# THE MICROSCOPIC DYNAMICS OF QUANTUM SPACE AS A GROUP FIELD THEORY 

## Daniele Oriti

Max Planck Institute for Gravitational Physics (Albert Einstein Institute)

Bayrischzell Workshop 2010
Non-commutativity and physics: spacetime quantum geometry

## MAIN AIM(S) OF THIS TALK

■ highlight some questions that may be addressed by a quantum theory of gravity, some ideas entering the GFT approach, and show room for a QFT formalism

■ introduce the Group Field Theory approach to QG (focus on 3d case)
■ discuss some recent results in GFT and point out what needs still to be done

## Quantum Gravity

■ Main lesson from current theory of gravity (GR): "Gravity is spacetime geometry", thus spacetime is itself a physical (and dynamical) system

- so, maybe Quantum Gravity is not so much a quantization of GR, but a microscopic quantum theory of spacetime structure (atomic theory of space)? ■ background independence:
- so, first QG questions:


## Quantum Gravity

■ Main lesson from current theory of gravity (GR): "Gravity is spacetime geometry", thus spacetime is itself a physical (and dynamical) system
■ so, maybe Quantum Gravity is not so much a quantization of GR, but a microscopic quantum theory of spacetime structure (atomic theory of space)?

- so, first QG questions:


## QuAntum Gravity

■ Main lesson from current theory of gravity (GR): "Gravity is spacetime geometry", thus spacetime is itself a physical (and dynamical) system
■ so, maybe Quantum Gravity is not so much a quantization of GR, but a microscopic quantum theory of spacetime structure (atomic theory of space)?
■ background independence:

- no spacetime geometry can be taken as fixed reference for processes
- it should allow transitions between different backgrounds (e.g. topological BF theory not good enough): theory should be rich
- still, above leaves room for presence of several "background structures"(see later)
- so, first QG questions:


## QuAntum Gravity

■ Main lesson from current theory of gravity (GR): "Gravity is spacetime geometry", thus spacetime is itself a physical (and dynamical) system
■ so, maybe Quantum Gravity is not so much a quantization of GR, but a microscopic quantum theory of spacetime structure (atomic theory of space)?
■ background independence:

- no spacetime geometry can be taken as fixed reference for processes
$\square$ it should allow transitions between different backgrounds (e.g. topological BF theory not good enough): theory should be rich
- still, above leaves room for presence of several "background structures"(see later)
- so, first QG questions:
- what do space and time emerge from, at quantum level?
- can we define a quantum theory of space \& time, thus in absence of space and time?
- if QFT framework, what are the fundamental quanta? .......quanta of space itself...
- but can it be a QFT?


## Quantum Gravity

■ Main lesson from current theory of gravity (GR): "Gravity is spacetime geometry", thus spacetime is itself a physical (and dynamical) system
■ so, maybe Quantum Gravity is not so much a quantization of GR, but a microscopic quantum theory of spacetime structure (atomic theory of space)?
■ background independence:

- no spacetime geometry can be taken as fixed reference for processes
$\square$ it should allow transitions between different backgrounds (e.g. topological BF theory not good enough): theory should be rich
- still, above leaves room for presence of several "background structures"(see later)
- so, first QG questions:
- what do space and time emerge from, at quantum level?
- can we define a quantum theory of space \& time, thus in absence of space and time?

■ if QFT framework, what are the fundamental quanta? .......quanta of space itself....
■ but can it be a QFT?

## FAILURE OF PERTURBATIVE QUANTIZATION AROUND FLAT SPACE

Quantum gravity is not a quantum field theory of gravitons on flat space:

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu} \rightarrow S\left(h_{\mu \nu}\right) \rightarrow Z=\int \mathcal{D} h_{\mu \nu} e^{-S\left(h_{\mu \nu}\right)}
$$

such theory is perturbatively non-renormalizable (no more than effective field theory)
$\square$ missing ingredients?
■ new symmetries? (supergravity?)

- unification? only gravity+matter can be quantized as above?

■ non-local fundamental structure? beyond point-like objects? (strings,...)

- degrees of freedom? metric not correct variable?

■ GR itself only effective field theory (not to be quantized as such)?
■ background independence!

- cannot fix spacetime geometry as background
$\square$ ok, are there other background structures (also in GR)?
■ above does not rule out QFT as framework.......
.........but QFT needs some background....


## Background structures in General Relativity

What are the background structures in GR?

- continuum and local (field-theoretic) picture of space(time)
- dimensionality \& signature

■ local symmetry group (Lorentz)

- spatial topology
- spacetime topology

■ space of geometries on given topology (Wheeler's superspace)
which of them is our quantum (field) theory of gravity to be based on?
which of them are turned into dynamical features of the world (thus, new d.o.f.)?

GFT keeps dimensionality, signature and local symmetry group, in discrete setting

## Background structures in General Relativity

What are the background structures in GR?
■ continuum and local (field-theoretic) picture of space(time)

- dimensionality \& signature

■ local symmetry group (Lorentz)

- spatial topology
- spacetime topology

■ space of geometries on given topology (Wheeler's superspace)
which of them is our quantum (field) theory of gravity to be based on?
which of them are turned into dynamical features of the world (thus, new d.o.f.)?

GFT keeps dimensionality, signature and local symmetry group, in discrete setting

## Background structures in General Relativity

What are the background structures in GR?
■ continuum and local (field-theoretic) picture of space(time)

- dimensionality \& signature

■ local symmetry group (Lorentz)

- spatial topology
- spacetime topology

■ space of geometries on given topology (Wheeler's superspace)
which of them is our quantum (field) theory of gravity to be based on?
which of them are turned into dynamical features of the world (thus, new d.o.f.)?

GFT keeps dimensionality, signature and local symmetry group, in discrete setting

## TRADITIONAL/CONSERVATIVE FRAMEWORKS (FORMAL)

The most conservative option is to retain all the background structures of GR, consider spacetime and geometry as fundamental, and "just quantize GR"

[^0]
covariant approach (Misner, Wheeler, Hawking, Hartle, Teitelboim,
$\left\langle h_{i j}^{T} \mid h_{i j}^{T}\right\rangle=G\left(h_{i j}^{T}, h_{i j}^{T}\right)=\int_{h^{\prime}}^{h^{F}} D g_{\mu \nu} e^{-S_{E H}(g)}$, e.g. $S_{E H}(g)=\int d^{4} x \sqrt{g} R(g)$
having made sense of the above, "only problem" is semi-classical limit + quantum corrections to classical dynamics of geometry
making sense of it: discretize $=$ divide $S, M$ into chunks $\rightarrow \Delta$
$\Rightarrow h_{i j}, g_{\mu \nu} \longrightarrow$ finite variables $\left\{L_{e}\right\}, \quad S(g) \rightarrow S_{\Delta}\left(L_{e}\right)$ (discrete QG)
new problem: continuum limit

## TRADITIONAL/CONSERVATIVE FRAMEWORKS (FORMAL)

The most conservative option is to retain all the background structures of GR, consider spacetime and geometry as fundamental, and "just quantize GR" canonical approach (De Witt, Wheeler, Kuchar, Isham,.....)

■ classical input: kinematics: $\rightarrow h_{i j}\left(x_{\mu}\right)$ on $S=\partial M$; dynamics: Hamiltonian constraint $\mathcal{H}=0$
■ quantum theory: kinematics $\rightarrow \Psi\left(h_{i j}(x)\right) \quad \hat{O}\left(h_{i j}(x)\right)$ dynamics $\rightarrow \widehat{\mathcal{H}}_{W d W} \Psi\left(h_{i j}\right)=0$

covariant approach (Misner, Wheeler, Hawking, Hartle, Teitelboim,

having made sense of the above, "only problem" is semi-classical limit + quantum corrections to classical dynamics of geometry making sense of it: discretize $=$ divide $S, M$ into chunks $\rightarrow \Delta$ $\Rightarrow h_{i j}, g_{\mu \nu} \rightarrow$ finite variables $\left\{L_{e}\right\}, \quad S(g) \rightarrow S_{\Delta}\left(L_{e}\right)$ (discrete QG) new problem: continuum limit

## TRADITIONAL/CONSERVATIVE FRAMEWORKS (FORMAL)

The most conservative option is to retain all the background structures of GR, consider spacetime and geometry as fundamental, and "just quantize GR" canonical approach (De Witt, Wheeler, Kuchar, Isham, .....)

■ classical input: kinematics: $\rightarrow h_{i j}\left(x_{\mu}\right)$ on $S=\partial M$; dynamics: Hamiltonian constraint $\mathcal{H}=0$
■ quantum theory: kinematics $\rightarrow \Psi\left(h_{i j}(x)\right) \quad \hat{O}\left(h_{i j}(x)\right)$ dynamics $\rightarrow \widehat{\mathcal{H}}_{W d W} \Psi\left(h_{i j}\right)=0$

covariant approach (Misner, Wheeler, Hawking, Hartle, Teitellooim, ...)

$$
\left\langle h_{i j}^{F} \mid h_{i j}^{I}\right\rangle=G\left(h_{i j}^{F}, h_{i j}^{I}\right)=\int_{h^{I}}^{h^{F}} \mathcal{D} g_{\mu \nu} e^{-S_{E H}(g)} \quad, \quad \text { e.g. } \quad S_{E H}(g)=\int d^{4} x \sqrt{g} R(g)
$$

having made sense of the above, "only problem" is semi-classical limit + quantum corrections to classical dynamics of geometry
making sense of it: diccretize $=$ divide $S, M$ into chunks $\longrightarrow \Delta$ $\Rightarrow h_{i j}, g_{\mu \nu} \longrightarrow$ finite variables $\left\{L_{e}\right\}, \quad S(g) \longrightarrow S_{\Delta}\left(L_{e}\right)$ (discrete QG)

## TRADITIONAL/CONSERVATIVE FRAMEWORKS (FORMAL)

The most conservative option is to retain all the background structures of GR, consider spacetime and geometry as fundamental, and "just quantize GR" canonical approach (De Witt, Wheeler, Kuchar, Isham, .....)

■ classical input: kinematics: $\rightarrow h_{i j}\left(x_{\mu}\right)$ on $S=\partial M$; dynamics: Hamiltonian constraint $\mathcal{H}=0$
■ quantum theory: kinematics $\rightarrow \Psi\left(h_{i j}(x)\right) \quad \hat{O}\left(h_{i j}(x)\right)$ dynamics $\rightarrow \widehat{\mathcal{H}}_{W d W} \Psi\left(h_{i j}\right)=0$

covariant approach (Misner, Wheeler, Hawking, Hartle, Teitellooim, ...)
$\left\langle h_{i j}^{F} \mid h_{i j}^{I}\right\rangle=G\left(h_{i j}^{F}, h_{i j}^{I}\right)=\int_{h^{I}}^{h^{F}} \mathcal{D} g_{\mu \nu} e^{-S_{E H}(g)}$, e.g. $\quad S_{E H}(g)=\int d^{4} x \sqrt{g} R(g)$
having made sense of the above, "only problem" is semi-classical limit + quantum corrections to classical dynamics of geometry
making sense of it: discretize $=$ divide $S, M$ into chunks $\rightarrow \Delta$ $\Rightarrow h_{i j}, g_{\mu \nu} \rightarrow$ finite variables $\left\{L_{e}\right\}, \quad S(g) \rightarrow S_{\Delta}\left(L_{e}\right)$ (discrete QG) new nroblem: continumm limit

## TRADITIONAL/CONSERVATIVE FRAMEWORKS (FORMAL)

The most conservative option is to retain all the background structures of GR, consider spacetime and geometry as fundamental, and "just quantize GR"
canonical approach (De Witt, Wheeler, Kuchar, Isham, .....)
■ classical input: kinematics: $\rightarrow h_{i j}\left(x_{\mu}\right)$ on $S=\partial M$; dynamics: Hamiltonian constraint $\mathcal{H}=0$
■ quantum theory: kinematics $\rightarrow \Psi\left(h_{i j}(x)\right) \quad \hat{O}\left(h_{i j}(x)\right)$ dynamics $\rightarrow \widehat{\mathcal{H}}_{W d W} \Psi\left(h_{i j}\right)=0$

covariant approach (Misner, Wheeler, Hawking, Hartle, Teitellooim, ....)
$\left\langle h_{i j}^{F} \mid h_{i j}^{I}\right\rangle=G\left(h_{i j}^{F}, h_{i j}^{I}\right)=\int_{h^{I}}^{h^{F}} \mathcal{D} g_{\mu \nu} e^{-S_{E H}(g)} \quad$, e.g. $S_{E H}(g)=\int d^{4} x \sqrt{g} R(g)$
having made sense of the above, "only problem" is semi-classical limit

+ quantum corrections to classical dynamics of geometry
making sense of it: discretize $=$ divide $S, M$ into chunks $\rightarrow \Delta$
$\Rightarrow h_{i j}, g_{\mu \nu} \rightarrow$ finite variables $\left\{L_{e}\right\}, \quad S(g) \rightarrow S_{\Delta}\left(L_{e}\right)$ (discrete QG)
new problem: continuum limit


## LESS CONSERVATIVE (EVEN MORE FORMAL): DYNAMICAL TOPOLOGY?

2nd (3rd?) quantization of gravity? (Giddings, Strominger, Banks, Coleman, Hawking, Kuchar, Isham, McGuigann...)
a) field on space of geometries (say, on $S^{3}$ ); b) all possible interactions (creation/annihilation) of universes (topology change)?
$\Psi\left(h_{i j}\right) \rightarrow \phi\left(h_{i j}\right)$ on (super-)space of geometries (Giulini, '(09) on $S$

with some (non-local) interaction term
idea of quantum theory:

Feynman diagrams $M$ :


Dg $e^{i S(g ; M)}$
"impossible" to define in proper mathematical way + conceptual issues $\rightarrow$ making sense of it by going discrete/local? $\rightarrow$ matrix models, GFT

## LESS CONSERVATIVE (EVEN MORE FORMAL): DYNAMICAL TOPOLOGY?

2nd (3rd?) quantization of gravity? (Giddings, Strominger, Banks, Coleman, Hawking, Kuchar, Isham, McGuigann...)
a) field on space of geometries (say, on $S^{3}$ ); b) all possible interactions (creation/annihilation) of universes (topology change)?
$\Psi\left(h_{i j}\right) \rightarrow \phi\left(h_{i j}\right)$ on (super-)space of geometries (Giulini, ${ }^{\text {og) }}$ on $S^{3}$

$$
S(\phi)=-\frac{1}{2} \int \mathcal{D} h_{i j} \phi\left(h_{i j}\right) \mathcal{H}_{W d W} \phi\left(h_{i j}\right)+\lambda \int \mathcal{D} h_{i j} \mathcal{V}(\phi)
$$

with some (non-local) interaction term
idea of quantum theory:

Feynman diagrams $M$ :

"impossible" to define in proper mathematical way + conceptual issues $\rightarrow$ making sense of it by going discrete/local? $\rightarrow$ matrix models, GFT

## LESS CONSERVATIVE (EVEN MORE FORMAL): DYNAMICAL TOPOLOGY?

2nd (3rd?) quantization of gravity? (Giddings, Strominger, Banks, Coleman, Hawking, Kuchar, Isham, McGuigan...)
a) field on space of geometries (say, on $S^{3}$ ); b) all possible interactions (creation/annihilation) of universes (topology change)?
$\Psi\left(h_{i j}\right) \rightarrow \phi\left(h_{i j}\right)$ on (super-)space of geometries (Giulini, '09) on $S^{3}$

$$
S(\phi)=-\frac{1}{2} \int \mathcal{D} h_{i j} \phi\left(h_{i j}\right) \mathcal{H}_{W d W} \phi\left(h_{i j}\right)+\lambda \int \mathcal{D} h_{i j} \mathcal{V}(\phi)
$$

with some (non-local) interaction term
idea of quantum theory:

Feynman diagrams $M$ :


$$
Z=\int \mathcal{D} \phi e^{-S(\phi)}=\sum_{M} \lambda^{V} Z_{M}=\sum_{M} \lambda^{V} \int \mathcal{D} g e^{i S(g ; M)}
$$

"impossible" to define in proper mathematical way + conceptual issues $\rightarrow$ making sense of it by going discrete/local? $\rightarrow$ matrix models, GFT

## LESS CONSERVATIVE (EVEN MORE FORMAL): DYNAMICAL TOPOLOGY?

2nd (3rd?) quantization of gravity? (Giddings, Strominger, Banks, Coleman, Hawking, Kuchar, Isham, McGuigan...)
a) field on space of geometries (say, on $S^{3}$ ); b) all possible interactions (creation/annihilation) of universes (topology change)?
$\Psi\left(h_{i j}\right) \rightarrow \phi\left(h_{i j}\right)$ on (super-)space of geometries (Giulini, ${ }^{\text {on) }}$ on $S^{3}$

$$
S(\phi)=-\frac{1}{2} \int \mathcal{D} h_{i j} \phi\left(h_{i j}\right) \mathcal{H}_{W d W} \phi\left(h_{i j}\right)+\lambda \int \mathcal{D} h_{i j} \mathcal{V}(\phi)
$$

with some (non-local) interaction term idea of quantum theory:

Feynman diagrams $M$ :


$$
Z=\int \mathcal{D} \phi e^{-S(\phi)}=\sum_{M} \lambda^{V} Z_{M}=\sum_{M} \lambda^{V} \int \mathcal{D} g e^{i S(g ; M)}
$$

"impossible" to define in proper mathematical way + conceptual issues $\rightarrow$ making sense of it by going discrete/local? $\rightarrow$ matrix models, GFT

## GRAVITY/GEOMETRY: FUNDAMENTAL OR EMERGENT? GOING DISCRETE?

is the notion of gravity and/or geometry fundamental?
if not, what does it emerge from?
what are the pre-geometric data defining the 'substance"(kinematics) of QG? and then,
what is the quantum dynamics of the quantum (pre-)geometric data?
which is an aspect of the issue:
is quantum gravity the quantization of General Relativity?
or should the GR dynamics be only emergent is some approximation?
in this case, how do we identify the quantum dynamics?
Using dynamical lattices (or any discrete structure) is highly non-trivial step:
■ it means dropping all background structures of GR, together with continuum

- all have to be recovered in continumm annrox • non-trivial!!!


## GRAVITY/GEOMETRY: FUNDAMENTAL OR EMERGENT? GOING DISCRETE?

is the notion of gravity and/or geometry fundamental?
if not, what does it emerge from?
what are the pre-geometric data defining the 'substance"(kinematics) of QG? and then,
what is the quantum dynamics of the quantum (pre-)geometric data?
which is an aspect of the issue:
is quantum gravity the quantization of General Relativity?
or should the GR dynamics be only emergent is some approximation?
in this case, how do we identify the quantum dynamics?
Using dynamical lattices (or any discrete structure) is highly non-trivial step:

- it means dropping all background structures of GR, together with continuum
- all have to be recovered in continuum approx.; non-trivial!!!


## GRAVITY/GEOMETRY: FUNDAMENTAL OR EMERGENT? GOING DISCRETE?

is the notion of gravity and/or geometry fundamental?
if not, what does it emerge from?
what are the pre-geometric data defining the 'substance"(kinematics) of QG?
and then,
what is the quantum dynamics of the quantum (pre-)geometric data?
which is an aspect of the issue:
is quantum gravity the quantization of General Relativity?
or should the GR dynamics be only emergent is some approximation?
in this case, how do we identify the quantum dynamics?
Using dynamical lattices (or any discrete structure) is highly non-trivial step:
■ it means dropping all background structures of GR, together with continuum
■ all have to be recovered in continuum approx.; non-trivial!!!

$$
\begin{aligned}
& \text { discrete, finite sets of data (classical or quantum), even if coming from discretizing } \\
& \text { a smooth geometry, can be understood as "pre-geometric/pre-spacetime"data, from } \\
& \text { which spacetime and geometry are emergent }
\end{aligned}
$$

## GRAVITY/GEOMETRY: FUNDAMENTAL OR EMERGENT? GOING DISCRETE?

is the notion of gravity and/or geometry fundamental?
if not, what does it emerge from?
what are the pre-geometric data defining the 'substance"(kinematics) of QG?
and then,
what is the quantum dynamics of the quantum (pre-)geometric data?
which is an aspect of the issue:
is quantum gravity the quantization of General Relativity?
or should the GR dynamics be only emergent is some approximation?
in this case, how do we identify the quantum dynamics?
Using dynamical lattices (or any discrete structure) is highly non-trivial step:
■ it means dropping all background structures of GR, together with continuum
■ all have to be recovered in continuum approx.; non-trivial!!!
discrete, finite sets of data (classical or quantum), even if coming from discretizing a smooth geometry, can be understood as "pre-geometric/pre-spacetime"data, from which spacetime and geometry are emergent

## Toward GFT: MATRIX MODELS FOR 2D QUANTUM GRAVITY

■ general idea: generalise combinatorics of Feynman diagrams from 1d to 2d, from graphs to discrete surfaces, from point particles to 1d objects

$\square M_{j}^{i} \quad i, j=1, \ldots, N \quad N \times N$ hermitian matrixaction:
$S(M, g)=$
 $\frac{g}{\sqrt{N}} M^{i}{ }_{j} M^{m}{ }_{n} M^{k}{ }_{l} V_{j m k n l i}$ $\left(K^{-1}\right)=K_{\text {KNI }}$

- fundamental building blocks are 1 d simplices with no additional data; microscopic dynamics: no GR, pure 2 d combinatorics
- transition amplitudes defined in terms of Feynman diagrams


## Toward GFT: MATRIX MODELS FOR 2D QUANTUM GRAVITY

■ general idea: generalise combinatorics of Feynman diagrams from 1d to 2d, from graphs to discrete surfaces, from point particles to 1d objects

$$
\because \longrightarrow I
$$

■ $M_{j}^{i} \quad i, j=1, \ldots, N \quad N \times N$ hermitian matrixaction:


- fundamental building blocks are 1 d simplices with no additional data; microscopic dynamics: no GR, pure 2d combinatorics
- transition amplitudes defined in terms of Feynman diagrams


## TOWARD GFT: MATRIX MODELS FOR 2D QUANTUM GRAVITY

■ general idea: generalise combinatorics of Feynman diagrams from 1d to 2d, from graphs to discrete surfaces, from point particles to 1d objects

$$
=\longrightarrow I
$$

■ $M_{j}^{i} \quad i, j=1, \ldots, N \quad N \times N$ hermitian matrix

- action:

$$
\begin{aligned}
S(M, g)= & \frac{1}{2} t r M^{2}-\frac{g}{\sqrt{N}} \operatorname{tr} M^{3}=\frac{1}{2} M^{i}{ }_{j} K_{j k l i} M^{k}{ }_{l}-\frac{g}{\sqrt{N}} M^{i}{ }_{j} M^{m}{ }_{n} M^{k}{ }_{l} V_{j m k n l i} \\
& K_{j k l i}=\delta^{j}{ }_{k} \delta_{i}^{l} \quad V_{j m k n l i}=\delta^{j}{ }_{m} \delta^{n}{ }_{k} \delta^{l}{ }_{i} \quad\left(K^{-1}\right)_{j k l i}=K_{j k l i}
\end{aligned}
$$

- fundamental building blocks are 1 d simplices with no additional data; microscopic dynamics: no GR, pure 2 d combinatorics
- transition amplitudes defined in terms of Feynman diagrams


## TOWARD GFT: MATRIX MODELS FOR 2D QUANTUM GRAVITY

■ general idea: generalise combinatorics of Feynman diagrams from 1d to 2d, from graphs to discrete surfaces, from point particles to 1d objects

$$
\because \longrightarrow I
$$

■ $M_{j}^{i} \quad i, j=1, \ldots, N \quad N \times N$ hermitian matrix

- action:

$$
\begin{aligned}
S(M, g)= & \frac{1}{2} t r M^{2}-\frac{g}{\sqrt{N}} \operatorname{tr}^{3} M^{3}=\frac{1}{2} M^{i}{ }_{j} K_{j k l i} M^{k}{ }_{l}-\frac{g}{\sqrt{N}} M^{i}{ }_{j} M^{m}{ }_{n} M^{k}{ }_{l} V_{j m k n l i} \\
& K_{j k l i}=\delta^{j}{ }_{k} \delta_{i}^{l} \quad V_{j m k n l i}=\delta^{j}{ }_{m} \delta^{n}{ }_{k} \delta_{i}^{l} \quad\left(K^{-1}\right)_{j k l i}=K_{j k l i}
\end{aligned}
$$

■ fundamental building blocks are 1 d simplices with no additional data; microscopic dynamics: no GR, pure 2d combinatorics

- transition amplitudes defined in terms of Feynman diagrams


## TOWARD GFT: MATRIX MODELS FOR 2D QUANTUM GRAVITY

■ general idea: generalise combinatorics of Feynman diagrams from 1d to 2d, from graphs to discrete surfaces, from point particles to 1d objects

$$
\longrightarrow \Gamma
$$

■ $M_{j}^{i} \quad i, j=1, \ldots, N \quad N \times N$ hermitian matrix

- action:

$$
\begin{aligned}
S(M, g)= & \frac{1}{2} t r M^{2}-\frac{g}{\sqrt{N}} \operatorname{tr} M^{3}=\frac{1}{2} M^{i}{ }_{j} K_{j k l i} M^{k}{ }_{l}-\frac{g}{\sqrt{N}} M^{i}{ }_{j} M^{m}{ }_{n} M^{k}{ }_{l} V_{j m k n l i} \\
& K_{j k l i}=\delta^{j}{ }_{k} \delta^{l}{ }_{i} \quad V_{j m k n l i}=\delta^{j}{ }_{m} \delta^{n}{ }_{k} \delta^{l}{ }_{i} \quad\left(K^{-1}\right)_{j k l i}=K_{j k l i}
\end{aligned}
$$

■ fundamental building blocks are 1 d simplices with no additional data; microscopic dynamics: no GR, pure 2d combinatorics

■ transition amplitudes defined in terms of Feynman diagrams

## MATRIX MODELS - FEYNMAN DIAGRAMS AND SIMPLICIAL COMPLEXES

building blocks for Feynman diagrams:
$\left(K^{-1}\right)_{j k l i}$
$V_{j m k n l i}$


- simplicial intepretation:

$\Gamma \simeq 2 \mathrm{~d}$ simplicial complex $\Delta$ (triangulation) $\simeq 2$ d discrete spacetime



## MATRIX MODELS - FEYNMAN DIAGRAMS AND SIMPLICIAL COMPLEXES

building blocks for Feynman diagrams:
$\left(K^{-1}\right)_{j k l i}$
$V_{j m k n l i}$


■ simplicial intepretation:

$\Gamma \simeq 2 \mathrm{~d}$ simplicial complex $\Delta$ (triangulation) $\simeq 2$ discrete spacetime


Feynman amplitudes: join vertices with propagators and sum over common variables (indices) $i$


## MATRIX MODELS - FEYNMAN DIAGRAMS AND SIMPLICIAL COMPLEXES

building blocks for Feynman diagrams:
$\left(K^{-1}\right)_{j k l i}$
$V_{j m k n l i}$


- simplicial intepretation:

$\Gamma \simeq 2 \mathrm{~d}$ simplicial complex $\Delta$ (triangulation)
$\simeq 2$ discrete spacetime


Feynman amplitudes: join vertices with propagators and sum over common variables (indices) $i$

$$
Z=\sum_{\Gamma} g^{V_{\Gamma}} N^{\chi(\Gamma)}
$$

## MATRIX MODELS AND SIMPLICIAL 2D GRAVITY

$■$ continuum (Riemannian) 2d GR: $\int_{S} d^{2} x \sqrt{g}(-R(g)+\Lambda)=-4 \pi \chi+\Lambda A_{S}$

- discrete 2 d GR: chop surface $S$ into equilateral triangles of area $a$ : $\frac{1}{G} \int_{S} d^{2} x \sqrt{g}(-R(g)+\Lambda) \rightarrow-\frac{4 \pi}{G} \chi+\frac{\Lambda a}{G} t$
- from our matrix model we get in fact (with $g=e^{-\frac{\Lambda a}{G}}$ and $N=e^{+\frac{4 \pi}{G}}$ ):

(trivial) sum over histories of discrete GR on given 2 d complex plus sum over all possible 2 d complexes of all topologies
- discrete 2 nd quantization of GR in 2 d !!!!!
- question: control over sum over triangulations/topologies?


## MATRIX MODELS AND SIMPLICIAL 2D GRAVITY

■ continuum (Riemannian) 2d GR: $\int_{S} d^{2} x \sqrt{g}(-R(g)+\Lambda)=-4 \pi \chi+\Lambda A_{S}$
■ discrete 2 d GR: chop surface $S$ into equilateral triangles of area $a$ : $\frac{1}{G} \int_{S} d^{2} x \sqrt{g}(-R(g)+\Lambda) \rightarrow-\frac{4 \pi}{G} \chi+\frac{\Lambda a}{G} t$

- from our matrix model we get in fact (with $g=e^{-\frac{\Lambda d}{G}}$ and $N=e^{+\frac{4 \pi}{G}}$ ):

(trivial) sum over histories of discrete GR on given 2d complex plus sum over all possible 2 d complexes of all topologies
- discrete 2 nd quantization of GR in 2d !!!!!
- question: control over sum over triangulations/topologies?


## MATRIX MODELS AND SIMPLICIAL 2D GRAVITY

$\square$ continuum (Riemannian) 2d GR: $\int_{S} d^{2} x \sqrt{g}(-R(g)+\Lambda)=-4 \pi \chi+\Lambda A_{S}$
$\square$ discrete 2 d GR: chop surface $S$ into equilateral triangles of area $a$ : $\frac{1}{G} \int_{S} d^{2} x \sqrt{g}(-R(g)+\Lambda) \rightarrow-\frac{4 \pi}{G} \chi+\frac{\Lambda a}{G} t$
■ from our matrix model we get in fact (with $g=e^{-\frac{\Lambda a}{G}}$ and $N=e^{+\frac{4 \pi}{G}}$ ):

$$
Z=\sum_{\Gamma} g^{V_{\Gamma}} N^{\chi(\Gamma)}=\sum_{\Delta} e^{+\frac{4 \pi}{G} \chi(\Delta)-\frac{a \Lambda}{G} t_{\Delta}} \simeq \sum_{\Delta} \int \mathcal{D} g_{\Delta} e^{-S_{\Delta}(g)}
$$

(trivial) sum over histories of discrete GR on given 2d complex plus sum over all possible 2d complexes of all topologies

- question: control over sum over triangulations/topologies?


## MATRIX MODELS AND SIMPLICIAL 2D GRAVITY

$\square$ continuum (Riemannian) 2d GR: $\int_{S} d^{2} x \sqrt{g}(-R(g)+\Lambda)=-4 \pi \chi+\Lambda A_{S}$
$\square$ discrete 2 d GR: chop surface $S$ into equilateral triangles of area $a$ : $\frac{1}{G} \int_{S} d^{2} x \sqrt{g}(-R(g)+\Lambda) \rightarrow-\frac{4 \pi}{G} \chi+\frac{\Lambda a}{G} t$
■ from our matrix model we get in fact (with $g=e^{-\frac{\Lambda a}{G}}$ and $N=e^{+\frac{4 \pi}{G}}$ ):

$$
Z=\sum_{\Gamma} g^{V_{\Gamma}} N^{\chi(\Gamma)}=\sum_{\Delta} e^{+\frac{4 \pi}{G} \chi(\Delta)-\frac{a \Lambda}{G} t_{\Delta}} \simeq \sum_{\Delta} \int \mathcal{D} g_{\Delta} e^{-S_{\Delta}(g)}
$$

(trivial) sum over histories of discrete GR on given 2d complex plus sum over all possible 2d complexes of all topologies
■ discrete 2 nd quantization of GR in 2 d !!!!!

- question: control over sum over triangulations/topologies?


## MATRIX MODELS AND SIMPLICIAL 2D GRAVITY

$\square$ continuum (Riemannian) 2d GR: $\int_{S} d^{2} x \sqrt{g}(-R(g)+\Lambda)=-4 \pi \chi+\Lambda A_{S}$
■ discrete 2 d GR: chop surface $S$ into equilateral triangles of area $a$ :
$\frac{1}{G} \int_{S} d^{2} x \sqrt{g}(-R(g)+\Lambda) \rightarrow-\frac{4 \pi}{G} \chi+\frac{\Lambda a}{G} t$
■ from our matrix model we get in fact (with $g=e^{-\frac{\Lambda a}{G}}$ and $N=e^{+\frac{4 \pi}{G}}$ ):

$$
Z=\sum_{\Gamma} g^{V_{\Gamma}} N^{\chi(\Gamma)}=\sum_{\Delta} e^{+\frac{4 \pi}{G} \chi(\Delta)-\frac{a \Lambda}{G} t_{\Delta}} \simeq \sum_{\Delta} \int \mathcal{D} g_{\Delta} e^{-S_{\Delta}(g)}
$$

(trivial) sum over histories of discrete GR on given 2 d complex plus sum over all possible 2d complexes of all topologies
■ discrete 2 nd quantization of GR in 2 d !!!!!
■ question: control over sum over triangulations/topologies?
■ large-N limit - sum governed by topological parameters

$$
Z=\sum_{\Delta} g^{t \Delta} N^{2-2 h}=\sum_{h} N^{2-2 h} Z_{h}(g)=N^{2} Z_{0}(g)+Z_{1}(g)+N^{-2} Z_{2}(g)+\ldots .
$$

■ in the limit $N \rightarrow \infty$ (semi-classical approximation of discrete system), only spherical (trivial topology, planar, genus 0 ) contribute

## MATRIX MODELS AND CONTINUUM 2D GR

■ question: does it match results from continuum 2d gravity path integral?


- can also define continuum limit with contributions from non-trivial topologies double scaling limit
- very many results in 2 d quantum gravity context, and in others............


## MATRIX MODELS AND CONTINUUM 2D GR

■ question: does it match results from continuum 2d gravity path integral?
$\square$ task: continuum limit for trivial topology

- expand $Z_{0}(g)$ in $g: Z_{0}(g)=\sum_{V} V^{\gamma-3}\left(\frac{g}{g_{c}}\right)^{V} \simeq_{V \rightarrow \infty}\left(g-g_{c}\right)^{2-\gamma} \quad(\gamma>2)$
- expectation value of area of surface:
- thus we can send area of triangle $a \rightarrow 0$ and $t=V \rightarrow \infty$ (continuum limit), while sending $g \rightarrow g_{c}$, to get finite continuum macroscopic area
- this defines continuum limit (phase transition of discrete system!)
- results match those of continuum 2 d gravity path integral (GR as effective theory)
- can also define continuum limit with contributions from non-trivial topologies double scaling limit
- very many results in 2 d quantum gravity context, and in others............


## MATRIX MODELS AND CONTINUUM 2D GR

■ question: does it match results from continuum 2d gravity path integral?
■ task: continuum limit for trivial topology
■ expand $Z_{0}(g)$ in $g: Z_{0}(g)=\sum_{V} V^{\gamma-3}\left(\frac{g}{g_{c}}\right)^{V} \simeq_{V \rightarrow \infty}\left(g-g_{c}\right)^{2-\gamma} \quad(\gamma>2)$

- expectation value of area of surface:

$$
\langle A\rangle=a\left\langle t_{\Delta}\right\rangle=\left\langle V_{\Gamma}\right\rangle=a \frac{\partial}{\partial g} \ln Z_{0}(g) \simeq \frac{a}{g-g_{c}}, \text { for large } V
$$

$\square$ thus we can send area of triangle $a \rightarrow 0$ and $t=V \rightarrow \infty$ (continuum limit), while sending $g \rightarrow g_{c}$, to get finite continuum macroscopic area
■ this defines continuum limit (phase transition of discrete system!)

- results match those of continuum 2 d gravity path integral (GR as effective theory)

■ can also define continuum limit with contributions from non-trivial topologies double scaling limit
■ very many results in 2 d quantum gravity context, and in others. $\qquad$

## From point particles to Fields, From matrices/TEnsors To GFT

point particles
$S(X)=\frac{1}{2} X^{2}+\frac{\lambda}{3} X^{3}$

## matrices

$S(M)=\frac{1}{2} M_{i j} M_{j i}+$

$$
+\frac{\lambda}{3} M_{i j} M_{j k} M_{k i}
$$


fields
$S(\phi)=\frac{1}{2} \int d x \phi(x)^{2}+\frac{\lambda}{3} \int d x \phi(x)^{3}$

## From point particles to fields, from matrices/TEnsors to GFT

point particles
$S(X)=\frac{1}{2} X^{2}+\frac{\lambda}{3} X^{3}$


## fields

$S(\phi)=\frac{1}{2} \int d x \phi(x)^{2}+\frac{\lambda}{3} \int d x \phi(x)^{3}$ $\downarrow$
matrices

$$
\begin{aligned}
S(M) & =\frac{1}{2} M_{i j} M_{j i}+ \\
& +\frac{\lambda}{3} M_{i j} M_{j k} M_{k i}
\end{aligned}
$$



## From point particles to fields, from matrices/TEnsors to GFT

> point particles
> $S(X)=\frac{1}{2} X^{2}+\frac{\lambda}{3} X^{3}$

$S(\phi)=\frac{1}{2} \int d x \phi(x)^{2}+\frac{\lambda}{3} \int d x \phi(x)^{3}$ $\downarrow$
matrices

$$
\begin{aligned}
S(M) & =\frac{1}{2} M_{i j} M_{j i}+ \\
& +\frac{\lambda}{3} M_{i j} M_{j k} M_{k i}
\end{aligned}
$$



## From point particles to fields, from matrices/TEnsors to GFT

point particles
$S(X)=\frac{1}{2} X^{2}+\frac{\lambda}{3} X^{3}$
 $\downarrow$
matrices

$$
\begin{aligned}
S(M) & =\frac{1}{2} M_{i j} M_{j i}+ \\
& +\frac{\lambda}{3} M_{i j} M_{j k} M_{k i}
\end{aligned}
$$


fields

$$
S(\phi)=\frac{1}{2} \int d x \phi(x)^{2}+\frac{\lambda}{3} \int d x \phi(x)^{3}
$$

## TENSOR MODELS

- generalize further in (combinatorial) dimension, from 2d to 3d (and higher) from 1d objects (edges) to 2d objects (triangles) (and higher) - from 2d simplicial complexes as FD to 3d ones (and higher)


■ $M_{j}^{i} \rightarrow T_{i j k} \quad i, j, k=1, . ., N \quad N \times N \times N$ tensor
 kinetic term $=K_{i j k i^{\prime} j^{\prime} k^{\prime}}=\delta_{i i^{\prime}} \delta_{i j j^{\prime}} \delta_{k k^{\prime}}=\left(K^{-1}\right)_{i j k i^{\prime} j^{\prime} k^{\prime}}=$ propagator vertex term $=V_{i i^{\prime} i i^{\prime} k k^{\prime} l l^{\prime} m m^{\prime} n n^{\prime}}=\delta_{i i^{\prime}} \delta_{i j j^{\prime}} \delta_{k k^{\prime}} \delta_{l l^{\prime}} \delta_{m m^{\prime}} \delta_{n n^{\prime}}$ with combinatorial pattern of edges in tetrahedron

- Feynman diagrams again formed by vertices, lines and faces, but now 1) also form "bubbles"(3-cells), and 2) are dual to 3d simplicial complexes



## TENSOR MODELS

- generalize further in (combinatorial) dimension, from 2d to 3d (and higher) from 1d objects (edges) to 2d objects (triangles) (and higher) - from 2d simplicial complexes as FD to 3d ones (and higher)


■ $M^{i}{ }_{j} \rightarrow T_{i j k} \quad i, j, k=1, . ., N \quad N \times N \times N$ tensor kinetic term $=K_{i j k k^{\prime} j^{\prime} k^{\prime} k^{\prime}}=\delta_{i i^{\prime}} \delta_{i j^{\prime}} \delta_{k k^{\prime}}=\left(K^{-1}\right)_{i j k k^{\prime} j^{\prime} j^{\prime} k^{\prime}}=$ propagator vertex term $=V_{i i^{\prime} j^{\prime} k k^{\prime} l l^{\prime} m m^{\prime} n n^{\prime}}=\delta_{i i^{\prime}} \delta_{i i^{\prime}} \delta_{k k^{\prime}} \delta_{l l^{\prime}} \delta_{m m m^{\prime}} \delta_{n n^{\prime}}$
with combinatorial pattern of edges in tetrahedron

- Feynman diagrams again formed by vertices, lines and faces, but now 1) also form "bubbles"(3-cells), and 2) are dual to 3d simplicial complexes



## TENSOR MODELS

- generalize further in (combinatorial) dimension, from 2d to 3d (and higher) from 1d objects (edges) to 2d objects (triangles) (and higher) - from 2d simplicial complexes as FD to 3d ones (and higher)

$\square M^{i}{ }_{j} \rightarrow T_{i j k} \quad i, j, k=1, . ., N \quad N \times N \times N$ tensor
$\square$ action: $S(T)=\frac{1}{2} \operatorname{tr} T^{2}-\lambda \operatorname{tr} T^{4}=\frac{1}{2} \sum_{i, j, k} T_{i j k} T_{k j i}-\lambda \sum_{i j k l m n} T_{i j k} T_{k l m} T_{m j n} T_{n l i}$ kinetic term $=K_{i j k i^{\prime} j^{\prime} k^{\prime}}=\delta_{i i^{\prime}} \delta_{j j^{\prime}} \delta_{k k^{\prime}}=\left(K^{-1}\right)_{i j k i^{\prime} j^{\prime} k^{\prime}}=$ propagator vertex term $=V_{i i^{\prime} j j^{\prime} k k^{\prime} l l^{\prime} m m^{\prime} n n^{\prime}}=\delta_{i i^{\prime}} \delta_{j j^{\prime}} \delta_{k k^{\prime}} \delta_{l l^{\prime}} \delta_{m m^{\prime}} \delta_{n n^{\prime}}$ with combinatorial pattern of edges in tetrahedron
- Feynman diagrams again formed by vertices, lines and faces, but now 1) also form "bubbles"(3-cells), and 2) are dual to 3d simplicial complexes



## TENSOR MODELS

- generalize further in (combinatorial) dimension, from 2d to 3d (and higher) from 1d objects (edges) to 2d objects (triangles) (and higher) - from 2d simplicial complexes as FD to 3d ones (and higher)

$\square M^{i}{ }_{j} \rightarrow T_{i j k} \quad i, j, k=1, . ., N \quad N \times N \times N$ tensor
$■$ action: $S(T)=\frac{1}{2} \operatorname{tr} T^{2}-\lambda t r T^{4}=\frac{1}{2} \sum_{i, j, k} T_{i j k} T_{k j i}-\lambda \sum_{i j k l m n} T_{i j k} T_{k l m} T_{m j n} T_{n l i}$ kinetic term $=K_{i j k^{\prime} j^{\prime} k^{\prime}}=\delta_{i i^{\prime}} \delta_{j j^{\prime}} \delta_{k k^{\prime}}=\left(K^{-1}\right)_{i j k^{\prime} j^{\prime} k^{\prime} k^{\prime}}=$ propagator vertex term $=V_{i i^{\prime} j^{\prime} k k^{\prime} l l^{\prime} m m^{\prime} n n^{\prime}}=\delta_{i i^{\prime}} \delta_{j j^{\prime}} \delta_{k k^{\prime}} \delta_{l l^{\prime}} \delta_{m m^{\prime}} \delta_{n n^{\prime}}$ with combinatorial pattern of edges in tetrahedron
■ $Z=\int \mathcal{D} T e^{-S(T)}=\sum_{\Gamma} \lambda^{V_{\Gamma}} Z_{\Gamma}$
- Feynman diagrams again formed by vertices, lines and faces, but now 1) also form "bubbles"(3-cells), and 2) are dual to 3d simplicial complexes



## TENSOR MODELS

- generalize further in (combinatorial) dimension, from 2d to 3d (and higher) from 1d objects (edges) to 2d objects (triangles) (and higher) - from 2d simplicial complexes as FD to 3d ones (and higher)

$\square M^{i}{ }_{j} \rightarrow T_{i j k} \quad i, j, k=1, . ., N \quad N \times N \times N$ tensor
$■$ action: $S(T)=\frac{1}{2} \operatorname{tr} T^{2}-\lambda t r T^{4}=\frac{1}{2} \sum_{i, j, k} T_{i j k} T_{k j i}-\lambda \sum_{i j k l m n} T_{i j k} T_{k l m} T_{m j n} T_{n l i}$ kinetic term $=K_{i j k i^{\prime} j^{\prime} k^{\prime}}=\delta_{i i^{\prime}} \delta_{j j^{\prime}} \delta_{k k^{\prime}}=\left(K^{-1}\right)_{i j k i^{\prime} j^{\prime} k^{\prime}}=$ propagator vertex term $=V_{i i^{\prime} j j^{\prime} k k^{\prime} l l^{\prime} m m^{\prime} n n^{\prime}}=\delta_{i i^{\prime}} \delta_{j j^{\prime}} \delta_{k k^{\prime}} \delta_{l l^{\prime}} \delta_{m m^{\prime}} \delta_{n n^{\prime}}$ with combinatorial pattern of edges in tetrahedron
■ $Z=\int \mathcal{D} T e^{-S(T)}=\sum_{\Gamma} \lambda^{V_{\Gamma}} Z_{\Gamma}$
■ Feynman diagrams again formed by vertices, lines and faces, but now 1) also form "bubbles"(3-cells), and 2) are dual to 3d simplicial complexes



## TENSOR MODELS

■ $Z$ defined as sum over all 3d simplicial complexes (of manifolds and pseudo-manifolds)
$($ pseudo-manifold $=$ neighbourood of point not homeomorphic to a 3-Ball)

- why are they not good?
- in $d>2$, gravity is -much- less trivial, both classically and quantum-mechanically
- need to add structure and data $\Rightarrow$ Group Field Theory !!!


## TENSOR MODELS

■ $Z$ defined as sum over all 3d simplicial complexes (of manifolds and pseudo-manifolds) $($ pseudo-manifold $=$ neighbourood of point not homeomorphic to a 3-Ball)
■ why are they not good?

- no topological expansion of amplitudes - no control over topology of diagrams
- no way to separate manifolds from pseudo-manifolds
- no direct/nice relation with 3d simplicial (classical or quantum) gravity - not enough structure/data in the amplitudes, and in boundary states
- in $d>2$, gravity is -much- less trivial, both classically and quantum-mechanically
- need to add structure and data $\Rightarrow$ Group Field Theory !!!


## TENSOR MODELS

■ $Z$ defined as sum over all 3d simplicial complexes (of manifolds and pseudo-manifolds)
$($ pseudo-manifold $=$ neighbourood of point not homeomorphic to a 3-Ball)
■ why are they not good?

- no topological expansion of amplitudes - no control over topology of diagrams
- no way to separate manifolds from pseudo-manifolds
- no direct/nice relation with 3d simplicial (classical or quantum) gravity - not enough structure/data in the amplitudes, and in boundary states
- in $d>2$, gravity is -much- less trivial, both classically and quantum-mechanically

■ need to add structure and data $\Rightarrow$ Group Field Theory !!!

## TENSOR MODELS

■ $Z$ defined as sum over all 3d simplicial complexes (of manifolds and pseudo-manifolds)
$($ pseudo-manifold $=$ neighbourood of point not homeomorphic to a 3-Ball)
■ why are they not good?
■ no topological expansion of amplitudes - no control over topology of diagrams

- no way to separate manifolds from pseudo-manifolds
- no direct/nice relation with 3d simplicial (classical or quantum) gravity - not enough structure/data in the amplitudes, and in boundary states
■ in $d>2$, gravity is -much- less trivial, both classically and quantum-mechanically
■ need to add structure and data $\Rightarrow$ Group Field Theory !!!


## From point particles To Fields, From matrices/TENsors To GFT

point particles

matrices

tensors
$S(T)=\frac{1}{2} T_{i j k} T_{k j i}+$


fields
$S(\phi)=\frac{1}{2} \int d x \phi(x)^{2}+\frac{\lambda}{3} \int d x \phi(x)^{3}$

## Group Field Theory

$S(\phi)=\frac{1}{2} \int[d g] \phi\left(g_{1}, g_{2}\right) \phi\left(g_{2}, g_{1}\right)+$ $+\frac{\lambda}{3!} \int[d g] \phi\left(g_{1}, g_{2}\right) \phi\left(g_{2}, g_{3}\right) \phi\left(g_{3}, g_{1}\right)$

## Group Field Theory

$S(\phi)=\frac{1}{2} \int\left[\boldsymbol{d} g^{\prime}\right] \phi\left(g_{1}, g_{2}, g_{3}\right) \phi\left(g_{3}, g_{2}, g_{1}\right)+$

$$
\begin{aligned}
& +\frac{\lambda}{4!} \int[d g] \phi\left(g_{1}, g_{2}, g_{3}\right) \phi\left(g_{3}, g_{4}, g_{5}\right) \\
& \phi\left(g_{5}, g_{6}, g_{1}\right) \phi\left(g_{6}, g_{4}, g_{2}\right)
\end{aligned}
$$

## FROM POINT PARTICLES TO FIELDS, FROM MATRICES/TENSORS TO GFT

point particles
$S(X)=\frac{1}{2} X^{2}+\frac{\lambda}{3} X^{3}$
 $\downarrow$ matrices

$$
\begin{aligned}
S(M) & =\frac{1}{2} M_{i j} M_{j i}+ \\
& +\frac{\lambda}{3} M_{i j} M_{j k} M_{k i}
\end{aligned}
$$

$$
\downarrow
$$

tensors
$S(T)=\frac{1}{2} T_{i j k} T_{k j i}+$
$+\frac{\lambda}{3} T_{i j k} T_{k l m} T_{m n i} T_{n l j}$
$\downarrow$

fields
$S(\phi)=\frac{1}{2} \int d x \phi(x)^{2}+\frac{\lambda}{3} \int$

## Group Field Theory

$S(\phi)=\frac{1}{2} \int[d g] \phi\left(g_{1}, g_{2}\right) \phi\left(g_{2}, g_{1}\right)+$ $+\frac{\lambda}{3!} \int[d g] \phi\left(g_{1}, g_{2}\right) \phi\left(g_{2}, g_{3}\right) \phi\left(g_{3}, g_{1}\right)$

## Group Field Theory

$\begin{aligned} S(\phi)= & \frac{1}{2} \int[d g] \phi\left(g_{1}, g_{2}, g_{3}\right) \phi\left(g_{3}, g_{2}, g_{1}\right)+ \\ & +\frac{\lambda}{4!} \int[d g] \phi\left(g_{1}, g_{2}, g_{3}\right) \phi\left(g_{3}, g_{4}, g_{5}\right)\end{aligned}$


## FROM POINT PARTICLES TO FIELDS, FROM MATRICES/TENSORS TO GFT

point particles
$S(X)=\frac{1}{2} X^{2}+\frac{\lambda}{3} X^{3}$  matrices

$$
\begin{aligned}
S(M) & =\frac{1}{2} M_{i j} M_{j i}+ \\
& +\frac{\lambda}{3} M_{i j} M_{j k} M_{k i}
\end{aligned}
$$

$$
\downarrow
$$

tensors
$S(T)=\frac{1}{2} T_{i j k} T_{k j i}+$
$+\frac{\lambda}{3} T_{i j k} T_{k l m} T_{m n i} T_{n l j}$
$\downarrow$

fields
$S(\phi)=\frac{1}{2} \int d x \phi(x)^{2}+\frac{\lambda}{3} \int d x \phi(x)$

Group Field Theory
$S(\phi)=\frac{1}{2}$ $+\frac{\lambda}{3!} \int[d g] \phi\left(g_{1}, g_{2}\right) \phi\left(g_{2}, g_{3}\right) \phi\left(g_{3}, g_{1}\right)$

## Group Field Theory

$\left({ }_{(1)}\right)=\frac{1}{2}$



## From point particles to fields, from matrices/TENSORS To GFT

point particles
$S(X)=\frac{1}{2} X^{2}+\frac{\lambda}{3} X^{3}$ $\downarrow$ matrices

$$
\begin{aligned}
& S(M)=\frac{1}{2} M_{i j} M_{j i}+ \\
& \quad+\frac{\lambda}{3} M_{i j} M_{j k} M_{k i}
\end{aligned}
$$

$$
\downarrow
$$

tensors
$S(T)=\frac{1}{2} T_{i j k} T_{k j i}+$ $+\frac{\lambda}{3} T_{i j k} T_{k l m} T_{m n i} T_{n l j}$

$\longrightarrow$

$\qquad$ Group Field Theory
fields

Group Field Theory

$$
\begin{aligned}
& S(\phi)=\frac{1}{2} \int d x \phi(x)^{2}+\frac{\lambda}{3} \int d x \phi(x)^{3} \\
& \downarrow
\end{aligned}
$$

$$
\begin{aligned}
& S(\phi)=\frac{1}{2} \int[d g] \phi\left(g_{1}, g_{2}\right) \phi\left(g_{2}, g_{1}\right)+ \\
& +\frac{\lambda}{3!} \int[d g] \phi\left(g_{1}, g_{2}\right) \phi\left(g_{2}, g_{3}\right) \phi\left(g_{3}, g_{1}\right) \\
& \downarrow
\end{aligned}
$$

$$
\begin{array}{r}
S(\phi)=\frac{1}{2} \int[d g] \phi\left(g_{1}, g_{2}, g_{3}\right) \phi\left(g_{3}, g_{2}, g_{1}\right)+ \\
+\frac{\lambda}{4!} \int[d g] \phi\left(g_{1}, g_{2}, g_{3}\right) \phi\left(g_{3}, g_{4}, g_{5}\right) \\
\phi\left(g_{5}, g_{6}, g_{1}\right) \phi\left(g_{6}, g_{4}, g_{2}\right)
\end{array}
$$

## The Group Field Theory formalism

general reviews:
Freidel, '05, Oriti, '06, '07, '10
work by:
Baratin, Ben Geloun, Bonzom, Boulatov, De Pietri, Fairbairn, Freidel, Girelli, Gurau, Livine, Louapre, Krajewski, Krasnov, Magnen, Noui, Ooguri, Oriti, Perez, Reisenberger, Rivasseau, Rovelli, Ryan, Smerlak, Tanasa, .......

## 3D QUANTUM GRAVITY AS A GFT : KINEMATICS OF 2D QUANTUM SPACE

"tensor models plus pre-geometric data"guided by LQG, simplicial QG, NCG

- Triangle in $\mathbb{R}^{3}$; (2nd quantized) kinematics encoded in field
$\varphi$ (space of triangle geometries)
- triangle geometries parametrized by three $5 u(2)$ Lie algebra elements $x_{i}$ attached to edges $=$ discrete triad variables (discretization of triad fields along edges)
- $\mathfrak{s u}(2)$ is non-commutative space; $\varphi$ should reflect this non-commutativity
- from LOG (simplicial BF): phase space for edge $=\mathcal{T}^{*} \mathrm{SU}(2) \simeq \mathfrak{s u}(2) \times \mathrm{SU}(2)$


## 3D QUANTUM GRAVITY AS A GFT : KINEMATICS OF 2D QUANTUM SPACE

"tensor models plus pre-geometric data"guided by LQG, simplicial QG, NCG
■ Triangle in $\mathbb{R}^{3}$; (2nd quantized) kinematics encoded in field $\varphi$ (space of triangle geometries)

- triangle geometries parametrized by three $\mathfrak{s u}(2)$ Lie algebra elements $x_{i}$ attached to edges $=$ discrete triad variables (discretization of triad fields along edges)
- $\mathfrak{s u}(2)$ is non-commutative space; $\varphi$ should reflect this non-commutativity
$\square$ from LOG (simplicial BF): phase space for edge $=\mathcal{T}^{*} \mathrm{SU}(2) \simeq \mathfrak{s u}(2) \times \mathrm{SU}(2)$


## 3D QUANTUM GRAVITY AS A GFT : KINEMATICS OF 2D QUANTUM SPACE

"tensor models plus pre-geometric data"guided by LQG, simplicial QG, NCG
■ Triangle in $\mathbb{R}^{3}$; (2nd quantized) kinematics encoded in field $\varphi$ (space of triangle geometries)
■ triangle geometries parametrized by three $\mathfrak{s u}(2)$ Lie algebra elements $x_{i}$ attached to edges $=$ discrete triad variables (discretization of triad fields along edges)

$$
\varphi:\left(x_{1}, x_{2}, x_{3}\right) \in \mathfrak{s u}(2)^{3} \longrightarrow \varphi\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}
$$

- $\mathfrak{s u}(2)$ is non-commutative space; $\varphi$ should reflect this non-commutativity
$\square$ from LQG (simplicial BF): phase space for edge $=\mathcal{T}^{*} \mathrm{SU}(2) \simeq \mathfrak{s u}(2) \times \mathrm{SU}(2)$


## 3D QUANTUM GRAVITY AS A GFT : KINEMATICS OF 2D QUANTUM SPACE

"tensor models plus pre-geometric data"guided by LQG, simplicial QG, NCG
■ Triangle in $\mathbb{R}^{3}$; (2nd quantized) kinematics encoded in field $\varphi$ (space of triangle geometries)
■ triangle geometries parametrized by three $\mathfrak{s u}(2)$ Lie algebra elements $x_{i}$ attached to edges $=$ discrete triad variables (discretization of triad fields along edges)

$$
\varphi:\left(x_{1}, x_{2}, x_{3}\right) \in \mathfrak{s u}(2)^{3} \longrightarrow \varphi\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}
$$

$\square \mathfrak{s u}(2)$ is non-commutative space; $\varphi$ should reflect this non-commutativity

- from LQG (simplicial BF): phase space for edge $=$


## 3D QUANTUM GRAVITY AS A GFT : KINEMATICS OF 2D QUANTUM SPACE

"tensor models plus pre-geometric data"guided by LQG, simplicial QG, NCG
■ Triangle in $\mathbb{R}^{3}$; (2nd quantized) kinematics encoded in field $\varphi$ (space of triangle geometries)
■ triangle geometries parametrized by three $\mathfrak{s u}(2)$ Lie algebra elements $x_{i}$ attached to edges $=$ discrete triad variables (discretization of triad fields along edges)

$$
\varphi:\left(x_{1}, x_{2}, x_{3}\right) \in \mathfrak{s u}(2)^{3} \longrightarrow \varphi\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}
$$

$\square \mathfrak{s u}(2)$ is non-commutative space; $\varphi$ should reflect this non-commutativity
$■$ from LQG (simplicial BF): phase space for edge $=\mathcal{T}^{*} \mathrm{SU}(2) \simeq \mathfrak{s u}(2) \times \mathrm{SU}(2)$
$C(\mathrm{SU}(2)) \leftrightarrow C(\mathfrak{s u}(2))$
based on non-commutative plane waves


## 3D QUANTUM GRAVITY AS A GFT : KINEMATICS OF 2D QUANTUM SPACE

"tensor models plus pre-geometric data"guided by LQG, simplicial QG, NCG
■ Triangle in $\mathbb{R}^{3}$; (2nd quantized) kinematics encoded in field $\varphi$ (space of triangle geometries)
■ triangle geometries parametrized by three $\mathfrak{s u}(2)$ Lie algebra elements $x_{i}$ attached to edges $=$ discrete triad variables (discretization of triad fields along edges)

$$
\varphi:\left(x_{1}, x_{2}, x_{3}\right) \in \mathfrak{s u}(2)^{3} \longrightarrow \varphi\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}
$$

■ $\mathfrak{s u}(2)$ is non-commutative space; $\varphi$ should reflect this non-commutativity
$■$ from LQG (simplicial BF): phase space for edge $=\mathcal{T}^{*} \mathrm{SU}(2) \simeq \mathfrak{s u}(2) \times \mathrm{SU}(2)$

- use non-commutative Fourier transform (Majid, Freidel, Livine, Mourad, Noui,...):

$$
C(\mathrm{SU}(2)) \leftrightarrow C(\mathfrak{s u}(2))
$$

- based on non-commutative plane waves



## 3D QUANTUM GRAVITY AS A GFT : KINEMATICS OF 2D QUANTUM SPACE

"tensor models plus pre-geometric data"guided by LQG, simplicial QG, NCG
■ Triangle in $\mathbb{R}^{3}$; (2nd quantized) kinematics encoded in field $\varphi$ (space of triangle geometries)
■ triangle geometries parametrized by three $\mathfrak{s u}(2)$ Lie algebra elements $x_{i}$ attached to edges $=$ discrete triad variables (discretization of triad fields along edges)

$$
\varphi:\left(x_{1}, x_{2}, x_{3}\right) \in \mathfrak{s u}(2)^{3} \longrightarrow \varphi\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}
$$

■ $\mathfrak{s u}(2)$ is non-commutative space; $\varphi$ should reflect this non-commutativity
$■$ from LQG (simplicial BF): phase space for edge $=\mathcal{T}^{*} \operatorname{SU}(2) \simeq \mathfrak{s u}(2) \times \mathrm{SU}(2)$
■ use non-commutative Fourier transform (Majid, Freidel, Livine, Mourad, Noui,...):

$$
C(\mathrm{SU}(2)) \leftrightarrow C(\mathfrak{s u}(2))
$$

$\square$ based on non-commutative plane waves

$$
e_{g}(x): \mathfrak{s u}(2) \times \mathrm{SU}(2) \rightarrow \mathbb{C}:(x, g) \rightarrow e^{i \frac{1}{2} \operatorname{Tr}(x g)} \text { (fundamental representation) }
$$

## 3D QUANTUM GRAVITY AS A GFT : KINEMATICS OF 2D QUANTUM SPACE

"tensor models plus pre-geometric data"guided by LQG, simplicial QG, NCG
■ Triangle in $\mathbb{R}^{3}$; (2nd quantized) kinematics encoded in field $\varphi$ (space of triangle geometries)
■ triangle geometries parametrized by three $\mathfrak{s u}(2)$ Lie algebra elements $x_{i}$ attached to edges $=$ discrete triad variables (discretization of triad fields along edges)

$$
\varphi:\left(x_{1}, x_{2}, x_{3}\right) \in \mathfrak{s u}(2)^{3} \longrightarrow \varphi\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}
$$

■ $\mathfrak{s u}(2)$ is non-commutative space; $\varphi$ should reflect this non-commutativity
$■$ from LQG (simplicial BF): phase space for edge $=\mathcal{T}^{*} \operatorname{SU}(2) \simeq \mathfrak{s u}(2) \times \mathrm{SU}(2)$
■ use non-commutative Fourier transform (Majid, Freidel, Livine, Mourad, Noui,...):

$$
C(\mathrm{SU}(2)) \leftrightarrow C(\mathfrak{s u}(2))
$$

- based on non-commutative plane waves
$e_{g}(x): \mathfrak{s u}(2) \times \mathrm{SU}(2) \rightarrow \mathbb{C}:(x, g) \rightarrow e^{i \frac{1}{2} \operatorname{Tr}(x g)}$ (fundamental representation)
- $\left\{e_{g}(x)\right\}$ basis of $C(\mathfrak{s u}(2)) \simeq C_{*}\left(\mathbb{R}^{3}\right)=$ functions on $\mathbb{R}^{3}$ with star product "*":

$$
\begin{gathered}
\left(e_{g_{1}} * e_{g_{2}}\right)(x)=e^{i \frac{1}{2} \operatorname{Tr}\left(x g_{1}\right)} * e^{i \frac{1}{2} \operatorname{Tr}\left(x g_{2}\right)}=e^{i \frac{1}{2} \operatorname{Tr}\left(x g_{1} g_{2}\right)}=e_{g_{1} g_{2}}(x) \\
\phi(x)=\int_{\mathrm{SU}(2)} d g \phi(g) e_{g}(x) \quad \phi(g)=\int d \vec{x}\left(\phi * e_{g-1}\right)(x)
\end{gathered}
$$

## 3D QUANTUM GRAVITY AS GFT : KINEMATICS OF 2D QUANTUM SPACE

- straightforward extension to functions of $\mathfrak{s u}(2)^{3}$ (A. Baratin, DO, ' 10 )

$$
\varphi\left(x_{1}, x_{2}, x_{3}\right)=\int[d g]^{3} \varphi\left(g_{1}, g_{2}, g_{3}\right) e_{g_{1}}\left(x_{1}\right) e_{g_{2}}\left(x_{2}\right) e_{g_{3}}\left(x_{3}\right)
$$

group elements $=$ parallel transports of connection along links dual to the edges
■ GFT field defined (initially) as irrep of $\operatorname{DSU}(2)^{\times 3}$
with delta functions:
$\delta_{x}(y):=\int d g e_{g-1}(x) e_{g}(y)$ s.t. $\int d^{3} y\left(\delta_{x} * f\right)(y)=\int d^{3} y\left(f * \delta_{x}\right)(y)=f(x)$
■ in terms of $\varphi\left(g_{1}, g_{2}, g_{3}\right)$,


- by Peter-Weyl decomposition into $\mathrm{SU}(2)$ irreps $\left(C_{n_{1} n_{2} n_{3}}^{j_{1} j_{2} j_{3}}\right.$ is 3 j -symbol $)$ :



## 3D QUANTUM GRAVITY AS GFT : KINEMATICS OF 2D QUANTUM SPACE

■ straightforward extension to functions of $\mathfrak{s u}(2)^{3}{ }_{\text {(A. Baratin, Do, '10) }}$

$$
\varphi\left(x_{1}, x_{2}, x_{3}\right)=\int[d g]^{3} \varphi\left(g_{1}, g_{2}, g_{3}\right) e_{g_{1}}\left(x_{1}\right) e_{g_{2}}\left(x_{2}\right) e_{g_{3}}\left(x_{3}\right)
$$

group elements $=$ parallel transports of connection along links dual to the edges
$■$ GFT field defined (initially) as irrep of $\operatorname{DSU}(2)^{\times 3}$
■ In order to define a geometric triangle, edge vectors have to 'close':

$$
\varphi\left(x_{1}, x_{2}, x_{3}\right)=(C * \varphi)\left(x_{1}, x_{2}, x_{3}\right), \quad C\left(x_{1}, x_{2}, x_{3}\right)=\delta_{0}\left(x_{1}+x_{2}+x_{3}\right)
$$

with delta functions:

$$
\delta_{x}(y):=\int d g e_{g^{-1}}(x) e_{g}(y) \quad \text { s.t. } \quad \int d^{3} y\left(\delta_{x} * f\right)(y)=\int d^{3} y\left(f * \delta_{x}\right)(y)=f(x)
$$

- in terms of $\varphi\left(g_{1}, g_{2}, g_{3}\right)$,

- by Peter-Weyl decomposition into $\mathrm{SU}(2)$ irreps $\left(C_{n_{1} n_{2} n_{3}}^{j_{1} j_{2} /_{3}}\right.$ is 3 j -symbol $)$ :


## 3D QUANTUM GRAVITY AS GFT : KINEMATICS OF 2D QUANTUM SPACE

■ straightforward extension to functions of $\mathfrak{s u}(2)^{3}{ }_{\text {(A. Baratin, Do, '10) }}$

$$
\varphi\left(x_{1}, x_{2}, x_{3}\right)=\int[d g]^{3} \varphi\left(g_{1}, g_{2}, g_{3}\right) e_{g_{1}}\left(x_{1}\right) e_{g_{2}}\left(x_{2}\right) e_{g_{3}}\left(x_{3}\right)
$$

group elements $=$ parallel transports of connection along links dual to the edges
$■$ GFT field defined (initially) as irrep of $\operatorname{DSU}(2)^{\times 3}$
■ In order to define a geometric triangle, edge vectors have to 'close':

$$
\varphi\left(x_{1}, x_{2}, x_{3}\right)=(C * \varphi)\left(x_{1}, x_{2}, x_{3}\right), \quad C\left(x_{1}, x_{2}, x_{3}\right)=\delta_{0}\left(x_{1}+x_{2}+x_{3}\right)
$$

with delta functions:

$$
\delta_{x}(y):=\int d g e_{g^{-1}}(x) e_{g}(y) \quad \text { s.t. } \quad \int d^{3} y\left(\delta_{x} * f\right)(y)=\int d^{3} y\left(f * \delta_{x}\right)(y)=f(x)
$$

■ in terms of $\varphi\left(g_{1}, g_{2}, g_{3}\right)$,

$$
\varphi\left(g_{1}, g_{2}, g_{3}\right)=P \varphi\left(g_{1}, g_{2}, g_{3}\right)=\int_{\mathrm{SU}(2)} d h \phi\left(h g_{1}, h g_{2}, h g_{3}\right)
$$

- by Peter-Weyl decomposition into $\mathrm{SU}(2)$ irreps $\left(C_{n_{1} n_{2} n_{3}}^{\mathrm{jl} / 3}\right.$ is 3 j -symbol):


## 3D QUANTUM GRAVITY AS GFT : KINEMATICS OF 2D QUANTUM SPACE

■ straightforward extension to functions of $\mathfrak{s u}(2)^{3}{ }_{\text {(A. Baratin, Do, '10) }}$

$$
\varphi\left(x_{1}, x_{2}, x_{3}\right)=\int[d g]^{3} \varphi\left(g_{1}, g_{2}, g_{3}\right) e_{g_{1}}\left(x_{1}\right) e_{g_{2}}\left(x_{2}\right) e_{g_{3}}\left(x_{3}\right)
$$

group elements $=$ parallel transports of connection along links dual to the edges
$■$ GFT field defined (initially) as irrep of $\operatorname{DSU}(2)^{\times 3}$
■ In order to define a geometric triangle, edge vectors have to 'close':

$$
\varphi\left(x_{1}, x_{2}, x_{3}\right)=(C * \varphi)\left(x_{1}, x_{2}, x_{3}\right), \quad C\left(x_{1}, x_{2}, x_{3}\right)=\delta_{0}\left(x_{1}+x_{2}+x_{3}\right)
$$

with delta functions:

$$
\delta_{x}(y):=\int d g e_{g^{-1}}(x) e_{g}(y) \quad \text { s.t. } \quad \int d^{3} y\left(\delta_{x} * f\right)(y)=\int d^{3} y\left(f * \delta_{x}\right)(y)=f(x)
$$

■ in terms of $\varphi\left(g_{1}, g_{2}, g_{3}\right)$,

$$
\varphi\left(g_{1}, g_{2}, g_{3}\right)=P \varphi\left(g_{1}, g_{2}, g_{3}\right)=\int_{\mathrm{SU}(2)} d h \phi\left(h g_{1}, h g_{2}, h g_{3}\right)
$$

■ by Peter-Weyl decomposition into $\mathrm{SU}(2)$ irreps $\left(C_{n_{1} n_{2} n_{3}}^{j_{1} j_{2} j_{3}}\right.$ is 3 j -symbol $)$ :

$$
\varphi\left(g_{1}, g_{2}, g_{3}\right)=\sum_{j_{1}, j_{2}, j_{3}} \varphi_{m_{1} m_{2} m_{3}}^{j_{i} j_{2} j_{3}} D_{m_{1} n_{1}}^{j_{1}}\left(g_{1}\right) D_{m_{2} n_{2}}^{j_{2}}\left(g_{2}\right) D_{m_{3} n_{3}}^{j_{3}}\left(g_{3}\right) C_{n_{1} n_{2} n_{3}}^{j_{1} j_{2} j_{3}}
$$

## 3D QUANTUM GRAVITY As GFT: KINEMATICS OF 2D QUANTUM SPACE

■ $\varphi$ is building block of (quantum) 2 d space


■ fields can be convoluted (in group or Lie algebra picture) or traced (in representation picture) with respect to some common argument $\rightarrow$ gluing of multiple triangles along common edges $\rightarrow$ more complex simplicial structures, or, dually, more complicated graphs (many-GFT-particle states)

$\square$ generic observable/state/boundary configuration: $O(\varphi)=\sum_{n} O_{n}\left(\varphi^{* n}\right)$
■ in representation space, generic (polynomial) state is labeled by spin networks (also kinematical quantum states in Loop Quantum Gravity approach)

## 3D QG As GFT: CLASSICAL DYNAMICS OF QUANTUM SPACE

■ Define classical action for $\varphi_{123}=\varphi\left(x_{1}, x_{2}, x_{3}\right)$

- interaction term: four geometric triangles glued pairwise along common edges to form tetrahedron
- kinetic term: gluing of tetrahedra along common triangles, by edge identification
- no gravity, no continuum, no GR input

$$
S=\frac{1}{2} \int[d x]^{3} \varphi_{123} * \varphi_{123}-\frac{\lambda}{4!} \int[d x]^{6} \varphi_{123} * \varphi_{345} * \varphi_{526} * \varphi_{641}
$$

where $\phi_{i} * \phi_{i}:=\left(\phi * \phi_{-}\right)\left(x_{i}\right)$, with $\phi_{-}(x)=\phi(-x)$

- propagator and a vertex:

with $h_{t t^{\prime}}:=h_{t \tau} h_{\tau t^{\prime}}$.


## 3D QG As GFT: CLASSICAL DYNAMICS OF QUANTUM SPACE

$\square$ Define classical action for $\varphi_{123}=\varphi\left(x_{1}, x_{2}, x_{3}\right)$
$\square$ interaction term: four geometric triangles glued pairwise along common edges to form tetrahedron

- kinetic term: gluing of tetrahedra along common triangles, by edge identification
- no gravity, no continuum, no GR input

where $\phi_{i} * \phi_{i}:=\left(\phi * \phi_{-}\right)\left(x_{i}\right)$, with $\phi_{-}(x)=\phi(-x)$
- propagator and a vertex:

with $h_{t t^{\prime}}:=h_{t \tau} h_{\tau t^{\prime}}$.


## 3D QG As GFT: CLASSICAL DYNAMICS OF QUANTUM SPACE

■ Define classical action for $\varphi_{123}=\varphi\left(x_{1}, x_{2}, x_{3}\right)$
$\square$ interaction term: four geometric triangles glued pairwise along common edges to form tetrahedron
$\square$ kinetic term: gluing of tetrahedra along common triangles, by edge identification
no gravity, no continuum, no GR input

where $\phi_{i} * \phi_{i}:=\left(\phi * \phi_{-}\right)\left(x_{i}\right)$, with $\phi_{-}(x)=\phi(-x)$

- propagator and a vertex:

with $h_{t t^{\prime}}:=h_{t \tau} h_{\tau t^{\prime}}$.


## 3D QG As GFT: CLASSICAL DYNAMICS OF QUANTUM SPACE

■ Define classical action for $\varphi_{123}=\varphi\left(x_{1}, x_{2}, x_{3}\right)$
$\square$ interaction term: four geometric triangles glued pairwise along common edges to form tetrahedron
■ kinetic term: gluing of tetrahedra along common triangles, by edge identification
■ no gravity, no continuum, no GR input

where $\phi_{i} * \phi_{i}:=\left(\phi * \phi_{-}\right)\left(x_{i}\right)$, with $\phi_{-}(x)=\phi(-x)$

- propagator and a vertex:

with $h_{t t^{\prime}}:=h_{t \tau} h_{\tau t^{\prime}}$.


## 3D QG As GFT: CLASSICAL DYNAMICS OF QUANTUM SPACE

$\square$ Define classical action for $\varphi_{123}=\varphi\left(x_{1}, x_{2}, x_{3}\right)$
$\square$ interaction term: four geometric triangles glued pairwise along common edges to form tetrahedron
■ kinetic term: gluing of tetrahedra along common triangles, by edge identification
■ no gravity, no continuum, no GR input

$$
S=\frac{1}{2} \int[d x]^{3} \varphi_{123} * \varphi_{123}-\frac{\lambda}{4!} \int[d x]^{6} \varphi_{123} * \varphi_{345} * \varphi_{526} * \varphi_{641}
$$

where $\phi_{i} * \phi_{i}:=\left(\phi * \phi_{-}\right)\left(x_{i}\right)$, with $\phi_{-}(x)=\phi(-x)$

## - propagator and a vertex:



## 3D QG As GFT: CLASSICAL DYNAMICS OF QUANTUM SPACE

■ Define classical action for $\varphi_{123}=\varphi\left(x_{1}, x_{2}, x_{3}\right)$
$\square$ interaction term: four geometric triangles glued pairwise along common edges to form tetrahedron
■ kinetic term: gluing of tetrahedra along common triangles, by edge identification
■ no gravity, no continuum, no GR input

$$
S=\frac{1}{2} \int[d x]^{3} \varphi_{123} * \varphi_{123}-\frac{\lambda}{4!} \int[d x]^{6} \varphi_{123} * \varphi_{345} * \varphi_{526} * \varphi_{641}
$$

where $\phi_{i} * \phi_{i}:=\left(\phi * \phi_{-}\right)\left(x_{i}\right)$, with $\phi_{-}(x)=\phi(-x)$
■ propagator and a vertex:


$$
\int d h_{t} \prod_{i=1}^{3}\left(\delta_{-x_{i}} * e_{h_{t}}\right)\left(y_{i}\right), \quad \int \prod_{t} d h_{t} \prod_{i=1}^{6}\left(\delta_{-x_{i}} * e_{h_{t t^{\prime}}}\right)\left(y_{i}\right)
$$

with $h_{t t^{\prime}}:=h_{t \tau} h_{\tau t^{\prime}}$.

## 3D QG AS GFT: CLASSICAL DYNAMICS OF QUANTUM 2D SPACE

- geometrical meaning:


■ Group variables $h_{t}$ and $h_{t \tau}$ are parallel transports through the triangle $t$, and from the center of the tetrahedron $\tau$ to triangle $t$
■ pair of variables $\left(x_{e}, y_{e}\right)$ associated to the same edge $e=$ edges vectors seen from the frames associated to the two triangles $t, t^{\prime}$ sharing it

- vertex functions: the two variables are identified, up to parallel transport $h_{t t^{\prime}}$, and up to a sign for two opposite edge orientations
- propagator encodes a similar gluing condition
- in group picture (Boulatov, '92):

- geometric meaning: flatness of each wedge (portion of face inside tetrahedron): piecewise-flat context, trivial matching at boundary


## 3D QG As GFT: CLASSICAL DYNAMICS OF QUANTUM 2D SPACE

- geometrical meaning:


■ Group variables $h_{t}$ and $h_{t \tau}$ are parallel transports through the triangle $t$, and from the center of the tetrahedron $\tau$ to triangle $t$

- pair of variables $\left(x_{e}, y_{e}\right)$ associated to the same edge $e=$ edges vectors seen from the frames associated to the two triangles $t, t^{\prime}$ sharing it
- vertex functions: the two variables are identified, up to parallel transport $h_{t t^{\prime}}$, and up to a sign for two opposite edge orientations
- propagator encodes a similar gluing condition
$\square$ in group picture (Boulatov, 92 ):

$$
\mathcal{K}\left(g_{e}, \tilde{g}_{e}\right)=\int d h_{t} \prod_{e=1}^{3} \delta\left(g_{e} h_{t} \tilde{g}_{e}^{-1}\right) \quad \mathcal{V}\left(g_{t t^{\prime}}\right)=\prod_{t \tau=1}^{4} \int d h_{t \tau} \prod_{t \neq t^{\prime}} \delta\left(g_{t t^{\prime}} h_{t \tau} h_{t^{\prime} \tau}^{-1} \tilde{g}_{t t^{\prime}}^{-1}\right)
$$

$\square$ geometric meaning: flatness of each wedge (portion of face inside tetrahedron): piecewise-flat context, trivial matching at boundary

## 3D QG As GFT: CLASSICAL DYNAMICS OF QUANTUM 2D SPACE

■ in representation space:

$$
\begin{aligned}
S(\varphi) & =\frac{1}{2} \sum_{\{j\},\{m\}} \varphi_{m_{1} m_{2} m_{3}}^{j_{1} j_{2} j_{3}} \varphi_{m_{3} m_{2} m_{1}}^{j_{3 j} j_{2} j_{1}}- \\
& -\frac{\lambda}{4!} \sum \varphi_{m_{1} m_{2} m_{3}}^{j_{1} j_{3} j_{3}} \varphi_{m_{3} m_{4} m_{5}}^{j_{3} j_{j} j_{5}} \varphi_{m_{5} m_{2} m_{6}}^{j_{j} j_{j} j_{6}} \varphi_{m_{6} m_{4} m_{1}}^{j_{j} j_{i} j_{1}}\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{3} \\
j_{4} & j_{5} & j_{6}
\end{array}\right\}
\end{aligned}
$$

■ from which:

$$
\begin{aligned}
\mathcal{K} & =\mathcal{K}^{-1}=\delta_{j_{1} \tilde{j}_{1}} \delta_{m_{1} \tilde{m}_{1}} \delta_{j_{2} \tilde{j}_{2}} \delta_{m_{2} \tilde{m}_{2}} \delta_{j_{3} \tilde{j}_{3}} \delta_{m_{3} \tilde{m}_{3}} \\
\mathcal{V} & =\delta_{j_{1} \tilde{j}_{1}} \delta_{m_{1} \tilde{m}_{1}} \delta_{j_{2} \tilde{j}_{2}} \delta_{m_{2} \tilde{m}_{2}} \delta_{j_{3} \tilde{j}_{3}} \delta_{m_{3} \tilde{m}_{3}} \delta_{j_{4} \tilde{j}_{4}} \delta_{m_{4} \tilde{m}_{4}} \delta_{j_{5} \tilde{j}_{5}} \delta_{m_{5} \tilde{m}_{5}} \delta_{j_{6} \tilde{\sigma}_{6}} \delta_{m_{6} \tilde{m}_{6}}\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{3} \\
j_{4} & j_{5} & j_{6}
\end{array}\right\}
\end{aligned}
$$

- geometry rather obscure - however, dynamics directly in terms of quantum numbers labelling quantum states of the theory


## 3D QG As GFT: MICROSCOPIC QUANTUM DYNAMICS

- the quantum theory is defined by the partition function, in Feynman expansion:

$$
Z=\int \mathcal{D} \phi e^{i S[\phi]}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}[\Gamma]} Z(\Gamma)
$$

- building blocks of FD are:
- this produces: 2-cells, identified by strands of propagation passing through several vertices, and then closing (for closed FD), dual to edges; 'bubbles' = 3-cells bounded by the above 2-cells, dual to vertices of simplicial complex


- Feynman graphs $\Gamma$ are fat graphs/cellular complexes topologically dual to 3d triangulated (pseudo-)manifolds of ALL topologies


## 3D QG As GFT: MICROSCOPIC QUANTUM DYNAMICS

- the quantum theory is defined by the partition function, in Feynman expansion:

$$
Z=\int \mathcal{D} \phi e^{i S[\phi]}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}[\Gamma]} Z(\Gamma)
$$

■ building blocks of FD are:

- lines of propagation, with 3 labelled strands (dual to triangles),
- vertices of interaction (made of $4 \times 3$ labelled strands re-routed following the combinatorics of a tetrahedron)
■ this produces: 2-cells, identified by strands of propagation passing through several vertices, and then closing (for closed FD), dual to edges; 'bubbles' $=$ 3-cells bounded by the above 2-cells, dual to vertices of simplicial complex


■ Feynman graphs $\Gamma$ are fat graphs/cellular complexes topologically dual to 3d triangulated (pseudo-)manifolds of ALL topologies

## 3D QG as GFT: GFT FEynMAn Amplitudes

Feynman amplitudes $Z(\Gamma)$ obtained by convoluting vertices with propagators
They can be expressed, equivalently, in Lie algebra, group or representation picture
Consider first the Lie algebra (non-commutative) representation

It shows explicit link with simplicial gravity path integrals
(solution to first problem of tensor models)

## 3D QG as GFT: GFT FEynMAn Amplitudes

Feynman amplitudes $Z(\Gamma)$ obtained by convoluting vertices with propagators
They can be expressed, equivalently, in Lie algebra, group or representation picture

Consider first the Lie algebra (non-commutative) representation

It shows explicit link with simplicial gravity path integrals
(solution to first problem of tensor models)

## 3D QG as GFT: GFT FEynMAn Amplitudes

Feynman amplitudes $Z(\Gamma)$ obtained by convoluting vertices with propagators
They can be expressed, equivalently, in Lie algebra, group or representation picture

Consider first the Lie algebra (non-commutative) representation

It shows explicit link with simplicial gravity path integrals
(solution to first problem of tensor models)

## 3D QG as GFT: GFT FEynMAn Amplitudes

Feynman amplitudes $Z(\Gamma)$ obtained by convoluting vertices with propagators
They can be expressed, equivalently, in Lie algebra, group or representation picture

Consider first the Lie algebra (non-commutative) representation

It shows explicit link with simplicial gravity path integrals (solution to first problem of tensor models)

## FEYNMAN AMPLITUDES IN LIE ALGEBRA SPACE (A.baratin, do, ${ }^{\prime} 10$ )

Propagator and vertex joined by $\star$-product (ordering of functions $\leftarrow$ orientation) Each loop of strands bounds a face of $\Gamma$, dual to an edge of triangulation $\Delta$
Under integration over $h_{t} \in \operatorname{SU}(2), Z(\Gamma)$ factorizes into face amplitudes $A_{f}[h]$
Consider oriented loop bounding $f \in \Gamma$ and ordered sequence $\left\{\tau_{j}\right\}_{0 \leq N}$ of vertices.
Each vertex $\tau_{j}:\left(\delta_{x_{j}} \star e_{h_{j j+1}}\right)\left(x_{j+1}\right)$, with $h_{j j+1}=h_{\tau_{j j} t_{j}} h_{t_{j} \tau_{j+1}}$

$$
A_{f}[h]=\int \prod_{j=1}^{N} d x_{j} \overrightarrow{\boldsymbol{\star}}_{j=0}^{N+1}\left(\delta_{x_{j}} \star e_{h_{j j+1}}\right)\left(x_{j+1}\right) \quad x_{N+1}=x_{0}
$$

(identification, up to parallel transport, of metric variables $x_{e}$ in different tetrahedra) Integrate $N$ variables $x_{1}, \cdots x_{N}$; plane waves compose to depend on total holonomy $H_{0}:=h_{01} \cdots h_{N 0}$ around $\partial f$, then 'close the loop' by setting $x_{N+1}=x_{0}$ We obtain:

$$
Z(\Gamma)=\int \prod_{L} d h_{L} \prod_{f} d x_{f} e^{i \sum_{f} \operatorname{Tr}\left(x_{f} H_{f}\right)}
$$

This is simplicial path integral of 1st order 3d gravity (or 3d $B F$ theory)
continuum theory: $S(e, \omega)=\int_{\mathcal{M}} \operatorname{tr}(e \wedge F(\omega))$
for open FD, one gets 3d gravity with boundary terms (fixed boundary triad)

## 3D QG as GFT: GFT FEynMAn Amplitudes

In Lie algebra (discrete metric) $x_{e}$ picture (A.Baratin, Do, ${ }^{10}$ ):

$$
Z(\Gamma)=\int_{\mathrm{SU}(2)} \prod_{t} d h_{t} \int_{\mathfrak{s u}(2)} \prod_{f} d x_{f} e^{i \sum_{f} \operatorname{Tr} x_{f} H_{f}} \quad H_{f}=\prod_{L=t t^{\prime} \in \partial f} h_{L}
$$

Simplicial path integral of 1 st order 3 d gravity (or $3 \mathrm{~d} B F$ theory)
In group variables only, one obtains:

volume of space of flat (discrete) connections (consistent with continuum picture)
In terms of group representations (quantum numbers of pre-geometry):


Ponzano-Regge spin foam (state sum) model
spin foam models are sum over histories of spin network states in Loop Quantum Gravity; correspondence GFT Feynman amplitudes - spin fqam models is 証, geqneric

## 3D QG as GFT: GFT FEynMAn Amplitudes

In Lie algebra (discrete metric) $x_{e}$ picture (A.Barain, Do, ${ }^{10}$ ):

$$
Z(\Gamma)=\int_{\mathrm{SU}(2)} \prod_{t} d h_{t} \int_{\mathfrak{s u}(2)} \prod_{f} d x_{f} e^{i \sum_{f} \operatorname{Tr} x_{f} H_{f}} \quad H_{f}=\prod_{L=t t^{\prime} \in \partial f} h_{L}
$$

Simplicial path integral of 1st order 3d gravity (or 3d $B F$ theory)
In group variables only, one obtains:

volume of space of flat (discrete) connections (consistent with continuum picture)
In terms of group representations (quantum numbers of pre-geometry):


Ponzano-Regge spin foam (state sum) model
spin foam models are sum over histories of spin network states in Loop Quantum Gravity; correspondence GFT Feynman amplitudes - spin fqapr mequls is generic

## 3D QG As GFT: GFT FEYNMAN AMPLITUDES

In Lie algebra (discrete metric) $x_{e}$ picture (A.Barain, Do, ${ }^{10}$ ):

$$
Z(\Gamma)=\int_{\mathrm{SU}(2)} \prod_{t} d h_{t} \int_{\mathfrak{s u}(2)} \prod_{f} d x_{f} e^{i \sum_{f} \operatorname{Tr} x_{f} H_{f}} \quad H_{f}=\prod_{L=t t^{\prime} \in \partial f} h_{L}
$$

Simplicial path integral of 1st order 3d gravity (or 3d BF theory)
In group variables only, one obtains:

$$
Z(\Gamma)=\int_{\mathrm{SU}(2)} \prod_{L} d h_{L} \prod_{f} \delta\left(H_{f}\right) \quad H_{f}=\prod_{L=t t^{\prime} \in \partial f} h_{L}
$$

volume of space of flat (discrete) connections (consistent with continuum picture)
In terms of group representations (quantum numbers of pre-geometry):


Ponzano-Regge spin foam (state sum) model
spin foam models are sum over histories of spin network states in Loop Quantum Gravity; correspondence GFT Feynman amplitudes - spin fqam meplels 咅s generic

## 3D QG As GFT: GFT FEYNMAN AMPLITUDES

In Lie algebra (discrete metric) $x_{e}$ picture (A.Baratin, Do, ${ }^{10}$ ):

$$
Z(\Gamma)=\int_{\mathrm{SU}(2)} \prod_{t} d h_{t} \int_{\mathfrak{s u ( 2 )}} \prod_{f} d x_{f} e^{i \sum_{f} \operatorname{Tr} x_{f} H_{f}} \quad H_{f}=\prod_{L=t t^{\prime} \in \partial f} h_{L}
$$

Simplicial path integral of 1st order 3d gravity (or 3d BF theory)
In group variables only, one obtains:

$$
Z(\Gamma)=\int_{\mathrm{SU}(2)} \prod_{L} d h_{L} \prod_{f} \delta\left(H_{f}\right) \quad H_{f}=\prod_{L=t t^{\prime} \in \partial f} h_{L}
$$

volume of space of flat (discrete) connections (consistent with continuum picture) In terms of group representations (quantum numbers of pre-geometry):

$$
Z(\Gamma)=\left(\prod_{f} \sum_{j_{f}}\right) \prod_{f}\left(2 j_{f}+1\right) \prod_{v}\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{3} \\
j_{4} & j_{5} & j_{6}
\end{array}\right\}
$$

Ponzano-Regge spin foam (state sum) model
spin foam models are sum over histories of spin network states in Loop Quantum Gravity; correspondence GFT Feynman amplitudes - spin foam models is generic

## GFT: some recent results

- diffeomorphisms in GFT

■ GFT perturbative renormalization
■ From GFT to non-commutative QFT for matter

## DIFFEOMORPHISM SYMMETRY IN 3D GRAVITY AND GFT

Continuum 3d BF theory:

- translation symmetry: $\delta_{\phi}^{T} e=d_{\omega} \phi \quad \delta_{\phi} \omega=0 \quad \phi=\mathfrak{s u}(2)$-valued scalar

■ local rotation symmetry: $\delta_{\Lambda}^{R} e=[e, \Lambda] \quad \delta_{\Lambda}^{R} \omega=d_{\omega} \Lambda \quad \Lambda \in \mathfrak{s u}(2)$
■ diffeomorphism symmetry:

$$
\delta_{\xi}^{D} e=d\left(\iota_{\xi} e\right)+\iota_{\xi}(d e) \quad \delta_{\xi}^{D} \omega=d\left(\iota_{\xi} \omega\right)+\iota_{\xi}(d \omega) \quad \xi \text { vector field }
$$

■ on-shell (classically) diffeos obtained by combination of translation and rotation
In discrete gravity diffeos are generically broken (Dittrich-Bahr '09) but leave residual symmetry at least in 3d with $\Lambda=0$ (Freidel-Louapre '02):

- discrete translation symmetry:

$$
B_{e} \rightarrow B_{e}+\phi_{v 1}+\left[\Omega_{v 1}\left(g_{L}\right), \phi_{v 1}\right]-\phi_{v 2}-\left[\Omega_{v 2}\left(g_{L}\right), \phi_{v 2}\right]
$$

■ discrete rotation symmetry: $B_{e}(\sigma) \rightarrow k_{\sigma} B_{e}(\sigma) k_{\sigma}^{-1} \quad g_{L} \rightarrow k_{\sigma 1} g_{L} k_{\sigma 2}^{-1}$
To identify diffeomorphism symmetry, need to work in (non-commutative) triad representation of GFT action - (necessary to) use "colored model"

## DIFFEOMORPHISM SYMMETRY IN B OULATOV MODEL (a. вaratin, f. Girelı, do, '10)

label vertices in tetrahedron by $i=1,2,3,4$ - edges are labeled as $e=(i j)$ - color triangles of tetrahedron by their 3 vertices - define 4 fields: $\phi_{i j k}$ (coloring needed for field transformation)

$$
\begin{aligned}
& S\left(\left\{\phi_{i j k}\right\}\right)=\sum_{(i j k)} \int\left[d x_{i j}\right]\left(\phi_{i j k} * \phi_{i j k}\right)\left(x_{i j}, x_{j k}, x_{k i}\right)+ \\
+ & \frac{\lambda}{4!} \int \phi_{123}\left(x_{12}, x_{23}, x_{31}\right) * \phi_{234}\left(x_{32}, x_{34}, x_{41}\right) * \phi_{124}\left(x_{21}, x_{24}, x_{14}\right) * \phi_{134}\left(x_{13}, x_{43}, x_{43}\right)
\end{aligned}
$$

■ transformation of GFT field (for $\epsilon_{v} \in \mathfrak{s u}(2)$ ) (translation of triangle vertices):

$$
\begin{gathered}
\left(T_{\left\{\epsilon_{\nu}\right\}} \triangleright \phi_{123}\right)\left(x_{12}, x_{23}, x_{31}\right)={ }^{\prime} \phi\left(x_{12}-\epsilon_{1}+\epsilon_{2}, x_{23}-\epsilon_{2}+\epsilon_{3}, x_{31}-\epsilon_{3}+\epsilon_{1}\right)^{\prime} \\
\left(T_{\left\{\epsilon_{v}\right\}} \triangleright \phi_{123}\right)\left(g_{12}, g_{23}, g_{31}\right)=e^{i \operatorname{Tr}\left(\epsilon_{1}\left(g_{31} g_{12}^{-1}\right)\right)} e^{i \operatorname{Tr}\left(\epsilon_{2}\left(g_{12} g_{23}^{-1}\right)\right)} e^{i \operatorname{Tr}\left(\epsilon_{3}\left(g_{23} g_{31}^{-1}\right)\right)} \phi\left(g_{12}, g_{23}, g_{31}\right)
\end{gathered}
$$

$\square$ can go to 'vertex variables': $\phi\left(x_{12}, x_{23}, x_{31}\right) \rightarrow \phi\left(x_{1}, x_{2}, x_{3}\right)$
■ action takes form (schematically):

$$
\begin{aligned}
& S\left(\left\{\phi_{i j k}\right\}\right)=\sum_{(i j k)} \int\left[d x_{i}\right]\left(\phi_{i j k} * \phi_{i j k}\right)\left(x_{i}, x_{j}, x_{k}\right)+ \\
& +\quad \frac{\lambda}{4!} \int \phi_{123}\left(x_{1}, x_{2}, x_{3}\right) * \phi_{234}\left(x_{3}, x_{4}, x_{2}\right) * \phi_{124}\left(x_{2}, x_{4}, x_{1}\right) * \phi_{134}\left(x_{1}, x_{4}, x_{3}\right)
\end{aligned}
$$

## DIFFEOMORPHISM SYMMETRY IN BOULATOV MODEL (a. вaratin, f. Girell, do, '10)



■ see intertwiner of single copy of $D S U(2)$ translation at each vertex of $\Delta$can show that action $S\left(\left\{\phi_{i j k}\right\}\right)$ is invariant (care with ordering, *-products,...)

- it indeed corresponds to the diffeomorphism symmetry at the level of the Feynman amplitudes (simplicial gravity path integrals)
- it can be related to simplicial Bianchi identity in each bubble (vertex of $\Delta$ ) (evaluation of invariant diagram - need to take braiding into account)



## DIFFEOMORPHISM SYMMETRY IN BOULATOV MODEL (a. вaratin, f. Girell, do, '10)



■ see intertwiner of single copy of $D S U(2)$ translation at each vertex of $\Delta$
■ can show that action $S\left(\left\{\phi_{i j k}\right\}\right)$ is invariant (care with ordering, *-products,...)

- it indeed corresponds to the diffeomorphism symmetry at the level of the Feynman amplitudes (simplicial gravity path integrals)
■ it can be related to simplicial Bianchi identity in each bubble (vertex of $\Delta$ ) (evaluation of invariant diagram - need to take braiding into account)



## DIFFEOMORPHISM SYMMETRY IN B OULATOV MODEL (a. вaratin, f. girell, do, '10)



■ see intertwiner of single copy of $D \mathrm{SU}(2)$ translation at each vertex of $\Delta$
■ can show that action $S\left(\left\{\phi_{i j k}\right\}\right)$ is invariant (care with ordering, $*$-products,...)
■ it indeed corresponds to the diffeomorphism symmetry at the level of the Feynman amplitudes (simplicial gravity path integrals)

- it can be related to simplicial Bianchi identity in each bubble (vertex of $\Delta$ ) (evaluation of invariant diagram - need to take braiding into account)



## DIFFEOMORPHISM SYMMETRY IN B OULATOV MODEL (a. вaratin, f. girell, do, '10)



■ see intertwiner of single copy of $D S U(2)$ translation at each vertex of $\Delta$
■ can show that action $S\left(\left\{\phi_{i j k}\right\}\right)$ is invariant (care with ordering, *-products,...)
■ it indeed corresponds to the diffeomorphism symmetry at the level of the Feynman amplitudes (simplicial gravity path integrals)
$■$ it can be related to simplicial Bianchi identity in each bubble (vertex of $\Delta$ ) (evaluation of invariant diagram - need to take braiding into account)


## PERTURBATIVE GFT RENORMALIZATION - THE 3D CASE

(L. Freidel, R. Gurau, DO, '09), (J. Magnen et al., '09), (R. Gurau, '09), (J. Ben Geloun et al., '09, '10), (V. Bonzom, M. Smerlak, '10)

Question: can you control the perturbative GFT sum over Feynman diagrams (including sum over topologies)?
$S=\frac{1}{2} \int\left(\phi\left(g_{1}, g_{2}, g_{3}\right)\right)^{2}+\frac{\lambda}{4!} \int \phi\left(g_{1}, g_{2}, g_{3}\right) \phi\left(g_{3}, g_{4}, g_{5}\right) \phi\left(g_{5}, g_{6}, g_{1}\right) \phi\left(g_{6}, g_{4}, g_{2}\right)$


FD are cellular complexes $\Gamma$ dual to 3 d triangulations

- divergences associated to bubbles (3-cells in FDs)
- highly involved combinatorics, all topologies and pseudo-manifolds $\rightarrow$ difficult to isolate divergences, unclear which FDs need renormalization
- results:


## PERTURBATIVE GFT RENORMALIZATION - THE 3D CASE

(L. Freidel, R. Gurau, DO, '09), (J. Magnen et al., '09), (R. Gurau, '09), (J. Ben Geloun et al., '09, '10), (V. Bonzom, M. Smerlak, '10)

Question: can you control the perturbative GFT sum over Feynman diagrams (including sum over topologies)?

$$
\begin{gathered}
S=\frac{1}{2} \int\left(\phi\left(g_{1}, g_{2}, g_{3}\right)\right)^{2}+\frac{\lambda}{4!} \int \phi\left(g_{1}, g_{2}, g_{3}\right) \phi\left(g_{3}, g_{4}, g_{5}\right) \phi\left(g_{5}, g_{6}, g_{1}\right) \phi\left(g_{6}, g_{4}, g_{2}\right) \\
Z(\Gamma)=\prod_{L \in \Gamma} \int d g_{L} \prod_{f} \delta\left(\prod_{L \in \partial f} g_{L}\right)
\end{gathered}
$$

FD are cellular complexes $\Gamma$ dual to 3 d triangulations

- divergences associated to bubbles (3-cells in FDs)
- highly involved combinatorics, all topologies and pseudo-manifolds $\rightarrow$ difficult to isolate divergences, unclear which FDs need renormalization
- results:


## PERTURBATIVE GFT RENORMALIZATION - THE 3D CASE

(L. Freidel, R. Gurau, DO, '09), (J. Magnen et al., '09), (R. Gurau, '09), (J. Ben Geloun et al., '09, '10), (V. Bonzom, M. Smerlak, '10)

Question: can you control the perturbative GFT sum over Feynman diagrams (including sum over topologies)?

$$
\begin{gathered}
S=\frac{1}{2} \int\left(\phi\left(g_{1}, g_{2}, g_{3}\right)\right)^{2}+\frac{\lambda}{4!} \int \phi\left(g_{1}, g_{2}, g_{3}\right) \phi\left(g_{3}, g_{4}, g_{5}\right) \phi\left(g_{5}, g_{6}, g_{1}\right) \phi\left(g_{6}, g_{4}, g_{2}\right) \\
Z(\Gamma)=\prod_{L \in \Gamma} \int d g_{L} \prod_{f} \delta\left(\prod_{L \in \partial f} g_{L}\right)
\end{gathered}
$$

FD are cellular complexes $\Gamma$ dual to 3 d triangulations

- divergences associated to bubbles (3-cells in FDs)
- highly involved combinatorics, all topologies and pseudo-manifolds $\rightarrow$ difficult to isolate divergences, unclear which FDs need renormalization
- results:


## PERTURBATIVE GFT RENORMALIZATION - THE 3D CASE

(L. Freidel, R. Gurau, DO, '09), (J. Magnen et al., '09), (R. Gurau, '09), (J. Ben Geloun et al., '09, '10), (V. Bonzom, M. Smerlak, '10)

Question: can you control the perturbative GFT sum over Feynman diagrams (including sum over topologies)?

$$
\begin{gathered}
S=\frac{1}{2} \int\left(\phi\left(g_{1}, g_{2}, g_{3}\right)\right)^{2}+\frac{\lambda}{4!} \int \phi\left(g_{1}, g_{2}, g_{3}\right) \phi\left(g_{3}, g_{4}, g_{5}\right) \phi\left(g_{5}, g_{6}, g_{1}\right) \phi\left(g_{6}, g_{4}, g_{2}\right) \\
Z(\Gamma)=\prod_{L \in \Gamma} \int d g_{L} \prod_{f} \delta\left(\prod_{L \in \partial f} g_{L}\right)
\end{gathered}
$$

FD are cellular complexes $\Gamma$ dual to $3 d$ triangulations
■ divergences associated to bubbles (3-cells in FDs)

- highly involved combinatorics, all topologies and pseudo-manifolds $\rightarrow$ difficult to isolate divergences, unclear which FDs need renormalization
- results:


## PERTURBATIVE GFT RENORMALIZATION - THE 3D CASE

(L. Freidel, R. Gurau, DO, '09), (J. Magnen et al., '09), (R. Gurau, '09), (J. Ben Geloun et al., '09, '10), (V. Bonzom, M. Smerlak, '10)

Question: can you control the perturbative GFT sum over Feynman diagrams (including sum over topologies)?

$$
\begin{gathered}
S=\frac{1}{2} \int\left(\phi\left(g_{1}, g_{2}, g_{3}\right)\right)^{2}+\frac{\lambda}{4!} \int \phi\left(g_{1}, g_{2}, g_{3}\right) \phi\left(g_{3}, g_{4}, g_{5}\right) \phi\left(g_{5}, g_{6}, g_{1}\right) \phi\left(g_{6}, g_{4}, g_{2}\right) \\
Z(\Gamma)=\prod_{L \in \Gamma} \int d g_{L} \prod_{f} \delta\left(\prod_{L \in \partial f} g_{L}\right)
\end{gathered}
$$

FD are cellular complexes $\Gamma$ dual to 3 d triangulations
■ divergences associated to bubbles (3-cells in FDs)
■ highly involved combinatorics, all topologies and pseudo-manifolds $\rightarrow$ difficult to isolate divergences, unclear which FDs need renormalization

## PERTURBATIVE GFT RENORMALIZATION - THE 3D CASE

(L. Freidel, R. Gurau, DO, '09), (J. Magnen et al., '09), (R. Gurau, '09), (J. Ben Geloun et al., '09, '10), (V. Bonzom, M. Smerlak, '10)

Question: can you control the perturbative GFT sum over Feynman diagrams (including sum over topologies)?

$$
\begin{gathered}
S=\frac{1}{2} \int\left(\phi\left(g_{1}, g_{2}, g_{3}\right)\right)^{2}+\frac{\lambda}{4!} \int \phi\left(g_{1}, g_{2}, g_{3}\right) \phi\left(g_{3}, g_{4}, g_{5}\right) \phi\left(g_{5}, g_{6}, g_{1}\right) \phi\left(g_{6}, g_{4}, g_{2}\right) \\
Z(\Gamma)=\prod_{L \in \Gamma} \int d g_{L} \prod_{f} \delta\left(\prod_{L \in \partial f} g_{L}\right)
\end{gathered}
$$

FD are cellular complexes $\Gamma$ dual to 3 d triangulations
■ divergences associated to bubbles (3-cells in FDs)
■ highly involved combinatorics, all topologies and pseudo-manifolds $\rightarrow$ difficult to isolate divergences, unclear which FDs need renormalization
■ results:


## PERTURBATIVE GFT RENORMALIZATION - THE 3D CASE

(L. Freidel, R. Gurau, DO, '09), (J. Magnen et al., '09), (R. Gurau, '09), (J. Ben Geloun et al., '09, '10), (V. Bonzom, M. Smerlak, '10)

Question: can you control the perturbative GFT sum over Feynman diagrams (including sum over topologies)?

$$
\begin{gathered}
S=\frac{1}{2} \int\left(\phi\left(g_{1}, g_{2}, g_{3}\right)\right)^{2}+\frac{\lambda}{4!} \int \phi\left(g_{1}, g_{2}, g_{3}\right) \phi\left(g_{3}, g_{4}, g_{5}\right) \phi\left(g_{5}, g_{6}, g_{1}\right) \phi\left(g_{6}, g_{4}, g_{2}\right) \\
Z(\Gamma)=\prod_{L \in \Gamma} \int d g_{L} \prod_{f} \delta\left(\prod_{L \in \partial f} g_{L}\right)
\end{gathered}
$$

FD are cellular complexes $\Gamma$ dual to 3 d triangulations

- divergences associated to bubbles (3-cells in FDs)

■ highly involved combinatorics, all topologies and pseudo-manifolds $\rightarrow$ difficult to isolate divergences, unclear which FDs need renormalization
■ results:
■ algorithm identifying bubbles in FD, and their boundary triangulations (see earlier)

- identification of 'Type 1'graphs, generalization of 2d planar graphs, allowing for contraction procedure, then proved to be -manifolds- of -trivial topology-
■ exact power counting of divergences for this class of FD
- conjecture: these are the only relevant FD in generalized scaling limit
- very general scaling bounds $Z_{\Lambda}$ ( $\Gamma$


## PERTURBATIVE GFT RENORMALIZATION - THE 3D CASE

(L. Freidel, R. Gurau, DO, '09), (J. Magnen et al., '09), (R. Gurau, '09), (J. Ben Geloun et al., '09, '10), (V. Bonzom, M. Smerlak, '10)

Question: can you control the perturbative GFT sum over Feynman diagrams (including sum over topologies)?

$$
\begin{gathered}
S=\frac{1}{2} \int\left(\phi\left(g_{1}, g_{2}, g_{3}\right)\right)^{2}+\frac{\lambda}{4!} \int \phi\left(g_{1}, g_{2}, g_{3}\right) \phi\left(g_{3}, g_{4}, g_{5}\right) \phi\left(g_{5}, g_{6}, g_{1}\right) \phi\left(g_{6}, g_{4}, g_{2}\right) \\
Z(\Gamma)=\prod_{L \in \Gamma} \int d g_{L} \prod_{f} \delta\left(\prod_{L \in \partial f} g_{L}\right)
\end{gathered}
$$

FD are cellular complexes $\Gamma$ dual to 3 d triangulations

- divergences associated to bubbles (3-cells in FDs)

■ highly involved combinatorics, all topologies and pseudo-manifolds $\rightarrow$ difficult to isolate divergences, unclear which FDs need renormalization
■ results:
■ algorithm identifying bubbles in FD, and their boundary triangulations (see earlier)

- identification of 'Type 1'graphs, generalization of 2d planar graphs, allowing for contraction procedure, then proved to be -manifolds- of -trivial topology-
- exact power counting of divergences for this class of FD
- conjecture: these are the only relevant FD in generalized scaling limit


## PERTURBATIVE GFT RENORMALIZATION - THE 3D CASE

(L. Freidel, R. Gurau, DO, '09), (J. Magnen et al., '09), (R. Gurau, '09), (J. Ben Geloun et al., '09, '10), (V. Bonzom, M. Smerlak, '10)

Question: can you control the perturbative GFT sum over Feynman diagrams (including sum over topologies)?

$$
\begin{gathered}
S=\frac{1}{2} \int\left(\phi\left(g_{1}, g_{2}, g_{3}\right)\right)^{2}+\frac{\lambda}{4!} \int \phi\left(g_{1}, g_{2}, g_{3}\right) \phi\left(g_{3}, g_{4}, g_{5}\right) \phi\left(g_{5}, g_{6}, g_{1}\right) \phi\left(g_{6}, g_{4}, g_{2}\right) \\
Z(\Gamma)=\prod_{L \in \Gamma} \int d g_{L} \prod_{f} \delta\left(\prod_{L \in \partial f} g_{L}\right)
\end{gathered}
$$

FD are cellular complexes $\Gamma$ dual to 3 d triangulations

- divergences associated to bubbles (3-cells in FDs)

■ highly involved combinatorics, all topologies and pseudo-manifolds $\rightarrow$ difficult to isolate divergences, unclear which FDs need renormalization
■ results:
■ algorithm identifying bubbles in FD, and their boundary triangulations (see earlier)

- identification of 'Type 1'graphs, generalization of 2d planar graphs, allowing for contraction procedure, then proved to be -manifolds- of -trivial topology-
- exact power counting of divergences for this class of FD
- conjecture: these are the only relevant FD in generalized scaling limit
- very general scaling bounds $Z_{\Lambda}(\Gamma) \leq K^{n} \Lambda^{6+3 n / 2}$, with $n$ vertices


## PERTURBATIVE GFT RENORMALIZATION - THE 3D CASE

(L. Freidel, R. Gurau, DO, '09), (J. Magnen et al., '09), (R. Gurau, '09), (J. Ben Geloun et al., '09, '10), (V. Bonzom, M. Smerlak, '10)

■ Freidel-Louapre modification adding (different gluing of four triangles):

$$
+\frac{\lambda \delta}{4!} \prod_{i=1}^{6} \int d g_{i}\left[\phi\left(g_{1}, g_{2}, g_{3}\right) \phi\left(g_{3}, g_{4}, g_{5}\right) \phi\left(g_{4}, g_{2}, g_{6}\right) \phi\left(g_{6}, g_{5}, g_{1}\right)\right]
$$

- general perturbative bounds: $Z_{\Gamma} \leq K^{n} \Lambda^{6+3 n}$, with $n$ vertices
- perturbative sum for partition function and free energy are Borel summable - colored model (color each triangle in tetrahedron) (same amplitudes)

- complete power counting for Abelian models


## PERTURBATIVE GFT RENORMALIZATION - THE 3D CASE

(L. Freidel, R. Gurau, DO, '09), (J. Magnen et al., '09), (R. Gurau, '09), (J. Ben Geloun et al., '09, '10), (V. Bonzom, M. Smerlak, '10)

- Freidel-Louapre modification adding (different gluing of four triangles):

$$
+\frac{\lambda \delta}{4!} \prod_{i=1}^{6} \int d g_{i}\left[\phi\left(g_{1}, g_{2}, g_{3}\right) \phi\left(g_{3}, g_{4}, g_{5}\right) \phi\left(g_{4}, g_{2}, g_{6}\right) \phi\left(g_{6}, g_{5}, g_{1}\right)\right] .
$$

■ general perturbative bounds: $Z_{\Gamma} \leq K^{n} \Lambda^{6+3 n}$, with $n$ vertices

- perturbative sum for partition function and free energy are Borel summable


## - colored model (color each triangle in tetrahedron) (same amplitudes)



## PERTURBATIVE GFT RENORMALIZATION - THE 3D CASE

(L. Freidel, R. Gurau, DO, '09), (J. Magnen et al., '09), (R. Gurau, '09), (J. Ben Geloun et al., '09, '10), (V. Bonzom, M. Smerlak, '10)

- Freidel-Louapre modification adding (different gluing of four triangles):

$$
+\frac{\lambda \delta}{4!} \prod_{i=1}^{6} \int d g_{i}\left[\phi\left(g_{1}, g_{2}, g_{3}\right) \phi\left(g_{3}, g_{4}, g_{5}\right) \phi\left(g_{4}, g_{2}, g_{6}\right) \phi\left(g_{6}, g_{5}, g_{1}\right)\right]
$$

■ general perturbative bounds: $Z_{\Gamma} \leq K^{n} \Lambda^{6+3 n}$, with $n$ vertices

- perturbative sum for partition function and free energy are Borel summable
- colored model (color each triangle in tetrahedron) (same amplitudes)

$$
S\left[\varphi_{t}\right]=\frac{1}{2} \sum_{t} \int \varphi_{t}^{*} \varphi_{t}-\frac{\lambda}{4!} \int \varphi_{1} \varphi_{2} \varphi_{3} \varphi_{4}+c c \quad t=1,2,3,4
$$

- clear definition of bubbles; colored FDs identify cellular d-complex
- definition of (not standard) computable cellular homology for each FD
- absence of pseudo-manifolds with worse than point-like singularities
- absence of generalized "tadpoles" and of "tadfaces"
- much improved scaling bounds
- definition of homotopy transf.; link $Z(\Gamma)$ to fundamental group of cellular complex.
- conjecture: it is Borel summable
- complete power counting for Abelian models


## PERTURBATIVE GFT RENORMALIZATION - THE 3D CASE

(L. Freidel, R. Gurau, DO, '09), (J. Magnen et al., '09), (R. Gurau, '09), (J. Ben Geloun et al., '09, '10), (V. Bonzom, M. Smerlak, '10)

- Freidel-Louapre modification adding (different gluing of four triangles):

$$
+\frac{\lambda \delta}{4!} \prod_{i=1}^{6} \int d g_{i}\left[\phi\left(g_{1}, g_{2}, g_{3}\right) \phi\left(g_{3}, g_{4}, g_{5}\right) \phi\left(g_{4}, g_{2}, g_{6}\right) \phi\left(g_{6}, g_{5}, g_{1}\right)\right]
$$

- general perturbative bounds: $Z_{\Gamma} \leq K^{n} \Lambda^{6+3 n}$, with $n$ vertices
- perturbative sum for partition function and free energy are Borel summable
$\square$ colored model (color each triangle in tetrahedron) (same amplitudes)

$$
S\left[\varphi_{t}\right]=\frac{1}{2} \sum_{t} \int \varphi_{t}^{*} \varphi_{t}-\frac{\lambda}{4!} \int \varphi_{1} \varphi_{2} \varphi_{3} \varphi_{4}+c c \quad t=1,2,3,4
$$

■ clear definition of bubbles; colored FDs identify cellular d-complex

- definition of (not standard) computable cellular homology for each FD
- absence of pseudo-manifolds with worse than point-like singularities
- absence of generalized "tadpoles"and of "tadfaces"
- much improved scaling bounds
- definition of homotopy transf.; link $Z(\Gamma)$ to fundamental group of cellular complex.

■ conjecture: it is Borel summable

- complete power counting for Abelian models


## PERTURBATIVE GFT RENORMALIZATION - THE 3D CASE

(L. Freidel, R. Gurau, DO, '09), (J. Magnen et al., '09), (R. Gurau, '09), (J. Ben Geloun et al., '09, '10), (V. Bonzom, M. Smerlak, '10)

- Freidel-Louapre modification adding (different gluing of four triangles):

$$
+\frac{\lambda \delta}{4!} \prod_{i=1}^{6} \int d g_{i}\left[\phi\left(g_{1}, g_{2}, g_{3}\right) \phi\left(g_{3}, g_{4}, g_{5}\right) \phi\left(g_{4}, g_{2}, g_{6}\right) \phi\left(g_{6}, g_{5}, g_{1}\right)\right]
$$

- general perturbative bounds: $Z_{\Gamma} \leq K^{n} \Lambda^{6+3 n}$, with $n$ vertices
- perturbative sum for partition function and free energy are Borel summable
- colored model (color each triangle in tetrahedron) (same amplitudes)

$$
S\left[\varphi_{t}\right]=\frac{1}{2} \sum_{t} \int \varphi_{t}^{*} \varphi_{t}-\frac{\lambda}{4!} \int \varphi_{1} \varphi_{2} \varphi_{3} \varphi_{4}+c c \quad t=1,2,3,4
$$

- clear definition of bubbles; colored FDs identify cellular d-complex
- definition of (not standard) computable cellular homology for each FD
- absence of pseudo-manifolds with worse than point-like singularities

■ absence of generalized "tadpoles" and of "tadfaces"

- much improved scaling bounds
- definition of homotopy transf.; link $Z(\Gamma)$ to fundamental group of cellular complex.

■ conjecture: it is Borel summable

- complete power counting for Abelian models


## PERTURBATIVE GFT RENORMALIZATION - THE 3D CASE

(L. Freidel, R. Gurau, DO, '09), (J. Magnen et al., '09), (R. Gurau, '09), (J. Ben Geloun et al., '09, '10), (V. Bonzom, M. Smerlak, '10)

- Freidel-Louapre modification adding (different gluing of four triangles):

$$
+\frac{\lambda \delta}{4!} \prod_{i=1}^{6} \int d g_{i}\left[\phi\left(g_{1}, g_{2}, g_{3}\right) \phi\left(g_{3}, g_{4}, g_{5}\right) \phi\left(g_{4}, g_{2}, g_{6}\right) \phi\left(g_{6}, g_{5}, g_{1}\right)\right]
$$

- general perturbative bounds: $Z_{\Gamma} \leq K^{n} \Lambda^{6+3 n}$, with $n$ vertices
- perturbative sum for partition function and free energy are Borel summable
- colored model (color each triangle in tetrahedron) (same amplitudes)

$$
S\left[\varphi_{t}\right]=\frac{1}{2} \sum_{t} \int \varphi_{t}^{*} \varphi_{t}-\frac{\lambda}{4!} \int \varphi_{1} \varphi_{2} \varphi_{3} \varphi_{4}+c c \quad t=1,2,3,4
$$

■ clear definition of bubbles; colored FDs identify cellular d-complex

- definition of (not standard) computable cellular homology for each FD
- absence of pseudo-manifolds with worse than point-like singularities

■ absence of generalized "tadpoles" and of "tadfaces"

- much improved scaling bounds
- definition of homotopy transf.; link $Z(\Gamma)$ to fundamental group of cellular complex.

■ conjecture: it is Borel summable

- complete power counting for Abelian models


## EFFECTIVE NON-COMMUTATIVE MATTER FIELDS FROM GFT

■ Insights from analogue gravity models in condensed matter (C. Barcelo, S. Liberati, M. Visser, gr-qc/0505065: (modified) GR from GFT hydrodynamics?

- quasi-particles (perturbations around ground state) see only effective metric $\Rightarrow$ effective QFT for matter in emergent metric from GFT? which effective matter QFT? incorporate QG effects? (Do, 0903.3970 [hep-th])
- General hypothesis


## EFFECTIVE NON-COMMUTATIVE MATTER FIELDS FROM GFT

■ Insights from analogue gravity models in condensed matter
(C. Barcelo, S. Liberati, M. Visser, gr-qc/0505065:

■ effective metric and its dynamics from hydrodynamics of microscopic system $\Rightarrow$ (modified) GR from GFT hydrodynamics?
■ quasi-particles (perturbations around ground state) see only effective metric $\Rightarrow$ effective QFT for matter in emergent metric from GFT? which effective matter QFT? incorporate QG effects? (Do, 0903.3970 [hep-th])

- General hypothesis


## EFFECTIVE NON-COMMUTATIVE MATTER FIELDS FROM GFT

■ Insights from analogue gravity models in condensed matter (C. Barcelo, S. Liberati, M. Visser, gr-qc/0505065:
$\square$ effective metric and its dynamics from hydrodynamics of microscopic system $\Rightarrow$ (modified) GR from GFT hydrodynamics?
■ quasi-particles (perturbations around ground state) see only effective metric $\Rightarrow$ effective QFT for matter in emergent metric from GFT? which effective matter QFT? incorporate QG effects? (DO, 0903.3970 [hep-th])
■ General hypothesis

```
- effective QG spacetime is non-commutative of Lie algebra type:
- by duality, corresponding momentum space is a (curved) group manifold (Majid)
| symmetry group of such NC spacetimes is Hopf algebra
- deformed Casimir (dispersion relation), deformed addition of momenta (scattering
    thresholds)
& suggests QFT in such NC spacetime, in momentum space, is a GFT
These NC spacetimes are arena for much current QG phenomenology
(G. Amelino-Camelia,0806.0339 [gr-qc]),
e.g. in the context of Deformed Special Relativity (DSR) (3. Kowalski-Glikman, hep-th/0405273
Task: derive such NC field theories from more fundamental GFT models
3d Riemannian: W. Fairbairn, E. Livine, gr-qc/0702125 (A. Di Mare, DO. '10)
4d Lorentzian: DSR on }\kappa\mathrm{ -Minkowski: F.Girelli, E.Livine, DO, 0903.3475 [gr-qc]
```


## EFFECTIVE NON-COMMUTATIVE MATTER FIELDS FROM GFT

■ Insights from analogue gravity models in condensed matter
(C. Barcelo, S. Liberati, M. Visser, gr-qc/0505065:

■ effective metric and its dynamics from hydrodynamics of microscopic system $\Rightarrow$ (modified) GR from GFT hydrodynamics?
■ quasi-particles (perturbations around ground state) see only effective metric $\Rightarrow$ effective QFT for matter in emergent metric from GFT? which effective matter QFT? incorporate QG effects? (DO, 0903.3970 [hep-th])

- General hypothesis
- effective QG spacetime is non-commutative of Lie algebra type: $\left[x_{\mu}, x_{\nu}\right]=\mathcal{C}_{\mu \nu}^{\alpha} x_{\alpha}$
- symmetry group of such NC spacetimes is Hopf algebra
- deformed Casimir (dispersion relation), deformed addition of momenta (scattering thresholds)
- suggests QFT in such NC spacetime, in momentum space, is a GFT

These NC spacetimes are arena for much current QG phenomenology (G. Amelino-Camelia, 0806.0339 [gr-qc]), e.g. in the context of Deformed Special Relativity (DSR) (3. Kowalski-Glikman, hep-th/0405273

Task: derive such NC field theories from more fundamental GFT models
3d Riemannian: W. Fairbairn, E. Livine, gr-qc/0702125 (A. Di Mare, Do. '10)
4d Lorentzian: DSR on $\kappa$-Minkowski: F.Girelli, E.Livine, DO, 0903.3475 [gr-qc

## EFFECTIVE NON-COMMUTATIVE MATTER FIELDS FROM GFT

■ Insights from analogue gravity models in condensed matter
(C. Barcelo, S. Liberati, M. Visser, gr-qc/0505065:
$\square$ effective metric and its dynamics from hydrodynamics of microscopic system $\Rightarrow$ (modified) GR from GFT hydrodynamics?
■ quasi-particles (perturbations around ground state) see only effective metric $\Rightarrow$ effective QFT for matter in emergent metric from GFT? which effective matter QFT? incorporate QG effects? (DO, 0903.3970 [hep-th])

- General hypothesis
$\square$ effective QG spacetime is non-commutative of Lie algebra type: $\left[x_{\mu}, x_{\nu}\right]=\mathcal{C}_{\mu \nu}^{\alpha} x_{\alpha}$
$■$ by duality, corresponding momentum space is a (curved) group manifold (Majid)
- symmetry group of such NC spacetimes is Hopf algebra
- deformed Casimir (dispersion relation), deformed addition of momenta (scattering thresholds)
- suggests QFT in such NC spacetime, in momentum space, is a GFT

These NC spacetimes are arena for much current QG phenomenology (G. Amelino-Camelia, $0806.0339[\mathrm{gr}-\mathrm{qc}]$ ), e.g. in the context of Deformed Special Relativity (DSR) (J. Kowalski-Glikman, hep-th/0405273

Task: derive such NC field theories from more fundamental GFT models
3d Riemannian: W. Fairbairn. E. Livine. gr-ac/0702125 (A. Di Mare. Do. '10)
4d Lorentzian: DSR on $\kappa$-Minkowski: F.Girelli, E.Livine, DO, 0903.3475 [gr-qc

## EFFECTIVE NON-COMMUTATIVE MATTER FIELDS FROM GFT

■ Insights from analogue gravity models in condensed matter
(C. Barcelo, S. Liberati, M. Visser, gr-qc/0505065:
$\square$ effective metric and its dynamics from hydrodynamics of microscopic system $\Rightarrow$ (modified) GR from GFT hydrodynamics?
■ quasi-particles (perturbations around ground state) see only effective metric $\Rightarrow$ effective QFT for matter in emergent metric from GFT? which effective matter QFT? incorporate QG effects? (DO, 0903.3970 [hep-th])
■ General hypothesis
$\square$ effective QG spacetime is non-commutative of Lie algebra type: $\left[x_{\mu}, x_{\nu}\right]=\mathcal{C}_{\mu \nu}^{\alpha} x_{\alpha}$

- by duality, corresponding momentum space is a (curved) group manifold (Majid)

■ symmetry group of such NC spacetimes is Hopf algebra

- deformed Casimir (dispersion relation), deformed addition of momenta (scattering thresholds)
- suggests QFT in such NC spacetime, in momentum space, is a GFT

These NC spacetimes are arena for much current QG phenomenology (G. Amelino-Camelia, 0806.0339 [gr-qc]), e.g. in the context of Deformed Special Relativity (DSR) (J. Kowalski-Glikman, hep-th/0405273 Task: derive such NC field theories from more fundamental GFT models 3d Riemannian: W. Fairbairn. E. Livine. gr-ac/(0702125 (A. Di Mare, DO. '10) 4d Lorentzian: DSR on $\kappa$-Minkowski: F.Girelli, E.Livine, DO, 0903.3475 [gI-qc

## EFFECTIVE NON-COMMUTATIVE MATTER FIELDS FROM GFT

■ Insights from analogue gravity models in condensed matter
(C. Barcelo, S. Liberati, M. Visser, gr-qc/0505065:
$\square$ effective metric and its dynamics from hydrodynamics of microscopic system $\Rightarrow$ (modified) GR from GFT hydrodynamics?
■ quasi-particles (perturbations around ground state) see only effective metric $\Rightarrow$ effective QFT for matter in emergent metric from GFT? which effective matter QFT? incorporate QG effects? (DO, 0903.3970 [hep-th])
■ General hypothesis
$\square$ effective QG spacetime is non-commutative of Lie algebra type: $\left[x_{\mu}, x_{\nu}\right]=\mathcal{C}_{\mu \nu}^{\alpha} x_{\alpha}$

- by duality, corresponding momentum space is a (curved) group manifold (Majid)
- symmetry group of such NC spacetimes is Hopf algebra
$\square$ deformed Casimir (dispersion relation), deformed addition of momenta (scattering thresholds)
■ suggests QFT in such NC spacetime, in momentum space, is a GFT
These NC spacetimes are arena for much current QG phenomenology (G. Amelino-Camelia, 0806.0339 [gr-qc]), e.g. in the context of Deformed Special Relativity (DSR) (J. Kowalski-Glikman, hep-th/0405273 Task: derive such NC field theories from more fundamental GFT models 3d Riemannian: W. Fairbairn, E. Livine, gr-qc/0702125 (A. Di Mare, DO. '10) 4d Lorentzian: DSR on $\kappa$-Minkowski: F.Girelli, E.Livine, DO, 0903.3475 [gİ-qc


## EFFECTIVE NON-COMMUTATIVE MATTER FIELDS FROM GFT

■ Insights from analogue gravity models in condensed matter
(C. Barcelo, S. Liberati, M. Visser, gr-qc/0505065:
$\square$ effective metric and its dynamics from hydrodynamics of microscopic system $\Rightarrow$ (modified) GR from GFT hydrodynamics?
■ quasi-particles (perturbations around ground state) see only effective metric $\Rightarrow$ effective QFT for matter in emergent metric from GFT? which effective matter QFT? incorporate QG effects? (DO, 0903.3970 [hep-th])
■ General hypothesis
$\square$ effective QG spacetime is non-commutative of Lie algebra type: $\left[x_{\mu}, x_{\nu}\right]=\mathcal{C}_{\mu \nu}^{\alpha} x_{\alpha}$

- by duality, corresponding momentum space is a (curved) group manifold (Majid)
- symmetry group of such NC spacetimes is Hopf algebra
$\square$ deformed Casimir (dispersion relation), deformed addition of momenta (scattering thresholds)
■ suggests QFT in such NC spacetime, in momentum space, is a GFT
These NC spacetimes are arena for much current QG phenomenology (G. Amelino-Camelia, 0806.0339 [gr-qc]), e.g. in the context of Deformed Special Relativity (DSR) (J. Kowalski-Glikman, hep-th/0405273 Task: derive such NC field theories from more fundamental GFT models 3d Riemannian: W. Fairbairn, E. Livine, gr-qc/0702125 (A. Di Mare, DO. '10) 4d Lorentzian: DSR on $\kappa$-Minkowski: F.Girelli, E.Livine, DO, 0903.3475 [gİ-qc


## EFFECTIVE NON-COMMUTATIVE MATTER FIELDS FROM GFT

■ Insights from analogue gravity models in condensed matter
(C. Barcelo, S. Liberati, M. Visser, gr-qc/0505065:
$\square$ effective metric and its dynamics from hydrodynamics of microscopic system $\Rightarrow$ (modified) GR from GFT hydrodynamics?

- quasi-particles (perturbations around ground state) see only effective metric $\Rightarrow$ effective QFT for matter in emergent metric from GFT? which effective matter QFT? incorporate QG effects? (Do, 0903.3970 [hep-th])
■ General hypothesis
$\square$ effective QG spacetime is non-commutative of Lie algebra type: $\left[x_{\mu}, x_{\nu}\right]=\mathcal{C}_{\mu \nu}^{\alpha} x_{\alpha}$
$\square$ by duality, corresponding momentum space is a (curved) group manifold (Majid)
- symmetry group of such NC spacetimes is Hopf algebra
- deformed Casimir (dispersion relation), deformed addition of momenta (scattering thresholds)
- suggests QFT in such NC spacetime, in momentum space, is a GFT

These NC spacetimes are arena for much current QG phenomenology
(G. Amelino-Camelia, 0806.0339 [gr-qc]),
e.g. in the context of Deformed Special Relativity (DSR) (J. Kowalski-Glikman, hep-th/0405273)

Task: derive such NC field theories from more fundamental GFT models
3d Riemannian: W. Fairbairn, E. Livine, gr-qc/0702125 (A. Di Mare, DO. '10)
4d Lorentzian: DSR on $\kappa$-Minkowski: F.Girelli, E.Livine, DO, 0903.3475 [gI-gc

## EFFECTIVE NON-COMMUTATIVE MATTER FIELDS FROM GFT

■ Insights from analogue gravity models in condensed matter
(C. Barcelo, S. Liberati, M. Visser, gr-qc/0505065:
$\square$ effective metric and its dynamics from hydrodynamics of microscopic system $\Rightarrow$ (modified) GR from GFT hydrodynamics?

- quasi-particles (perturbations around ground state) see only effective metric $\Rightarrow$ effective QFT for matter in emergent metric from GFT? which effective matter QFT? incorporate QG effects? (DO, 0903.3970 [hep-th])
■ General hypothesis
- effective QG spacetime is non-commutative of Lie algebra type: $\left[x_{\mu}, x_{\nu}\right]=\mathcal{C}_{\mu \nu}^{\alpha} x_{\alpha}$
- by duality, corresponding momentum space is a (curved) group manifold (Majid)

■ symmetry group of such NC spacetimes is Hopf algebra

- deformed Casimir (dispersion relation), deformed addition of momenta (scattering thresholds)
■ suggests QFT in such NC spacetime, in momentum space, is a GFT
These NC spacetimes are arena for much current QG phenomenology
(G. Amelino-Camelia, $0806.0339[\mathrm{gr}-\mathrm{qc}]$ ),
e.g. in the context of Deformed Special Relativity (DSR) (J. Kowalski-Glikman, hep-th/0405273)

Task: derive such NC field theories from more fundamental GFT models
3d Riemannian: W. Fairbairn, E. Livine, gr-qc/0702125 (A. Di Mare, Do, '10)
4d Lorentzian: DSR on $\kappa$-Minkowski: F.Girelli, E.Livine, DO, 0903.3475 [gr-qc]

## THE 3D (RIEMANNIAN) CASE - NC FIELD THEORY FROM GFT

We deal with: $\mathrm{SU}(2) \leftrightarrow \mathfrak{s u}(2):\left[X_{i}, X_{j}\right]=\frac{i}{\kappa} \epsilon_{i j k} X_{k}$ (L. Freidel, E. Livine, 044, L. Freidel, S. Majid, 044) Scalar field theory in momentum space is:

$$
S[\psi]=\frac{1}{2} \int_{\mathrm{SU}(2)} d g \psi(g) \mathcal{K}(g) \psi\left(g^{-1}\right)-\frac{\lambda}{3!} \int[d g]^{3} \psi\left(g_{1}\right) \psi\left(g_{2}\right) \psi\left(g_{3}\right) \delta\left(g_{1} g_{2} g_{3}\right),
$$

## Boulatov GFT model:

$S[\varphi]=\frac{1}{2} \int\left(\varphi\left(g_{1}, g_{2}, g_{3}\right)\right)^{2}-\frac{\lambda}{4!} \int \varphi\left(g_{1}, g_{2}, g_{3}\right) \varphi\left(g_{3}, g_{4}, g_{5}\right) \varphi\left(g_{5}, g_{2}, g_{6}\right) \varphi\left(g_{6}, g_{4}, g_{1}\right)$. Classical solution:
$\varphi_{0}\left(g_{1}, g_{2}, g_{3}\right) \equiv \sqrt{\frac{31}{\lambda}} \int d g \delta\left(g_{1} g\right) F\left(g_{2} g\right) \delta\left(g_{3} g\right)$.
with $F(g)=F\left(h g h^{-1}\right) \forall h \in G, \int F^{2}=1, F(g) \in \mathbb{R}$
Internretation: quantum flat snace on some snace topology (invariant under DSU(2)) )

## The 3D (RIEMANNIAN) CASE - NC FIELD THEORY FROM GFT

We deal with: $\mathrm{SU}(2) \leftrightarrow \mathfrak{s u}(2):\left[X_{i}, X_{j}\right]=\frac{i}{\kappa} \epsilon_{i j k} X_{k}$ (L. Freidel, E. Livine, '04, L. Freidel, S. Majid, '04) NC Fourier transform introduced earlier : $C(\mathrm{SU}(2)) \rightarrow C_{*, \kappa}\left(\mathbb{R}^{3}\right)$
Scalar field theory in momentum space is:


## Boulatov GFT model:

$S[\varphi]=\frac{1}{2} \int\left(\varphi\left(g_{1}, g_{2}, g_{3}\right)\right)^{2}-\frac{\lambda}{4!} \int \varphi\left(g_{1}, g_{2}, g_{3}\right) \varphi\left(g_{3}, g_{4}, g_{5}\right) \varphi\left(g_{5}, g_{2}, g_{6}\right) \varphi\left(g_{6}, g_{4}, g_{1}\right)$. Classical solution:
$\varphi_{0}\left(g_{1}, g_{2}, g_{3}\right) \equiv \sqrt{\frac{31}{\lambda}} \int d g \delta(g 1 g) F(g 2 g) \delta(g 3 g)$
with $F(g)=F\left(h g h^{-1}\right) \forall h \in G, \int F^{2}=1, F(g) \in \mathbb{R}$
Internretation: quantum flat snace on some snace tonology (invariant under DSU(2)) )

## THE 3D (RIEMANNIAN) CASE - NC FIELD THEORY FROM GFT

We deal with: $\mathrm{SU}(2) \leftrightarrow \mathfrak{s u}(2):\left[X_{i}, X_{j}\right]=\frac{i}{\kappa} \epsilon_{i j k} X_{k}$ (L. Freidel, E. Livine, 044, L. Freidel, S. Majid, 044) NC Fourier transform introduced earlier : $C(\mathrm{SU}(2)) \rightarrow C_{*, \kappa}\left(\mathbb{R}^{3}\right)$
Scalar field theory in momentum space is:

$$
S[\psi]=\frac{1}{2} \int_{\mathrm{SU}(2)} d g \psi(g) \mathcal{K}(g) \psi\left(g^{-1}\right)-\frac{\lambda}{3!} \int[d g]^{3} \psi\left(g_{1}\right) \psi\left(g_{2}\right) \psi\left(g_{3}\right) \delta\left(g_{1} g_{2} g_{3}\right)
$$

## Boulatov GFT model:

$S[\varphi]=\frac{1}{2} \int\left(\varphi\left(g_{1}, g_{2}, g_{3}\right)\right)^{2}-\frac{\lambda}{4!} \int \varphi\left(g_{1}, g_{2}, g_{3}\right) \varphi\left(g_{3}, g_{4}, g_{5}\right) \varphi\left(g_{5}, g_{2}, g_{6}\right) \varphi\left(g_{6}, g_{4}, g_{1}\right)$
Classical solution:
with $F(g)=F\left(h g h^{-1}\right) \forall h \in G, \int F^{2}=1, F(g) \in \mathbb{R}$
Internretation: quantum flat space on some space topology (invariant under DSU(2)) )

## THE 3D (RIEMANNIAN) CASE - NC FIELD THEORY FROM GFT

We deal with: $\mathrm{SU}(2) \leftrightarrow \mathfrak{s u}(2):\left[X_{i}, X_{j}\right]=\frac{i}{\kappa} \epsilon_{i j k} X_{k}$ (L. Freidel, E. Livine, ${ }^{044, \text { L. Freidel, S. Majid, }{ }^{04} \text { ) }}$ NC Fourier transform introduced earlier : $C(\mathrm{SU}(2)) \rightarrow C_{*, \kappa}\left(\mathbb{R}^{3}\right)$
Scalar field theory in momentum space is:

$$
S[\psi]=\frac{1}{2} \int_{\mathrm{SU}(2)} d g \psi(g) \mathcal{K}(g) \psi\left(g^{-1}\right)-\frac{\lambda}{3!} \int[d g]^{3} \psi\left(g_{1}\right) \psi\left(g_{2}\right) \psi\left(g_{3}\right) \delta\left(g_{1} g_{2} g_{3}\right)
$$

Boulatov GFT model:
$S[\varphi]=\frac{1}{2} \int\left(\varphi\left(g_{1}, g_{2}, g_{3}\right)\right)^{2}-\frac{\lambda}{4!} \int \varphi\left(g_{1}, g_{2}, g_{3}\right) \varphi\left(g_{3}, g_{4}, g_{5}\right) \varphi\left(g_{5}, g_{2}, g_{6}\right) \varphi\left(g_{6}, g_{4}, g_{1}\right)$.
Classical solution:
with $F(g)=F\left(h g h^{-1}\right) \forall h \in G, \int F^{2}=1, F(g) \in \mathbb{R}$
Internretation: quantum flat snace on some snace topology (invariant under DSU(2)) )

## THE 3D (RIEMANNIAN) CASE - NC FIELD THEORY FROM GFT

We deal with: $\mathrm{SU}(2) \leftrightarrow \mathfrak{s u}(2):\left[X_{i}, X_{j}\right]=\frac{i}{\kappa} \epsilon_{i j k} X_{k}$ (L. Freidel, E. Livine, ${ }^{044, \text { L. Freidel, S. Majid, }{ }^{0} 4 \text { ) }}$ NC Fourier transform introduced earlier : $C(\mathrm{SU}(2)) \rightarrow C_{*, \kappa}\left(\mathbb{R}^{3}\right)$
Scalar field theory in momentum space is:

$$
S[\psi]=\frac{1}{2} \int_{\mathrm{SU}(2)} d g \psi(g) \mathcal{K}(g) \psi\left(g^{-1}\right)-\frac{\lambda}{3!} \int[d g]^{3} \psi\left(g_{1}\right) \psi\left(g_{2}\right) \psi\left(g_{3}\right) \delta\left(g_{1} g_{2} g_{3}\right)
$$

Boulatov GFT model:

$$
S[\varphi]=\frac{1}{2} \int\left(\varphi\left(g_{1}, g_{2}, g_{3}\right)\right)^{2}-\frac{\lambda}{4!} \int \varphi\left(g_{1}, g_{2}, g_{3}\right) \varphi\left(g_{3}, g_{4}, g_{5}\right) \varphi\left(g_{5}, g_{2}, g_{6}\right) \varphi\left(g_{6}, g_{4}, g_{1}\right)
$$

Classical solution:
$\varphi_{0}\left(g_{1}, g_{2}, g_{3}\right) \equiv \sqrt{\frac{3!}{\lambda}} \int d g \delta\left(g_{1} g\right) F\left(g_{2} g\right) \delta\left(g_{3} g\right)$.
with $F(g)=F\left(h g h^{-1}\right) \forall h \in G, \int F^{2}=1, F(g) \in \mathbb{R}$
Interpretation: quantum flat space on some space topology (invariant under $\operatorname{DSU}(2)$ ))

## NC FIELD THEORY FROM GFT: 2D PERTURBATIONS AND EFFECTIVE FT

Look at "two-dimensional" perturbation $\psi\left(g_{1}, g_{3}\right)=\psi\left(g_{1} g_{3}^{-1}\right)$ of field $\varphi$ around $\varphi_{0}$ : $\varphi\left(g_{1}, g_{2}, g_{3}\right)=\varphi_{0}\left(g_{1}, g_{2}, g_{3}\right)+\psi\left(g_{1}, g_{3}\right)$ Then effective action for $\psi$ is

$$
\begin{aligned}
& S_{e f f}[\psi] \equiv S\left[\varphi_{0}+\psi\right]-S\left[\varphi_{0}\right]=\frac{1}{2} \int \psi(g) \mathcal{K}(g) \psi\left(g^{-1}\right)- \\
& -\frac{\mu}{3!} \int[d g]^{3} \psi\left(g_{1}\right) \psi\left(g_{2}\right) \psi\left(g_{3}\right) \delta\left(g_{1} g_{2} g_{3}\right)-\frac{\lambda}{4!} \int[d g]^{4} \psi\left(g_{1}\right) . . \psi\left(g_{4}\right) \delta\left(g_{1} . . g_{4}\right),
\end{aligned}
$$

with

$$
\mathcal{K}(g)=1-2\left(\int F\right)^{2}-\int d h F(h) F(h g), \quad \frac{\mu}{3!}=\sqrt{\frac{\lambda}{3!}} \int F
$$

The effective action $S_{\text {eff }}$ depends on the solution $\varphi_{0}$ through $F$, and is invariant under $D S U(2)$ (quantum double of $\mathrm{SU}(2)$ ), deformation of Poincaré group $F$ can be expanded in group characters: $F(g)=\sum_{j \in \mathbb{N} / 2} F_{j} \chi_{j}(g)$

$$
\mathcal{K}(g)=\sum_{j>0} F_{j}^{2}\left(1-\frac{\chi_{j}(g)}{d_{j}}\right)-2 F_{0}^{2} \equiv Q^{2}(g)-M^{2}
$$

$Q^{2}(g) \geq 0, Q(I)=0$, generalized "Laplacian"
For $F(g)=a+\sqrt{1-a^{2}} \chi_{1}(g)$ we get $\mathcal{K}(g)=\frac{4}{3}\left(1-a^{2}\right) \vec{k}^{2}-2 G^{2}, ~ \vec{k}$

## NC FIELD THEORY FROM GFT: 2D PERTURBATIONS AND EFFECTIVE FT

Look at "two-dimensional" perturbation $\psi\left(g_{1}, g_{3}\right)=\psi\left(g_{1} g_{3}^{-1}\right)$ of field $\varphi$ around $\varphi_{0}$ : $\varphi\left(g_{1}, g_{2}, g_{3}\right)=\varphi_{0}\left(g_{1}, g_{2}, g_{3}\right)+\psi\left(g_{1}, g_{3}\right)$ Then effective action for $\psi$ is

$$
\begin{aligned}
& S_{e f f}[\psi] \equiv S\left[\varphi_{0}+\psi\right]-S\left[\varphi_{0}\right]=\frac{1}{2} \int \psi(g) \mathcal{K}(g) \psi\left(g^{-1}\right)- \\
& -\frac{\mu}{3!} \int[d g]^{3} \psi\left(g_{1}\right) \psi\left(g_{2}\right) \psi\left(g_{3}\right) \delta\left(g_{1} g_{2} g_{3}\right)-\frac{\lambda}{4!} \int[d g]^{4} \psi\left(g_{1}\right) . . \psi\left(g_{4}\right) \delta\left(g_{1} . . g_{4}\right)
\end{aligned}
$$

with

$$
\mathcal{K}(g)=1-2\left(\int F\right)^{2}-\int d h F(h) F(h g), \quad \frac{\mu}{3!}=\sqrt{\frac{\lambda}{3!}} \int F
$$

The effective action $S_{e f f}$ depends on the solution $\varphi_{0}$ through $F$, and is invariant under $D S U(2)$ (quantum double of $\mathrm{SU}(2)$ ), deformation of Poincaré group $F$ can be expanded in group characters: $F(g)=\sum_{j \in \mathbb{N} / 2} F_{j} \chi_{j}(g)$


## NC FIELD THEORY FROM GFT: 2D PERTURBATIONS AND EFFECTIVE FT

Look at "two-dimensional" perturbation $\psi\left(g_{1}, g_{3}\right)=\psi\left(g_{1} g_{3}^{-1}\right)$ of field $\varphi$ around $\varphi_{0}$ : $\varphi\left(g_{1}, g_{2}, g_{3}\right)=\varphi_{0}\left(g_{1}, g_{2}, g_{3}\right)+\psi\left(g_{1}, g_{3}\right)$ Then effective action for $\psi$ is

$$
\begin{aligned}
& S_{e f f}[\psi] \equiv S\left[\varphi_{0}+\psi\right]-S\left[\varphi_{0}\right]=\frac{1}{2} \int \psi(g) \mathcal{K}(g) \psi\left(g^{-1}\right)- \\
& -\frac{\mu}{3!} \int[d g]^{3} \psi\left(g_{1}\right) \psi\left(g_{2}\right) \psi\left(g_{3}\right) \delta\left(g_{1} g_{2} g_{3}\right)-\frac{\lambda}{4!} \int[d g]^{4} \psi\left(g_{1}\right) . . \psi\left(g_{4}\right) \delta\left(g_{1} . . g_{4}\right)
\end{aligned}
$$

with

$$
\mathcal{K}(g)=1-2\left(\int F\right)^{2}-\int d h F(h) F(h g), \quad \frac{\mu}{3!}=\sqrt{\frac{\lambda}{3!}} \int F
$$

The effective action $S_{\text {eff }}$ depends on the solution $\varphi_{0}$ through $F$, and is invariant under $D S U(2)$ (quantum double of $\mathrm{SU}(2)$ ), deformation of Poincaré group

$Q^{2}(g) \geq 0, Q(I)=0$, generalized "Laplacian"


## NC FIELD THEORY FROM GFT: 2D PERTURBATIONS AND EFFECTIVE FT

Look at "two-dimensional" perturbation $\psi\left(g_{1}, g_{3}\right)=\psi\left(g_{1} g_{3}^{-1}\right)$ of field $\varphi$ around $\varphi_{0}$ : $\varphi\left(g_{1}, g_{2}, g_{3}\right)=\varphi_{0}\left(g_{1}, g_{2}, g_{3}\right)+\psi\left(g_{1}, g_{3}\right)$ Then effective action for $\psi$ is

$$
\begin{aligned}
& S_{e f f}[\psi] \equiv S\left[\varphi_{0}+\psi\right]-S\left[\varphi_{0}\right]=\frac{1}{2} \int \psi(g) \mathcal{K}(g) \psi\left(g^{-1}\right)- \\
& -\frac{\mu}{3!} \int[d g]^{3} \psi\left(g_{1}\right) \psi\left(g_{2}\right) \psi\left(g_{3}\right) \delta\left(g_{1} g_{2} g_{3}\right)-\frac{\lambda}{4!} \int[d g]^{4} \psi\left(g_{1}\right) . . \psi\left(g_{4}\right) \delta\left(g_{1} . . g_{4}\right)
\end{aligned}
$$

with

$$
\mathcal{K}(g)=1-2\left(\int F\right)^{2}-\int d h F(h) F(h g), \quad \frac{\mu}{3!}=\sqrt{\frac{\lambda}{3!}} \int F
$$

The effective action $S_{\text {eff }}$ depends on the solution $\varphi_{0}$ through $F$, and is invariant under $D S U(2)$ (quantum double of $\mathrm{SU}(2)$ ), deformation of Poincaré group $F$ can be expanded in group characters: $F(g)=\sum_{j \in \mathbb{N} / 2} F_{j} \chi_{j}(g)$

$$
\mathcal{K}(g)=\sum_{j>0} F_{j}^{2}\left(1-\frac{\chi_{j}(g)}{d_{j}}\right)-2 F_{0}^{2} \equiv Q^{2}(g)-M^{2}
$$

$Q^{2}(g) \geq 0, Q(I)=0$, generalized "Laplacian"
For $F(g)=a+\sqrt{1-a^{2}} \chi_{1}(g)$ we get $\mathcal{K}(g)=\frac{4}{3}\left(1-a^{2}\right) \vec{k}_{\square}^{2}-2 a_{j}^{2}, \quad \vec{k}=\operatorname{Tr}(g \vec{\sigma})_{\bar{三}}$

## GFT: SUMMARY

■ GFTs are (combinatorially) non-local field theories on groups (Lie algebras), interpreted as 2 nd quantized theories (generalization of matrix models)

- field $\phi$ represents " 2 nd quantized simplex"or " 2 nd quantized spin net vertex"
- arguments of field have interpretation of (quantum) pre-geometric data
- microscopic dynamics dictated by discrete (minimal) geometric considerations
- both geometry and topology are dynamical
- GFT realize duality of simplicial gravity path integrals and spin foam models - GFT can be common framework for various QG approaches:
- allow (almost) straightforward application of QFT tools
- being a "pre-geometric theory", recovering smooth geometry (and other background structures of GR) and GR dynamics is non-trivial task


## GFT: SUMMARY

■ GFTs are (combinatorially) non-local field theories on groups (Lie algebras), interpreted as 2 nd quantized theories (generalization of matrix models)

■ of simplicial geometry and
■ of canonical LQG (QFT of spin networks)

- field $\phi$ represents "2nd quantized simplex"or "2nd quantized spin net vertex"

■ arguments of field have interpretation of (quantum) pre-geometric data

- microscopic dynamics dictated by discrete (minimal) geometric consideretions
- both geometry and topology are dynamical
- GFT realize duality of simplicial gravity path integrals and spin foam models
- GFT can be common framework for various QG approaches:
- allow (almost) straightforward application of QFT tools
- being a "pre-geometric theory", recovering smooth geometry (and other background structures of GR) and GR dynamics is non-trivial task


## GFT: SUMMARY

■ GFTs are (combinatorially) non-local field theories on groups (Lie algebras), interpreted as 2 nd quantized theories (generalization of matrix models)

■ of simplicial geometry and
■ of canonical LQG (QFT of spin networks)
■ field $\phi$ represents "2nd quantized simplex"or "2nd quantized spin net vertex"

- microscopic dynamics dictated by discrete (minimal) geometric considerations
- both geometry and topology are dynamical
- GFT realize duality of simplicial gravity path integrals and spin foam models
- GFT can be common framework for various QG approaches:
- allow (almost) straightforward application of QFT tools
- being a "pre-geometric theory", recovering smooth geometry (and other background structures of GR) and GR dynamics is non-trivial task


## GFT: SUMMARY

■ GFTs are (combinatorially) non-local field theories on groups (Lie algebras), interpreted as 2 nd quantized theories (generalization of matrix models)

■ of simplicial geometry and
■ of canonical LQG (QFT of spin networks)
■ field $\phi$ represents "2nd quantized simplex"or "2nd quantized spin net vertex"

- arguments of field have interpretation of (quantum) pre-geometric data
- microscopic dynamics dictated by discrete (minimal) geometric considerations

■ both geometry and topology are dynamical

- GFT realize duality of simplicial gravity path integrals and spin foam models
- GFT can be common framework for various QG approaches:
- allow (almost) straightforward application of QFT tools

■ being a "pre-geometric theory", recovering smooth geometry (and other background structures of GR) and GR dynamics is non-trivial task

## GFT: SUMMARY

■ GFTs are (combinatorially) non-local field theories on groups (Lie algebras), interpreted as 2 nd quantized theories (generalization of matrix models)

■ of simplicial geometry and
■ of canonical LQG (QFT of spin networks)
■ field $\phi$ represents "2nd quantized simplex"or "2nd quantized spin net vertex"
■ arguments of field have interpretation of (quantum) pre-geometric data
■ microscopic dynamics dictated by discrete (minimal) geometric considerations

- both geometry and topology are dynamical
- GFT realize duality of simplicial gravity path integrals and spin foam models
- GFT can be common framework for various QG approaches:
- allow (almost) straightforward application of QFT tools

■ being a "pre-geometric theory", recovering smooth geometry (and other background structures of GR) and GR dynamics is non-trivial task

## GFT: SUMMARY

■ GFTs are (combinatorially) non-local field theories on groups (Lie algebras), interpreted as 2 nd quantized theories (generalization of matrix models)

■ of simplicial geometry and
■ of canonical LQG (QFT of spin networks)
■ field $\phi$ represents "2nd quantized simplex"or "2nd quantized spin net vertex"

- arguments of field have interpretation of (quantum) pre-geometric data

■ microscopic dynamics dictated by discrete (minimal) geometric considerations
■ both geometry and topology are dynamical

- GFT realize duality of simplicial gravity path integrals and spin foam models
- GFT can be common framework for various QG approaches:
- allow (almost) straightforward application of QFT tools
- being a "pre-geometric theory", recovering smooth geometry (and other background structures of GR) and GR dynamics is non-trivial task


## GFT: SUMMARY

■ GFTs are (combinatorially) non-local field theories on groups (Lie algebras), interpreted as 2 nd quantized theories (generalization of matrix models)

- of simplicial geometry and
- of canonical LQG (QFT of spin networks)

■ field $\phi$ represents "2nd quantized simplex"or "2nd quantized spin net vertex"
■ arguments of field have interpretation of (quantum) pre-geometric data
■ microscopic dynamics dictated by discrete (minimal) geometric considerations

- both geometry and topology are dynamical
- GFT realize duality of simplicial gravity path integrals and spin foam models
- GFT can be common framework for various QG approaches:
- allow (almost) straightforward application of QFT tools
- being a "pre-geometric theory", recovering smooth geometry (and other background structures of GR) and GR dynamics is non-trivial task


## GFT: SUMMARY

■ GFTs are (combinatorially) non-local field theories on groups (Lie algebras), interpreted as 2 nd quantized theories (generalization of matrix models)

- of simplicial geometry and
- of canonical LQG (QFT of spin networks)

■ field $\phi$ represents "2nd quantized simplex"or "2nd quantized spin net vertex"
■ arguments of field have interpretation of (quantum) pre-geometric data
■ microscopic dynamics dictated by discrete (minimal) geometric considerations

- both geometry and topology are dynamical
- GFT realize duality of simplicial gravity path integrals and spin foam models

■ GFT can be common framework for various QG approaches:
■ Loop Quantum Gravity and spin foam models:
■ GFT states are Spin Networks, GFT perturbative expansion defines their dynamics
■ GFT Feynman amplitudes are Spin Foam models (sum over histories of spin networks)
■ Quantum Regge Calculus: GFT Feynman amplitudes define simplicial QG path integrals, with unique (for given GFT) measure
■ Dynamical Triangulations: GFT describes QG (perturbatively) as sum over triangulations, weighted by simplicial path integral

- allow (almost) straightforward application of QFT tools
- being a "pre-geometric theory", recovering smooth geometry (and other background structures of GR) and GR dynamics is non-trivial task


## GFT: SUMMARY

■ GFTs are (combinatorially) non-local field theories on groups (Lie algebras), interpreted as 2 nd quantized theories (generalization of matrix models)

- of simplicial geometry and
- of canonical LQG (QFT of spin networks)

■ field $\phi$ represents "2nd quantized simplex"or "2nd quantized spin net vertex"
■ arguments of field have interpretation of (quantum) pre-geometric data
■ microscopic dynamics dictated by discrete (minimal) geometric considerations
■ both geometry and topology are dynamical

- GFT realize duality of simplicial gravity path integrals and spin foam models

■ GFT can be common framework for various QG approaches:
■ Loop Quantum Gravity and spin foam models:

- GFT states are Spin Networks, GFT perturbative expansion defines their dynamics

■ GFT Feynman amplitudes are Spin Foam models (sum over histories of spin networks)
■ Quantum Regge Calculus: GFT Feynman amplitudes define simplicial QG path integrals, with unique (for given GFT) measure
■ Dynamical Triangulations: GFT describes QG (perturbatively) as sum over triangulations, weighted by simplicial path integral
■ allow (almost) straightforward application of QFT tools

## GFT: SUMMARY

■ GFTs are (combinatorially) non-local field theories on groups (Lie algebras), interpreted as 2 nd quantized theories (generalization of matrix models)

- of simplicial geometry and
- of canonical LQG (QFT of spin networks)

■ field $\phi$ represents "2nd quantized simplex"or "2nd quantized spin net vertex"
■ arguments of field have interpretation of (quantum) pre-geometric data
■ microscopic dynamics dictated by discrete (minimal) geometric considerations
■ both geometry and topology are dynamical

- GFT realize duality of simplicial gravity path integrals and spin foam models

■ GFT can be common framework for various QG approaches:
■ Loop Quantum Gravity and spin foam models:

- GFT states are Spin Networks, GFT perturbative expansion defines their dynamics

■ GFT Feynman amplitudes are Spin Foam models (sum over histories of spin networks)
■ Quantum Regge Calculus: GFT Feynman amplitudes define simplicial QG path integrals, with unique (for given GFT) measure
■ Dynamical Triangulations: GFT describes QG (perturbatively) as sum over triangulations, weighted by simplicial path integral

- allow (almost) straightforward application of QFT tools

■ being a "pre-geometric theory", recovering smooth geometry (and other background structures of GR) and GR dynamics is non-trivial task

## Aside: Continuum spacetime: A Condensed matter picture

■ suggestions from condensed matter and analogue gravity systems (superfluid Helium-3, BEC) (Jacobson, Hu, Volovik, Laughlin, Visser, Unruh, Schuerzhold, Liberati, Sindoni, etc)

- spacetime as a condensate/fluid phase of fundamental discrete constituents, described by QFT
- continuum is hydrodynamic approximation, valid at $T \approx 0$, close to equilibrium. and for $N \rightarrow \infty$ in thermodynamic limit, involving a phase transition
- metric is (function of) hydrodynamic variable(s)
- continuum evolution governed by hydrodynamics for collective variables
- GR is reproduced (if lucky) from hydrodynamics only in some limits
- questions from CM perspective: what are the atoms of space? what is the microscopic theory? which CM system reproduces full GR?


## Aside: Continuum spacetime: A CONDENSED MATTER PICTURE

■ suggestions from condensed matter and analogue gravity systems (superfluid Helium-3, BEC) (Jacobson, Hu, Volovik, Laughlin, Visser, Unruh, Schuerzhold, Liberati, Sindoni, etc)

- spacetime as a condensate/fluid phase of fundamental discrete constituents, described by QFT
- continuum is hydrodynamic approximation, valid at $T \approx 0$, close to equilibrium, and for $N \rightarrow \infty$ in thermodynamic limit, involving a phase transition
- metric is (function of) hydrodynamic variable(s)
- continuum evolution governed by hydrodynamics for collective variables
- GR is reproduced' (if lucky) from hy drodynamics only in some limitsquestions from CM perspective: what are the atoms of space? what is the microscopic theory? which CM system reproduces full GR?


## Aside: Continuum spacetime: A CONDENSED MATTER PICTURE

■ suggestions from condensed matter and analogue gravity systems (superfluid Helium-3, BEC) (Jacobson, Hu, Volovik, Laughlin, Visser, Unruh, Schuerzhold, Liberati, Sindoni, etc)

- spacetime as a condensate/fluid phase of fundamental discrete constituents, described by QFT
- continuum is hydrodynamic approximation, valid at $T \approx 0$, close to equilibrium, and for $N \rightarrow \infty$ in thermodynamic limit, involving a phase transition
- metric is (function of) hydrodynamic variable(s)
- continuum evolution governed by hydrodynamics for collective variables
- GR is reproduced (if lucky) from hydrodynamics only in some limits
- questions from CM nersnective: what are the atoms of snace? what is the
microscopic theory? which CM system reproduces full GR?


## Aside: Continuum spacetime: A CONDENSED MATTER PICTURE

■ suggestions from condensed matter and analogue gravity systems (superfluid Helium-3, BEC) (Jacobson, Hu, Volovik, Laughlin, Visser, Unruh, Schuerzhold, Liberati, Sindoni, etc)

- spacetime as a condensate/fluid phase of fundamental discrete constituents, described by QFT
- continuum is hydrodynamic approximation, valid at $T \approx 0$, close to equilibrium, and for $N \rightarrow \infty$ in thermodynamic limit, involving a phase transition
- metric is (function of) hydrodynamic variable(s)
- continuum evolution governed by hydrodynamics for collective variables - GR is reproduced (if lucky) from hydrodynamics only in some limits
microscopic theory? which CM system reproduces full GR?


## Aside: Continuum spacetime: A CONDENSED MATTER PICTURE

■ suggestions from condensed matter and analogue gravity systems (superfluid Helium-3, BEC) (Jacobson, Hu, Volovik, Laughlin, Visser, Unruh, Schuerzhold, Liberati, Sindoni, etc)

- spacetime as a condensate/fluid phase of fundamental discrete constituents, described by QFT
- continuum is hydrodynamic approximation, valid at $T \approx 0$, close to equilibrium, and for $N \rightarrow \infty$ in thermodynamic limit, involving a phase transition
- metric is (function of) hydrodynamic variable(s)
- continuum evolution governed by hydrodynamics for collective variables
- GR is reproduced (if lucky) from hydrodynamics only in some limits
microscopic theory? which CM system reproduces full GR?


## Aside: Continuum spacetime: A CONDENSED MATTER PICTURE

■ suggestions from condensed matter and analogue gravity systems (superfluid Helium-3, BEC) (Jacobson, Hu, Volovik, Laughlin, Visser, Unruh, Schuerzhold, Liberati, Sindoni, etc)

- spacetime as a condensate/fluid phase of fundamental discrete constituents, described by QFT
- continuum is hydrodynamic approximation, valid at $T \approx 0$, close to equilibrium, and for $N \rightarrow \infty$ in thermodynamic limit, involving a phase transition
- metric is (function of) hydrodynamic variable(s)
- continuum evolution governed by hydrodynamics for collective variables
- GR is reproduced (if lucky) from hydrodynamics only in some limits
microscopic theory? which CM system reproduces full GR?


## Aside: Continuum spacetime: A CONDENSED MATTER PICTURE

■ suggestions from condensed matter and analogue gravity systems (superfluid Helium-3, BEC) (Jacobson, Hu, Volovik, Laughlin, Visser, Unruh, Schuerzhold, Liberati, Sindoni, etc)

- spacetime as a condensate/fluid phase of fundamental discrete constituents, described by QFT
- continuum is hydrodynamic approximation, valid at $T \approx 0$, close to equilibrium, and for $N \rightarrow \infty$ in thermodynamic limit, involving a phase transition
- metric is (function of) hydrodynamic variable(s)
- continuum evolution governed by hydrodynamics for collective variables
- GR is reproduced (if lucky) from hydrodynamics only in some limits

■ questions from CM perspective: what are the atoms of space? what is the microscopic theory? which CM system reproduces full GR?

## Continuum spacetime From GFTs?

■ take GFT seriously as microscopic (quantum field) theory of the atoms of space, 'pre-geometric structures', from which geometry only emerges in some limit

- take onboard suggestions from condensed matter and analogue gravity
- hypothesis: continuum is coherent, equilibrium many-particles physics for GFT quanta at low temperature (hydrodynamic approx): "quantum spacetime fluid"?
- (modified) GR from GFT hydrodynamics?
- need to


## Continuum spacetime From GFTs?

■ take GFT seriously as microscopic (quantum field) theory of the atoms of space, 'pre-geometric structures', from which geometry only emerges in some limit
■ take onboard suggestions from condensed matter and analogue gravity

- hypothesis: continuum is coherent, equilibrium many-particles physics for GFT quanta at low temperature (hydrodynamic approx): "quantum spacetime fluid"?
- (modified) GR from GFT hydrodynamics?
- need to


## Continuum spacetime From GFTs?

■ take GFT seriously as microscopic (quantum field) theory of the atoms of space, 'pre-geometric structures', from which geometry only emerges in some limit

■ take onboard suggestions from condensed matter and analogue gravity
■ hypothesis: continuum is coherent, equilibrium many-particles physics for GFT quanta at low temperature (hydrodynamic approx): "quantum spacetime fluid"?

- (modified) GR from GFT hydrodynamics?
- need to


## Continuum spacetime From GFTs?

■ take GFT seriously as microscopic (quantum field) theory of the atoms of space, 'pre-geometric structures', from which geometry only emerges in some limit
■ take onboard suggestions from condensed matter and analogue gravity
■ hypothesis: continuum is coherent, equilibrium many-particles physics for GFT quanta at low temperature (hydrodynamic approx): "quantum spacetime fluid"?

■ (modified) GR from GFT hydrodynamics?

- need to


## Continuum spacetime From GFTs?

■ take GFT seriously as microscopic (quantum field) theory of the atoms of space, 'pre-geometric structures', from which geometry only emerges in some limit
■ take onboard suggestions from condensed matter and analogue gravity
■ hypothesis: continuum is coherent, equilibrium many-particles physics for GFT quanta at low temperature (hydrodynamic approx): "quantum spacetime fluid"?
■ (modified) GR from GFT hydrodynamics?

- need to

```
- develop statistical GFT and apply tools from many-particle physics to GFT
    (renormalization group, mean field theory, coherent states, etc)
    \square identify GFT phase transitions in thermodynamic limit (like in matrix models and
    DT, using QFT tools)
    - extract effective dynamics around different GFT vacua and simplified models
    capturing physics in different regimes (e.g. cosmology, near flat space, ...)
m extract falsifiable (Popper), novel and interesting (Lakatos, Feyerabend) physics!
```


## Continuum spacetime From GFTs?

■ take GFT seriously as microscopic (quantum field) theory of the atoms of space, 'pre-geometric structures', from which geometry only emerges in some limit
■ take onboard suggestions from condensed matter and analogue gravity
■ hypothesis: continuum is coherent, equilibrium many-particles physics for GFT quanta at low temperature (hydrodynamic approx): "quantum spacetime fluid"?
■ (modified) GR from GFT hydrodynamics?

- need to
- develop statistical GFT and apply tools from many-particle physics to GFT (renormalization group, mean field theory, coherent states, etc)
- identify GFT phase transitions in thermodynamic limit (like in matrix models and DT, using QFT tools)
- extract effective dynamics around different GFT vacua and simplified models capturing physics in different regimes (e.g. cosmology, near flat space, ...)
■ extract falsifiable (Popper), novel and interesting (Lakatos, Feyerabend) physics!


## Thank you for your attention!


[^0]:    canonical approach (De Witt, Wheeler, Kuchar, Isham,

    - classical input: kinematics: $\rightarrow h_{i j}\left(x_{\mu}\right)$ on $S=\partial M$; dynamics: Hamiltonian constraint $\mathcal{H}=0$
    - quantum theory: kinematics $\rightarrow \Psi\left(h_{i j}(x)\right) \quad \hat{O}\left(h_{i j}(x)\right)$ dynamics $\rightarrow \widehat{\mathcal{H}}_{W d W} \Psi\left(h_{i j}\right)=0$

