x_b = \partial_\mu x^a , \qquad \mathcal{P}_N^{ab} \partial_\mu x_b = 0 , \\ \mathcal{P}_T^2 = \mathcal{P}_T, \qquad \qquad \mathcal{P}_N^2 = \mathcal{P}_N$$

Emerging Geometries D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

$$\begin{split} S_{YM} \propto \mathsf{Tr}[X^a, X^b]^2 : & T^{ab} = H^{ab} - \frac{H}{4} \eta^{ab} \,, \\ H^{ab} &= \frac{1}{2} \left[[X^a, X^c], [X^b, X^{c'}] \right]_+ \eta_{cc'} \,, \\ H &= H^{ab} \eta_{ab} \,, \\ & \text{matrix ward-identity:} \quad [X^a, T^{a'b}] \eta_{aa'} = 0 \end{split}$$

• semiclassical limit:

$$T^{ab} \sim e^{\sigma} \mathcal{P}_N^{ab}, \qquad H^{ab} \sim -e^{\sigma} \mathcal{P}_T^{ab},$$
$$\mathcal{P}_T^{ab} = g^{\mu\nu} \partial_{\mu} x^a \partial_{\nu} x^b, \qquad \mathcal{P}_N^{ab} = \eta^{ab} - \mathcal{P}_T^{ab}$$

where $\mathcal{P}_{N,T}$ are the projectors on the normal resp. tangential space at $p \in \mathcal{M}^4$. This means that

$$\mathcal{P}_T^{ab} \partial_\mu x_b = \partial_\mu x^a , \qquad \mathcal{P}_N^{ab} \partial_\mu x_b = 0 , \\ \mathcal{P}_T^2 = \mathcal{P}_T, \qquad \qquad \mathcal{P}_N^2 = \mathcal{P}_N$$

Emerging Geometries

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometrv

RN Geometry

Conclusion

Can use projector \mathcal{P}_N to write down covariant derivatives $abla \equiv
abla_g$, i.e.

 $\begin{aligned} \mathcal{P}_N^{ab} \partial_\mu \partial_\nu x_b &= (\eta^{ab} - \mathcal{P}_T^{ab}) \partial_\mu \partial_\nu x_b = (\partial_\mu \partial_\nu - \Gamma_{\mu\nu}^{\rho} \partial_\rho) x^a \\ &= \nabla_\mu \nabla_\nu x^a \end{aligned}$

from which follows $abla_{\mu} x^a \nabla_{\nu} \nabla_{\rho} x_a = 0$ and $\mathcal{P}_N^{ab} \nabla_{\mu} \nabla_{\nu} x_b = \nabla_{\mu} \nabla_{\nu} x^a$.

 \Rightarrow Riemann tensor:

$$\begin{split} R_{\rho\sigma\nu\mu} &= R_{\rho\sigma\nu}{}^{\tau}\partial_{\tau}x^{a}\partial_{\mu}x_{a} = [\nabla_{\rho}, \nabla_{\sigma}]\nabla_{\nu}x^{a}\nabla_{\mu}x_{a} \\ &= \nabla_{\sigma}\nabla_{\mu}x^{a}\nabla_{\rho}\nabla_{\nu}x_{a} - \nabla_{\sigma}\nabla_{\nu}x^{a}\nabla_{\mu}\nabla_{\rho}x_{a} \quad (\rightarrow \text{G.-C. theo.}) \\ &= \mathcal{P}_{N}^{ab}\left(\partial_{\sigma}\partial_{\mu}x_{a}\partial_{\rho}\partial_{\nu}x_{b} - \partial_{\sigma}\partial_{\nu}x_{a}\partial_{\mu}\partial_{\rho}x_{b}\right) \\ R &= \Box_{a}x^{a}\Box_{a}x_{a} - \nabla_{\mu}\nabla_{\mu}x^{a}\nabla^{\mu}\nabla^{\nu}x_{a} \end{split}$$

Emerging Geometries D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

Can use projector \mathcal{P}_N to write down covariant derivatives $abla \equiv
abla_g$, i.e.

$$\mathcal{P}_N^{ab}\partial_\mu\partial_\nu x_b = (\eta^{ab} - \mathcal{P}_T^{ab})\partial_\mu\partial_\nu x_b = (\partial_\mu\partial_\nu - \Gamma^\rho_{\mu\nu}\partial_\rho)x^a$$
$$= \nabla_\mu\nabla_\nu x^a$$

from which follows $\nabla_{\mu}x^{a}\nabla_{\nu}\nabla_{\rho}x_{a} = 0$ and $\mathcal{P}_{N}^{ab}\nabla_{\mu}\nabla_{\nu}x_{b} = \nabla_{\mu}\nabla_{\nu}x^{a}$.

 \Rightarrow Riemann tensor:

 $R_{\rho\sigma\nu\mu} = R_{\rho\sigma\nu}{}^{\tau}\partial_{\tau}x^{a}\partial_{\mu}x_{a} = [\nabla_{\rho}, \nabla_{\sigma}]\nabla_{\nu}x^{a}\nabla_{\mu}x_{a}$ $= \nabla_{\sigma}\nabla_{\mu}x^{a}\nabla_{\rho}\nabla_{\nu}x_{a} - \nabla_{\sigma}\nabla_{\nu}x^{a}\nabla_{\mu}\nabla_{\rho}x_{a} \quad (\rightarrow \text{G.-C. theo.})$ $= \mathcal{P}_{N}^{ab}\left(\partial_{\sigma}\partial_{\mu}x_{a}\partial_{\rho}\partial_{\nu}x_{b} - \partial_{\sigma}\partial_{\nu}x_{a}\partial_{\mu}\partial_{\rho}x_{b}\right)$ $R = \Box x^{a}\Box x_{a} - \nabla \nabla x^{a}\nabla^{\mu}\nabla^{\nu}x_{a}$

Emerging Geometries D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

Can use projector \mathcal{P}_N to write down covariant derivatives $abla \equiv
abla_g$, i.e.

$$\begin{aligned} \mathcal{P}_N^{ab} \partial_\mu \partial_\nu x_b &= (\eta^{ab} - \mathcal{P}_T^{ab}) \partial_\mu \partial_\nu x_b = (\partial_\mu \partial_\nu - \Gamma^{\rho}_{\mu\nu} \partial_\rho) x^a \\ &= \nabla_\mu \nabla_\nu x^a \end{aligned}$$

from which follows $\nabla_{\mu}x^{a}\nabla_{\nu}\nabla_{\rho}x_{a} = 0$ and $\mathcal{P}_{N}^{ab}\nabla_{\mu}\nabla_{\nu}x_{b} = \nabla_{\mu}\nabla_{\nu}x^{a}$.

 \Rightarrow Riemann tensor:

$$R_{\rho\sigma\nu\mu} = R_{\rho\sigma\nu}{}^{\tau}\partial_{\tau}x^{a}\partial_{\mu}x_{a} = [\nabla_{\rho}, \nabla_{\sigma}]\nabla_{\nu}x^{a}\nabla_{\mu}x_{a}$$
$$= \nabla_{\sigma}\nabla_{\mu}x^{a}\nabla_{\rho}\nabla_{\nu}x_{a} - \nabla_{\sigma}\nabla_{\nu}x^{a}\nabla_{\mu}\nabla_{\rho}x_{a} \quad (\rightarrow \text{G.-C. theo.})$$
$$= \mathcal{P}_{N}^{ab}\left(\partial_{\sigma}\partial_{\mu}x_{a}\partial_{\rho}\partial_{\nu}x_{b} - \partial_{\sigma}\partial_{\nu}x_{a}\partial_{\mu}\partial_{\rho}x_{b}\right)$$
$$R = \Box_{\nu}x^{a}\Box_{\nu}x_{\nu} - \nabla_{\nu}\nabla_{\nu}x^{a}\nabla^{\mu}\nabla^{\nu}x_{\nu}$$

Emerging Geometries D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

Can use projector \mathcal{P}_N to write down covariant derivatives $abla \equiv
abla_g$, i.e.

$$\begin{aligned} \mathcal{P}_N^{ab} \partial_\mu \partial_\nu x_b &= (\eta^{ab} - \mathcal{P}_T^{ab}) \partial_\mu \partial_\nu x_b = (\partial_\mu \partial_\nu - \Gamma^{\rho}_{\mu\nu} \partial_\rho) x^a \\ &= \nabla_\mu \nabla_\nu x^a \end{aligned}$$

from which follows $\nabla_{\mu}x^{a}\nabla_{\nu}\nabla_{\rho}x_{a} = 0$ and $\mathcal{P}_{N}^{ab}\nabla_{\mu}\nabla_{\nu}x_{b} = \nabla_{\mu}\nabla_{\nu}x^{a}$.

 \Rightarrow Riemann tensor:

$$\begin{split} R_{\rho\sigma\nu\mu} &= R_{\rho\sigma\nu}{}^{\tau}\partial_{\tau}x^{a}\partial_{\mu}x_{a} = [\nabla_{\rho},\nabla_{\sigma}]\nabla_{\nu}x^{a}\nabla_{\mu}x_{a} \\ &= \nabla_{\sigma}\nabla_{\mu}x^{a}\nabla_{\rho}\nabla_{\nu}x_{a} - \nabla_{\sigma}\nabla_{\nu}x^{a}\nabla_{\mu}\nabla_{\rho}x_{a} \quad (\rightarrow \text{G.-C. theo.}) \\ &= \mathcal{P}_{N}^{ab}\left(\partial_{\sigma}\partial_{\mu}x_{a}\partial_{\rho}\partial_{\nu}x_{b} - \partial_{\sigma}\partial_{\nu}x_{a}\partial_{\mu}\partial_{\rho}x_{b}\right) \\ R &= \Box_{g}x^{a}\Box_{g}x_{a} - \nabla_{\mu}\nabla_{\nu}x^{a}\nabla^{\mu}\nabla^{\nu}x_{a} \end{split}$$

One-loop effective action

Emerging Geometries D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

D. Klammer and H. Steinacker, JHEP 02 (2010) 074:

$$S_{\Psi} = -\text{Tr}\left(\frac{1}{4}[X^a, X^b][X_a, X_b] + \frac{1}{2}\bar{\psi}\gamma_a[X^a, \Psi]\right)$$

$$\Gamma_{\Psi} = \frac{k}{16\pi^2} \int \sqrt{g} \left[4\Lambda^4 + \Lambda^2 \left(-\frac{1}{3}R + \frac{1}{4} \partial^{\mu} \sigma \partial_{\mu} \sigma + \frac{1}{8} e^{-\sigma} \theta^{\mu\nu} \theta^{\rho\sigma} R_{\mu\nu\rho\sigma} + \frac{1}{4} \Box_g x^a \Box_g x_a \right) \right.$$

$$\left. + \mathcal{O}(\log \Lambda) \right]$$

One-loop effective action

Emerging Geometries D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

D. Klammer and H. Steinacker, JHEP 02 (2010) 074:

$$S_{\Psi} = -\operatorname{Tr}\left(\frac{1}{4}[X^a, X^b][X_a, X_b] + \frac{1}{2}\bar{\psi}\gamma_a[X^a, \Psi]\right)$$

$$\Rightarrow \Gamma_{\Psi} = \frac{k}{16\pi^2} \int \sqrt{g} \left[4\Lambda^4 + \Lambda^2 \left(-\frac{1}{3}R + \frac{1}{4} \partial^{\mu} \sigma \partial_{\mu} \sigma + \frac{1}{8} e^{-\sigma} \theta^{\mu\nu} \theta^{\rho\sigma} R_{\mu\nu\rho\sigma} + \frac{1}{4} \Box_g x^a \Box_g x_a \right) + \mathcal{O}(\log \Lambda) \right]$$

Extensions to the matrix model action

Emerging Geometries D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

$$S_{6} = \operatorname{Tr}\left(\alpha \Box X^{a} \Box X_{a} + \frac{\beta}{2} [X^{c}, [X^{a}, X^{b}]][X_{c}, [X_{a}, X_{b}]]\right)$$
$$\sim \frac{\alpha + \beta}{(2\pi)^{2}} \int \sqrt{g} e^{\sigma} \Box_{g} x^{a} \Box_{g} x_{a}$$
$$+ \frac{\beta}{(2\pi)^{2}} \int \sqrt{g} \left(\frac{1}{2} \theta^{\mu\rho} \theta^{\eta\alpha} R_{\mu\rho\eta\alpha} - 2R + e^{\sigma} \partial^{\mu} \sigma \partial_{\mu} \sigma\right)$$

with $\Box X^a \equiv [X^b, [X_b, X^a]].$

• extensions of order 10

• compare with:

$$S_{\text{E-H}} = \text{Tr}\left(2T^{ab} \Box X_a \Box X_b - T^{ab} \Box H_{ab}\right)$$
$$\sim \frac{2}{(2\pi)^2} \int \sqrt{g} \, e^{2\sigma} R$$

Extensions to the matrix model action

Emerging Geometries D. Blaschke • compare with:

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

$$\begin{split} S_6 &= \operatorname{Tr}\left(\alpha \Box X^a \Box X_a + \frac{\beta}{2} [X^c, [X^a, X^b]] [X_c, [X_a, X_b]]\right) \\ &\sim \frac{\alpha + \beta}{(2\pi)^2} \int \sqrt{g} \, e^{\sigma} \Box_g x^a \Box_g x_a \\ &\quad + \frac{\beta}{(2\pi)^2} \int \sqrt{g} \left(\frac{1}{2} \theta^{\mu\rho} \theta^{\eta\alpha} R_{\mu\rho\eta\alpha} - 2R + e^{\sigma} \partial^{\mu} \sigma \partial_{\mu} \sigma\right) \\ \text{with } \Box X^a &\equiv [X^b, [X_b, X^a]]. \end{split}$$

$$S_{\mathsf{E}-\mathsf{H}} = \operatorname{Tr}\left(2T^{ab}\Box X_a\Box X_b - T^{ab}\Box H_{ab}\right)$$
$$\sim \frac{2}{(2\pi)^2} \int \sqrt{g} \, e^{2\sigma} R$$

Emerging Geometries

D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

order 10-terms lead to E-H action only for G = g, but variation requires G_{μν} = g_{μν} + h_{μν}
 d.o.f: φⁱ and A_μ, i.e.

 $g_{\mu\nu} = \eta_{\mu\nu} + \partial_{\mu}\phi^{i}(x)\partial_{\nu}\phi^{j}(x)\eta_{ij},$ $\theta_{\mu\nu}^{-1} = \bar{\theta}_{\mu\nu}^{-1} + F_{\mu\nu}, \qquad F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$

variations

$$\delta_{\phi}g_{\mu\nu} = \delta_{\phi}G_{\mu\nu} =: h_{\mu\nu}^{(\phi)} ,$$

$$\delta_{A}\theta_{\mu\nu}^{-1} = \partial_{\mu}\delta A_{\nu} - \partial_{\nu}\delta A_{\mu} , \qquad \rightarrow G_{\mu\nu} = g_{\mu\nu} + \delta_{A}G_{\mu\nu}$$

Emerging Geometries

D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

order 10-terms lead to E-H action only for G = g, but variation requires G_{μν} = g_{μν} + h_{μν}
 d.o.f: φⁱ and A_μ, i.e.

$$g_{\mu\nu} = \eta_{\mu\nu} + \partial_{\mu}\phi^{i}(x)\partial_{\nu}\phi^{j}(x)\eta_{ij},$$

$$\theta_{\mu\nu}^{-1} = \bar{\theta}_{\mu\nu}^{-1} + F_{\mu\nu}, \qquad F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

variations

$$\begin{split} \delta_{\phi} g_{\mu\nu} &= \delta_{\phi} G_{\mu\nu} =: h_{\mu\nu}^{(\phi)} ,\\ \delta_{A} \theta_{\mu\nu}^{-1} &= \partial_{\mu} \delta A_{\nu} - \partial_{\nu} \delta A_{\mu} , \qquad \rightarrow G_{\mu\nu} = g_{\mu\nu} + \delta_{A} G_{\mu\nu} \end{split}$$

Emerging Geometries

D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

order 10-terms lead to E-H action only for G = g, but variation requires G_{μν} = g_{μν} + h_{μν}
 d.o.f: φⁱ and A_μ, i.e.

$$g_{\mu\nu} = \eta_{\mu\nu} + \partial_{\mu}\phi^{i}(x)\partial_{\nu}\phi^{j}(x)\eta_{ij},$$

$$\theta_{\mu\nu}^{-1} = \bar{\theta}_{\mu\nu}^{-1} + F_{\mu\nu}, \qquad F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

variations

$$\begin{split} \delta_{\phi}g_{\mu\nu} &= \delta_{\phi}G_{\mu\nu} =: h_{\mu\nu}^{(\phi)} \,, \\ \delta_{A}\theta_{\mu\nu}^{-1} &= \partial_{\mu}\delta A_{\nu} - \partial_{\nu}\delta A_{\mu} \,, \qquad \to G_{\mu\nu} = g_{\mu\nu} + \delta_{A}G_{\mu\nu} \end{split}$$

Emerging Geometries

D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

order 10-terms lead to E-H action only for G = g, but variation requires G_{μν} = g_{μν} + h_{μν}
 d.o.f: φⁱ and A_μ, i.e.

$$g_{\mu\nu} = \eta_{\mu\nu} + \partial_{\mu}\phi^{i}(x)\partial_{\nu}\phi^{j}(x)\eta_{ij},$$

$$\theta_{\mu\nu}^{-1} = \bar{\theta}_{\mu\nu}^{-1} + F_{\mu\nu}, \qquad F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

variations

$$\begin{split} \delta_{\phi}g_{\mu\nu} &= \delta_{\phi}G_{\mu\nu} =: h_{\mu\nu}^{(\phi)} \,, \\ \delta_{A}\theta_{\mu\nu}^{-1} &= \partial_{\mu}\delta A_{\nu} - \partial_{\nu}\delta A_{\mu} \,, \qquad \to G_{\mu\nu} = g_{\mu\nu} + \delta_{A}G_{\mu\nu} \end{split}$$

Embedding of Schwarzschild metric

Emerging Geometries D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

$$ds^{2} = -\left(1 - \frac{r_{c}}{r}\right)dt_{S}^{2} + \left(1 - \frac{r_{c}}{r}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}$$

Consider Eddington-Finkelstein coordinates and define:

$$t = t_{S} + (r^{*} - r), \qquad r^{*} = r + r_{c} \ln \left| \frac{r}{r_{c}} - 1 \right|,$$

$$\Rightarrow ds^{2} = -\left(1 - \frac{r_{c}}{r}\right) dt^{2} + \frac{2r_{c}}{r} dt dr + \left(1 + \frac{r_{c}}{r}\right) dr^{2} + r^{2} d\Omega^{2}$$

need 3 extra dimensions:

$$\phi_1 + i\phi_2 = \phi_3 e^{i\omega(t+r)}$$
,
 $\phi_3 = \frac{1}{\omega} \sqrt{\frac{r_c}{r}}$, where ϕ_3 is time-like

Embedding of Schwarzschild metric

Emerging Geometries D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

$$ds^{2} = -\left(1 - \frac{r_{c}}{r}\right)dt_{S}^{2} + \left(1 - \frac{r_{c}}{r}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}$$

Consider Eddington-Finkelstein coordinates and define:

$$\begin{split} t &= t_S + (r^* - r) \,, \qquad r^* = r + r_c \ln \left| \frac{r}{r_c} - 1 \right| \,, \\ \Rightarrow ds^2 &= -\left(1 - \frac{r_c}{r}\right) dt^2 + \frac{2r_c}{r} dt dr + \left(1 + \frac{r_c}{r}\right) dr^2 + r^2 d\Omega^2 \end{split}$$

need 3 extra dimensions:

$$\phi_1 + i\phi_2 = \phi_3 e^{i\omega(t+r)}$$
,
 $\phi_3 = \frac{1}{\omega} \sqrt{\frac{r_c}{r}}$, where ϕ_3 is time-like

Embedding of Schwarzschild metric

Emerging Geometries D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

$$ds^{2} = -\left(1 - \frac{r_{c}}{r}\right)dt_{S}^{2} + \left(1 - \frac{r_{c}}{r}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}$$

Consider Eddington-Finkelstein coordinates and define:

$$t = t_S + (r^* - r), \qquad r^* = r + r_c \ln \left| \frac{r}{r_c} - 1 \right|,$$

$$\Rightarrow ds^2 = -\left(1 - \frac{r_c}{r}\right) dt^2 + \frac{2r_c}{r} dt dr + \left(1 + \frac{r_c}{r}\right) dr^2 + r^2 d\Omega^2$$

need 3 extra dimensions:

$$\phi_1 + i\phi_2 = \phi_3 e^{i\omega(t+r)}$$
,
 $\phi_3 = \frac{1}{\omega} \sqrt{\frac{r_c}{r}}$, where ϕ_3 is time-like

Embedding of Schwarzschild metric II

Emerging Geometries

D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

7-dim. embedding given by

$$x^{a} = \begin{pmatrix} t \\ r\cos\varphi\sin\vartheta \\ r\sin\varphi\sin\vartheta \\ \frac{1}{\omega}\sqrt{\frac{r_{c}}{r}}\cos\left(\omega(t+r)\right) \\ \frac{1}{\omega}\sqrt{\frac{r_{c}}{r}}\sin\left(\omega(t+r)\right) \\ \frac{1}{\omega}\sqrt{\frac{r_{c}}{r}} x \end{pmatrix}$$

with background metric $\eta_{ab} = diag(-, +, +, +, +, -)$.

Embedded Schwarzschild black hole

Symplectic form

Emerging Geometries D. Blaschke

Outline

Introductio

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

Require $\star \Theta = i\Theta$, so that $G^{\mu\nu} = e^{\sigma}\theta^{\mu\rho}\theta^{\nu\sigma}g_{\rho\sigma} = g^{\mu\nu}$ and $\lim_{r \to \infty} e^{-\sigma} = \text{const.} \neq 0.$ Solution: $\Theta = iE \wedge dts + B \wedge d\omega$.

 $E = c_1 \left(\cos \vartheta dr - r\gamma \sin \vartheta d\vartheta \right) = d(f(r) \cos \vartheta),$

 $B = c_1 \left(r^2 \sin \vartheta \cos \vartheta d\vartheta + r \sin^2 \vartheta dr \right) = \frac{c_1}{2} d(r^2 \sin^2 \vartheta),$ $\gamma = \left(1 - \frac{r_c}{r} \right), \qquad f(r) = c_1 r \gamma, \qquad f' = c_1 = \text{const.},$

from which follows

$$e^{-\sigma} = c_1^2 \left(1 - \frac{r_c}{r} \sin^2 \vartheta \right) \equiv c_1^2 e^{-\bar{\sigma}}$$

Symplectic form

Emerging Geometries D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometrv

RN Geometry

Conclusion

Require $\star \Theta = i\Theta$, so that $G^{\mu\nu} = e^{\sigma}\theta^{\mu\rho}\theta^{\nu\sigma}g_{\rho\sigma} = g^{\mu\nu}$ and $\lim_{r \to \infty} e^{-\sigma} = \text{const.} \neq 0.$ Solution: $\Theta = iE \wedge dt_S + B \wedge d\varphi,$ $E = c_1 \left(\cos \vartheta dr - r\gamma \sin \vartheta d\vartheta\right) = d(f(r) \cos \vartheta),$ $B = c_1 \left(r^2 \sin \vartheta \cos \vartheta d\vartheta + r \sin^2 \vartheta dr\right) = \frac{c_1}{2}d(r^2 \sin^2 \vartheta),$ $\gamma = \left(1 - \frac{r_c}{r}\right), \qquad f(r) = c_1 r\gamma, \qquad f' = c_1 = \text{const.},$

from which follows

$$e^{-\sigma} = c_1^2 \left(1 - \frac{r_c}{r} \sin^2 \vartheta \right) \equiv c_1^2 e^{-\bar{\sigma}}$$

Symplectic form

Emerging Geometries D. Blaschke

Outline

Introductio

Curvature & Gravity

Schwarzschild Geometrv

RN Geometry

Conclusion

Require $\star \Theta = i\Theta$, so that $G^{\mu\nu} = e^{\sigma}\theta^{\mu\rho}\theta^{\nu\sigma}g_{\rho\sigma} = g^{\mu\nu}$ and $\lim_{r \to \infty} e^{-\sigma} = \text{const.} \neq 0.$ Solution: $\Theta = iE \wedge dt_S + B \wedge d\varphi,$ $E = c_1 \left(\cos \vartheta dr - r\gamma \sin \vartheta d\vartheta\right) = d(f(r) \cos \vartheta),$ $B = c_1 \left(r^2 \sin \vartheta \cos \vartheta d\vartheta + r \sin^2 \vartheta dr\right) = \frac{c_1}{2}d(r^2 \sin^2 \vartheta),$ $\gamma = \left(1 - \frac{r_c}{r}\right), \qquad f(r) = c_1 r\gamma, \qquad f' = c_1 = \text{const.},$

from which follows

$$e^{-\sigma} = c_1^2 \left(1 - \frac{r_c}{r} \sin^2 \vartheta \right) \equiv c_1^2 e^{-\bar{\sigma}} \,.$$

Emerging Geometries D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

 $x_D^{\mu} = \{H_{ts}, t_S, H_{\varphi}, \varphi\}$ corresponding to Killing vector fields $V_{ts} = \partial_{t_s}, V_{\varphi} = \partial_{\varphi}$ where the symplectic form Θ is constant:

$$\begin{split} \Theta &= ic_1 dH_{ts} \wedge dt_S + c_1 dH_{\varphi} \wedge d\varphi \,, \\ &= c_1 d \left(iH_{ts} dt_S + H_{\varphi} d\varphi \right) \,, \\ H_{ts} &= r\gamma \cos \vartheta \,, \qquad H_{\varphi} = \frac{1}{2} r^2 \sin^2 \vartheta \end{split}$$

Relations to the Killing vector fields:

$$E = c_1 dH_{ts} = c_1 E_{\mu} dx^{\mu} = i_{V_{ts}} \Theta, \qquad E_{\mu} = V_{ts}^{\nu} \theta_{\nu\mu}^{-1}, B = c_1 dH_{\varphi} = c_1 B_{\mu} dx^{\mu} = i_{V_{\varphi}} \Theta, \qquad B_{\mu} = V_{\varphi}^{\nu} \theta_{\nu\mu}^{-1},$$

$$ds_D^2 = -\gamma dt_S^2 + \frac{e^{\bar{\sigma}}}{\gamma} dH_{ts}^2 + r^2 \sin^2 \vartheta d\varphi^2 + \frac{e^{\bar{\sigma}}}{r^2 \sin^2 \vartheta} dH_{\varphi}^2$$

Emerging Geometries D. Blaschke

Outline

Introduction

Curvature o Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

 $x_D^{\mu} = \{H_{ts}, t_S, H_{\varphi}, \varphi\}$ corresponding to Killing vector fields $V_{ts} = \partial_{t_s}, V_{\varphi} = \partial_{\varphi}$ where the symplectic form Θ is constant:

$$\begin{split} \Theta &= ic_1 dH_{ts} \wedge dt_S + c_1 dH_{\varphi} \wedge d\varphi \,, \\ &= c_1 d \left(iH_{ts} dt_S + H_{\varphi} d\varphi \right) \,, \\ H_{ts} &= r\gamma \cos \vartheta \,, \qquad H_{\varphi} = \frac{1}{2} r^2 \sin^2 \vartheta \end{split}$$

Relations to the Killing vector fields:

$$E = c_1 dH_{ts} = c_1 E_{\mu} dx^{\mu} = i_{V_{ts}} \Theta, \qquad E_{\mu} = V_{ts}^{\nu} \theta_{\nu\mu}^{-1}, B = c_1 dH_{\varphi} = c_1 B_{\mu} dx^{\mu} = i_{V_{\varphi}} \Theta, \qquad B_{\mu} = V_{\varphi}^{\nu} \theta_{\nu\mu}^{-1},$$

 $ds_D^2 = -\gamma dt_S^2 + \frac{e^{\bar{\sigma}}}{\gamma} dH_{ts}^2 + r^2 \sin^2 \vartheta d\varphi^2 + \frac{e^{\bar{\sigma}}}{r^2 \sin^2 \vartheta} dH_{\varphi}^2$

Emerging Geometries D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

 $x_D^{\mu} = \{H_{ts}, t_S, H_{\varphi}, \varphi\}$ corresponding to Killing vector fields $V_{ts} = \partial_{t_s}, V_{\varphi} = \partial_{\varphi}$ where the symplectic form Θ is constant:

$$\begin{split} \Theta &= ic_1 dH_{ts} \wedge dt_S + c_1 dH_{\varphi} \wedge d\varphi \,, \\ &= c_1 d \left(iH_{ts} dt_S + H_{\varphi} d\varphi \right) \,, \\ H_{ts} &= r\gamma \cos \vartheta \,, \qquad H_{\varphi} = \frac{1}{2} r^2 \sin^2 \vartheta \end{split}$$

Relations to the Killing vector fields:

$$E = c_1 dH_{ts} = c_1 E_{\mu} dx^{\mu} = i_{V_{ts}} \Theta, \qquad E_{\mu} = V_{ts}^{\nu} \theta_{\nu\mu}^{-1}, B = c_1 dH_{\varphi} = c_1 B_{\mu} dx^{\mu} = i_{V_{\varphi}} \Theta, \qquad B_{\mu} = V_{\varphi}^{\nu} \theta_{\nu\mu}^{-1},$$

 $ds_D^2 = -\gamma dt_S^2 + \frac{e^{\bar{\sigma}}}{\gamma} dH_{ts}^2 + r^2 \sin^2 \vartheta d\varphi^2 + \frac{e^{\bar{\sigma}}}{r^2 \sin^2 \vartheta} dH_{\varphi}^2$

Emerging Geometries D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

 $x_D^{\mu} = \{H_{ts}, t_S, H_{\varphi}, \varphi\}$ corresponding to Killing vector fields $V_{ts} = \partial_{t_s}, V_{\varphi} = \partial_{\varphi}$ where the symplectic form Θ is constant:

$$\begin{split} \Theta &= ic_1 dH_{ts} \wedge dt_S + c_1 dH_{\varphi} \wedge d\varphi \,, \\ &= c_1 d \left(iH_{ts} dt_S + H_{\varphi} d\varphi \right) \,, \\ H_{ts} &= r\gamma \cos \vartheta \,, \qquad H_{\varphi} = \frac{1}{2} r^2 \sin^2 \vartheta \end{split}$$

Relations to the Killing vector fields:

$$E = c_1 dH_{ts} = c_1 E_{\mu} dx^{\mu} = i_{V_{ts}} \Theta, \qquad E_{\mu} = V_{ts}^{\nu} \theta_{\nu\mu}^{-1}, B = c_1 dH_{\varphi} = c_1 B_{\mu} dx^{\mu} = i_{V_{\varphi}} \Theta, \qquad B_{\mu} = V_{\varphi}^{\nu} \theta_{\nu\mu}^{-1},$$

$$ds_D^2 = -\gamma dt_S^2 + \frac{e^{\bar{\sigma}}}{\gamma} dH_{ts}^2 + r^2 \sin^2 \vartheta d\varphi^2 + \frac{e^{\bar{\sigma}}}{r^2 \sin^2 \vartheta} dH_{\varphi}^2$$

Star product

Emerging Geometries

D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

A Moyal type star product can easily be defined as

$$(g \star h)(x_D) = g(x_D)e^{-\frac{i}{2}\left(\overleftarrow{\partial}_{\mu}\theta_D^{\mu\nu}\overrightarrow{\partial}_{\nu}\right)}h(x_D),$$

with

$$\theta_D^{\mu\nu} = \epsilon \begin{pmatrix} 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix} \,,$$

where $\epsilon = 1/c_1 \ll 1$ denotes the expansion parameter.

Star product ||

Emerging Geometries D. Blaschke

Outline

Introduction

Curvature Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

...or in embedding coordinates:

$$(g \star h)(x) = g(x) \exp\left[\frac{i\epsilon}{2} \left(\left(\overleftarrow{\partial}_{t} \frac{ir_{c} z e^{\bar{\sigma}}}{r^{2} \gamma} + \overleftarrow{\partial}_{z} i e^{\bar{\sigma}} \right) \wedge \overrightarrow{\partial}_{t} + \left(\left(\overleftarrow{\partial}_{t} - \overleftarrow{\partial}_{z} \frac{z}{r} \right) \frac{r_{c} e^{\bar{\sigma}}}{r^{2}} + \left(\overleftarrow{\partial}_{x} x + \overleftarrow{\partial}_{y} y \right) \frac{1}{x^{2} + y^{2}} \right) \wedge \left(x \overrightarrow{\partial}_{y} - y \overrightarrow{\partial}_{x} \right) \right] h(x)$$

where care must be taken with the sequence of operators and the side they act on.

Higher orders in this star product lead to non-commutative corrections to the embedding geometry, e.g.:

$$\phi_1 \star \phi_1 + \phi_2 \star \phi_2 \neq \phi_3 \star \phi_3$$

Star product ||

... or in embedding coordinates:

Emerging Geometries D. Blaschke

Geometry

D. Blaschke Qutline Introduction Curvature & Gravity $(g \star h)(x) = g(x) \exp\left[\frac{i\epsilon}{2}\left(\left(\overleftarrow{\partial}_t \frac{ir_c z e^{\bar{\sigma}}}{r^2 \gamma} + \overleftarrow{\partial}_z i e^{\bar{\sigma}}\right) \wedge \overrightarrow{\partial}_t + \left(\left(\overleftarrow{\partial}_t - \overleftarrow{\partial}_z \frac{z}{r}\right) \frac{r_c e^{\bar{\sigma}}}{r^2} + \left(\overleftarrow{\partial}_x x + \overleftarrow{\partial}_y y\right) \frac{1}{x^2 + y^2}\right) \wedge \left(x \overrightarrow{\partial}_y - y \overrightarrow{\partial}_x\right)\right)\right] h(x)$ Schwarzschild

where care must be taken with the sequence of operators and the side they act on.

Higher orders in this star product lead to non-commutative corrections to the embedding geometry, e.g.:

$$\phi_1 \star \phi_1 + \phi_2 \star \phi_2 \neq \phi_3 \star \phi_3$$

Star commutators for Schwarzschild geometry

Emerging Geometries										
D. Blaschke	$-i\left[x^a \ ; x\right]$	$\left[e^{b} \right] = \epsilon e^{\bar{\sigma}}$								
Outline	(0	$-\frac{r_c y}{r^2}$	$\frac{r_c x}{r^2}$	-i	$\frac{izf_{12}^+(1)}{r}$	$\frac{izf_{21}^-(1)}{r}$	$\frac{iz\phi_3}{2r^2}$			
Introduction	$\frac{r_c y}{r^2}$	0	$e^{-\bar{\sigma}}$	$-\frac{r_c yz}{r^3}$	$\frac{-yf_{12}^+(\gamma)}{r}$	$\frac{-yf_{21}^{-}(\gamma)}{r}$	$-\frac{y\gamma\phi_3}{2r^2}$			
Curvature & Gravity	$-\frac{r_c x}{r^2}$	$-e^{-\bar{\sigma}}$	0	$\frac{r_c x z}{r^3}$	$\frac{xf_{12}^+(\gamma)}{r}$	$\frac{xf_{21}^{-}(\gamma)}{r}$	$\frac{x\gamma\phi_3}{2r^2}$			
Schwarzschild	i	$\frac{r_c yz}{r^3}$	$-\frac{r_c xz}{r^3}$	0	$-i\omega\phi_2$	$i\omega\phi_1$	0			
Geometry	$\frac{-izf_{12}^+(1)}{r}$	$\frac{yf_{12}^+(\gamma)}{r}$	$\frac{-xf_{12}^+(\gamma)}{r}$	$i\omega\phi_2$	0	$-\frac{i\omega z\phi_3^2}{2r^2}$	$\frac{-i\omega z\phi_3\phi_2}{2r^2}$			
RN Geometry	$-izf_{21}^{-}(1)$	$yf_{21}^{-\prime}(\gamma)$	$\underline{-xf_{21}^{-}(\gamma)}$	$-i\omega\phi_1$	$\frac{i\omega z\phi_3^2}{2}$	0	$\frac{i\omega z\phi_3\phi_1}{2}$			
Conclusion	$\left(-\frac{r}{iz\phi_3}{2r^2}\right)$	$\frac{y\gamma\phi_3}{2r^2}$	$-\frac{r}{2r^2}$	0	$\frac{\frac{2r^2}{i\omega z\phi_3\phi_2}}{2r^2}$	$\frac{-i\omega z\phi_3\phi_1}{2r^2}$	$\begin{pmatrix} 2r^2\\ 0 \end{pmatrix}$			
	$+ \mathcal{O}(\epsilon^3) ,$									
	with									
	WICH			(17	``					
	$f_{ij}^{\pm}(Y) = \left(\frac{Y}{2}\phi_i \pm \omega\phi_j\right)$.									
			5	$\sqrt{2r}$	·)					

Embedding of Reissner-Nordström metric

RN metric in spherical coordinates $x^{\mu} = \{t, r, \vartheta, \varphi\}$:

Emerging Geometries D. Blaschke

$$ds^{2} = -\left(1 - \frac{2m}{r} + \frac{q^{2}}{r^{2}}\right)d\tilde{t}^{2} + \left(1 - \frac{2m}{r} + \frac{q^{2}}{r^{2}}\right)^{-1}dr^{2} + r^{2}d\Omega$$

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

which has two concentric horizons at

$$r_h = \left(m \pm \sqrt{m^2 - q^2}\right)$$

Shift the time-coordinate according to

 $t = \tilde{t} + (r^* - r)$, with $dr^* \equiv \left(1 - \frac{2m}{r} + \frac{q^2}{r^2}\right)^{-1} dr$,

and arrive at

$$ds^{2} = -\left(1 - \frac{2m}{r} + \frac{q^{2}}{r^{2}}\right) dt^{2} + 2\left(\frac{2m}{r} - \frac{q^{2}}{r^{2}}\right) dt dr + \left(1 + \frac{2m}{r} - \frac{q^{2}}{r^{2}}\right) dr^{2} + r^{2} d\Omega.$$

Embedding of Reissner-Nordström metric

RN metric in spherical coordinates $x^{\mu} = \{t, r, \vartheta, \varphi\}$:

Emerging Geometries D. Blaschke

$$ds^{2} = -\left(1 - \frac{2m}{r} + \frac{q^{2}}{r^{2}}\right)d\tilde{t}^{2} + \left(1 - \frac{2m}{r} + \frac{q^{2}}{r^{2}}\right)^{-1}dr^{2} + r^{2}d\Omega$$

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

Shift the time-coordinate according to

which has two concentric horizons at

$$t = \tilde{t} + (r^* - r)$$
, with $dr^* \equiv \left(1 - \frac{2m}{r} + \frac{q^2}{r^2}\right)^{-1} dr$,

 $r_h = \left(m \pm \sqrt{m^2 - q^2}\right)$

and arrive at

$$ds^{2} = -\left(1 - \frac{2m}{r} + \frac{q^{2}}{r^{2}}\right)dt^{2} + 2\left(\frac{2m}{r} - \frac{q^{2}}{r^{2}}\right)dtdr + \left(1 + \frac{2m}{r} - \frac{q^{2}}{r^{2}}\right)dr^{2} + r^{2}d\Omega.$$

Embedding of RN metric II

Emerging Geometries

D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

10-dimensional embedding $\mathcal{M}^{1,3} \hookrightarrow \mathbb{R}^{4,6}$ with additional coordinates ϕ_i given by

$$\phi_1 + i\phi_2 = \phi_3 e^{i\omega(t+r)}, \qquad \phi_3 = \frac{1}{\omega} \sqrt{\frac{2m}{r}},$$

$$\phi_4 + i\phi_5 = \phi_6 e^{i\omega(t+r)}, \qquad \phi_6 = \frac{q}{\omega r}$$

 ϕ_3 , ϕ_4 and ϕ_5 are *time-like* coordinates.

Symplectic form and Darboux coordinates

-1

Emerging Geometries D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

$$\begin{split} \Theta &= \frac{1}{\epsilon} \left(i dH_{\tilde{t}} \wedge d\tilde{t} + dH_{\varphi} \wedge d\varphi \right) \,, \\ H_{\tilde{t}} &= \gamma \, r \cos \vartheta \,, \qquad \qquad H_{\varphi} = \frac{r^2}{2} \left(1 - \frac{q^2}{r^2} \right) \sin^2 \vartheta \,, \\ \gamma &= \left(1 - \frac{2m}{r} + \frac{q^2}{r^2} \right) \,, \\ \end{array}$$

$$ds_D^2 = -\gamma d\tilde{t}^2 + \frac{e^{\bar{\sigma}}}{\gamma} dH_{\tilde{t}}^2 + r^2 \sin^2 \vartheta d\varphi^2 + \frac{e^{\bar{\sigma}}}{r^2 \sin^2 \vartheta} dH_{\varphi}^2$$

Symplectic form and Darboux coordinates

1

Emerging Geometries D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

$$\begin{split} \Theta &= \frac{1}{\epsilon} \left(i dH_{\tilde{t}} \wedge d\tilde{t} + dH_{\varphi} \wedge d\varphi \right) \,, \\ H_{\tilde{t}} &= \gamma \, r \cos \vartheta \,, \qquad \qquad H_{\varphi} = \frac{r^2}{2} \left(1 - \frac{q^2}{r^2} \right) \sin^2 \vartheta \,, \\ \gamma &= \left(1 - \frac{2m}{r} + \frac{q^2}{r^2} \right) \,, \\ e^{-\bar{\sigma}} &= \gamma \sin^2 \vartheta + \left(1 - \frac{q^2}{r^2} \right)^2 \cos^2 \vartheta \end{split}$$

 $ds_D^2 = -\gamma d\tilde{t}^2 + \frac{e^{\bar{\sigma}}}{\gamma} dH_{\tilde{t}}^2 + r^2 \sin^2 \vartheta d\varphi^2 + \frac{e^{\bar{\sigma}}}{r^2 \sin^2 \vartheta} dH_{\varphi}^2$

Symplectic form and Darboux coordinates

1

Emerging Geometries D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

$$\begin{split} \Theta &= \frac{1}{\epsilon} \left(i dH_{\tilde{t}} \wedge d\tilde{t} + dH_{\varphi} \wedge d\varphi \right) \,, \\ H_{\tilde{t}} &= \gamma \, r \cos \vartheta \,, \qquad H_{\varphi} = \frac{r^2}{2} \left(1 - \frac{q^2}{r^2} \right) \sin^2 \vartheta \,, \\ \gamma &= \left(1 - \frac{2m}{r} + \frac{q^2}{r^2} \right) \,, \\ e^{-\bar{\sigma}} &= \gamma \sin^2 \vartheta + \left(1 - \frac{q^2}{r^2} \right)^2 \cos^2 \vartheta \end{split}$$

$$ds_D^2 = -\gamma d\tilde{t}^2 + \frac{e^{\bar{\sigma}}}{\gamma} dH_{\tilde{t}}^2 + r^2 \sin^2 \vartheta d\varphi^2 + \frac{e^{\bar{\sigma}}}{r^2 \sin^2 \vartheta} dH_{\varphi}^2$$

Star product for RN geometry

Emerging Geometries D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

A Moyal type star product can again be defined as

$$(g \star h)(x_D) = g(x_D)e^{-\frac{i}{2}\left(\overleftarrow{\partial}_{\mu}\theta_D^{\mu\nu}\overrightarrow{\partial}_{\nu}\right)}h(x_D),$$

with the same block-diagonal $\theta^{\mu\nu}$ as before.

... and once more, higher orders in the star product lead to non-commutative corrections to the embedding geometry, e.g.:

$$\begin{split} \phi_1 \star \phi_1 + \phi_2 \star \phi_2 \neq \phi_3 \star \phi_3 \,, \\ \phi_4 \star \phi_4 + \phi_5 \star \phi_5 \neq \phi_6 \star \phi_6 \,. \end{split}$$

Star product for RN geometry

Emerging Geometries D. Blaschke

Outline

Introduction

Curvature & Gravity

Schwarzschild Geometry

RN Geometry

Conclusion

A Moyal type star product can again be defined as

$$(g \star h)(x_D) = g(x_D)e^{-\frac{i}{2}\left(\overleftarrow{\partial}_{\mu}\theta_D^{\mu\nu}\overrightarrow{\partial}_{\nu}\right)}h(x_D),$$

with the same block-diagonal $\theta^{\mu
u}$ as before.

... and once more, higher orders in the star product lead to non-commutative corrections to the embedding geometry, e.g.:

$$\phi_1 \star \phi_1 + \phi_2 \star \phi_2 \neq \phi_3 \star \phi_3,$$

$$\phi_4 \star \phi_4 + \phi_5 \star \phi_5 \neq \phi_6 \star \phi_6.$$

Star commutators for RN geometry

Emerging Geometries

RN Geometry

$$\begin{split} & -i\left[x^{\mu} \ {}^{*}, x^{\nu}\right] \approx \theta^{\mu\nu} = \epsilon e^{\bar{\sigma}} \\ & \left(\begin{array}{cccc} 0 & \frac{-(1-\gamma)y}{r} + \frac{iq^{2}xz}{r^{4}} & \frac{(1-\gamma)x}{r} + \frac{iq^{2}yz}{r^{4}} & -i\beta \\ \frac{(1-\gamma)y}{r} & 0 & e^{-\varsigma} & \frac{-yz\eta}{r^{2}} \\ \frac{-(1-\gamma)x}{r} & -e^{-\varsigma} & 0 & \frac{xz\eta}{r^{2}} \\ i\beta & \frac{yz\eta}{r^{2}} & \frac{-xz\eta}{r^{2}} & 0 \end{array}\right) \end{split} \\ i\left[\phi_{i} \ {}^{*}, x^{\mu}\right] \approx \epsilon e^{\bar{\sigma}} \\ & \frac{-iz\alpha f_{12}^{+}(\frac{1}{2})}{r} & \frac{yf_{12}^{+}(\frac{\gamma}{2})}{r} - \frac{iq^{2}xz\omega\phi_{2}}{r^{4}} & \frac{-xf_{12}^{+}(\frac{\gamma}{2})}{r} - \frac{iq^{2}yz\omega\phi_{2}}{r^{4}} & i\omega\phi_{2}\beta \\ \frac{-iz\alpha f_{21}^{-}(\frac{1}{2})}{r} & \frac{yf_{21}^{+}(\frac{\gamma}{2})}{r} + \frac{iq^{2}xz\omega\phi_{1}}{r^{4}} & \frac{-xf_{12}^{+}(\frac{\gamma}{2})}{r} + \frac{iq^{2}yz\omega\phi_{2}}{r^{4}} & -i\omega\phi_{1}\beta \\ \frac{-iz\alpha f_{45}^{+}(1)}{2r^{2}} & \frac{y\gamma\phi_{3}}{2r^{2}} & \frac{-x\gamma\phi_{3}}{r^{4}} & 0 \\ \frac{-iz\alpha f_{45}^{+}(1)}{r} & \frac{yf_{45}^{+}(\gamma)}{r} - \frac{iq^{2}xz\omega\phi_{5}}{r^{4}} & \frac{-xf_{54}^{+}(\gamma)}{r} - \frac{iq^{2}yz\omega\phi_{5}}{r^{4}} & i\omega\phi_{5}\beta \\ \frac{-iz\alpha f_{54}^{-}(1)}{r^{4}} & \frac{yf_{54}^{-}(\gamma)}{r} + \frac{iq^{2}xz\omega\phi_{4}}{r^{4}} & \frac{-xf_{54}^{+}(\gamma)}{r} + \frac{iq^{2}yz\omega\phi_{4}}{r^{4}} & -i\omega\phi_{4}\beta \\ \frac{-iz\phi_{6}\alpha}{r^{2}} & \frac{y\gamma\phi_{6}}{r^{2}} & \frac{-x\gamma\phi_{6}}{r^{2}} & 0 \\ \end{array}$$

 r^2

Star commutators for RN geometry ||

Emerging Geometries						
D. Blaschke	$-i\left[\phi_i \stackrel{\star}{,} \phi_j\right]$	$] \approx \epsilon e^{\bar{\sigma}}$				
Outline	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	$\frac{-i\omega z\phi_3^2\alpha}{2r^2}$	$\frac{-i\omega z\phi_3\phi_2\alpha}{2r^2}$	$\frac{-i\omega z\phi_1\phi_5\alpha}{2r^2}$	$\frac{-i\omega z\alpha g_{\phi}}{2r^2}$	$\frac{-i\omega z\phi_3\phi_5\alpha}{r^2}$
Introduction	$\frac{i\omega z\phi_3^2\alpha}{2r^2}$	0	$\frac{i\omega z\phi_3\phi_1\alpha}{2r^2}$	$rac{-i\omega zlpha g_{\phi}}{2r^2}$	$\frac{i\omega z\phi_2\phi_4\alpha}{2r^2}$	$\frac{i\omega z\phi_3\phi_4\alpha}{r^2}$
Curvature &	$\frac{i\omega z \overline{\phi}_3 \phi_2 \alpha}{2r^2}$	$\frac{-i\omega z\phi_3\phi_1\alpha}{2r^2}$	0	$rac{i\omega z\overline{\phi}_{3}\phi_{5}lpha}{2r^{2}}$	$-\frac{i\omega\overline{z}\phi_{3}\phi_{4}\alpha}{2r^{2}}$	0
Gravity	$\frac{i\omega z\phi_1\phi_5\alpha}{2r^2}$	$rac{i\omega zlpha g_{\phi}}{2r^2}$	$\frac{-i\omega z\phi_3\phi_5\alpha}{2r^2}$	0	$\frac{-i\omega z\phi_6^2\alpha}{r^2}$	$\frac{-i\omega z\phi_5\phi_6\alpha}{r^2}$
Geometry	$\frac{i\omega z\alpha g_{\phi}}{2\omega^2}$	$\frac{-i\omega z\phi_2\phi_4\alpha}{2\omega^2}$	$\frac{i\omega z\phi_3\phi_4\alpha}{2\omega^2}$	$\frac{i\omega z\phi_6^2\alpha}{2}$	0	$\frac{i\omega z\phi_4\phi_6\alpha}{m^2}$
RN Geometry	$\left(\frac{i\omega z\phi_{3}\phi_{5}\alpha}{r^{2}}\right)$	$\frac{-i\omega \overset{2r^{2}}{z}\phi_{3}\phi_{4}\alpha}{r^{2}}$	0^{2r^2}	$\frac{i\omega z \phi_5 \phi_6 \alpha}{r^2}$	$\frac{-i\omega z\phi_4\phi_6\alpha}{r^2}$	$\begin{pmatrix} r^2 \\ 0 \end{pmatrix}$
Conclusion	with					

$$\begin{split} f_{ij}^{\pm}(Y) &= \left(\frac{Y}{r}\phi_i \pm \omega\phi_j\right), \qquad \alpha = \left(1 - \frac{q^2}{r^2}\right), \\ e^{-\varsigma} &= \left(\gamma + 2\frac{z^2}{r^2}\left(\frac{m}{r} - \frac{q^2}{r^2}\right)\right), \qquad \beta = \left(1 - \frac{q^2z^2}{r^4}\right), \\ g_{\phi} &= (\phi_3\phi_6 + \phi_1\phi_5) = (\phi_3\phi_6 + \phi_2\phi_4) \;. \end{split}$$

Conclusion and Outlook

Emerging Geometries

- D. Blaschke
- Outline
- Introduction
- Curvature & Gravity
- Schwarzschild Geometry
- RN Geometry
- Conclusion

- Have shown, that E-H action can emerge in the framework of matrix models.
- Discussed explicit embeddings of Schwarzschild and RN geometries including self-dual symplectic forms.
- Open questions: deviations from G = g, higher order quantum effects, etc. (work in progress).

Conclusion and Outlook

Emerging Geometries

- D. Blaschke
- Outline
- Introduction
- Curvature & Gravity
- Schwarzschild Geometry
- RN Geometry
- Conclusion

- Have shown, that E-H action can emerge in the framework of matrix models.
- Discussed explicit embeddings of Schwarzschild and RN geometries including self-dual symplectic forms.
- Open questions: deviations from G = g, higher order quantum effects, etc. (work in progress).

Conclusion and Outlook

Emerging Geometries

- D. Blaschke
- Outline
- Introduction
- Curvature & Gravity
- Schwarzschild Geometry
- RN Geometry
- Conclusion

- Have shown, that E-H action can emerge in the framework of matrix models.
- Discussed explicit embeddings of Schwarzschild and RN geometries including self-dual symplectic forms.
- Open questions: deviations from G = g, higher order quantum effects, etc. (work in progress).

References

Emerging Geometries

- D. Blaschke
- Outline
- Introduction
- Curvature & Gravity
- Schwarzschild Geometry
- RN Geometr
- Conclusion

- D. N. Blaschke, H. Steinacker, *Curvature and Gravity Actions for Matrix Models*, submitted to *Class. Quant. Grav.*, [arXiv:1003.4132].
- D. N. Blaschke, H. Steinacker, *Curvature and Gravity Actions for Matrix Models II*, work in progress

D. N. Blaschke, H. Steinacker, *Schwarzschild Geometry Emerging from Matrix Models*, [arXiv:1005.0499].

Thank you for your attention!