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MAIN AIM (S) OF THIS TALK

m highlight some questionthat may be addressed byjaantum theory of gravity
some ideas entering the GFT approach, and show room for a @F&lfism

m introduce theGroup Field Theornapproach to QG (focus on 3d case)
m discusssome recent resulta GFT and point out what needs still to be done
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m background independence

m No spacetime geometry can be taken as fixed reference fegzes

m it should allow transitions between different backgrou(elg. topological BF
theory not good enough): theory shouldrizgh

m still, above leaves room for presence of several “backgi@iructures”(see later)

m so, first QG questions:

m what do space and time emerge from, at quantum level?

m can we define a quantum theasfyspace & time, thus in absence of space and time?
= if QFT framework, what are the fundamental quanta? .uantpof space itself....

m butcanitbe a QFT?
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QG QUESTIONS

FAILURE OF PERTURBATIVE QUANTIZATION AROUND FLAT SPACE

Quantum gravity is not a quantum field theory of gravitons ahdpace:
Ouv = Nuw + Ny — S(hw) —Z= /thf e S

such theory is perturbatively non-renormalizable (no nibes effective field theory)
m missing ingredients?
m new symmetries? (supergravity?)
= unification? only gravity+matter can be quantized as above?
= non-local fundamental structure? beyond point-like disjegstrings,...)
m degrees of freedom? metric not correct variable?
= GR itself only effective field theory (not to be quantized asty?

m background independence!
m cannot fix spacetime geometry as background
m 0k, are there other background structures (also in GR)?
m above does not rule out QFT as framework.......
......... but QFT needsome background....
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QG QUESTIONS

BACKGROUND STRUCTURES INGENERAL RELATIVITY

What are the background structures in GR?

which of them is our quantum (field) theory of gravity to be dhen?

which of them are turned into dynamical features of the wthds, new d.o.f.)?

5/40



QG QUESTIONS

BACKGROUND STRUCTURES INGENERAL RELATIVITY

What are the background structures in GR?
m continuum and local (field-theoretic) picture of spaceém
dimensionality & signature
local symmetry group (Lorentz)
spatial topology
spacetime topology
space of geometries on given topology (Wheeler's supee3pac

which of them is our quantum (field) theory of gravity to be dhen?

which of them are turned into dynamical features of the wthds, new d.o.f.)?

5/40



QG QUESTIONS

BACKGROUND STRUCTURES INGENERAL RELATIVITY

What are the background structures in GR?
m continuum and local (field-theoretic) picture of spaceém
dimensionality & signature
local symmetry group (Lorentz)
spatial topology
spacetime topology
space of geometries on given topology (Wheeler's supee3pac

which of them is our quantum (field) theory of gravity to be dhen?
which of them are turned into dynamical features of the wthds, new d.o.f.)?

GFT keeps dimensionality, signature and local symmetrygron discrete setting
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dynamics— Hwaw ¥ (hj) = 0 )

COVariant approacmisner, Wheeler, Hawking, Hartle, Teitelboim, ....)

(IR = G(H,h) = [ Dy e =@ | eg. Sm(g) = [ d'*x\/AR(O)

having made sense of the above, “only problem” is semi-idakkmit
+ quantum corrections to classical dynamics of geometry

making sense of itdiscretize= divide S, M into chunks— A
= hij, g, — finite variables{Le}, S(g) — Sa(Le) (discrete QG)
new problem: continuum limit
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QG QUESTIONS

LESS CONSERVATIVE(EVEN MORE FORMAL)Z DYNAMICAL TOPOLOGY?

2nd (3rd?) quantization of gravity@ddings, strominger, Banks, Coleman, Hawking, Kuctstiam, McGuigan,...
a) field on space of geometries (say,$ b) all possible interactions
(creation/annihilation) of universes (topology change)?
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a) field on space of geometries (say,$ b) all possible interactions
(creation/annihilation) of universes (topology change)?

U (hy) — ¢(hj) on (super-)space of geometrigsini o) 0N S

S¢) = —%/Dhij B () Hwaw o (hij) +>\/Dhij V(e),

with some (non-local) interaction term
idea of quantum theory:

—
Feynman diagraml: @ @ .
>

z= /Dqs e ¥ =3 "\zy = Z)\V/Dg g St
M M

“impossible” to define in proper mathematical wayconceptual issues> making
sense of it by going discrete/local? matrix models, GFT
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QG QUESTIONS

GRAVITY /GEOMETRY. FUNDAMENTAL OR EMERGENT? GOING DISCRETE?

is the notion of gravity and/or geometry fundamental?

if not, what does it emerge from?
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and then,
what is the quantum dynamics of the quantum (pre-)geomeitia?
which is an aspect of the issue:

is quantum gravity the quantization of General Relativity?
or should the GR dynamics be only emergent is some approxintat
in this case, how do we identify the quantum dynamics?
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and then,
what is the quantum dynamics of the quantum (pre-)geomeitia?
which is an aspect of the issue:

is quantum gravity the quantization of General Relativity?
or should the GR dynamics be only emergent is some approxintat
in this case, how do we identify the quantum dynamics?

Usingdynamical lattices (or any discrete structusehighly non-trivial step:
m it means droppingll background structures of GR, together with continuum
m all have to be recovered in continuum approx.; non-trifial!

discrete, finite sets of data (classical or quantum), evearifing from discretizin
a smooth geometry, can be understood as “pre-geometrisfiaieetime”data, fro
which spacetime and geometry areergent
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QG QUESTIONS

TOWARD GFT: MATRIX MODELS FOR 2D QUANTUM GRAVITY

m general idea: generalise combinatorics of Feynman diagfeom 1d to 2d,
from graphs to discrete surfaces, from point particles toljjdcts
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TOWARD GFT: MATRIX MODELS FOR 2D QUANTUM GRAVITY

m general idea: generalise combinatorics of Feynman diagfeom 1d to 2d,
from graphs to discrete surfaces, from point particles toljjdcts

N
s M i,j=1,..,N N x N hermitian matrix
m action:

1 1 . .
SM,g) = Eter - %trM3 = EMIjKjinMkl - %M'ijanijn

Kiii = k0 Vimki = 8'm 6™ ' (Kil)_kl_ = Kiui
jKli

= fundamental building blocks are 1d simplices with no addiil data;
microscopic dynamics: no GR, pure 2d combinatorics

m transition amplitudes defined in terms of Feynman diagrams
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QG QUESTIONS

MATRIX MODELS - FEYNMAN DIAGRAMS AND SIMPLICIAL COMPLEXES
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building blocks for Feynman diagrams: Jk“ » ¢
Vimiali / k
TN
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K™ [
building blocks for Feynman diagrams: Jk“ ’ 9
Vimiali / k
TN

m simplicial intepretation:

T" ~ 2d simplicial complexA (triangulation) %k
~ 2d discrete spacetime =7

Feynman amplitudes: join vertices with propagators and @un common variables

(indices)i
7z — Z gVF NX(F)
r
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QG QUESTIONS

MATRIX MODELS AND SIMPLICIAL 2D GRAVITY

= continuum (Riemannian) 2d GR;d°x \/§ (—R(g) + A) = —4rx + AAs
m discrete 2d GR: chop surfa&into equilateral triangles of area

L[dx T (-R@) + A) — - x + 2t
= from our matrix model we get in fact (with = e €andN =e" € ):

z =3 ghN® = Y er @ -8 L § /DgA NG
r A A

(trivial) sum over histories of discrete GR on given 2d coaxpl
plus sum over all possible 2d complex@&sall topologies

m question: control over sum over triangulations/topols@ie
= large-N limit - sum governed by topological parameters

Z =) gaNT =% N"?Z(g) = N*Z(9) + Z1(9) +N"2Z(9) + ...
A h

m in the limitN — oo (semi-classical approximation of discrete system), only
spherical (trivial topology, planar, genus 0) contribute
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QG QUESTIONS

MATRIX MODELS AND CONTINUUM 2D GR

m question: does it match results from continuum 2d gravith jpategral?
m task: continuum limit for trivial topology

v

= expandZo(9) ing: 20(9) = Sy V' (£) " 2vese (0- 67 (1> 2)

m expectation value of area of surface:
(A) = a(ta) = (Vr) = af;InZo(g) ~ 52, forlargeV

m thus we can send area of triangle—~ 0 andt = V — oo (continuum limit), while
sendingg — dc, to get finite continuum macroscopic area

m this defines continuum limitphase transition of discrete systgm!

m results match those of continuum 2d gravity path integr& €3 effective theory)

m can also define continuum limit with contributions from ninivial topologies -
double scaling limit

m very many results in 2d quantum gravity context, and in ather.......
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QG QUESTIONS

FROM POINT PARTICLES TO FIELDS FROM MATRICESTENSORS TOGFT

point particles — fields

SX) = 3¢+ 2 s6) = 5 [ o0+ 3 [ o’
rlnatrices
SM) = %Miiji +

A
+ 3 MijMijxMi u
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TENSOR MODELS
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m M — T i,j,k=1,..,N NxN x N tensor

m action:§(T) = 3trT? — AtrT* = 357 TicTgi — A Dy Tiik Tkim Tmin T
kinetic term= Kijki’j’k’ = 6ii’5jj’6kk’ = (Kil)ijki/j/k/ = propagator
vertex term= Vii’jj’kk’ll’nm’nn’ = 5ii’5jj’5kk’5ll’5rrm’ 5,1,-,/
with combinatorial pattern of edges in tetrahedron

nZ=[DTe ) = A"z

m Feynman diagrams again formed by vertices, lines and facésow 1) also
form “bubbles”(S cells), and 2) are dual to 3d simpliciahgalexes
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TENSOR MODELS
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= why are they not good?

m no topological expansion of amplitudes - no control oveotogy of diagrams

= no way to separate manifolds from pseudo-manifolds

m no direct/nice relation with 3d simplicial (classical orasuium) gravity - not enough
structure/data in the amplitudes, and in boundary states

m ind > 2, gravity is -much- less trivial, both classically and
quantum-mechanically

m need to add structure and dataGroup Field Theory !!!
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point particles

_ 1l A
S(X) = 2X + 3X
!
matrices

1
SM) = 3 MiM;i +
A
t3 MijMjkMyg

| &/

tensors
4-;=ig@=§£!!!ii!!zl...h\
7 o

A——

S

1
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matrices
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SM) = 3 MiM;i +
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tensors
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QG QUESTIONS

FROM POINT PARTICLES TO FIELDS FROM MATRICESTENSORS TOGFT

point particles — fields
1 A
%) = 3¢+ 3 s6) = 5 [ o0+ 3 [ axor’
L 1
matrices . Group Field Theory
1
) = & gt + S6) = 5 [ ldalolon, 020002 @) +
A
+ % MijMijcMg %k ta3 / (dg] ¢(91, 92) (G2, 9s)b(Ts, O)
! Nl !
tensors . Group Field Theory

1
ST = ST+ S6) = 3 [ 00160102, 82) (g0, 22, 1) +

A
~+ = Tijk Tim Troni Trj

3 +% /[dQ] #(01, G2, 03)#(Js3, G4, Gs)

#(0s, s, 01)#(Ts, G4, G2)
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GROUPFIELD THEORY

The Group Field Theory formalism

general reviews:
Freidel, '05, Oriti, '06, '07, '10

work by:

Baratin, Ben Geloun, Bonzom, Boulatov, De Pietri, Fainbaltreidel, Girelli, Gurau,
Livine, Louapre, Krajewski, Krasnov, Magnen, Noui, Oog@riti, Perez,
Reisenberger, Rivasseau, Rovelli, Ryan, Smerlak, Tanasa,
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3D QUANTUM GRAVITY AS A GFT : KINEMATICS OF 2D QUANTUM SPACE

“tensor models plus pre-geometric data’guided by LQG, $itigd QG, NCG
m Triangle inR?; (2nd quantized) kinematics encoded in field
 (space of triangle geometrigs
m triangle geometries parametrizedthyeesu(2) Lie algebra elements attached
to edges= discrete triad variables (discretization of triad fieldsrg edges)

@ (X1,X2,X3) € 5u(2)3 — (X1, %2, X3) €R
m su(2) is non-commutative space;should reflect this non-commutativity
m from LQG (simplicial BF): phase space for edge7 *SU(2) ~ su(2) x SU(2)
m usenon-commutative Fourier transfor@ujid, Freidel, Livine, Mourad, Noui,..)
C(SU(2)) « C(su(2))
= based omon-commutative plane waves
ey(x) : su(2) x SU(2) — C: (x,g) — €209 (fundamental representation)
m {eg(x)} basis ofC(su(2)) ~ C.(R%) = functions onR® with star product “**

(ah *agz) (X) = e'ZT' xq1) * eIZTr(x@12 = ézTr(legz) = ey 92( )

6 = /S 1 OO0 0(0) = [t (65 )
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GROUPFIELD THEORY

3D QUANTUM GRAVITY AS GFT : KINEMATICS OF 2D QUANTUM SPACE

m straightforward extension to functions ©f(2) a saratin 0o, 10)

(X0, X0, X5) = / (A0 (01, G2, Gs) €, (x1) 5, () 5 (36)

group elements- parallel transports of connection along links dual to thgesd
m GFT field defined (initially) as irrep dDSU(2) <3
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P(X1, %2, %) = (C* ) (X1,%2,%3), C(X1, X2, X3) = do(X1+X2+Xa)
with delta functions:

)= [ dagys( st [ dy@an) = [ dyFa)0) =1

m in terms ofp(g1, G2, ),
©(91, 92, 93) = P(01, 92, 93) :/ )dhab(hgl,hgz,hgs)
suU(2

m by Peter-Weyl decomposition into $B) irreps L’fﬁﬁ% is 3j-symbol):

P01, 02,0) = Y P, Dlyn, (01) D, (02) Dlgn, (03) CHIZ,

i1:d2:i3
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GROUPFIELD THEORY

3D QUANTUM GRAVITY AS GFT: KINEMATICS OF 2D QUANTUM SPACE

m ¢ is building block of (quantum) 2d space

® (9,9, 9) — @@, i,i) —s

m fields can be convoluted (in group or Lie algebra pictureyaced (in
representation picture) with respect to some common argumegluing of
multiple triangles along common edges more complex simplicial structures,
or, dually, more complicated graphs (many-GFT-particiéest)

a3

CYER)

a0

m generic observable/state/boundary configurat®fw) = >, On (¢*")

m in representation space, generic (polynomial) state eléabby spin networks
(also kinematical quantum states in Loop Quantum Gravipr@ach)
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GROUPFIELD THEORY

3D QG AS GFT: CLASSICAL DYNAMICS OF QUANTUM SPACE

m Define classical action fap12s = (X1, X2, X3)
m interaction term: four geometric triangles glued pairageng common edges to
form tetrahedron
m Kkinetic term: gluing of tetrahedra along common triang®sedge identification
= No gravity, no continuum, no GR input

1 A
S= E /[dX]3 123 * 123 — I/[dx]s (V123 * (V345 * V526 * V641

whereg, + ¢ := (¢ * ¢-)(x), with 6 (x) =p(—X)
m propagator and a vertex:

vy y¥be .
la%4L%10 "::: ) -
x4 v

3 6
/ oy T[(5- * en) (), / TTch [T * e )0)
i=1 t i=1

with hy := hehy.
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GROUPFIELD THEORY

3D QG AS GFT: CLASSICAL DYNAMICS OF QUANTUM 2D SPACE

m geometrical meaning:

m Group variablesy andh, are parallel transports through the triangland from the
center of the tetrahedronto trianglet

m pair of variables(xe, Ye) associated to the same edge edges vectors seen from
the frames associated to the two triangle$ sharing it

m vertex functions: the two variables are identified, up tapeltransporty., and up
to a sign for two opposite edge orientations

m propagator encodes a similar gluing condition
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GROUPFIELD THEORY

3D QG AS GFT: CLASSICAL DYNAMICS OF QUANTUM 2D SPACE

m geometrical meaning:

m Group variablesy andh, are parallel transports through the triangland from the
center of the tetrahedronto trianglet

m pair of variables(xe, Ye) associated to the same edge edges vectors seen from
the frames associated to the two triangle$ sharing it

m vertex functions: the two variables are identified, up tapeltransporty., and up
to a sign for two opposite edge orientations

m propagator encodes a similar gluing condition

m in group pictur@souiatoy, 92y

K@) = [ J[o@ha?) Vg =[] [dv [[oennle?
e=1

tr=1 4t

m geometric meaning: flatness of each wedge (portion of fazidértetrahedron):
piecewise-flat context, trivial matching at boundary
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GROUPFIELD THEORY

3D QG AS GFT: CLASSICAL DYNAMICS OF QUANTUM 2D SPACE

m in representation space:

Se) = 5 D P e
{it,{m}
A jr j2 s
= a1 D P, PRim P, Phnm, { b
m from which:
—1
K =K"= 51'1J71émlm1512J725mzﬁb6]31_36”%%
VARSI SUP S SN SNP S SNP S SN SN SUND SP NP B LI I
T Ciada Oy i, O O st gf, Omafu Ojgs Omsis Clgjs Omee |, i g

m geometry rather obscure - however, dynamics directly imsesf quantum
numbers labelling quantum states of the theory
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GROUPFIELD THEORY

3D QG AS GFT: MICROSCOPIC QUANTUM DYNAMICS

m the quantum theory is defined by the partition function, igrffsean expansian

zZ= /D¢>ei5{<M =Y ;m[rr] Z(I)
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GROUPFIELD THEORY

3D QG AS GFT: MICROSCOPIC QUANTUM DYNAMICS
m the quantum theory is defined by the partition function, igrffsean expansian

r

Z = /Dgf)eis{"’] =Y ;m[rr] Z(I)

m building blocks of FD are:
m lines of propagation, with 3 labelled strands (dual to gias),

m vertices of interaction (made o3 labelled strands re-routed following the

combinatorics of a tetrahedron)
m this produces: 2-cells, identified by strands of propagapiassing through

several vertices, and then closing (for closed FD), duatiges; ‘bubbles=
3-cells bounded by the above 2-cells, dual to vertices opbaial complex

m Feynman graphE are fat graphs/cellular complexes topologically dual to 3d
triangulated (pseudo-)manifolds of ALL topologies
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GROUPFIELD THEORY

3D QG AS GFT: GFT FEYNMAN AMPLITUDES

Feynman amplitude&(T") obtained by convoluting vertices with propagators
They can be expressed, equivalently, in Lie algebra, grouppresentation picture

Consider first the Lie algebra (non-commutative) represtent

It shows explicit link with simplicial gravity path integis
(solution to first problem of tensor models)
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GROUPFIELD THEORY

FEYNMAN AMPLITUDES IN LIE ALGEBRA SPACE (asaram, 00, '10)

Propagator and vertex joined lyproduct (ordering of functions- orientation)
Each loop of strands bounds a facdpfdual to an edge of triangulatial

Under integration ovel, € SU(2), Z(T") factorizes intdface amplitudesAs [h]
Consider oriented loop boundirige I and ordered sequenge; }o<n of vertices.
Each vertexj: (dx * €y, 1) (X+1), with hj1=hpghy )

Al = | T ol (8 ey )0650) s =0
=1
(identification, up to parallel transport, of metric valiedx. in different tetrahedra)
IntegrateN variablesx, - - - xy; plane waves compose to depend on total holonomy
Ho := ho1 - - - hno aroundof, then 'close the loop’ by settingy+1 = Xo

We obtain:
/HdhLde g 2r 0o

This is simplicial path integral of 1st order 3d grav{or 3d BF theory)

continuum theoryS(e,w) = [, tr (e AF(w))
for open FD, one gets 3d gravity with boundary terms (fixednalaury triad)
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GROUPFIELD THEORY

3D QG AS GFT: GFT FEYNMAN AMPLITUDES

In Lie algebra (discrete metrig} picture saratin, po, 10

Z(D) / H dh1/ H o € 2 TR e — H h
SUR)

su(2) L=tt’ cof
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GROUPFIELD THEORY

3D QG AS GFT: GFT FEYNMAN AMPLITUDES

In Lie algebra (discrete metrig} picture saratin, po, 10

() = Hdh/ [[axe>™" He= J] h
su(2) "¢

SU2) L=tt’ €5f

Simplicial path integral of 1st order 3d gravifgr 3d BF theory)
In group variables only, one obtains:

Z(F):/ [[ah JToH) Hi= J] h
su@2) T t

L=tt’ €of
volume of space of flat (discrete) connections (consistéifit @ontinuum picture)
In terms of group representations (quantum numbers of pogrgtry):

ji o2 s
(2 1) T
(HZ)H ZENEER
Ponzano-Regge spin foam (state sum) model

spin foam models are sum over histories of spin networksfateoop Quantum
Gravity; correspondence GFT Feynman amplitudes - spin foadfels is generic
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RECENT RESULTS

GFT: some recent results

m diffeomorphisms in GFT
m GFT perturbative renormalization
m From GFT to non-commutative QFT for matter
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RECENT RESULTS

DIFFEOMORPHISM SYMMETRY IN3D GRAVITY AND GFT

Continuum 3d BF theory:
m translation symmetrydze = du¢  Sew = 0 ¢ = su(2)-valued scalar
m local rotation symmetryshe = [, A]  dRw = duA A € s5u(2)
m diffeomorphism symmetry
6ee = d(1e€) + te(de)  Pw = d(ew) + te(dw) & vector field
m on-shell (classically) diffeos obtained by combinatiortrahslation and rotation

In discrete gravity diffeos are generically broken (DitriBahr '09) but leave
residual symmetry at least in 3d with= 0 (Freidel-Louapre '02):

m discrete translation symmetry
Be — Be + ¢v1 + [Qvl(gL), ¢v1] - ¢\2 - [Q\Q(gL)v ¢\Q]
m discrete rotation symmetrBe(c) — koBe(o)k;* g — kglnggzl

To identify diffeomorphism symmetry, need to work in (noortmutative) triad
representation of GFT action - (necessary to) use “coloredatf
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RECENT RESULTS

DIFFEOMORPHISM SYMMETRY INBOULATOV MODEL (a Barani, F. Grevui, 0o, '10)

label vertices in tetrahedron by= 1, 2, 3, 4 - edges are labeled as= (ij) - color triangles of
tetrahedron by their 3 vertices - define 4 fieldgi (coloring needed for field transformation)

St{ond) = 3 [ 16) (o o) 0 3 5) +
(ijk)
A
+ a / P123(X12, X23, Xa1) * P234(Xa2, Xaa, Xa1) * P124(Xo1, Xo4, X14) * P134(X13, Xa3, X43)
m transformation of GFT fieldfor ¢, € su(2)) (translation of triangle vertices):
(T{e\,} > ¢123) (Xa2, Xo3, X31) = ‘@(X12 — €1 + €2,%23 — €2 + €3, Xa1 — €3 + €1)’

(T{ev} > ¢123) (012, O23, Oa1) = Tr(e1(93197,") ein(€2(91292_31)) (;,,i1'f(€3(92393_11))qs(glz7 23, Oa1)
m can go to ‘vertex variabless(xi2, Xzs, Xa1) — ¢ (X1, X2, X3)
m action takes form (schematically):

Soud) = 3 / o] (i * i) (6. % %) +

(ijk)

A
+ a / D123(X1, X2, X3) * 234(X3, X4, X2) * P124(X2, Xa, X1) * Pp134(X1, Xa, X3)
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RECENT RESULTS

DIFFEOMORPHISM SYMMETRY INBOULATOV MODEL (a Barariv, F. Grevui, Do, '10)

[CEVNER) (z 3)

%y am . zg
2 | B
S @b e 20
@ - 09
@n ey @2

m see intertwiner of single copy @SU(2) translation at each vertex df
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DIFFEOMORPHISM SYMMETRY INBOULATOV MODEL (a Barani, F. Grevui, 0o, '10)

_J L L J L

s |
2 e

27 @ =@
@3

@ 4)
@) 1) 4.2)

m see intertwiner of single copy @SU(2) translation at each vertex df
m can show that actio8({¢ii}) is invariant (care with orderings-products,...)

m itindeed corresponds to thiffeomorphism symmetrat the level of the
Feynman amplitudes (simplicial gravity path integrals)
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DIFFEOMORPHISM SYMMETRY INBOULATOV MODEL (a Barani, F. Grevui, 0o, '10)

_J L L J L

%y am e
2 | B
S @b e 20
@ - 09
@n ey @2

m see intertwiner of single copy @SU(2) translation at each vertex df
m can show that actio8({¢ii}) is invariant (care with orderings-products,...)

m itindeed corresponds to thiffeomorphism symmetrat the level of the
Feynman amplitudes (simplicial gravity path integrals)

m it can be related to simplicial Bianchi identity in each blgbfvertex ofA)
(evaluation of invariant diagram - need to tdakeiding into account)
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RECENT RESULTS

PERTURBATIVE GFT RENORMALIZATION - THE 3D CASE

(L. Freidel, R. Gurau, DO, '09), (J. Magnen et al., '09), (Rur&u, '09), (J. Ben Geloun et al., '09, '10), (V. Bonzom, M. &ak, '10)
Question: can you control the perturbative GFT sum over feyndiagrams
(including sum over topologies)?
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2/ (91, 92,98))" + 7 /¢ 01,92, 3) (93, 94, 95) H(Ts, G, 91) 9 (Ts, Ga, G2)

H/dgL S([T o

Ler Leof
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These NC spacetimes are arena for much cu@iphenomenology

(G. Amelino-Camelia, 0806.0339 [gr»&:}

e.g. in the context obeformed Special RelativitfDSR) . kowaiski-Glikman, hep-th0405273)
Task: derive such NC field theories from more fundamental @6dels

3d Riemannianw. Fairbairn, E. Livine, gr-qc/070212(. bimare, po, '10)

4d Lorentzian: DSR or-Minkowski: F.Girelli, E.Livine, DO, 0903.3475 [gr-gc]
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Boulatov GFT model:

1 A
Se] = 5/(s0(91,gz,gs))2— E/so(gl,gz,gs)so(gs,94,gs)so(gs,gz,ge)so(ge,g4,91)-

Classical solution:

po(01, 02, G3) = ﬁ J d96(919)F (920)6(9s9)-
with F(g) = F(hgh ") Vh € G, [F?2=1,F(g) € R

Interpretation: quantum flat space on some space topologgriant undeDSU(2)))
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»(01,02,02) = ¢o(01, 02, 03) + (01, gz) Then effective action for is

Spo + 9] — 3001*2/1& ) -
H 3 A
T / [dg]” ¥(91)%(92)%(03) 0 (G19203) — a / [dg]* ¥ (g1)..¥(04)5(01.-Ga),

K(g) = 1—2</F)2—/th(h)F(hg), L= \/g/p

The effective actiorss depends on the solutiap, throughF, andis invariant under
DSU(2) (quantum double of S{2)), deformation of Poincaré group
F can be expanded in group charactéiég) = >, Fixi(9)

ZFZ( ) - 2F5 = Q*(g) - M~

j>0
Q%(g) > 0,Q(I) = 0, generalized “Laplacian”
ForF(g) = a+ /1 — a2x1(g) we getk(g) = 2(1— a®) k2 — 2%, k= Tr(g5)

St [¢]

with
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GFT realize duality of simplicial gravity path integralscaspin foam models
GFT can be common framework for various QG approaches:
m Loop Quantum Gravity and spin foam models
m GFT states are Spin Networks, GFT perturbative expansifinegetheir dynamics
m GFT Feynman amplitudes are Spin Foam models (sum over igistoir spin networks)

m Quantum Regge Calculu§&FT Feynman amplitudes define simplicial QG path
integrals, with unique (for given GFT) measure
m Dynamical TriangulationsGFT describes QG (perturbatively) as sum over
triangulations, weighted by simplicial path integral
allow (almost) straightforward application of QFT tools
being a “pre-geometric theory”, recovering smooth geoyn@nd other
background structures of GR) and GR dynamics is non-trieisk
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m suggestions from condensed matter and analogue gravignsggsuperfluid
Helium-3, BEC)uacobson, Hu, Volovik, Laughiin, Visser, Unruh, SchuetdhLiberati, Sindoni, etc)

spacetime as a condensate/fluid phase of fundamentaltdisomestituents,
described by QFT

continuum is hydrodynamic approximation, validTatz 0, close to equilibrium,
and forN — oo in thermodynamic limit, involving a phase transition

metric is (function of) hydrodynamic variable(s)

continuum evolution governed by hydrodynamics for coilecvariables

GR is reproduced (if lucky) from hydrodynamics only in sorineits

m questions from CM perspective: what are the atoms of spabe? is/the
microscopic theory? which CM system reproduces full GR?
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CONTINUUM SPACETIME FROMGFTS?

take GFT seriously as microscopic (quantum field) theorjhefatoms of spage
‘pre-geometric structures’, from which geometry only egesrin some limit

take onboard suggestions from condensed matter and arajoguity

hypothesis: continuum is coherent, equilibrium many-ipks physics for GFT
guanta at low temperature (hydrodynamic approx): “quargpecetime fluid”?

(modified) GR from GFT hydrodynamics?
need to

develop statistical GFT and apply tools from many-parthgsics to GFT
(renormalization group, mean field theory, coherent staie$

identify GFT phase transitions in thermodynamic limit €ilka matrix models and
DT, using QFT tools)

extract effective dynamics around different GFT vacua ampkfied models
capturing physics in different regimes (e.g. cosmologgrrilat space, ...)
extract falsifiable (Popper), novel and interesting (Lakafeyerabend) physics!
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Thank you for your attention!
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