Geometrical action of
 the modular group for disjoint intervals in 2D boundary conformal theory.

Pierre Martinetti

Dipartimento di fisica, gruppo GTC, Università di Roma Sapienza Dipartimento di matematica, Università di Roma Tor Vergata

Bayrischzell Workshop, may 2010
work in collaboration with
R. Longo, K.-H. Rehren

Review in Mathematical Physics 223 (2010) 1-23

Time in quantum gravity: how to combine the general covariance of the gravitational field at the quantum level, i.e.
a state of the gravitational field $=$ a superposition of all possible metrics, indicating that a priori all directions might be picked out as a "time direction", with the notion of (locally) unique proper time ?

Time in quantum gravity: how to combine the general covariance of the gravitational field at the quantum level, i.e.
a state of the gravitational field $=$ a superposition of all possible metrics, indicating that a priori all directions might be picked out as a "time direction", with the notion of (locally) unique proper time ?

- Thermal time hypothesis: the notion of time is state dependent, and can be extracted from the algebra of observables of the system.

Time in quantum gravity: how to combine the general covariance of the gravitational field at the quantum level, i.e.
a state of the gravitational field $=$ a superposition of all possible metrics, indicating that a priori all directions might be picked out as a "time direction", with the notion of (locally) unique proper time ?

- Thermal time hypothesis: the notion of time is state dependent, and can be extracted from the algebra of observables of the system.
Algebraic Quantum Field Theory: natural framework to test this idea.

Time in quantum gravity: how to combine the general covariance of the gravitational field at the quantum level, i.e.
a state of the gravitational field $=$ a superposition of all possible metrics,
indicating that a priori all directions might be picked out as a "time direction", with the notion of (locally) unique proper time?

- Thermal time hypothesis: the notion of time is state dependent, and can be extracted from the algebra of observables of the system.
Algebraic Quantum Field Theory: natural framework to test this idea.

Outline:

1. Modular group as a flow of time

Tomita-Takesaki's theory, KMS condition
2. Algebraic quantum field theory

Wedges and doubles-cones in Minkowski spacetime
3. Double-cones in 2d boundary conformal field theory

Conformal field and Longo's ad-hoc state
Free Fermi fields and the vacuum state

1. Time flow from the modular group

Modular group "Von Neumann algebras naturally evolve with time" (Connes)

1. Time flow from the modular group

Modular group "Von Neumann algebras naturally evolve with time" (Connes)

- a von Neumann *algebra \mathcal{A} acting on $\mathcal{H}\} \Rightarrow$ Tomita's operator:
- a vector Ω in \mathcal{H} cyclic and separating $\} \Rightarrow \quad S a \Omega \rightarrow a^{*} \Omega$

1. Time flow from the modular group

Modular group "Von Neumann algebras naturally evolve with time" (Connes)

- a von Neumann *algebra \mathcal{A} acting on $\mathcal{H}\} \Rightarrow$ Tomita's operator:
- a vector Ω in \mathcal{H} cyclic and separating $\quad\} \Rightarrow \quad S a \Omega \rightarrow a^{*} \Omega$

Polar decomposition: $\bar{S}=J \Delta^{\frac{1}{2}}$ where $\Delta=\Delta^{*}>0$ and J is unitary, antilinear.

1. Time flow from the modular group

Modular group "Von Neumann algebras naturally evolve with time" (Connes)

- a von Neumann *algebra \mathcal{A} acting on $\mathcal{H}\} \Rightarrow$ Tomita's operator:
- a vector Ω in \mathcal{H} cyclic and separating $\quad\} \Rightarrow \quad S a \Omega \rightarrow a^{*} \Omega$

Polar decomposition: $\bar{S}=J \Delta^{\frac{1}{2}}$ where $\Delta=\Delta^{*}>0$ and J is unitary, antilinear.
Tomita's Theorem: $\Delta^{i t} \mathcal{A} \Delta^{-i t}=\mathcal{A}$ hence there is a 1 parameter group of automorphism

$$
t \mapsto \sigma_{s}: a \mapsto \sigma_{s}(a) \doteq \Delta^{i s} a \Delta^{-i s} .
$$

1. Time flow from the modular group

Modular group "Von Neumann algebras naturally evolve with time" (Connes)

- a von Neumann *algebra \mathcal{A} acting on $\mathcal{H}\} \Rightarrow$ Tomita's operator:
- a vector Ω in \mathcal{H} cyclic and separating $\} \Rightarrow \quad S a \Omega \rightarrow a^{*} \Omega$

Polar decomposition: $\bar{S}=J \Delta^{\frac{1}{2}}$ where $\Delta=\Delta^{*}>0$ and J is unitary, antilinear.
Tomita's Theorem: $\Delta^{i t} \mathcal{A} \Delta^{-i t}=\mathcal{A}$ hence there is a 1 parameter group of automorphism

$$
t \mapsto \sigma_{s}: a \mapsto \sigma_{s}(a) \doteq \Delta^{i s} a \Delta^{-i s} .
$$

- Mathematical interest: $\Omega^{\prime} \neq \Omega$ yields the same group, modulo $\ln (\mathcal{A})$:

$$
\sigma_{s}^{\Omega^{\prime}}(a)=U_{s}^{\Omega^{\prime}, \Omega} \sigma^{\Omega}(a) U_{s}^{\Omega^{\prime}, \Omega^{*}}
$$

1. Time flow from the modular group

Modular group "Von Neumann algebras naturally evolve with time" (Connes)

- a von Neumann *algebra \mathcal{A} acting on $\mathcal{H}\} \Rightarrow$ Tomita's operator:
- a vector Ω in \mathcal{H} cyclic and separating $\} \Rightarrow \quad S a \Omega \rightarrow a^{*} \Omega$

Polar decomposition: $\bar{S}=J \Delta^{\frac{1}{2}}$ where $\Delta=\Delta^{*}>0$ and J is unitary, antilinear.
Tomita's Theorem: $\Delta^{i t} \mathcal{A} \Delta^{-i t}=\mathcal{A}$ hence there is a 1 parameter group of automorphism

$$
t \mapsto \sigma_{s}: a \mapsto \sigma_{s}(a) \doteq \Delta^{i s} a \Delta^{-i s} .
$$

- Mathematical interest: $\Omega^{\prime} \neq \Omega$ yields the same group, modulo $\ln (\mathcal{A})$:

$$
\sigma_{s}^{\Omega^{\prime}}(a)=U_{s}^{\Omega^{\prime}, \Omega} \sigma^{\Omega}(a) U_{s}^{\Omega^{\prime}, \Omega^{*}}
$$

- Physical interest: the state $\omega: a \mapsto\langle\Omega, a \Omega\rangle$ is KMS with respect to σ_{s} : $\forall a, b \in \mathcal{A}$ there exists $F_{a b}$, analytic on the strip $0 \leq \operatorname{Im} z<1$, such that

$$
F_{a b}(s)=\varphi\left(\sigma_{s}(a) b\right), \quad F_{a b}(s+i)=\varphi\left(b \sigma_{s}(a)\right)
$$

1. Time flow from the modular group

Modular group "Von Neumann algebras naturally evolve with time" (Connes)

- a von Neumann *algebra \mathcal{A} acting on $\mathcal{H}\} \Rightarrow$ Tomita's operator:
- a vector Ω in \mathcal{H} cyclic and separating $\} \Rightarrow \quad S a \Omega \rightarrow a^{*} \Omega$

Polar decomposition: $\bar{S}=J \Delta^{\frac{1}{2}}$ where $\Delta=\Delta^{*}>0$ and J is unitary, antilinear.
Tomita's Theorem: $\Delta^{i t} \mathcal{A} \Delta^{-i t}=\mathcal{A}$ hence there is a 1 parameter group of automorphism

$$
t \mapsto \sigma_{s}: a \mapsto \sigma_{s}(a) \doteq \Delta^{i s} a \Delta^{-i s} .
$$

- Mathematical interest: $\Omega^{\prime} \neq \Omega$ yields the same group, modulo $\ln (\mathcal{A})$:

$$
\sigma_{s}^{\Omega^{\prime}}(a)=U_{s}^{\Omega^{\prime}, \Omega} \sigma^{\Omega}(a) U_{s}^{\Omega^{\prime}, \Omega^{*}}
$$

- Physical interest: the state $\omega: a \mapsto\langle\Omega, a \Omega\rangle$ is KMS with respect to σ_{s} : $\forall a, b \in \mathcal{A}$ there exists $F_{a b}$, analytic on the strip $0 \leq \operatorname{Im} z<1$, such that

$$
F_{a b}(s)=\varphi\left(\sigma_{s}(a) b\right), \quad F_{a b}(s+i)=\varphi\left(b \sigma_{s}(a)\right)
$$

This often writes

$$
\omega\left(\sigma_{s}(a) b\right)=\omega\left(b \sigma_{s-i}(a)\right)
$$

and this characterizes a thermal equilibrium state at temperature -1 .

Given an algebra \mathcal{A} and a state, assuming the required technical assumptions, can σ_{s} be interpreted as a real physical time flow?

Given an algebra \mathcal{A} and a state, assuming the required technical assumptions, can σ_{s} be interpreted as a real physical time flow ?

Quantum context: $H \doteq \ln \Delta \quad$ yields $\quad \sigma_{s}(a)=e^{i H s} a e^{-i H s}$.

Given an algebra \mathcal{A} and a state, assuming the required technical assumptions, can σ_{s} be interpreted as a real physical time flow ?

Quantum context: $H \doteq \ln \Delta \quad$ yields $\quad \sigma_{s}(a)=e^{i H s} a e^{-i H s}$.
Relativistic context: time interpretation of σ_{s} is possible if, for instance,
i. \mathcal{A} carries a representation of a symmetry group G of spacetime (e.g. Poincaré), ii. σ_{s} is generated by elements of $\mathfrak{g} \Longrightarrow$ geometrical action of the modular group, iii. the orbit of a point under this geometric action is timelike.

Given an algebra \mathcal{A} and a state, assuming the required technical assumptions, can σ_{s} be interpreted as a real physical time flow ?

Quantum context: $H \doteq \ln \Delta \quad$ yields $\quad \sigma_{s}(a)=e^{i H s} a e^{-i H s}$.
Relativistic context: time interpretation of σ_{s} is possible if, for instance,
i. \mathcal{A} carries a representation of a symmetry group G of spacetime (e.g. Poincaré), ii. σ_{s} is generated by elements of $\mathfrak{g} \Longrightarrow$ geometrical action of the modular group, iii. the orbit of a point under this geometric action is timelike.

But the tangent vector ∂_{s} to these orbits must be normalised,

$$
\partial_{t} \doteq \frac{\partial_{s}}{\beta} \text { with } \beta \doteq\left\|\partial_{s}\right\|=\left\|\partial_{t} \frac{d t}{d s}\right\|=\left|\frac{d t}{d s}\right| .
$$

Given an algebra \mathcal{A} and a state, assuming the required technical assumptions, can σ_{s} be interpreted as a real physical time flow ?

Quantum context: $H \doteq \ln \Delta \quad$ yields $\quad \sigma_{s}(a)=e^{i H s} a e^{-i H s}$.
Relativistic context: time interpretation of σ_{s} is possible if, for instance,
i. \mathcal{A} carries a representation of a symmetry group G of spacetime (e.g. Poincaré), ii. σ_{s} is generated by elements of $\mathfrak{g} \Longrightarrow$ geometrical action of the modular group, iii. the orbit of a point under this geometric action is timelike.

But the tangent vector ∂_{s} to these orbits must be normalised,

$$
\partial_{t} \doteq \frac{\partial_{s}}{\beta} \text { with } \beta \doteq\left\|\partial_{s}\right\|=\left\|\partial_{t} \frac{d t}{d s}\right\|=\left|\frac{d t}{d s}\right| .
$$

Defining $\alpha_{-\beta s} \doteq \sigma_{s}$, the KMS condition yields

$$
\omega\left(\left(\alpha_{-\beta s} a\right) b\right)=\omega\left(b\left(\alpha_{-\beta s+i \beta} a\right)\right),
$$

- ω is an equilibrium state at temperature β^{-1} with respect to the time evolution $t=-\beta$ s.

2. Algebraic Quantum Field Theory

A net of algebras of local observables is a map

$$
\mathcal{O} \in \mathcal{B}(\text { Minkovski }) \rightarrow \mathcal{A}(\mathcal{O})
$$

where $\mathcal{A}(\mathcal{O})$'s are C^{*}-algebras fulfilling

- isotony: $\mathcal{O}_{1} \subset \mathcal{O}_{2} \Longrightarrow \mathcal{A}\left(\mathcal{O}_{1}\right) \subset \mathcal{A}\left(\mathcal{O}_{2}\right)$,
- locality: \mathcal{O}_{1} spacelike to $\mathcal{O}_{2} \Longrightarrow\left[\mathcal{A}\left(\mathcal{O}_{1}\right), \mathcal{A}\left(\mathcal{O}_{2}\right)\right]=0$,

A net of algebras of local observables is a map

$$
\mathcal{O} \in \mathcal{B}(\text { Minkovski }) \rightarrow \mathcal{A}(\mathcal{O})
$$

where $\mathcal{A}(\mathcal{O})$'s are C^{*}-algebras fulfilling

- isotony: $\mathcal{O}_{1} \subset \mathcal{O}_{2} \Longrightarrow \mathcal{A}\left(\mathcal{O}_{1}\right) \subset \mathcal{A}\left(\mathcal{O}_{2}\right)$,
- locality: \mathcal{O}_{1} spacelike to $\mathcal{O}_{2} \Longrightarrow\left[\mathcal{A}\left(\mathcal{O}_{1}\right), \mathcal{A}\left(\mathcal{O}_{2}\right)\right]=0$,
together with an irreducible representation π on an Hilbert space \mathcal{H} such that
- Poincaré covariance: There is a unitary rep. U of the Poincaré group G s.t.

$$
U(\Lambda) \pi(\mathcal{A}(\mathcal{O})) U^{*}(\Lambda)=\pi(\mathcal{A}(\wedge \mathcal{O}))
$$

-Positive energy: P^{μ} has spectrum in the forward light cone: $p^{0}=\geq 0, p^{2} \geq 0$. -Vacuum: there exists a vector $\Omega \in \mathcal{H}$ such that $U(\Lambda) \Omega=U(\Lambda) \quad \forall \Lambda \in G$.

A net of algebras of local observables is a map

$$
\mathcal{O} \in \mathcal{B}(\text { Minkovski }) \rightarrow \mathcal{A}(\mathcal{O})
$$

where $\mathcal{A}(\mathcal{O})$'s are C^{*}-algebras fulfilling

- isotony: $\mathcal{O}_{1} \subset \mathcal{O}_{2} \Longrightarrow \mathcal{A}\left(\mathcal{O}_{1}\right) \subset \mathcal{A}\left(\mathcal{O}_{2}\right)$,
- locality: \mathcal{O}_{1} spacelike to $\mathcal{O}_{2} \Longrightarrow\left[\mathcal{A}\left(\mathcal{O}_{1}\right), \mathcal{A}\left(\mathcal{O}_{2}\right)\right]=0$,
together with an irreducible representation π on an Hilbert space \mathcal{H} such that
- Poincaré covariance: There is a unitary rep. U of the Poincaré group G s.t.

$$
U(\Lambda) \pi(\mathcal{A}(\mathcal{O})) U^{*}(\Lambda)=\pi(\mathcal{A}(\Lambda \mathcal{O}))
$$

-Positive energy: P^{μ} has spectrum in the forward light cone: $p^{0}=\geq 0, p^{2} \geq 0$. -Vacuum: there exists a vector $\Omega \in \mathcal{H}$ such that $U(\Lambda) \Omega=U(\Lambda) \quad \forall \Lambda \in G$.
Ω defines the vacuum state ω : $a \mapsto\langle\Omega,, a \Omega\rangle$. In the associated GNS representation (the vacuum representation) one defines

$$
\mathcal{M}(\mathcal{O})=\pi(\mathcal{A}(\mathcal{O}))^{\prime \prime}
$$

which is the von Neumann algebra of local observables associated to \mathcal{O}.

Wedge and Unruh temperature

$W \longrightarrow\left\{\begin{array}{l}\text { algebra of observables } \mathcal{M}(W) \\ \text { vacuum modular group } \sigma_{s}^{W} \rightarrow \text { boosts } \rightarrow \text { geometrical action }\end{array}\right.$ uniformly accelerated observer's trajectory $=$ orbit of the modular group

$$
\tau \in]-\infty,+\infty[\quad=\quad s \in]-\infty,+\infty[
$$

Wedge and Unruh temperature

$W \longrightarrow\left\{\begin{array}{l}\text { algebra of observables } \mathcal{M}(W) \\ \text { vacuum modular group } \sigma_{s}^{W} \rightarrow \text { boosts } \rightarrow \text { geometrical action }\end{array}\right.$ uniformly accelerated observer's trajectory $=$ orbit of the modular group $\tau \in]-\infty,+\infty[\quad=\quad s \in]-\infty,+\infty[$

$$
\beta=\left|\frac{d \tau}{d s}\right|=\left|\frac{\tau}{s}\right|=\frac{2 \pi}{a}=T_{\text {Unruh }}^{-1} .
$$

Wedge and Unruh temperature

$W \longrightarrow\left\{\begin{array}{l}\text { algebra of observables } \mathcal{M}(W) \\ \text { vacuum modular group } \sigma_{s}^{W} \rightarrow \text { boosts } \rightarrow \text { geometrical action }\end{array}\right.$ uniformly accelerated observer's trajectory $=$ orbit of the modular group

$$
\tau \in]-\infty,+\infty[\quad=\quad s \in]-\infty,+\infty[
$$

$$
\beta=\left|\frac{d \tau}{d s}\right|=\left|\frac{\tau}{s}\right|=\frac{2 \pi}{a}=T_{\text {Unruh }}^{-1} .
$$

- The temperature is constant along a given trajectory, and vanishes as $a \rightarrow 0$.

$D=\varphi(W)$ for a some conformal map φ. For a Conformal Field Theory: uniformly accelerated observer's trajectory $=$ orbit of the modular group

$$
T \in]-T 0,+T_{0}[
$$

$$
s \in]-\infty,+\infty[
$$

Double-cone in Minkowski space

$D=\varphi(W)$ for a some conformal map φ. For a Conformal Field Theory: uniformly accelerated observer's trajectory $=$ orbit of the modular group $\tau \in]-\tau_{0},+\tau_{0}[\quad=\quad s \in]-\infty,+\infty[$

$$
\beta(\tau)=\left|\frac{d \tau}{d s}\right|=\frac{2 \pi}{L a^{2}}\left(\sqrt{1+a^{2} L^{2}}-\text { ch } a \tau\right) .
$$

$$
D \longrightarrow\left\{\begin{array}{l}
\text { algebra of observables } \mathcal{M}(D) \\
\text { vacuum modular group } \sigma_{s}^{D}
\end{array}\right.
$$

$D=\varphi(W)$ for a some conformal map φ. For a Conformal Field Theory: uniformly accelerated observer's trajectory $=$ orbit of the modular group

$$
\beta(\tau)=\left|\frac{d \tau}{d s}\right|=\frac{2 \pi}{L a^{2}}\left(\sqrt{1+a^{2} L^{2}}-\text { ch } a \tau\right) .
$$

- $T_{D} \doteq \frac{1}{\beta}$ is not constant along the orbit, and does not vanish for $a=0$: $T_{D}(L)_{a=0}=\frac{\hbar}{\pi k_{b} L} \simeq \frac{10^{-11}}{L} K \rightarrow$ thermal effect for inertial observer.

Boundary CFT

Stress energy tensor $T_{a b}, a, b=1,2$ is conserved,

$$
\partial_{0} T_{00}-\partial_{1} T_{10}=\partial_{0} T_{10}-\partial_{1} T_{11}=0
$$

and has vanishing trace. Hence

$$
\begin{aligned}
& \frac{1}{2}\left(T_{00}+T_{01}\right)=T_{L}(t+x) \\
& \frac{1}{2}\left(T_{00}-T_{01}\right)=T_{R}(t-x) .
\end{aligned}
$$

Boundary CFT

Stress energy tensor $T_{a b}, a, b=1,2$ is conserved,

$$
\partial_{0} T_{00}-\partial_{1} T_{10}=\partial_{0} T_{10}-\partial_{1} T_{11}=0
$$

and has vanishing trace. Hence

$$
\begin{aligned}
& \frac{1}{2}\left(T_{00}+T_{01}\right)=T_{L}(t+x) \\
& \frac{1}{2}\left(T_{00}-T_{01}\right)=T_{R}(t-x) .
\end{aligned}
$$

Boundary condition $T_{01}(t, 0)=0$ implies

$$
T_{L}(t)=T_{R}(t)=\frac{1}{2} T_{00}(t, 0)=T(t)
$$

3. Double-cone in 2d boundary CFT

Boundary CFT

Stress energy tensor $T_{a b}, a, b=1,2$ is conserved,

$$
\partial_{0} T_{00}-\partial_{1} T_{10}=\partial_{0} T_{10}-\partial_{1} T_{11}=0
$$

and has vanishing trace. Hence

$$
\begin{aligned}
& \frac{1}{2}\left(T_{00}+T_{01}\right)=T_{L}(t+x) \\
& \frac{1}{2}\left(T_{00}-T_{01}\right)=T_{R}(t-x) .
\end{aligned}
$$

Boundary condition $T_{01}(t, 0)=0$ implies

$$
T_{L}(t)=T_{R}(t)=\frac{1}{2} T_{00}(t, 0)=T(t)
$$

T yields a chiral net of local v.Neumann algebras

$\mathcal{I}=(A, B) \subset \mathbb{R} \mapsto \mathcal{A}(\mathcal{I}):=\left\{T(f), T(f)^{*}: \operatorname{supp} f \subset \mathcal{I}\right\}$,
and a net of double-cones algebras:
$\mathcal{O}=I_{1} \times I_{2} \mapsto \mathcal{M}(\mathcal{O}) \doteq \mathcal{M}\left(I_{1}\right) \vee \mathcal{M}\left(I_{2}\right) \quad$ where $\quad \mathcal{M}\left(I_{k}\right)=\mathcal{A}\left(I_{k}\right)^{\prime \prime}$.

Möbius covariance

The two nets of local algebras $\mathcal{A}(\mathcal{I}), \mathcal{M}(\mathcal{O})$ satisfy isotony and locality. What is the vacuum, and what is the equivalent of the Poincaré group ?

Möbius covariance

The two nets of local algebras $\mathcal{A}(\mathcal{I}), \mathcal{M}(\mathcal{O})$ satisfy isotony and locality. What is the vacuum, and what is the equivalent of the Poincaré group ?

Via Cayley transform

$$
z=\frac{1+i x}{1-i x} \in S^{1} \Longleftrightarrow x=\frac{(z-1) / i}{z+1} \in \mathbb{R} \cup\{\infty\}
$$

\mathcal{A} can be viewed as a net of algebras associated to intervals \mathcal{I} of the circle.

Möbius covariance

The two nets of local algebras $\mathcal{A}(\mathcal{I}), \mathcal{M}(\mathcal{O})$ satisfy isotony and locality. What is the vacuum, and what is the equivalent of the Poincaré group ?

Via Cayley transform

$$
z=\frac{1+i x}{1-i x} \in S^{1} \Longleftrightarrow x=\frac{(z-1) / i}{z+1} \in \mathbb{R} \cup\{\infty\}
$$

\mathcal{A} can be viewed as a net of algebras associated to intervals \mathcal{I} of the circle.
In Minkowski space, the Poincaré group is both the covariance automorphism group and the group of invariance of the vacuum. Here $\mathcal{A}(\mathcal{I})$ is covariant under an action of $\operatorname{Diff}\left(S^{1}\right)$. But the vacuum is only Möbius invariant where

$$
\text { Möbius }=\operatorname{PSL}(2, \mathbb{R})=S L(2, \mathbb{R}) /\{-1,1\}
$$

acts on $\overline{\mathbb{R}}$ as

$$
g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): \quad x \mapsto g x=\frac{a x+b}{c x+d}
$$

From the boundary to the circle

$\underline{\text { Square and square root: }}$

$$
\begin{aligned}
z \mapsto z^{2} & \Longleftrightarrow x \mapsto \sigma(x) \doteq \frac{2 x}{1-x^{2}} \\
z \mapsto \pm \sqrt{z} & \Longleftrightarrow x \mapsto \rho_{ \pm}(x)=\frac{ \pm \sqrt{1+x^{2}}-1}{x} .
\end{aligned}
$$

From the boundary to the circle

$\underline{\text { Square and square root: }}$

$$
\begin{aligned}
z \mapsto z^{2} & \Longleftrightarrow x \mapsto \sigma(x) \doteq \frac{2 x}{1-x^{2}} \\
z \mapsto \pm \sqrt{z} & \Longleftrightarrow x \mapsto \rho_{ \pm}(x)=\frac{ \pm \sqrt{1+x^{2}}-1}{x} .
\end{aligned}
$$

A pair of symmetric intervals:
$I_{1}, I_{2} \subset \mathbb{R}$ such that $\sigma\left(I_{1}\right)=\sigma\left(I_{2}\right)=I$.

$$
I_{2}=(A, B) \Longrightarrow I_{1}=\left(-\frac{1}{A},-\frac{1}{B}\right)
$$

From the boundary to the circle

Square and square root:

$$
\begin{aligned}
z \mapsto z^{2} & \Longleftrightarrow x \mapsto \sigma(x) \doteq \frac{2 x}{1-x^{2}} \\
z \mapsto \pm \sqrt{z} & \Longleftrightarrow x \mapsto \rho_{ \pm}(x)=\frac{ \pm \sqrt{1+x^{2}}-1}{x}
\end{aligned}
$$

A pair of symmetric intervals:
$I_{1}, I_{2} \subset \mathbb{R}$ such that $\sigma\left(I_{1}\right)=\sigma\left(I_{2}\right)=I$.

$$
I_{2}=(A, B) \Longrightarrow I_{1}=\left(-\frac{1}{A},-\frac{1}{B}\right)
$$

- Two equivalent points of view for the Möbius group: S^{1} or $\overline{\mathbb{R}}$:

$$
R(\varphi)=\left(\begin{array}{cc}
\cos \frac{\varphi}{2} & \sin \frac{\varphi}{2} \\
-\sin \frac{\varphi}{2} & \cos \frac{\varphi}{2}
\end{array}\right), \delta(s)=\left(\begin{array}{cc}
e^{\frac{5}{2}} & 0 \\
0 & e^{\frac{s}{2}}
\end{array}\right), \tau(t)=\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right)
$$

acting as

$$
R(\varphi) z=e^{i \varphi} z \text { on } S^{1}, \quad \delta(s) x=e^{s} x \text { on } \overline{\mathbb{R}}, \quad \tau(t) x=x+t \text { on } \overline{\mathbb{R}}
$$

Nets that are not Möbius, but only translational covariant (Longo-Witten 2010),

Modular group

Given a pair of symmetric intervals I_{1}, I_{2} such that $I_{1} \cap I_{2}=\emptyset$. Consider the state

$$
\varphi=\left(\varphi_{1} \otimes \varphi_{2}\right) \circ \chi
$$

of the algebra $\mathcal{M}(\mathcal{O})=\mathcal{M}\left(I_{1}\right) \vee \mathcal{M}\left(I_{2}\right)$ where

$$
\begin{aligned}
& \chi: \mathcal{M}\left(I_{1}\right) \vee \mathcal{M}\left(I_{2}\right) \rightarrow \mathcal{M}\left(I_{1}\right) \otimes \mathcal{M}\left(I_{2}\right) \text { (split property), } \\
& \varphi_{k}=\omega \circ \operatorname{Ad} U\left(\gamma_{k}\right) \text { with } \omega \text { the vacuum and } \gamma_{k} \text { a diffeomorphism of } S^{1} \\
& \text { such that } z \mapsto z^{2} \text { on } I_{k} .
\end{aligned}
$$

Modular group

Given a pair of symmetric intervals I_{1}, I_{2} such that $I_{1} \cap I_{2}=\emptyset$. Consider the state

$$
\varphi=\left(\varphi_{1} \otimes \varphi_{2}\right) \circ \chi
$$

of the algebra $\mathcal{M}(\mathcal{O})=\mathcal{M}\left(I_{1}\right) \vee \mathcal{M}\left(I_{2}\right)$ where

$$
\begin{aligned}
& \chi: \mathcal{M}\left(I_{1}\right) \vee \mathcal{M}\left(I_{2}\right) \rightarrow \mathcal{M}\left(I_{1}\right) \otimes \mathcal{M}\left(I_{2}\right) \text { (split property), } \\
& \varphi_{k}=\omega \circ \operatorname{Ad} U\left(\gamma_{k}\right) \text { with } \omega \text { the vacuum and } \gamma_{k} \text { a diffeomorphism of } S^{1} \\
& \text { such that } z \mapsto z^{2} \text { on } I_{k} .
\end{aligned}
$$

The associated modular group has a geometrical action

$$
(u, v) \in \mathcal{O} \mapsto\left(u_{s}, v_{s}\right) \in \mathcal{O} \quad s \in \mathbb{R}
$$

with orbits

$$
\begin{aligned}
& u_{s}=\rho_{+} \circ m \circ \lambda_{s} \circ m^{-1} \circ \sigma(u) \in I_{2}, \\
& v_{s}=\rho_{-} \circ m \circ \lambda_{s} \circ m^{-1} \circ \sigma(v) \in I_{1},
\end{aligned}
$$

where $\lambda_{s}(x)=e^{s} x$ is the dilation of \mathbb{R}, and m is a Möbius transformation which maps \mathbb{R}_{+}to $I=\sigma\left(I_{1}\right)=\sigma\left(I_{2}\right)$.

Implicit equation of the orbits:

$$
\frac{\left(u_{s}-A\right)\left(A u_{s}+1\right)}{\left(u_{s}-B\right)\left(B u_{s}+1\right)} \cdot \frac{\left(v_{s}-B\right)\left(B v_{s}+1\right)}{\left(v_{s}-A\right)\left(A v_{s}+1\right)}=\mathrm{const}
$$

Implicit equation of the orbits:

$$
\frac{\left(u_{s}-A\right)\left(A u_{s}+1\right)}{\left(u_{s}-B\right)\left(B u_{s}+1\right)} \cdot \frac{\left(v_{s}-B\right)\left(B v_{s}+1\right)}{\left(v_{s}-A\right)\left(A v_{s}+1\right)}=\mathrm{const}
$$

- This equation only depends on the end points of $I_{2}=(A, B), I_{1}=\left(-\frac{1}{A},-\frac{1}{B}\right)$.

Implicit equation of the orbits:

$$
\frac{\left(u_{s}-A\right)\left(A u_{s}+1\right)}{\left(u_{s}-B\right)\left(B u_{s}+1\right)} \cdot \frac{\left(v_{s}-B\right)\left(B v_{s}+1\right)}{\left(v_{s}-A\right)\left(A v_{s}+1\right)}=\mathrm{const}
$$

- This equation only depends on the end points of $I_{2}=(A, B), I_{1}=\left(-\frac{1}{A},-\frac{1}{B}\right)$.
- All orbits are time-like, hence $\beta=\left|\frac{d \tau}{d s}\right|$ makes sense as a temperature.

Implicit equation of the orbits:

$$
\frac{\left(u_{s}-A\right)\left(A u_{s}+1\right)}{\left(u_{s}-B\right)\left(B u_{s}+1\right)} \cdot \frac{\left(v_{s}-B\right)\left(B v_{s}+1\right)}{\left(v_{s}-A\right)\left(A v_{s}+1\right)}=\text { const, }
$$

- This equation only depends on the end points of $I_{2}=(A, B), I_{1}=\left(-\frac{1}{A},-\frac{1}{B}\right)$.
- All orbits are time-like, hence $\beta=\left|\frac{d \tau}{d s}\right|$ makes sense as a temperature.
- One and only one orbit is a boost (const $=1$) and thus is the trajectory of a uniformly accelerated observer.

Explicit equation of the orbits:

$$
I \in \mathbb{R}^{+} \Longrightarrow I_{2}=(A, B) \subset(0,1) \Longrightarrow A=\tanh \frac{\lambda_{A}}{2}, B=\tanh \frac{\lambda_{B}}{2} .
$$

$$
\begin{aligned}
u \in(A, B)=\tanh \frac{\lambda}{2} \quad \text { for } \lambda_{A}<\lambda<\lambda_{B}, & \sigma(u)=\sinh \lambda, \\
v \in\left(-\frac{1}{B},-\frac{1}{A}\right)=-\operatorname{coth} \frac{\lambda^{\prime}}{2} \quad \text { for } \lambda_{A}<\lambda^{\prime}<\lambda_{B}, & \sigma(v)=\sinh \lambda^{\prime} .
\end{aligned}
$$

Explicit equation of the orbits:

$$
I \in \mathbb{R}^{+} \Longrightarrow I_{2}=(A, B) \subset(0,1) \Longrightarrow A=\tanh \frac{\lambda_{A}}{2}, B=\tanh \frac{\lambda_{B}}{2} .
$$

$$
u \in(A, B)=\tanh \frac{\lambda}{2} \quad \text { for } \lambda_{A}<\lambda<\lambda_{B}, \quad \sigma(u)=\sinh \lambda
$$

$$
v \in\left(-\frac{1}{B},-\frac{1}{A}\right)=-\operatorname{coth} \frac{\lambda^{\prime}}{2} \quad \text { for } \lambda_{A}<\lambda^{\prime}<\lambda_{B}, \quad \sigma(v)=\sinh \lambda^{\prime} .
$$

$$
u_{s}=\frac{\sqrt{\left(e^{s} k_{a}-k_{b}\right)^{2}+\left(e^{s} k_{a b}-k_{b a}\right)^{2}}-\left(e^{s} k_{a}-k_{b}\right)}{e^{s} k_{a b}-k_{b a}},
$$

$$
v_{s}=\frac{-\sqrt{\left(e^{s} k_{a}^{\prime}-k_{b}^{\prime}\right)^{2}+\left(e^{s} k_{b}^{\prime}-k_{b a}^{\prime}\right)^{2}}-\left(e^{s} k_{a}^{\prime}-k_{b}^{\prime}\right)}{e^{s} k_{a b}^{\prime}-k_{b a}^{\prime}}
$$

where $k_{i} \doteq \sinh \lambda-\sinh \lambda_{i}, k_{i j} \doteq k_{i} \sinh \lambda_{j}$.

Explicit equation of the orbits:

$I \in \mathbb{R}^{+} \Longrightarrow I_{2}=(A, B) \subset(0,1) \Longrightarrow A=\tanh \frac{\lambda_{A}}{2}, B=\tanh \frac{\lambda_{B}}{2}$.

$$
\begin{gathered}
u \in(A, B)=\tanh \frac{\lambda}{2} \quad \text { for } \lambda_{A}<\lambda<\lambda_{B}, \quad \sigma(u)=\sinh \lambda, \\
v \in\left(-\frac{1}{B},-\frac{1}{A}\right)=-\operatorname{coth} \frac{\lambda^{\prime}}{2} \quad \text { for } \lambda_{A}<\lambda^{\prime}<\lambda_{B}, \quad \sigma(v)=\sinh \lambda^{\prime} . \\
u_{s}=\frac{\sqrt{\left(e^{s} k_{a}-k_{b}\right)^{2}+\left(e^{s} k_{a b}-k_{b a}\right)^{2}}-\left(e^{s} k_{a}-k_{b}\right)}{e^{s} k_{a b}-k_{b a}} \\
v_{s}=\frac{-\sqrt{\left(e^{s} k_{a}^{\prime}-k_{b}^{\prime}\right)^{2}+\left(s^{s} k_{a b}^{\prime}-k_{b a}^{\prime}\right)^{2}}-\left(e^{s} k_{a}^{\prime}-k_{b}^{\prime}\right)}{e^{s} k_{a b}^{\prime}-k_{b a}} \\
\text { where } k_{i} \doteq \sinh \lambda-\sinh \lambda_{i}, k_{i j} \doteq k_{i} \sinh \lambda_{j} .
\end{gathered}
$$

Explicit equation of the orbits:

$I \in \mathbb{R}^{+} \Longrightarrow I_{2}=(A, B) \subset(0,1) \Longrightarrow A=\tanh \frac{\lambda_{A}}{2}, B=\tanh \frac{\lambda_{B}}{2}$.

$$
\begin{aligned}
& u \in(A, B)=\tanh \frac{\lambda}{2} \quad \text { for } \lambda_{A}<\lambda<\lambda_{B}, \quad \sigma(u)=\sinh \lambda, \\
& v \in\left(-\frac{1}{B},-\frac{1}{A}\right)=-\operatorname{coth} \frac{\lambda^{\prime}}{2} \quad \text { for } \lambda_{A}<\lambda^{\prime}<\lambda_{B}, \quad \sigma(v)=\sinh \lambda^{\prime} . \\
& u_{s}=\frac{\sqrt{\left(e^{s} k_{a}-k_{b}\right)^{2}+\left(e^{s} k_{a b}-k_{b a}\right)^{2}}-\left(e^{s} k_{a}-k_{b}\right)}{e^{5} k_{a b}-k_{b a}} \\
& v_{s}=\frac{-\sqrt{\left(e^{s} k_{a}^{\prime}-k_{b}^{\prime}\right)^{2}+\left(s^{s} k_{a b}^{\prime}-k_{b a}^{\prime}\right)^{2}}-\left(e^{s} k_{a}^{\prime}-k_{b}^{\prime}\right)}{e^{s} k_{a b}^{\prime}-k_{b b}} \\
& \text { where } k_{i} \doteq \sinh \lambda-\sinh \lambda_{i}, k_{i j} \doteq k_{i} \sinh \lambda_{j} . \\
& \text { complicated dynamics (e. g. the sign of } \\
& \text { the acceleration may change). }
\end{aligned}
$$

Explicit equation of the orbits:

$$
I \in \mathbb{R}^{+} \Longrightarrow I_{2}=(A, B) \subset(0,1) \Longrightarrow A=\tanh \frac{\lambda_{A}}{2}, B=\tanh \frac{\lambda_{B}}{2}
$$

$$
\begin{aligned}
& u \in(A, B)=\tanh \frac{\lambda}{2} \quad \text { for } \lambda_{A}<\lambda<\lambda_{B}, \quad \sigma(u)=\sinh \lambda, \\
& v \in\left(-\frac{1}{B},-\frac{1}{A}\right)=-\operatorname{coth} \frac{\lambda^{\prime}}{2} \quad \text { for } \lambda_{A}<\lambda^{\prime}<\lambda_{B}, \quad \sigma(v)=\sinh \lambda^{\prime} . \\
& u_{s}=\frac{\sqrt{\left(e^{s} k_{a}-k_{b}\right)^{2}+\left(e^{s} k_{a b}-k_{b a}\right)^{2}}-\left(e^{s} k_{a}-k_{b}\right)}{e^{s} k_{a b}-k_{b a}} \\
& v_{s}=\frac{-\sqrt{\left(e^{s} k_{a}^{\prime}-k_{b}^{\prime}\right)^{2}+\left(e^{s} k_{a b}^{\prime}-k_{b a}^{\prime}\right)^{2}}-\left(e^{s} k_{a}^{\prime}-k_{b}^{\prime}\right)}{e^{s} k_{a b}^{\prime}-k_{b a}^{\prime}} \\
& \text { where } k_{i} \doteq \sinh \lambda-\sinh \lambda_{i}, k_{i j} \doteq k_{i} \sinh \lambda_{j} . \\
& \text { complicated dynamics }(e . g \text {. the sign of } \\
& \text { the acceleration may change). } \\
& \text { difficult to parametrize such a curve by } \\
& \text { its proper length } \tau \text {, hence difficult to } \\
& \text { find the temperature } \frac{d s}{d \tau} \text {. }
\end{aligned}
$$

Temperature on the boost trajectory

Constant acceleration: $d \tau^{2}=d u d v$ hence

$$
\beta=\frac{d \tau}{d s}=\sqrt{u^{\prime} v^{\prime}}
$$

with ${ }^{\prime}=\frac{d}{d s}$. On the boost orbit, $v_{s}=-\frac{1}{u_{s}}$ hence

$$
\beta=\frac{u^{\prime}}{u}=\frac{d}{d s} \ln u_{s} \Longrightarrow \tau(s)=\ln u_{s}-\ln u_{0} \Longrightarrow u_{s}=u_{o} e^{\tau(s)}
$$

Knowing

$$
u_{s}^{\prime}=f_{A B}\left(u_{s}\right) \doteq \frac{\left(u_{s}-A\right)\left(A u_{s}+1\right)\left(B-u_{s}\right)\left(B u_{s}+1\right)}{(B-A)(1+A B) \cdot\left(1+u_{s}^{2}\right)}
$$

one finally gets

$$
\beta(\tau)=\frac{f_{A B}\left(u_{o} e^{\tau}\right)}{u_{o} e^{\tau}}
$$

Vacuum modular group for free Fermi fields

A pair of intervals $I_{1}=\left(A_{1}, B_{1}\right), I_{2}=\left(A_{2}, B_{2}\right)$, with $x_{1}=v \in I_{1}, x_{2}=u \in I_{2}$. The action of the modular group σ_{s} of the vacuum, on monomials $\psi\left(x_{i}\right)$ is

$$
\sqrt{\frac{d x_{i}}{d \zeta}} \sigma_{s}\left(\psi\left(x_{i}\right)\right)=\sum_{k=1,2} O_{i k}(s) \sqrt{\frac{d x_{k}}{d \zeta}} \psi\left(x_{k}(t)\right), \quad i=1,2
$$

where the geometrical action is

$$
-\frac{x_{i}(\zeta)-A_{1}}{x_{i}(\zeta)-B_{1}} \cdot \frac{x_{i}(\zeta)-A_{2}}{x_{i}(\zeta)-B_{2}}=e^{\zeta}
$$

with $\zeta(s)=\zeta_{0}-2 \pi s$, and the "mixing" action is determined by the differential equation

$$
\dot{O}(s)=K(s) O(s)
$$

with

$$
K_{i k}(s)=2 \pi \frac{\sqrt{\frac{d x_{i}}{d S}} \sqrt{\frac{d x_{k}}{d S}}}{x_{i}(s)-x_{k}(s)} \text { for } i \neq k, \quad K_{i i}(s)=0 .
$$

Vacuum modular group for free Fermi fields

A pair of intervals $I_{1}=\left(A_{1}, B_{1}\right), I_{2}=\left(A_{2}, B_{2}\right)$, with $x_{1}=v \in I_{1}, x_{2}=u \in I_{2}$. The action of the modular group σ_{s} of the vacuum, on monomials $\psi\left(x_{i}\right)$ is

$$
\sqrt{\frac{d x_{i}}{d \zeta}} \sigma_{s}\left(\psi\left(x_{i}\right)\right)=\sum_{k=1,2} O_{i k}(s) \sqrt{\frac{d x_{k}}{d \zeta}} \psi\left(x_{k}(t)\right), \quad i=1,2
$$

where the geometrical action is

$$
-\frac{x_{i}(\zeta)-A_{1}}{x_{i}(\zeta)-B_{1}} \cdot \frac{x_{i}(\zeta)-A_{2}}{x_{i}(\zeta)-B_{2}}=e^{\zeta}
$$

with $\zeta(s)=\zeta_{0}-2 \pi s$, and the "mixing" action is determined by the differential equation

$$
\dot{O}(s)=K(s) O(s)
$$

with

$$
K_{i k}(s)=2 \pi \frac{\sqrt{\frac{d x_{i}}{d \zeta}} \sqrt{\frac{d x_{k}}{d \zeta}}}{x_{i}(s)-x_{k}(s)} \text { for } i \neq k, \quad K_{i i}(s)=0 .
$$

- The geometrical action is the same as the one in BCFT. The new feature is the mixing between the intervals.

Independant proof:

- because of the unicity of the KMS flow: enough to check that the vacuum is KMS with respect to σ_{s}.
- because the vacuum is quasi-free, enough to check on the 2-point functions, i.e. compute

$$
\omega\left(\sigma_{t}\left(\psi\left(x_{i}\right)\right) \sigma_{s}\left(\psi\left(y_{j}\right)\right)\right)
$$

using the propagator $\omega(\psi(x) \psi(y))=\frac{-i}{x-y-i \epsilon}$.
One finds

$$
\omega\left(\psi\left(x_{i}\right) \sigma_{-\frac{i}{2}}\left(\psi\left(y_{j}\right)\right)\right)=\omega\left(\psi\left(y_{j}\right) \sigma_{-\frac{i}{2}}\left(\psi\left(x_{i}\right)\right)\right)
$$

Conclusion

BCFT with Longo's state φ : modular action on disjoint intervals is purely geometric.
free Fermi field with vacuum state ω : modular action on disjoint intervals is a combination of the geometrical action of BCFT and some "mixing terms".

Conclusion

BCFT with Longo's state φ : modular action on disjoint intervals is purely geometric.
free Fermi field with vacuum state ω : modular action on disjoint intervals is a combination of the geometrical action of BCFT and some "mixing terms".

- Connes cocycle $U^{\omega, \varphi}$ between the vacuum and Longo's ad-hoc state is purely non-geometric.

Conclusion

BCFT with Longo's state φ : modular action on disjoint intervals is purely geometric.
free Fermi field with vacuum state ω : modular action on disjoint intervals is a combination of the geometrical action of BCFT and some "mixing terms".

- Connes cocycle $U^{\omega, \varphi}$ between the vacuum and Longo's ad-hoc state is purely non-geometric.

One of the first examples in which there is an explicit control on the non-geometric part of the modular action.

Hint for modular action in double-cones for non-conformal theories (e.g. massive ones) ?

