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Relations
κ-Minkowski relations for d + 1-dimensional space:

[T ,Xj ] = iXj , j = 1, . . . ,d ,
[Xi ,Xj ] = 0, j , j = 1, . . . ,d

where T = T ∗,Xj = X ∗j on Hilbert space H.

Interpretation: T=time, X = (X1, . . . ,Xd )=space; generators of a
localisation algebra. Not observables: ideally they are
noncommutative analogues of classical localisation x of an
observable field A(x).

Introduced in 90’s by Lukierski, Ruegg, then Majid. . .
Mainly studied from the point of view of finitely generated algebras.

Here we take Weyl’s point of view: the corresponding *-algebra =
pre-C*-algebra.

C* = minimal requirement for: spectrum(selfadjoint)⊂ R, and
existence of functional calculus with spectral mapping. Not a
technicality, indispensible for a sound Quantum theory.
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Representations
Set

R2 = X 2
1 + · · ·+ X 2

d .

Assume ∃R−1; set Xj = CjR; Of course [R,Cj ] = 0; moreover

iCjR = [T ,CjR] = Cj [T ,R] + [T ,Cj ]R = iCjR + [T ,Cj ]R

⇒ [T ,Cj ] = 0.

Hence the “angle variables” Cj are central⇒ Quantisation is radial

This reduces the classification problem to 1+1 dimensions.
IRREPS: by Schur lemma C = cI, c ∈ Rd , and

[T ,R] = iR.

Non trivial irreps; with [P,Q] = −iI Schrödinger ops on L2(R,ds),

[P, f (Q)] = −if ′(Q) =⇒ [P,±e−Q] = ±ie−Q .

Uniqueness: Agostini (induced reps), Gayral et al (Kirillov method).

Simpler proof: Given irrep (T ,R), sign(R) =central= ±1.

Case R 6= 0: Then setting P = T , Q = log(±R), we have [P,Q] = −iI
and we may use von Neumann uniqueness.
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Representations II
Irreps

T = P, R = e−Q , Xj = cjR, c = (c1, . . . , cd ) ∈ Rd , c 6= 0.
(1)

T generates space dilations⇒ we restrict to

c ∈ Sd−1.

R = −e−Q taken care of by (|c| = | − c|).
Hence (1) = most general non trivial irreducible representation. Trivial
case R = 0 is important: trivirreps are one dimensional.
Direct integration gives universal representation. The orthogonal
projection

E =
∑

j

C2
j

is spectral for R, corresponding to continuous spectrum (0,∞); I − E
corresponds to discrete spectrum {0}.
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Notations

Given a function f (x1, . . . , xn) and selfadjoint operators A1, . . . ,An,

f (A1, . . . ,An) =

∫
dk1 · · · dkn f̂ (k1, . . . , kn)ei

P
j kj Aj ,

where

f̂ (k1, . . . , kn) =
1

(2π)n

∫
dx1 · · · dxnf (x1, . . . , xn)e−i

P
j kj xj .

In particular we will consider cases where n = d + 1 and n = 2:

f (T ,X ) = f (T ,X1, . . . ,Xd ), f (T ,R).
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Let f = f (t ,x) be classical fn (Weyl symbol); Weyl quantisation:

f (T ,X ) =
1

(2π)d+1

∫
R×Rd

dα dβ F̂ (α, β)ei(αT+β·X).

Irrep first: T (c) = P,X (c) = cR(c) = ce−Q .
Then one can prove

f (P,ce−Q) = fc(P,e−Q), fc(t , r) = f (t , rc).

which is a compact operator.

Now general case:

f (T (c),X (c)) =

 ⊕∫
Sd−1

dc

fc(T (c),R(c))

 ⊕ f (Q,0)

∈ C(Sd−1),K)⊕ C∞(R)
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The picture which arise is:
1. the C*-algebra is C(Sd−1,K)⊕ C∞(R);

2. the component C(Sd−1,K) is a trivial bundle of C*-algebras on
base space Sd−1 with standard fibre = K, the compact
operators;

3. each fibre over c corresponds to the quantisation in the open half
plane {(t , rc) : r > 0} (see next slide).

4. the large scale limit of this component is the Minkowski
spacetime with the time axis removed;

5. the time axis always remains classical and corresponds to the
component C∞(R).
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Let T = P,R = e−Q and f = f (t , r); then

(f (T ,R)ξ)(s) =

∫
du Kf (s,u)ξ(u),

Kf (s,u) = (F1f )

(
u − s,

e−s − e−u

u − s

)
;

only depends on the values f takes in {r > 0}.

Remark! in a sense f (P,e−Q) is a “function” of (P,Q). Question: is
there a map f 7→ gf such that f (P,e−Q) = gf (P,Q)?

Answer: yes (by comparison of kernel Kf with the well known kernel
of canonical Weyl quantisation). This has two main consequences:

1. We inherit trace formula from CCR:

Tr f (P,e−Q) = Tr gf (P,Q) =

∫
dt dr gf (t , r);

2. the map f 7→ gf is invertible: hence

f1(P,e−Q)f2(P,e−Q) = gf1 (P,Q)gf2 (P,Q) = (gf1 ?~ gf2 )(P,Q);

3. twisted covariance also can be “pulled back” to κ-Minkowski.
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Some problems of physical interpretation. Heisenberg theorem:

c∆ω(T )∆ω(R) >
1

2κ
|ω([T ,R]) =

1
2κ
ω(R).

Easy to construct sharply localised states (close to space origin):
instability of spacetime under localisation!

On the contrary: noncommutativity grows too fast for κ−1 =Planck
length. Take ω(R) = L so that

L 6 2cκ∆ω(T )∆ω(R).

1. If c∆T ∼ ∆R ∼ 10−19m (strong interactions), then
L� 10−3m=nominal peak size at LHC.

2. If ∆T ,∆R=classical period and radius of electron (Hydrogen
atom), then L� 10 light years. There would be no atomic physic
on α-Centauri.
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Consider the relations (already considered by Lukierski):

[Xµ,X ν ] = i(VµX ν − V νXµ).

If Vµ = vµI, the choice v = (1,0,0,0) gives [X 0,X j ] = iX j .

We look for a representation where Vµ are central operators,

[Xµ,V ν ] = 0,

and such that there exists a unitary representation of the Lorentz
group, such that

U(Λ)−1XµU(Λ−1) = ΛµνX ν ,

U(Λ)−1VµU(Λ−1) = ΛµνV ν .

In addition, we want it to be the smallest possible covariant central
extension of κ-Minkowski; hence we require

VµVν = I.
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Good news: it exists!

Bad news: no time to tell the details!

Joint spectrum of the Vµ is the upper mass shell
H+

m = {v ∈ R4 : vµvµ = 1}, and

Vµ|v〉 = vµ|v〉, v ∈ H+
m .

Structure: bundle over the mass shell H+
m ; over each v sits another

bundle over Sd−1 and standard fibre K.
Comments:

1. Besides the DFR model, this is another model with two
characteristic, dimensionful parametres, while the Lorentz group
is kept undeformed.

2. Twisted covariance is equivalent to ordinary form-covariance, up
to dismissing a huge non invariant set of otherwise admissible
localisation states.
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(Dubois-Violette) Given unital algebra A, take

Λ(A) =
⊕

n

Λn(A) =
⊕

n

An⊗

with product and differential

(a1 ⊗ · · ·an) · (b1 ⊗ . . .⊗ bm) = a1 ⊗ · · · ⊗ an−1 ⊗ anb1 ⊗ b2 ⊗ · · · ⊗ bm,

da = a⊗ I − I ⊗ a,

(extended as a graded differential). Define Ω(A) as the d-stable
subalgebra of Λn(A), generated by A.

Want to apply this to A = M(E)= multiplier algebra of DFR quantum
spacetime C*-algebra.

DFR model:

[qµ,qν ] = iQµν ,

[qµ,Qµν ] = 0,
QµνQµν = 0,

Qµν(∗Q)µν = ±4I.

Irreducibles are canonical quantum spacetimes.
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The (unbounded) selfadjoint operators qµ are uniquely affiliated to E .
If ⊗ is understood as tensor product of Z (M(E)) moduli,

dqµ = qµ ⊗ I − I ⊗ qµ

is a well defined as a selfadjoint operator, interpreted as separation of
independent events. It “lives” in E ⊗ E .

dqµ dqν = (qµ ⊗ I − I ⊗ qµ)(qν ⊗ I − I ⊗ qν) =

= qµ ⊗ qν ⊗ I − qµ ⊗ I ⊗ qν − I ⊗ qµqν ⊗ I + I ⊗ qµ ⊗ qν

“lives” in E ⊗ E ⊗ E .

Can define the covariant volume operator: e.g.

V = dq0 ∧ dq1 ∧ dq2 ∧ dq3 = εµνρσdqµdqνdqρdqσ

(but also area operators dqµ ∧ dqν , 3-volume operators,. . . ).
In particular V “lives” in E ⊗ · · · ⊗ E︸ ︷︷ ︸

5 factors
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Strength: use the abstract universal differential calculus to define
them, but then can compute spectra as operators affiliated to
C*-algebras.
V is a normal operator and has pure point spectrum

specpp(V ) = S = ±2 + Za+a− + i (Za+ + Za−) .

where

a± =

√
5± 2

√
5.

Then
spec(V ) = specpp(V ) = ±2 + Z

√
5 + iR.

Note that spec(V ) stays away from zero by a constant of order of λ4
p.
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