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Dipartimento di matematica, Università di Roma Tor Vergata
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Time in quantum gravity: how to combine the general covariance of the
gravitational field at the quantum level, i.e.

a state of the gravitational field = a superposition of all possible metrics,

indicating that a priori all directions might be picked out as a “time direction”,
with the notion of (locally) unique proper time ?

I Thermal time hypothesis: the notion of time is state dependent, and can be
extracted from the algebra of observables of the system.

Algebraic Quantum Field Theory: natural framework to test this idea.

Outline:
1. Modular group as a flow of time

Tomita-Takesaki’s theory, KMS condition

2. Algebraic quantum field theory
Wedges and doubles-cones in Minkowski spacetime

3. Double-cones in 2d boundary conformal field theory
Conformal field and Longo’s ad-hoc state
Free Fermi fields and the vacuum state
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1. Time flow from the modular group

Modular group ”Von Neumann algebras naturally evolve with time” (Connes)

- a von Neumann ∗algebra A acting on H
- a vector Ω in H cyclic and separating

}
⇒ Tomita’s operator:

S aΩ→ a∗Ω

Polar decomposition: S = J∆
1
2 where ∆ = ∆∗ > 0 and J is unitary, antilinear.

Tomita’s Theorem: ∆itA∆−it = A hence there is a 1 parameter group of
automorphism

t 7→ σs : a 7→ σs(a)
.

= ∆isa∆−is .

I Mathematical interest: Ω′ 6= Ω yields the same group, modulo In(A):

σΩ′

s (a) = UΩ′,Ω
s σΩ(a) UΩ′,Ω

s

∗

I Physical interest: the state ω : a 7→ 〈Ω, aΩ〉 is KMS with respect to σs :
∀a, b ∈ A there exists Fab, analytic on the strip 0 ≤ Im z < 1, such that

Fab(s) = ϕ(σs(a)b), Fab(s + i) = ϕ(bσs(a))

This often writes
ω(σs(a)b) = ω(bσs−i (a)),

and this characterizes a thermal equilibrium state at temperature −1.
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Thermal-time hypothesis Connes, Rovelli 1994

Given an algebra A and a state, assuming the required technical assumptions,
can σs be interpreted as a real physical time flow ?

Quantum context: H
.

= ln ∆ yields σs(a) = e iHsae−iHs .

Relativistic context: time interpretation of σs is possible if, for instance,

i. A carries a representation of a symmetry group G of spacetime (e.g. Poincaré),
ii. σs is generated by elements of g =⇒ geometrical action of the modular group,
iii. the orbit of a point under this geometric action is timelike.

But the tangent vector ∂s to these orbits must be normalised,

∂t
.

=
∂s

β
with β

.
= ‖∂s‖ =

∥∥∥∥∂t
dt

ds

∥∥∥∥ = |dt

ds
|.

Defining α−βs
.

= σs , the KMS condition yields

ω((α−βsa)b) = ω(b(α−βs+iβa)),

I ω is an equilibrium state at temperature β−1 with respect to the time
evolution t = −βs.
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2. Algebraic Quantum Field Theory Haag, Kastler ... Buchholz, Fredenhagen

A net of algebras of local observables is a map

O ∈ B(Minkovski)→ A(O)

where A(O)’s are C∗-algebras fulfilling

- isotony: O1 ⊂ O2 =⇒ A(O1) ⊂ A(O2),
- locality: O1 spacelike to O2 =⇒ [A(O1),A(O2)] = 0,

together with an irreducible representation π on an Hilbert space H such that

- Poincaré covariance: There is a unitary rep. U of the Poincaré group G s.t.

U(Λ)π(A(O))U∗(Λ) = π(A(ΛO))

-Positive energy: Pµ has spectrum in the forward light cone: p0 =≥ 0, p2 ≥ 0.
-Vacuum: there exists a vector Ω ∈ H such that U(Λ)Ω = U(Λ) ∀Λ ∈ G .

Ω defines the vacuum state ω : a 7→ 〈Ω, , aΩ〉. In the associated GNS
representation (the vacuum representation) one defines

M(O) = π(A(O))′′

which is the von Neumann algebra of local observables associated to O.
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Wedge and Unruh temperature Bisognano, Wichman, Sewell

W−→
{

algebra of observables M(W )
vacuum modular group σW

s → boosts→ geometrical action

uniformly accelerated observer’s trajectory
τ ∈]−∞,+∞[

=
orbit of the modular group

s ∈]−∞,+∞[

X

T

W

β = |dτ
ds
| = |τ

s
| =

2π

a
= T−1

Unruh.

I The temperature is constant along a given trajectory, and vanishes as a→ 0.
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Double-cone in Minkowski space Hislop, Longo; P.M., Rovelli

D−→
{

algebra of observables M(D)
vacuum modular group σD

s

D = ϕ(W ) for a some conformal map ϕ. For a Conformal Field Theory:

uniformly accelerated observer’s trajectory
τ ∈]− τ0,+τ0[

=
orbit of the modular group

s ∈]−∞,+∞[T

X

−L

L

β(τ) = |dτ
ds
| =

2π

La2
(
√

1 + a2L2 − ch aτ).

I TD
.

= 1
β is not constant along the orbit, and does not vanish for a = 0:

TD(L)a=0 = ~
πkbL
' 10−11

L K → thermal effect for inertial observer.
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3. Double-cone in 2d boundary CFT Longo, P. M., Rehren

Boundary CFT

Stress energy tensor Tab, a, b = 1, 2 is conserved,

∂0T00 − ∂1T10 = ∂0T10 − ∂1T11 = 0

and has vanishing trace. Hence
1

2
(T00 + T01) = TL(t + x),

1

2
(T00 − T01) = TR(t − x).

Boundary condition T01(t, 0) = 0 implies

TL(t) = TR(t) =
1

2
T00(t, 0) = T (t).

T yields a chiral net of local v.Neumann algebras

I=(A,B)⊂R 7→ A(I) := {T (f ),T (f )∗ : supp f ⊂ I} ,

and a net of double-cones algebras:

O = I1×I2 7→ M(O)
.

=M(I1)∨M(I2) where M(Ik) = A(Ik)′′.

4/3

1

0 x

I

I

t

  1

u = t+x

v = t!x

(t,x)

  2

I
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O = I1×I2 7→ M(O)
.

=M(I1)∨M(I2) where M(Ik) = A(Ik)′′.

4/3

1

0 x

I

I

t

  1

u = t+x

v = t!x

(t,x)

  2

I



Möbius covariance

The two nets of local algebras A(I),M(O) satisfy isotony and locality. What is
the vacuum, and what is the equivalent of the Poincaré group ?

Via Cayley transform

z =
1 + ix

1− ix
∈ S1 ⇐⇒ x =

(z − 1)/i

z + 1
∈ R ∪ {∞},

A can be viewed as a net of algebras associated to intervals I of the circle.

In Minkowski space, the Poincaré group is both the covariance automorphism
group and the group of invariance of the vacuum. Here A(I) is covariant under
an action of Diff(S1). But the vacuum is only Möbius invariant where

Möbius = PSL(2,R) = SL(2,R)/ {−1, 1}

acts on R̄ as

g =

(
a b
c d

)
: x 7→ gx =

ax + b

cx + d
.
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From the boundary to the circle

Square and square root:

z 7→ z2 ⇐⇒ x 7→ σ(x)
.

=
2x

1− x2
,

z 7→ ±
√

z ⇐⇒ x 7→ ρ±(x) =
±
√

1 + x2 − 1

x
.

A pair of symmetric intervals:

I1, I2 ⊂ R such that σ(I1) = σ(I2) = I .

I2 = (A,B) =⇒ I1 = (− 1

A
,− 1

B
).

I Two equivalent points of view for the Möbius group: S1 or R̄:

R(ϕ) =

(
cos ϕ2 sin ϕ

2
− sin ϕ

2 cos ϕ2

)
, δ(s) =

(
e

s
2 0

0 e
s
2

)
, τ(t) =

(
1 t
0 1

)
,

acting as

R(ϕ)z = e iϕz on S1, δ(s)x = esx on R̄, τ(t)x = x + t on R̄.
Nets that are not Möbius, but only translational covariant (Longo-Witten 2010).
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R(ϕ) =

(
cos ϕ2 sin ϕ

2
− sin ϕ

2 cos ϕ2

)
, δ(s) =

(
e

s
2 0

0 e
s
2

)
, τ(t) =

(
1 t
0 1

)
,

acting as

R(ϕ)z = e iϕz on S1, δ(s)x = esx on R̄, τ(t)x = x + t on R̄.
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Modular group

Given a pair of symmetric intervals I1, I2 such that I1 ∩ I2 = ∅. Consider the state

ϕ = (ϕ1 ⊗ ϕ2) ◦ χ

of the algebra M(O) =M(I1) ∨M(I2) where

χ :M(I1) ∨M(I2)→M(I1)⊗M(I2) (split property),

ϕk = ω ◦ AdU(γk) with ω the vacuum and γk a diffeomorphism of S1

such that z 7→ z2 on Ik .

The associated modular group has a geometrical action

(u, v) ∈ O 7→ (us , vs) ∈ O s ∈ R,

with orbits
us = ρ+ ◦m ◦ λs ◦m−1 ◦ σ(u) ∈ I2,

vs = ρ− ◦m ◦ λs ◦m−1 ◦ σ(v) ∈ I1,

where λs(x) = esx is the dilation of R, and m is a Möbius transformation which
maps R+ to I = σ(I1) = σ(I2).
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Implicit equation of the orbits:

(us − A)(Aus + 1)

(us − B)(Bus + 1)
· (vs − B)(Bvs + 1)

(vs − A)(Avs + 1)
= const,

A

B

!1
A

!1
B

u

v

!1

0

1

I This equation only depends on the end
points of I2 = (A,B), I1 = (− 1

A ,−
1
B ).

I All orbits are time-like, hence β = | dτds |
makes sense as a temperature.

I One and only one orbit is a boost
(const = 1) and thus is the trajectory of a
uniformly accelerated observer.
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Explicit equation of the orbits:

I ∈ R+ =⇒ I2 = (A,B) ⊂ (0, 1) =⇒ A = tanh λA

2 , B = tanh λB

2 .

u ∈ (A,B) = tanh
λ

2
for λA < λ < λB , σ(u) = sinhλ,

v ∈ (− 1

B
,− 1

A
) = − coth

λ′

2
for λA < λ′ < λB , σ(v) = sinhλ′.

us =

√
(eska−kb)2+(eskab−kba)2−(eska−kb)

eskab−kba
,

vs =
−
√

(esk′a−k′b)2+(esk′ab−k′ba)2−(esk′a−k′b)

esk′ab−k′ba

where ki
.

= sinhλ− sinhλi , kij
.

= ki sinhλj .

I complicated dynamics (e. g. the sign of
the acceleration may change).

I difficult to parametrize such a curve by
its proper length τ , hence difficult to
find the temperature ds

dτ .

A

B

!1
A

!1
B

u

v

!1

0

1
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Temperature on the boost trajectory

Constant acceleration: dτ 2 = du dv hence

β =
dτ

ds
=
√

u′v ′

with ′ = d
ds . On the boost orbit, vs = − 1

us
hence

β =
u′

u
=

d

ds
ln us =⇒ τ(s) = ln us − ln u0 =⇒ us = uoeτ(s).

Knowing

u′s = fAB(us)
.

=
(us − A)(Aus + 1)(B − us)(Bus + 1)

(B − A)(1 + AB) · (1 + u2
s )

.

one finally gets

β(τ) =
fAB(uoeτ )

uoeτ
.



Vacuum modular group for free Fermi fields Casini, Huerta

A pair of intervals I1 = (A1,B1), I2 = (A2,B2), with x1 = v ∈ I1, x2 = u ∈ I2.
The action of the modular group σs of the vacuum, on monomials ψ(xi ) is√

dxi

dζ
σs(ψ(xi )) =

∑
k=1,2

Oik(s)

√
dxk

dζ
ψ(xk(t)), i = 1, 2,

where the geometrical action is

−xi (ζ)− A1

xi (ζ)− B1
.
xi (ζ)− A2

xi (ζ)− B2
= eζ

with ζ(s) = ζ0 − 2πs, and the “mixing” action is determined by the differential
equation

Ȯ(s) = K (s)O(s)

with

Kik(s) = 2π

√
dxi

dζ

√
dxk

dζ

xi (s)− xk(s)
for i 6= k , Kii (s) = 0.

I The geometrical action is the same as the one in BCFT. The new feature is
the mixing between the intervals.



Vacuum modular group for free Fermi fields Casini, Huerta

A pair of intervals I1 = (A1,B1), I2 = (A2,B2), with x1 = v ∈ I1, x2 = u ∈ I2.
The action of the modular group σs of the vacuum, on monomials ψ(xi ) is√

dxi

dζ
σs(ψ(xi )) =

∑
k=1,2

Oik(s)

√
dxk

dζ
ψ(xk(t)), i = 1, 2,

where the geometrical action is

−xi (ζ)− A1

xi (ζ)− B1
.
xi (ζ)− A2

xi (ζ)− B2
= eζ

with ζ(s) = ζ0 − 2πs, and the “mixing” action is determined by the differential
equation
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Independant proof:

- because of the unicity of the KMS flow: enough to check that the vacuum is
KMS with respect to σs .

- because the vacuum is quasi-free, enough to check on the 2-point functions, i.e.
compute

ω (σt(ψ(xi ))σs(ψ(yj)))

using the propagator ω(ψ(x)ψ(y)) = −i
x−y−iε .

One finds
ω(ψ(xi )σ− i

2
(ψ(yj))) = ω(ψ(yj)σ− i

2
(ψ(xi )))



Conclusion

BCFT with Longo’s state ϕ: modular action on disjoint intervals is purely
geometric.

free Fermi field with vacuum state ω: modular action on disjoint intervals is a
combination of the geometrical action of BCFT and some ”mixing terms”.

I Connes cocycle Uω,ϕ between the vacuum and Longo’s ad-hoc state is
purely non-geometric.

One of the first examples in which there is an explicit control on the
non-geometric part of the modular action.

Hint for modular action in double-cones for non-conformal theories (e.g. massive
ones) ?



Conclusion

BCFT with Longo’s state ϕ: modular action on disjoint intervals is purely
geometric.

free Fermi field with vacuum state ω: modular action on disjoint intervals is a
combination of the geometrical action of BCFT and some ”mixing terms”.

I Connes cocycle Uω,ϕ between the vacuum and Longo’s ad-hoc state is
purely non-geometric.

One of the first examples in which there is an explicit control on the
non-geometric part of the modular action.

Hint for modular action in double-cones for non-conformal theories (e.g. massive
ones) ?



Conclusion

BCFT with Longo’s state ϕ: modular action on disjoint intervals is purely
geometric.

free Fermi field with vacuum state ω: modular action on disjoint intervals is a
combination of the geometrical action of BCFT and some ”mixing terms”.

I Connes cocycle Uω,ϕ between the vacuum and Longo’s ad-hoc state is
purely non-geometric.

One of the first examples in which there is an explicit control on the
non-geometric part of the modular action.

Hint for modular action in double-cones for non-conformal theories (e.g. massive
ones) ?


	1. Modular group as a flow of time
	Tomita-Takesaki's theory, KMS condition

	2. Algebraic quantum field theory
	Wedges and doubles-cones in Minkowski spacetime

	3. Double-cones in 2d boundary conformal field theory
	Conformal field and Longo's ad-hoc state
	Free Fermi fields and the vacuum state


