The spectral action for Dirac operators with skew-symmetric torsion

Frank Pfäffle

joint work with
Florian Hanisch \& Christoph A. Stephan

Institut für Mathematik
Universität Potsdam
Bayrischzell, May 16, 2010
(1) Connections with torsion

2 Spectral action for pure gravity with torsion
(3) Lagrangian for SM in presence of torsion
(4) Questions

2 Spectral action for pure gravity with torsion

3 Lagrangian for SM in presence of torsion
4) Questions

set-up

Consider 4-dim. Riemannian manifolds M, closed and spin.
General connection for vector fields has the form

$$
\nabla_{X} Y=\nabla_{X}^{L C} Y+A(X, Y)
$$

where $\nabla^{L C}$ is Levi-Civita connection and A is a (2,1)-tensor field.

Torsion 3-form of ∇ is

$$
T(X, Y, Z)=\left\langle\nabla_{X} Y-\nabla_{Y} X-[X, Y], Z\right\rangle
$$

∇ is compatible with the Riemannian metric $\langle\cdot, \cdot\rangle$ and has same geodesics as $\nabla^{L C}$
if and only if $A(X, Y, Z)=\langle A(X, Y), Z\rangle$ is totally anti-symmetric.
("Torsion is skew-symmetric.")
In this case: $T=2 A$, and hence

$$
\nabla_{X} Y=\nabla_{X}^{L C} Y+\frac{1}{2} T(X, Y, \cdot)^{\#}
$$

Induced connection for spinor fields is then

$$
\left.\nabla_{X} \psi=\nabla_{X}^{L C} \psi+\frac{1}{4}(X\lrcorner T\right) \cdot \psi,
$$

where $(X\lrcorner T)$. is Clifford multiplication by the 2-form $T(X, \cdot, \cdot)$.

Dirac operator D is given by $D \psi=\sum_{i} e_{i} \cdot \nabla_{e_{i}} \psi$, for any orthonormal frame e_{i}.

Bochner formula (Agricola-Friedrich)

$$
D^{2}=\Delta+\frac{3}{4} d T+\frac{1}{4} R-\frac{9}{8} T_{0}^{2},
$$

where $\Delta=\widetilde{\nabla}^{*} \widetilde{\nabla}$ is the Laplacian associated to spin connection

$$
\left.\widetilde{\nabla}_{X} \psi=\nabla_{X}^{L C} \psi+\frac{3}{4}(X\lrcorner T\right) \cdot \psi
$$

$d T$ is the exterior differential of the 3-form T, R is the scalar curvature and $T_{0}^{2}=\frac{1}{6} \sum_{i, j=1}^{n}\left\|T\left(e_{i}, e_{j}, \cdot\right)^{\#}\right\|^{2}$.

(1) Connections with torsion

2 Spectral action for pure gravity with torsion

3 Lagrangian for SM in presence of torsion

Chamseddine-Connes:

Spectral action (bosonic part) of Dirac operator D is the number of eigenvalues of D in the interval $[-\Lambda, \Lambda]$ (with $\Lambda \in \mathbb{R}^{+}$):

$$
I=\operatorname{Tr} f\left(\frac{D^{2}}{\Lambda^{2}}\right),
$$

where Tr is the L^{2}-trace over the space of spinor fields, and f is cut-off function with support in $[-1,+1]$ which is constant near 0 .

From the heat trace asymptotics for $t \rightarrow 0$

$$
\operatorname{Tr}\left(e^{-t D^{2}}\right) \sim \sum_{n \geq 0} t^{n-2} a_{2 n}\left(D^{2}\right)
$$

(with Seeley-deWitt coefficients $a_{2 n}\left(D^{2}\right)$)
one gets (by $t=\Lambda^{-2}$) an asymptotics for the spectral action

$$
I=\operatorname{Tr} f\left(\frac{D^{2}}{\Lambda^{2}}\right) \sim \Lambda^{4} f_{4} a_{0}\left(D^{2}\right)+\Lambda^{2} f_{2} a_{2}\left(D^{2}\right)+\Lambda^{0} f_{0} a_{4}\left(D^{2}\right)
$$

as $\Lambda \rightarrow \infty$.
Here f_{4}, f_{2}, f_{0} are moments of the cut-off function f.

Bochner formula is $D^{2}=\Delta-E$ with $E=-\frac{3}{4} d T-\frac{1}{4} R+\frac{9}{8} T_{0}^{2}$. Insert this into formulas for Seeley-deWitt coefficients:

$$
\begin{aligned}
a_{0}\left(D^{2}\right)= & \frac{1}{4 \pi^{2}} \int_{M} d v o l \\
a_{2}\left(D^{2}\right)= & \frac{1}{96 \pi^{2}} \int_{M}(6 \operatorname{tr}(E)+4 R) d v o l \\
a_{4}\left(D^{2}\right)= & \frac{1}{5760 \pi^{2}} \int_{M}\left(\operatorname{tr}\left(60 \Delta E+60 R E+180 E^{2}+30 \Omega_{i j} \Omega_{i j}\right)\right. \\
& \left.\quad+48 \Delta^{L C} R+20 R^{2}-8\|R i c\|^{2}+8\|R i e m\|^{2}\right) d v o l
\end{aligned}
$$

where Ric and Riem are Ricci/Riemannian curvature tensors of the metric,
and $\Omega_{i j}=\widetilde{\nabla}_{e_{i}} \tilde{\nabla}_{e_{j}}-\widetilde{\nabla}_{e_{j}} \tilde{\nabla}_{e_{i}}-\tilde{\nabla}_{\left[e_{i}, e_{j}\right]}$ is the curvature of $\widetilde{\nabla}$.

Clifford relations and cylicity of trace $\Longrightarrow \operatorname{tr}(d T)=0$
Therefore

$$
a_{2}\left(D^{2}\right)=\frac{1}{16 \pi^{2}} \int_{M}\left(\frac{9}{2} T_{0}^{2}-\frac{1}{3} R\right) d v o l .
$$

Neglecting the a_{4}-term in the spectral action, one obtains the classical Einstein-Cartan-action: Only torsion free critical points upon variation of metric and torsion 3 -forms.

We compute for the curvature $\Omega_{i j}$ of the connection $\tilde{\nabla}$:

$$
\begin{aligned}
\Omega_{i j} & =\sum_{a, b}\left(\frac{1}{4}\left\langle R\left(e_{i}, e_{j}\right) e_{a}, e_{b}\right\rangle+\frac{3}{8} a(\nabla T)\left(e_{i}, e_{j}, e_{a}, e_{b}\right)\right. \\
& \left.+\frac{9}{16} \sum_{c}\left(T\left(e_{i}, e_{c}, e_{a}\right) T\left(e_{j}, e_{c}, e_{b}\right)-T\left(e_{j}, e_{c}, e_{a}\right) T\left(e_{i}, e_{c}, e_{b}\right)\right)\right) e_{a} e_{b}
\end{aligned}
$$

where $a(\nabla T)\left(e_{i}, e_{j}, e_{a}, e_{b}\right)=\nabla_{e_{i}} T\left(e_{j}, e_{a}, e_{b}\right)-\nabla_{e_{j}} T\left(e_{i}, e_{a}, e_{b}\right)$.
Then using $\operatorname{tr}\left(e_{k} e_{\ell} e_{s} e_{t}\right)=4\left(\delta_{\ell s} \delta_{k t}-\delta_{\ell t} \delta_{k s}\right)$:

$$
\begin{aligned}
\sum_{i, j} \operatorname{tr}\left(\Omega_{i j} \Omega_{i j}\right)= & -8 \sum_{\substack{i \neq j \\
a, b}}\left(\frac{1}{4}\left\langle R\left(e_{i}, e_{j}\right) e_{a}, e_{b}\right\rangle\right. \\
& \left.+\frac{3}{8} a(\nabla T)\left(e_{i}, e_{j}, e_{a}, e_{b}\right)+\frac{9}{8} c(T)\left(e_{i}, e_{j}, e_{a}, e_{b}\right)\right)^{2}
\end{aligned}
$$

where $c(T)\left(e_{i}, e_{j}, e_{a}, e_{b}\right)=\sum_{c} T\left(e_{i}, e_{c}, e_{a}\right) T\left(e_{j}, e_{c}, e_{b}\right)$.

Representation theory of $O(4) \rightsquigarrow$ evaluation of $\sum_{i, j} \operatorname{tr}\left(\Omega_{i j} \Omega_{i j}\right)$.
The forth Seeley-deWitt coefficient is

$$
\begin{aligned}
a_{4}\left(D^{2}\right)=\frac{1}{16 \pi^{2}} \int_{M}(& \frac{1}{72} R^{2}-\frac{1}{45} \| \text { Ric }\left\|^{2}-\frac{7}{360}\right\| \text { Riem } \|^{2} \\
& +\frac{81}{32}\left(T_{0}^{2}\right)^{2}-\frac{27}{32}\|c(T)\|^{2} \\
& +\frac{9}{16}\|d T\|^{2}-\frac{3}{8}\left\|d^{*} T\right\|^{2}-\frac{3}{8}\left\|s y m_{0}^{2}(\nabla T)\right\|^{2} \\
& \left.-\frac{3}{8} R(T)\right) d v o l
\end{aligned}
$$

with

$$
\begin{aligned}
R(T)= & -\sum_{\substack{i \neq j \\
a, c}} \operatorname{Ric}\left(\boldsymbol{e}_{j}, \boldsymbol{e}_{a}\right) T\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{c}, \boldsymbol{e}_{a}\right) T\left(\boldsymbol{e}_{j}, \boldsymbol{e}_{c}, \boldsymbol{e}_{i}\right) \\
& +\sum_{\substack{i, j, c \\
a, b, c}}\left\langle W\left(\boldsymbol{e}_{i}, e_{j}\right) e_{a}, e_{b}\right\rangle T\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{c}, \boldsymbol{e}_{a}\right) T\left(\boldsymbol{e}_{j}, \boldsymbol{e}_{c}, \boldsymbol{e}_{b}\right)
\end{aligned}
$$

Observations

- $R(T)$ couples torsion and the trace free component of the curvature tensor. \rightsquigarrow Expect critical points of spectral action with non-zero torsion.
- Existence of the derivative terms of T. \rightsquigarrow Torsion gets dynamical

(1) Connections with torsion

2 Spectral action for pure gravity with torsion

3 Lagrangian for SM in presence of torsion

Specific particle model

Ingredients of the particle model:

- internal Hilbert space: \mathcal{H}_{f} with connection $\nabla^{\mathcal{H}_{f}}$
- full Hilbert space: $\mathcal{H}_{S M}=L^{2}(M, S) \otimes \mathcal{H}_{f} \ni \psi \otimes \chi$
- twisted connection (with torsion): $\widehat{\nabla}^{S M}=\nabla \otimes \mathrm{id}_{\mathcal{H}_{f}}+\mathrm{id}_{S} \otimes \nabla^{\mathcal{H}_{f}}$
- associated Dirac operator: $D^{\nabla^{S M}}$
- field Φ of endomorphisms of \mathcal{H}_{f} (encodes Higgs boson, Yukawa couplings, etc.)

The Chamseddine-Connes Dirac operator:

$$
D_{\Phi}(\psi \otimes \chi)=D^{\hat{\nabla}^{S M}}(\psi \otimes \chi)+\gamma_{5} \psi \otimes \Phi \chi
$$

Bochner formula for $D_{\Phi}(\psi \otimes \chi)=D^{\widehat{\nabla}^{S M}}(\psi \otimes \chi)+\gamma_{5} \psi \otimes \Phi \chi$:

$$
\left(D_{\Phi}\right)^{2}(\psi \otimes \chi)=\Delta^{\bar{\nabla}}(\psi \otimes \chi)-E_{\Phi}(\psi \otimes \chi)
$$

with

$$
\begin{aligned}
E_{\Phi}(\psi \otimes \chi) & =\left(\left(-\frac{3}{4} d T-\frac{1}{4} R+\frac{9}{8} T_{0}^{2}\right) \psi\right) \otimes \chi \\
& +\frac{1}{2} \cdot \sum_{i \neq j}\left(e_{i} \cdot e_{j} \cdot \psi\right) \otimes\left(\Omega_{i j}^{\mathcal{H}} \chi\right) \\
& +\sum_{i=1}^{n} \gamma_{5} e_{i} \cdot \psi \otimes\left[\nabla_{e_{i}}^{\mathcal{H}_{f}}, \Phi\right] \chi-\psi \otimes\left(\Phi^{2}\right) \chi
\end{aligned}
$$

Bosonic Lagrangian of the SM coupled to gravity and torsion:

$$
\begin{aligned}
& I=\frac{24 \Lambda^{4} f_{4}}{\pi^{2}} \int_{M} d v o l \\
&+\frac{\Lambda^{2} f_{2}}{\pi^{2}} \int_{M}\{ \\
&\left.+27 T_{0}^{2}-2 R-a|\varphi|^{2}-\frac{1}{2} c\right\} d v o l \\
& 2 \pi^{2} \int_{M}\{
\end{aligned} \begin{aligned}
& \frac{1}{6} R^{2}-\frac{4}{15}\|R i c\|^{2}-\frac{7}{30}\|R i e m\|^{2}+\frac{243}{8}\left(T_{0}^{2}\right)^{2}-\frac{27}{4}\|c(T)\|^{2} \\
&+\frac{27}{4}\|d T\|^{2}-\frac{9}{2}\left\|d^{*} T\right\|^{2}-\frac{9}{2}\left\|s y m_{0}^{2}(\nabla T)\right\|^{2}-\frac{9}{2} R(T) \\
&+g_{3}^{2}\|G\|^{2}+g_{2}^{2}\|F\|^{2}+\frac{5}{3} g^{2}\|B\|^{2} \\
&+a\left|D_{\nu} \varphi\right|^{2}+b|\varphi|^{4}+2 e|\varphi|^{2}+\frac{1}{2} d+\frac{1}{6} R\left(a|\varphi|^{2}+\frac{1}{2} c\right) \\
&\left.-\frac{9}{4} T_{0}^{2}\left(a|\varphi|^{2}+\frac{1}{2} c\right)\right\} d v o l .
\end{aligned}
$$

Observations

- Torsion couples to the Higgs field φ.
- $R(T)$ couples torsion and the trace free component of the curvature tensor. \rightsquigarrow Expect critical points of spectral action with non-zero torsion.
- Existence of the derivative terms of T. \rightsquigarrow Torsion gets dynamical

The full Standard Model action is given by

$$
I_{S M}=\operatorname{Tr} f\left(\frac{D_{\Phi}^{2}}{\Lambda^{2}}\right)+\left\langle\Psi, D_{\Phi} \Psi\right\rangle \quad \text { with } \quad \Psi \in \mathcal{H}_{S M}
$$

(1) Connections with torsion

2 Spectral action for pure gravity with torsion

3 Lagrangian for SM in presence of torsion
(4) Questions
(n)

Some Questions

Experimental signatures:

- Torsion field of the Earth (Weyl tensor $\neq 0$)?
- Effects on freely falling particles with different spin?

The cosmological constant:

- Spectral action "predicts" huge cosm. constant: $\Lambda \sim 10^{17} \mathrm{GeV}$
- Torsion might induce Fermi condensate (Perez,Rovelli)
- Dynamical cancelation of cosm. constant + inflation?

Further implications:

- Connections to LQG (Barbero-Immirzi parameter)?
- Torsion in QFT?

