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As you all know there are roughly two (entangled) sides to the
noncommutative story

On one side there is the “almost commutative story”, attempts
to see the standard model, and namely the Higgs, as coming from
a noncommutative structure of spacetime, Connes, Lott, Dubois-

Violette, Madore, Kerner . . .

In these models spacetime is the usual one, but there is an “in-
ternal” noncommutative structure which carries information on
the nontrivial symmetries of the model

Then there is a “natural” action which reproduces the charac-
teristics of the model, possibly including gravity as well

And then there is the Wess Side Story
1
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The physics of the standard model plus gravity is inserted in more general

programme aimed at translating all concepts of ordinary geometry in an al-

gebraic framework, which opens the possibility to generalize all concepts in

the noncommutative framework.

Three main ingredients form the Spectral Triple (plus some seasonings)

• A C∗ -algebra A encodes the topology of spacetime

• A Hilbert space H on which the algebra is represented as bounded
operators, and which gives the matter content of the theory

• A Generalization of the Dirac operator D which gives the differential
and metric structures, and whose fluctuations give the action

• The seasoning are the chiral structure γ , and the real structure J given by the

generalization of the charge conjugation operator
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Connes’ approach the standard model is aimed at understanding

the geometry of it. To use his words one has to “twist” the

geometry to make it fit the standard model and gravity.

The game is then to see which sets of data (an algebra, a Hilbert

space, a Dirac operator) reproduce the standard model

The algebra is the product of the algebra of functions on space-

time times a finite dimensional matrix algebra

A = C(R4)⊗AF
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Likewise the Hilbert space is the product of fermions times a

finite dimensional space which contains all matter degrees of

freedom, and also the Dirac operator contains a continuous part

and a discrete one

H = Sp(R4)⊗HF
D = γµ∂µ ⊗ I + γ ⊗DF

In its most recent form (Chamseddine-Connes-Marcolli) a crucial

role is played by the mathematical requirements that the non-

commutative algebra satisfies the requirements to be a manifold

Then the internal algebra, is almost uniquely derived to be

AF = C⊕H⊕M3(C)
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For example if the spacetime is two copies of a manifold the gen-

eralization of the electrodynamics action gives a U(1)× U(1)→ U(1)

Higgs mechanism

Instead for an algebra given by functions on spacetime with val-

ues in C⊗H⊗M3 , (complex numbers, quaternions, three by

three matrices) we obtain the standard model

The finite part of the Dirac operator DF contains all informa-

tions about fermion masses and coupling
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Central to this construction is the action, purely based on spec-
tral properties of a covariant Dirac operator

Consider the covariant operator
DA = D +A

Where A is the connection which naturally comprises all the fluctuations of

the “metric”. The internal part of the algebra gives the inner gauge group,

while the fluctuations of the continuous part give the Levi-Civita conection

The action is

S = SB + SF = Trχ

(
D2
A

Λ2

)
+ 〈Ψ|DA |Ψ〉

With Λ a cutoff in Wilsonian sense, and χ some possibly smoothened

version of the step function
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The bosonic action, in the case of χ the step function, is just
the number of eigenvalues smaller than the cutoff

It can be evaluated using heath kernel techniques and the fi-
nal result gives the action of the standard model coupled with
gravity.

The fascinating aspect of this theory is that the Higgs appears
naturally as the “vector” boson of the internal noncommuta-
tive degrees of freedom. In the process of writing the action
all masses and coupling are used as inputs, but one saves one
parameter.

The Higgs mass is predicted, in the present form of the model,
to be ∼ 170GeV . A value too small and experimentally dis-
favoured.
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Technically the bosonic spectral action is a sum of residues and can be ex-
panded in a power series in terms of Λ−1 as

SB =
∑
n

fn an(D2/Λ2)

where the fn are the momenta of χ

f0 =

∫ ∞
0

dxxχ(x)

f2 =

∫ ∞
0

dxχ(x)

f2n+4 = (−1)n∂nxχ(x)

∣∣∣∣
x=0

n ≥ 0

the an are the Seeley-de Witt coefficients which vanish for n odd. For D2 of
the form

D2 = gµν∂µ∂ν1l + αµ∂µ + β
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defining

ωµ =
1

2
gµν
(
αν + gσρΓν

σρ1l
)

Ωµν = ∂µων − ∂νωµ + [ωµ, ων]
E = β − gµν

(
∂µων + ωµων − Γρ

µνωρ
)

then

a0 =
Λ4

16π2

∫
dx4√g tr 1lF

a2 =
Λ2

16π2

∫
dx4√g tr

(
−
R

6
+ E

)
a4 =

1

16π2

1

360

∫
dx4√g tr (−12∇µ∇µR+ 5R2 − 2RµνR

µν

+2RµνσρR
µνσρ − 60RE + 180E2 + 60∇µ∇µE + 30ΩµνΩ

µν)

tr is the trace over the inner indices of the finite algebra AF and in Ω and E
are contained the gauge degrees of freedom including the gauge stress energy
tensors and the Higgs, which is given by the inner fluctuations of D
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There are other problems with this approach, it is Euclidean,
fine tuning is needed, the coupling constants all meet in one
point the quantization is done in the “commutative” way, which
is somehow anticlimactic.

The fact that the model is “ad hoc” and in the end it writes a
known action is not a problem. The programme was to fit the
standard model into a more general framework, not to derive it
form an higher theory

Once the framework is known one can try to understand where
it comes from.

The model is probably not yet ready to give trustful experimen-
tal predictions, but it is important to constantly update these
prediction to understand in which direction the refinements are
needed.
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The reason to be of the construction is that it is made using
the spectral properties of the noncommutative geometry, and as
such is it immediately ready for noncommutative generalizations
or deformations of spacetime

Wilson’s renormalization becomes the fact that the cutoff is just
the truncations of the higher eigenvalues of DA , that is the ul-
traviolet components of the geometry. Since the standard model
may be an effective theory, the cutoff may have a physical mean-
ing of the limit of validity of this almost commutative geometry,
leading to a fully noncommutative one.

The matter content, and the fermionic action, is however treated
in the standard way, and it would be interesting to have it descend
from the spectral properties of spacetime

Or may be the other way around...
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I will present a simple calculation which shows how the bosonic

part of the spectral action can be obtained as the contribution

to the action necessary to cancel the scale anomaly

Notice that in the usual treatment of the spectral action the

bosonic part is, given Λ already finite, while the fermionic action

must be regularised, and this is done using standard techniques

Let me start with just a theory in which some fermions are cou-

pled to some background, this background however is fixed be-

cause I have not considered the bosonic part of the action.

I may take the background to be flat, but this is not necessary.

Note the similarities with Sakharov emergent gravity at one loop,

and Steinacker emergent gravity from matrix models.
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The fermionic action appears in the partition function of the

theory:

Z(D) =
∫

[dψ][dψ̄]e−Sψ = det(D)

where the last equality is formal because the expression is diver-

gent and needs regularizing

The regularization can be done in several ways. In the spirit of

noncommutative geometry the most natural one is a truncation

of the spectrum of the Dirac operator. This was considered long

ago by Andrianov, Bonora, Novozhilov, Vassilevich
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The energy cutoff is enforced by considering only the first N

eigenvalues of D

Consider the projector PN =
∑N
n=0 |λn〉 〈λn| with λn and |λn〉

the eigenvalues and eigenvectors of D

The integer N is a function of the cutoff and is defined as

N = maxn such that λn ≤ Λ

We effectively use the Nth eigenvalue as cutoff
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The fermionic action is invariant under a scale transformation:

xµ → eφxµ , ψ → e−
3
2φψ ,D → e−

1
2φDe−

1
2φ

for this talk φ is a constant

The invariance for this scale transformation means that with a

redefinition of the units of measurement we can freely change

the units of the x ’s

However (fortunately!) the measure of the partition function is

not invariant. This means that we have an anomaly.

The impossibility to go to the shortest distances is a quantum

effect, due to the appearance of ~ in the theory
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Hence the fermionic theory alone is anomalous, and we need to

add extra ingredients. The anomaly can however be cancelled

adding another term to the action

We define the regularized partition function

ZΛ(D) =
∏N
n=0 λn = det

(
1l− PN + PN

D
ΛPN

)
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ZΛ has a well defined meaning setting ψ =
∑
an |λn〉 , ψ̄ =

∑
bn |λn〉

with an, bn anticommuting (Grassman) quantities, we have

ZΛ(D) =
∫ N∏
n=0

dandbne−
∑N
n=0 bn

λn
Λ an = det (DN)

where we defined DN = 1− PN + PN
D
ΛPN which corresponds to

set to 1 all eigenvalues larger than 1 .

Note that DN is dimensionless and depends on Λ both explicitly and intrin-

sically via the dependence of N and PN
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We can express the spectral action (number of eigenvalues smaller

than Λ ) as

Trχ

(
D2

Λ2

)
= TrPN = N

Recall that the N depends on Λ , on D and also on the function χ , which

we have chosen to be a sharp cutoff.

The compensating term, the effective action, is

ZinvΛ(D) = ZΛ(D)
∫

dφ e−Sanom
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The calculation is standard and not difficult:
Define

Z−1
invΛ(D) =

∫
dφZ−1

Λ (e−
1
2
φDe−

1
2
φ)

therefore
Sanom = logZΛ(D)Z−1

invN
(D)

Let us indicate
Zt = ZΛ(e−

t
2
φDe−

t
2
φ)

therefore Z0 = ZΛ(D) and

ZΛ(D)Z−1
invN

(D) =

∫
dφ
Z0

Z1

and hence

Seff =

∫ 1

0

dt∂t logZt =

∫ 1

0

dt
∂tZt

Zt
We have the following relation that can easily proven:

D−1
N = (1− PN + PNDPN)−1 = 1− PN + PND

−1PN
and

∂tZt = ∂t det(e−
t
2
φDe−

t
2
φ)N

= ∂te
tr log(1−PN+e−

t
2
φDNe−

t
2
φ)

= Tr (∂t log(1− PN + e−
t
2DNe−

t
2
φ))Zt

= Tr ((1− PN + e−
t
2
φDNe−

t
2
φ)−1φe−

t
2
φDNe−

t
2
φ)Zt

= φZt trPN
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In the end

Sanom =
∫ 1

0
dt φ trPN

and repeating the calculations above

Sanom =
∫ φ

0
dt′

∑
n

e(4−n)t′anfn =
1

8
(e4φ − 1)a0 +

1

2
(e2φ − 1)a2 + φa4.

For φ constant this is basically the Spectral action with some numerical

corrections to the first two Seeley-de Witt coefficients due to the integration

in tφ

The case of φ noncostant is in progress
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So we started from an action which described the behaviour of
matter in a gauge and gravitational background, and let the
background fluctuate, but not self-interact. The introduction
of quantization, and the subsequent anomaly forced us to add
another term to the action

The extra term we add turn out to be a (version of) the spectral
action, which gives the interaction of matter and gauge fields
with itself

Did God create matter

before light?
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