κ-Minkowski: topology, symmetries and uncertainty relations

$+$
Spectrum of volume operators for universal differential calculus of DFR spacetime

Gherardo Piacitelli ${ }^{1}$

${ }^{1}$ Sector of Mathematical Physics SISSA- Tieste

Bayrischzell, May 14-17, 2010

Outline

Canonical κ-Minkowski (with L. Dąbrowski)
Relations
Representations and Radial Quantisation
Weyl Quantisation and C^{*}-algebra
Uncertainty Relations

Covariant κ-Minkowski (with L. Dąbrowski and M. Godłiński)
The covariantised model

Spectrum of volume operators for universal differential calculus of DFR spacetime (with D. Bahns, S. Doplicher and K. Fredemhagen)

Outline

> Canonical κ-Minkowski (with L. Dąbrowski)
> Relations
> Representations and Radial Quantisation
> Weyl Quantisation and C^{*}-algebra
> Uncertainty Relations

> Covariant κ-Minkowski (with L. Dąbrowski and M. Godłiński) The covariantised model

> Spectrum of volume operators for universal differential calculus of DFR spacetime (with D. Bahns, S. Doplicher and K. Fredemhagen)

Relations

κ-Minkowski relations for $d+1$-dimensional space:

$$
\begin{aligned}
& {\left[T, X_{j}\right]=i X_{j}, \quad j=1, \ldots, d} \\
& {\left[X_{i}, X_{j}\right]=0, \quad j, j=1, \ldots, d}
\end{aligned}
$$

where $T=T^{*}, X_{j}=X_{j}^{*}$ on Hilbert space \mathfrak{H}.
Interpretation: $T=$ time, $\boldsymbol{X}=\left(X_{1}, \ldots, X_{d}\right)=$ space; generators of a localisation algebra. Not observables: ideally they are noncommutative analogues of classical localisation x of an observable field $A(x)$.

Relations

κ-Minkowski relations for $d+1$-dimensional space:

$$
\begin{aligned}
& {\left[T, X_{j}\right]=i X_{j}, \quad j=1, \ldots, d} \\
& {\left[X_{i}, X_{j}\right]=0, \quad j, j=1, \ldots, d}
\end{aligned}
$$

where $T=T^{*}, X_{j}=X_{j}^{*}$ on Hilbert space \mathfrak{H}.
Interpretation: $T=$ time, $\boldsymbol{X}=\left(X_{1}, \ldots, X_{d}\right)=$ space; generators of a localisation algebra. Not observables: ideally they are noncommutative analogues of classical localisation x of an observable field $A(x)$.

Introduced in 90 's by Lukierski, Ruegg, then Majid. . .
Mainly studied from the point of view of finitely generated algebras.
Here we take Weyl's point of view: the corresponding *-algebra = pre-C*-algebra.
$\mathrm{C}^{*}=$ minimal requirement for: spectrum(selfadjoint) $\subset \mathbb{R}$, and existence of functional calculus with spectral mapping. Not a technicality, indispensible for a sound Quantum theory.

Representations

Set

$$
R^{2}=X_{1}^{2}+\cdots+X_{d}^{2}
$$

Assume $\exists R^{-1}$; set $X_{j}=C_{j} R$; Of course $\left[R, C_{j}\right]=0$; moreover $i C_{j} R=\left[T, C_{j} R\right]=C_{j}[T, R]+\left[T, C_{j}\right] R=i C_{j} R+\left[T, C_{j}\right] R$

Representations

Set

$$
R^{2}=X_{1}^{2}+\cdots+X_{d}^{2}
$$

Assume $\exists R^{-1}$; set $X_{j}=C_{j} R$; Of course $\left[R, C_{j}\right]=0$; moreover $i C_{j} R=$ $i C_{j} R+\left[T, C_{j}\right] R \Rightarrow\left[T, C_{j}\right]=0$.

Representations
 Set

$$
R^{2}=X_{1}^{2}+\cdots+X_{d}^{2}
$$

Assume $\exists R^{-1}$; set $X_{j}=C_{j} R$; Of course $\left[R, C_{j}\right]=0$; moreover $i C_{j} R=$ $i C_{j} R+\left[T, C_{j}\right] R \Rightarrow\left[T, C_{j}\right]=0$.
Hence the "angle variables" C_{j} are central \Rightarrow Quantisation is radial

Representations
 Set

$$
R^{2}=X_{1}^{2}+\cdots+X_{d}^{2}
$$

Assume $\exists R^{-1}$; set $X_{j}=C_{j} R$; Of course $\left[R, C_{j}\right]=0$; moreover $i C_{j} R=$ $i C_{j} R+\left[T, C_{j}\right] R \Rightarrow\left[T, C_{j}\right]=0$.
Hence the "angle variables" C_{j} are central \Rightarrow Quantisation is radial
This reduces the classification problem to $1+1$ dimensions. IRREPS: by Schur lemma $\boldsymbol{C}=\boldsymbol{c l}, \boldsymbol{c} \in \mathbb{R}^{d}$, and

$$
[T, R]=i R .
$$

Representations
 Set

$$
R^{2}=X_{1}^{2}+\cdots+X_{d}^{2}
$$

Assume $\exists R^{-1}$; set $X_{j}=C_{j} R$; Of course $\left[R, C_{j}\right]=0$; moreover $i C_{j} R=$ $i C_{j} R+\left[T, C_{j}\right] R \Rightarrow\left[T, C_{j}\right]=0$.
Hence the "angle variables" C_{j} are central \Rightarrow Quantisation is radial
This reduces the classification problem to $1+1$ dimensions.
IRREPS: by Schur lemma $\boldsymbol{C}=\boldsymbol{c l}, \boldsymbol{c} \in \mathbb{R}^{d}$, and

$$
[T, R]=i R .
$$

Non trivial irreps; with $[P, Q]=-i l$ Schrödinger ops on $L^{2}(\mathbb{R}, d s)$,

$$
[P, f(Q)]=-i f^{\prime}(Q)
$$

Representations
 Set

$$
R^{2}=X_{1}^{2}+\cdots+X_{d}^{2}
$$

Assume $\exists R^{-1}$; set $X_{j}=C_{j} R$; Of course $\left[R, C_{j}\right]=0$; moreover $i C_{j} R=$

$$
i C_{j} R+\left[T, C_{j}\right] R \Rightarrow\left[T, C_{j}\right]=0
$$

Hence the "angle variables" C_{j} are central \Rightarrow Quantisation is radial
This reduces the classification problem to $1+1$ dimensions.
IRREPS: by Schur lemma $\boldsymbol{C}=\boldsymbol{c l}, \boldsymbol{c} \in \mathbb{R}^{d}$, and

$$
[T, R]=i R .
$$

Non trivial irreps; with $[P, Q]=-i l$ Schrödinger ops on $L^{2}(\mathbb{R}, d s)$,

$$
[P, f(Q)]=-i f^{\prime}(Q) \Longrightarrow\left[P, \pm e^{-Q}\right]= \pm i e^{-Q}
$$

Representations
 Set

$$
R^{2}=X_{1}^{2}+\cdots+X_{d}^{2}
$$

Assume $\exists R^{-1}$; set $X_{j}=C_{j} R$; Of course $\left[R, C_{j}\right]=0$; moreover $i C_{j} R=$

$$
i C_{j} R+\left[T, C_{j}\right] R \Rightarrow\left[T, C_{j}\right]=0
$$

Hence the "angle variables" C_{j} are central \Rightarrow Quantisation is radial
This reduces the classification problem to $1+1$ dimensions.
IRREPS: by Schur lemma $\boldsymbol{C}=\boldsymbol{c l}, \boldsymbol{c} \in \mathbb{R}^{d}$, and

$$
[T, R]=i R .
$$

Non trivial irreps; with $[P, Q]=-i l$ Schrödinger ops on $L^{2}(\mathbb{R}, d s)$,

$$
[P, f(Q)]=-i f^{\prime}(Q) \Longrightarrow\left[P, \pm e^{-Q}\right]= \pm i e^{-Q}
$$

Uniqueness: Agostini (induced reps), Gayral et al (Kirillov method).

Representations
 Set

$$
R^{2}=X_{1}^{2}+\cdots+X_{d}^{2} .
$$

Assume $\exists R^{-1}$; set $X_{j}=C_{j} R$; Of course $\left[R, C_{j}\right]=0$; moreover $i C_{j} R=$

$$
i C_{j} R+\left[T, C_{j}\right] R \Rightarrow\left[T, C_{j}\right]=0
$$

Hence the "angle variables" C_{j} are central \Rightarrow Quantisation is radial
This reduces the classification problem to $1+1$ dimensions.
IRREPS: by Schur lemma $\boldsymbol{C}=\boldsymbol{c l}, \boldsymbol{c} \in \mathbb{R}^{d}$, and

$$
[T, R]=i R
$$

Non trivial irreps; with $[P, Q]=-i l$ Schrödinger ops on $L^{2}(\mathbb{R}, d s)$,

$$
[P, f(Q)]=-i f^{\prime}(Q) \Longrightarrow\left[P, \pm e^{-Q}\right]= \pm i e^{-Q} .
$$

Uniqueness: Agostini (induced reps), Gayral et al (Kirillov method).
Simpler proof: Given irrep $(T, R), \operatorname{sign}(R)=$ central $= \pm 1$.
Case $R \neq 0$: Then setting $P=T, Q=\log (\pm R)$, we have $[P, Q]=-i l$ and we may use von Neumann uniqueness.

Representations II

Irreps

$$
\begin{equation*}
T=P, \quad R=e^{-Q}, \quad X_{j}=c_{j} R, \quad \boldsymbol{c}=\left(c_{1}, \ldots, c_{d}\right) \in \mathbb{R}^{d}, \quad \boldsymbol{c} \neq \mathbf{0} \tag{1}
\end{equation*}
$$

Representations II

Irreps

$$
\begin{equation*}
T=P, \quad R=e^{-Q}, \quad X_{j}=c_{j} R, \quad \boldsymbol{c}=\left(c_{1}, \ldots, c_{d}\right) \in \mathbb{R}^{d}, \quad \boldsymbol{c} \neq \mathbf{0} \tag{1}
\end{equation*}
$$

T generates space dilations \Rightarrow we restrict to

$$
\boldsymbol{c} \in S^{d-1}
$$

Representations II

Irreps

$$
\begin{equation*}
T=P, \quad R=e^{-Q}, \quad X_{j}=c_{j} R, \quad \boldsymbol{c}=\left(c_{1}, \ldots, c_{d}\right) \in \mathbb{R}^{d}, \quad \boldsymbol{c} \neq \mathbf{0} \tag{1}
\end{equation*}
$$

T generates space dilations \Rightarrow we restrict to

$$
\boldsymbol{c} \in S^{d-1}
$$

$R=-e^{-Q}$ taken care of by $(|\boldsymbol{c}|=|-\boldsymbol{c}|)$.
Hence (1) = most general non trivial irreducible representation.

Representations II

Irreps

$$
\begin{equation*}
T=P, \quad R=e^{-Q}, \quad X_{j}=c_{j} R, \quad \boldsymbol{c}=\left(c_{1}, \ldots, c_{d}\right) \in \mathbb{R}^{d}, \quad \boldsymbol{c} \neq \mathbf{0} \tag{1}
\end{equation*}
$$

T generates space dilations \Rightarrow we restrict to

$$
\boldsymbol{c} \in S^{d-1}
$$

$R=-e^{-Q}$ taken care of by $(|\boldsymbol{c}|=|-\boldsymbol{c}|)$.
Hence (1) = most general non trivial irreducible representation. Trivial case $R=0$ is important: trivirreps are one dimensional.

Representations II

Irreps

$$
\begin{equation*}
T=P, \quad R=e^{-Q}, \quad X_{j}=c_{j} R, \quad \boldsymbol{c}=\left(c_{1}, \ldots, c_{d}\right) \in \mathbb{R}^{d}, \quad \boldsymbol{c} \neq \mathbf{0} \tag{1}
\end{equation*}
$$

T generates space dilations \Rightarrow we restrict to

$$
\boldsymbol{c} \in S^{d-1}
$$

$R=-e^{-Q}$ taken care of by $(|\boldsymbol{c}|=|-\boldsymbol{c}|)$.
Hence (1) = most general non trivial irreducible representation. Trivial case $R=0$ is important: trivirreps are one dimensional. Direct integration gives universal representation. The orthogonal projection

$$
E=\sum_{j} C_{j}^{2}
$$

is spectral for R, corresponding to continuous spectrum ($0, \infty$); I-E corresponds to discrete spectrum $\{0\}$.

Notations

Given a function $f\left(x_{1}, \ldots, x_{n}\right)$ and selfadjoint operators A_{1}, \ldots, A_{n},

$$
f\left(A_{1}, \ldots, A_{n}\right)=\int d k_{1} \cdots d k_{n} \hat{f}\left(k_{1}, \ldots, k_{n}\right) e^{i \sum_{j} k_{j} A_{j}}
$$

where

$$
\hat{f}\left(k_{1}, \ldots, k_{n}\right)=\frac{1}{(2 \pi)^{n}} \int d x_{1} \cdots d x_{n} f\left(x_{1}, \ldots, x_{n}\right) e^{-i \sum_{j} k_{j} x_{j}}
$$

In particular we will consider cases where $n=d+1$ and $n=2$:

$$
f(T, \boldsymbol{X})=f\left(T, X_{1}, \ldots, X_{d}\right), \quad f(T, R)
$$

Let $f=f(t, \boldsymbol{x})$ be classical fn (Weyl symbol); Weyl quantisation:

$$
f(T, \boldsymbol{X})=\frac{1}{(2 \pi)^{d+1}} \int_{\mathbb{R} \times \mathbb{R}^{d}} d \alpha d \boldsymbol{\beta} \widehat{F}(\alpha, \beta) e^{i(\alpha T+\boldsymbol{\beta} \cdot \boldsymbol{X})}
$$

Let $f=f(t, \boldsymbol{x})$ be classical fn (Weyl symbol); Weyl quantisation:

$$
f(T, \boldsymbol{X})=\frac{1}{(2 \pi)^{d+1}} \int_{\mathbb{R} \times \mathbb{R}^{d}} d \alpha d \boldsymbol{\beta} \widehat{F}(\alpha, \beta) e^{i(\alpha T+\boldsymbol{\beta} \cdot \boldsymbol{X})}
$$

Irrep first: $T^{(c)}=P, \boldsymbol{X}^{(\boldsymbol{c})}=\boldsymbol{c} R^{(\boldsymbol{c})}=\boldsymbol{c} \boldsymbol{e}^{-Q}$.

Let $f=f(t, \boldsymbol{x})$ be classical fn (Weyl symbol); Weyl quantisation:

$$
f(T, \boldsymbol{X})=\frac{1}{(2 \pi)^{d+1}} \int_{\mathbb{R} \times \mathbb{R}^{d}} d \alpha d \boldsymbol{\beta} \widehat{F}(\alpha, \beta) e^{i(\alpha T+\boldsymbol{\beta} \cdot \boldsymbol{X})}
$$

Irrep first: $T^{(c)}=P, \boldsymbol{X}^{(c)}=\boldsymbol{c} R^{(c)}=\boldsymbol{c} \boldsymbol{e}^{-Q}$.
Then one can prove

$$
f\left(P, \boldsymbol{c} e^{-Q}\right)=f_{\boldsymbol{c}}\left(P, e^{-Q}\right), \quad f_{c}(t, r)=f(t, r \boldsymbol{c}) .
$$

which is a compact operator.

Let $f=f(t, \boldsymbol{x})$ be classical fn (Weyl symbol); Weyl quantisation:

$$
f(T, \boldsymbol{X})=\frac{1}{(2 \pi)^{d+1}} \int_{\mathbb{R} \times \mathbb{R}^{d}} d \alpha d \boldsymbol{\beta} \widehat{F}(\alpha, \beta) e^{i(\alpha T+\beta \cdot \boldsymbol{X})}
$$

Irrep first: $T^{(c)}=P, \boldsymbol{X}^{(c)}=\boldsymbol{c} R^{(c)}=\boldsymbol{c} \boldsymbol{e}^{-Q}$.
Then one can prove

$$
f\left(P, \boldsymbol{c} e^{-Q}\right)=f_{\boldsymbol{c}}\left(P, e^{-Q}\right), \quad f_{c}(t, r)=f(t, r \boldsymbol{c}) .
$$

which is a compact operator.
Now general case:

$$
f\left(T^{(c)}, X^{(c)}\right)=\quad f_{c}\left(T^{(c)}, R^{(c)}\right)
$$

Let $f=f(t, \boldsymbol{x})$ be classical fn (Weyl symbol); Weyl quantisation:

$$
f(T, \boldsymbol{X})=\frac{1}{(2 \pi)^{d+1}} \int_{\mathbb{R} \times \mathbb{R}^{d}} d \alpha d \boldsymbol{\beta} \widehat{F}(\alpha, \beta) e^{i(\alpha T+\boldsymbol{\beta} \cdot \boldsymbol{X})}
$$

Irrep first: $T^{(c)}=P, \boldsymbol{X}^{(c)}=\boldsymbol{c} R^{(c)}=\boldsymbol{c} \boldsymbol{e}^{-Q}$.
Then one can prove

$$
f\left(P, \boldsymbol{c} e^{-Q}\right)=f_{\boldsymbol{c}}\left(P, e^{-Q}\right), \quad f_{c}(t, r)=f(t, r \boldsymbol{c}) .
$$

which is a compact operator.
Now general case:

$$
f(T \quad, X \quad)=\int_{S^{d-1}}^{\oplus} d \boldsymbol{c} f_{c}\left(T^{(c)}, R^{(c)}\right)
$$

Let $f=f(t, \boldsymbol{x})$ be classical fn (Weyl symbol); Weyl quantisation:

$$
f(T, \boldsymbol{X})=\frac{1}{(2 \pi)^{d+1}} \int_{\mathbb{R} \times \mathbb{R}^{d}} d \alpha d \boldsymbol{\beta} \widehat{F}(\alpha, \beta) e^{i(\alpha T+\beta \cdot \boldsymbol{X})}
$$

Irrep first: $T^{(c)}=P, \boldsymbol{X}^{(c)}=\boldsymbol{c} R^{(c)}=\boldsymbol{c} \boldsymbol{e}^{-Q}$.
Then one can prove

$$
f\left(P, \boldsymbol{c} e^{-Q}\right)=f_{\boldsymbol{c}}\left(P, e^{-Q}\right), \quad f_{c}(t, r)=f(t, r \boldsymbol{c}) .
$$

which is a compact operator.
Now general case:

$$
\begin{aligned}
f(T \quad, X \quad) & =\int_{S^{d-1}}^{\oplus} d \boldsymbol{c} f_{c}\left(T^{(c)}, R^{(c)}\right) \\
& \in \mathcal{C}\left(S^{d-1)}, \mathcal{K}\right)
\end{aligned}
$$

Let $f=f(t, \boldsymbol{x})$ be classical fn (Weyl symbol); Weyl quantisation:

$$
f(T, \boldsymbol{X})=\frac{1}{(2 \pi)^{d+1}} \int_{\mathbb{R} \times \mathbb{R}^{d}} d \alpha d \boldsymbol{\beta} \widehat{F}(\alpha, \beta) e^{i(\alpha T+\beta \cdot \boldsymbol{X})}
$$

Irrep first: $T^{(c)}=P, \boldsymbol{X}^{(c)}=\boldsymbol{c} R^{(c)}=\boldsymbol{c} \boldsymbol{e}^{-Q}$.
Then one can prove

$$
f\left(P, \boldsymbol{c} e^{-Q}\right)=f_{\boldsymbol{c}}\left(P, e^{-Q}\right), \quad f_{c}(t, r)=f(t, r \boldsymbol{c}) .
$$

which is a compact operator.
Now general case:

$$
\begin{aligned}
f(T \quad, X \quad) & =\left(\int_{S^{d-1}}^{\oplus} d \boldsymbol{c} f_{c}\left(T^{(c)}, R^{(c)}\right)\right) \oplus f(Q, \mathbf{0}) \\
& \in \mathcal{C}\left(S^{d-1}, \mathcal{K}\right) \oplus \mathcal{C}_{\infty}(\mathbb{R})
\end{aligned}
$$

The picture which arise is:

1. the C^{*}-algebra is $\mathcal{C}\left(S^{d-1}, \mathcal{K}\right) \oplus \mathcal{C}_{\infty}(\mathbb{R})$;

The picture which arise is:

1. the C^{\star}-algebra is $\mathcal{C}\left(S^{d-1}, \mathcal{K}\right) \oplus \mathcal{C}_{\infty}(\mathbb{R})$;
2. the component $\mathcal{C}\left(S^{d-1}, \mathcal{K}\right)$ is a trivial bundle of C^{*}-algebras on base space S^{d-1} with standard fibre $=\mathcal{K}$, the compact operators;

The picture which arise is:

1. the C^{*}-algebra is $\mathcal{C}\left(S^{d-1}, \mathcal{K}\right) \oplus \mathcal{C}_{\infty}(\mathbb{R})$;
2. the component $\mathcal{C}\left(S^{d-1}, \mathcal{K}\right)$ is a trivial bundle of C^{*}-algebras on base space S^{d-1} with standard fibre $=\mathcal{K}$, the compact operators;
3. each fibre over \boldsymbol{c} corresponds to the quantisation in the open half plane $\{(t, r \boldsymbol{c}): r>0\}$ (see next slide).

The picture which arise is:

1. the C^{*}-algebra is $\mathcal{C}\left(S^{d-1}, \mathcal{K}\right) \oplus \mathcal{C}_{\infty}(\mathbb{R})$;
2. the component $\mathcal{C}\left(S^{d-1}, \mathcal{K}\right)$ is a trivial bundle of C^{*}-algebras on base space S^{d-1} with standard fibre $=\mathcal{K}$, the compact operators;
3. each fibre over \boldsymbol{c} corresponds to the quantisation in the open half plane $\{(t, r \boldsymbol{c}): r>0\}$ (see next slide).
4. the large scale limit of this component is the Minkowski spacetime with the time axis removed;

The picture which arise is:

1. the C^{*}-algebra is $\mathcal{C}\left(S^{d-1}, \mathcal{K}\right) \oplus \mathcal{C}_{\infty}(\mathbb{R})$;
2. the component $\mathcal{C}\left(S^{d-1}, \mathcal{K}\right)$ is a trivial bundle of C^{*}-algebras on base space S^{d-1} with standard fibre $=\mathcal{K}$, the compact operators;
3. each fibre over \boldsymbol{c} corresponds to the quantisation in the open half plane $\{(t, r \boldsymbol{c}): r>0\}$ (see next slide).
4. the large scale limit of this component is the Minkowski spacetime with the time axis removed;
5. the time axis always remains classical and corresponds to the component $\mathcal{C}_{\infty}(\mathbb{R})$.

Let $T=P, R=e^{-Q}$ and $f=f(t, r)$; then

$$
\begin{gathered}
(f(T, R) \xi)(s)=\int d u K_{f}(s, u) \xi(u), \\
K_{f}(s, u)=\left(\mathscr{F}_{1} f\right)\left(u-s, \frac{e^{-s}-e^{-u}}{u-s}\right)
\end{gathered}
$$

only depends on the values f takes in $\{r>0\}$.

Let $T=P, R=e^{-Q}$ and $f=f(t, r)$; then

$$
\begin{gathered}
(f(T, R) \xi)(s)=\int d u K_{f}(s, u) \xi(u) \\
K_{f}(s, u)=\left(\mathscr{F}_{1} f\right)\left(u-s, \frac{e^{-s}-e^{-u}}{u-s}\right)
\end{gathered}
$$

only depends on the values f takes in $\{r>0\}$.
Remark! in a sense $f\left(P, e^{-Q}\right)$ is a "function" of (P, Q). Question: is there a map $f \mapsto g_{f}$ such that $f\left(P, e^{-Q}\right)=g_{f}(P, Q)$?

Let $T=P, R=e^{-Q}$ and $f=f(t, r)$; then

$$
\begin{gathered}
(f(T, R) \xi)(s)=\int d u K_{f}(s, u) \xi(u), \\
K_{f}(s, u)=\left(\mathscr{F}_{1} f\right)\left(u-s, \frac{e^{-s}-e^{-u}}{u-s}\right)
\end{gathered}
$$

only depends on the values f takes in $\{r>0\}$.
Remark! in a sense $f\left(P, e^{-Q}\right)$ is a "function" of (P, Q). Question: is there a map $f \mapsto g_{f}$ such that $f\left(P, e^{-Q}\right)=g_{f}(P, Q)$?

Answer: yes (by comparison of kernel K_{f} with the well known kernel of canonical Weyl quantisation). This has two main consequences:

1. We inherit trace formula from CCR:

$$
\operatorname{Tr} f\left(P, e^{-Q}\right)=\operatorname{Tr} g_{f}(P, Q)=\int d t d r g_{f}(t, r)
$$

Let $T=P, R=e^{-Q}$ and $f=f(t, r)$; then

$$
\begin{gathered}
(f(T, R) \xi)(s)=\int d u K_{f}(s, u) \xi(u), \\
K_{f}(s, u)=\left(\mathscr{F}_{1} f\right)\left(u-s, \frac{e^{-s}-e^{-u}}{u-s}\right)
\end{gathered}
$$

only depends on the values f takes in $\{r>0\}$.
Remark! in a sense $f\left(P, e^{-Q}\right)$ is a "function" of (P, Q). Question: is there a map $f \mapsto g_{f}$ such that $f\left(P, e^{-Q}\right)=g_{f}(P, Q)$?

Answer: yes (by comparison of kernel K_{f} with the well known kernel of canonical Weyl quantisation). This has two main consequences:

1. We inherit trace formula from CCR:

$$
\operatorname{Tr} f\left(P, e^{-Q}\right)=\operatorname{Tr} g_{f}(P, Q)=\int d t d r g_{f}(t, r)
$$

2. the map $f \mapsto g_{f}$ is invertible: hence

$$
f_{1}\left(P, e^{-Q}\right) f_{2}\left(P, e^{-Q}\right)=g_{f_{1}}(P, Q) g_{f_{2}}(P, Q)=\left(g_{f_{1} \star_{\hbar}} g_{f_{2}}\right)(P, Q) ;
$$

Let $T=P, R=e^{-Q}$ and $f=f(t, r)$; then

$$
\begin{gathered}
(f(T, R) \xi)(s)=\int d u K_{f}(s, u) \xi(u), \\
K_{f}(s, u)=\left(\mathscr{F}_{1} f\right)\left(u-s, \frac{e^{-s}-e^{-u}}{u-s}\right)
\end{gathered}
$$

only depends on the values f takes in $\{r>0\}$.
Remark! in a sense $f\left(P, e^{-Q}\right)$ is a "function" of (P, Q). Question: is there a map $f \mapsto g_{f}$ such that $f\left(P, e^{-Q}\right)=g_{f}(P, Q)$?

Answer: yes (by comparison of kernel K_{f} with the well known kernel of canonical Weyl quantisation). This has two main consequences:

1. We inherit trace formula from CCR:

$$
\operatorname{Tr} f\left(P, e^{-Q}\right)=\operatorname{Tr} g_{f}(P, Q)=\int d t d r g_{f}(t, r)
$$

2. the map $f \mapsto g_{f}$ is invertible: hence

$$
f_{1}\left(P, e^{-Q}\right) f_{2}\left(P, e^{-Q}\right)=g_{f_{1}}(P, Q) g_{t_{2}}(P, Q)=\left(g_{t_{1} \star_{\hbar}} g_{f_{2}}\right)(P, Q) ;
$$

3. twisted covariance also can be "pulled back" to κ-Minkowski.

Some problems of physical interpretation. Heisenberg theorem:

$$
\left.c \Delta_{\omega}(T) \Delta_{\omega}(R) \geqslant \frac{1}{2 \kappa} \right\rvert\, \omega([T, R])=\frac{1}{2 \kappa} \omega(R) .
$$

Some problems of physical interpretation. Heisenberg theorem:

$$
\left.c \Delta_{\omega}(T) \Delta_{\omega}(R) \geqslant \frac{1}{2 \kappa} \right\rvert\, \omega([T, R])=\frac{1}{2 \kappa} \omega(R) .
$$

Easy to construct sharply localised states (close to space origin): instability of spacetime under localisation!

Some problems of physical interpretation. Heisenberg theorem:

$$
\left.c \Delta_{\omega}(T) \Delta_{\omega}(R) \geqslant \frac{1}{2 \kappa} \right\rvert\, \omega([T, R])=\frac{1}{2 \kappa} \omega(R) .
$$

Easy to construct sharply localised states (close to space origin): instability of spacetime under localisation!

On the contrary: noncommutativity grows too fast for $\kappa^{-1}=$ Planck length. Take $\omega(R)=L$ so that

$$
L \leqslant 2 c \kappa \Delta_{\omega}(T) \Delta_{\omega}(R) .
$$

1. If $c \Delta T \sim \Delta R \sim 10^{-19} \mathrm{~m}$ (strong interactions), then $L \ll 10^{-3} m=$ nominal peak size at LHC.

Some problems of physical interpretation. Heisenberg theorem:

$$
\left.c \Delta_{\omega}(T) \Delta_{\omega}(R) \geqslant \frac{1}{2 \kappa} \right\rvert\, \omega([T, R])=\frac{1}{2 \kappa} \omega(R) .
$$

Easy to construct sharply localised states (close to space origin): instability of spacetime under localisation!

On the contrary: noncommutativity grows too fast for $\kappa^{-1}=$ Planck length. Take $\omega(R)=L$ so that

$$
L \leqslant 2 c \kappa \Delta_{\omega}(T) \Delta_{\omega}(R) .
$$

1. If $c \Delta T \sim \Delta R \sim 10^{-19} \mathrm{~m}$ (strong interactions), then
$L \ll 10^{-3} m=$ nominal peak size at LHC.
2. If $\Delta T, \Delta R=$ classical period and radius of electron (Hydrogen atom), then $L \ll 10$ light years. There would be no atomic physic on α-Centauri.

Outline

Canonical κ-Minkowski (with L. Dąbrowski)
Relations
Representations and Radial Quantisation
Weyl Quantisation and C*-algebra
Uncertainty Relations

Covariant κ-Minkowski (with L. Dąbrowski and M. Godłiński)
The covariantised model

Spectrum of volume operators for universal differential calculus of
DFR spacetime (with D. Bahns, S. Doplicher and K. Fredemhagen)

Consider the relations (already considered by Lukierski):

$$
\left[X^{\mu}, X^{\nu}\right]=i\left(V^{\mu} X^{\nu}-V^{\nu} X^{\mu}\right)
$$

If $V^{\mu}=v^{\mu}$ I, the choice $v=(1,0,0,0)$ gives $\left[X^{0}, X^{j}\right]=i X^{j}$.

Consider the relations (already considered by Lukierski):

$$
\left[X^{\mu}, X^{\nu}\right]=i\left(V^{\mu} X^{\nu}-V^{\nu} X^{\mu}\right)
$$

If $V^{\mu}=v^{\mu}$ I, the choice $v=(1,0,0,0)$ gives $\left[X^{0}, X^{j}\right]=i X^{j}$.
We look for a representation where V^{μ} are central operators,

$$
\left[X^{\mu}, V^{\nu}\right]=0
$$

and such that there exists a unitary representation of the Lorentz group, such that

$$
\begin{aligned}
& U(\Lambda)^{-1} X^{\mu} U\left(\Lambda^{-1}\right)=\Lambda^{\mu}{ }_{\nu} X^{\nu}, \\
& U(\Lambda)^{-1} V^{\mu} U\left(\Lambda^{-1}\right)=\Lambda^{\mu}{ }_{\nu} V^{\nu} .
\end{aligned}
$$

Consider the relations (already considered by Lukierski):

$$
\left[X^{\mu}, X^{\nu}\right]=i\left(V^{\mu} X^{\nu}-V^{\nu} X^{\mu}\right)
$$

If $V^{\mu}=V^{\mu}$ I, the choice $v=(1,0,0,0)$ gives $\left[X^{0}, X^{j}\right]=i X^{j}$.
We look for a representation where V^{μ} are central operators,

$$
\left[X^{\mu}, V^{\nu}\right]=0
$$

and such that there exists a unitary representation of the Lorentz group, such that

$$
\begin{aligned}
& U(\Lambda)^{-1} X^{\mu} U\left(\Lambda^{-1}\right)=\Lambda^{\mu}{ }_{\nu} X^{\nu}, \\
& U(\Lambda)^{-1} V^{\mu} U\left(\Lambda^{-1}\right)=\Lambda^{\mu}{ }_{\nu} V^{\nu} .
\end{aligned}
$$

In addition, we want it to be the smallest possible covariant central extension of κ-Minkowski; hence we require

$$
V^{\mu} V_{\nu}=I
$$

Good news: it exists!

Good news: it exists!

Bad news: no time to tell the details!

Good news: it exists!

Bad news: no time to tell the details!
Joint spectrum of the V^{μ} is the upper mass shell $H_{m}^{+}=\left\{v \in \mathbb{R}^{4}: v^{\mu} v_{\mu}=1\right\}$, and

$$
V^{\mu}|v\rangle=v^{\mu}|v\rangle, \quad v \in H_{m}^{+} .
$$

Good news: it exists!
Bad news: no time to tell the details!
Joint spectrum of the V^{μ} is the upper mass shell $H_{m}^{+}=\left\{v \in \mathbb{R}^{4}: v^{\mu} v_{\mu}=1\right\}$, and

$$
V^{\mu}|v\rangle=v^{\mu}|v\rangle, \quad v \in H_{m}^{+} .
$$

Structure: bundle over the mass shell H_{m}^{+}; over each v sits another bundle over S^{d-1} and standard fibre \mathcal{K}.

Good news: it exists!
Bad news: no time to tell the details!
Joint spectrum of the V^{μ} is the upper mass shell $H_{m}^{+}=\left\{v \in \mathbb{R}^{4}: v^{\mu} v_{\mu}=1\right\}$, and

$$
V^{\mu}|v\rangle=v^{\mu}|v\rangle, \quad v \in H_{m}^{+} .
$$

Structure: bundle over the mass shell H_{m}^{+}; over each v sits another bundle over S^{d-1} and standard fibre \mathcal{K}.
Comments:

1. Besides the DFR model, this is another model with two characteristic, dimensionful parametres, while the Lorentz group is kept undeformed.

Good news: it exists!
Bad news: no time to tell the details!
Joint spectrum of the V^{μ} is the upper mass shell $H_{m}^{+}=\left\{v \in \mathbb{R}^{4}: v^{\mu} v_{\mu}=1\right\}$, and

$$
V^{\mu}|v\rangle=v^{\mu}|v\rangle, \quad v \in H_{m}^{+} .
$$

Structure: bundle over the mass shell H_{m}^{+}; over each v sits another bundle over S^{d-1} and standard fibre \mathcal{K}.
Comments:

1. Besides the DFR model, this is another model with two characteristic, dimensionful parametres, while the Lorentz group is kept undeformed.
2. Twisted covariance is equivalent to ordinary form-covariance, up to dismissing a huge non invariant set of otherwise admissible localisation states.

Outline

Canonical κ-Minkowski (with L. Dąbrowski)
 Relations
 Representations and Radial Quantisation
 Weyl Quantisation and C*-algebra
 Uncertainty Relations
 Covariant κ-Minkowski (with L. Dąbrowski and M. Godłiński)
 The covariantised model

Spectrum of volume operators for universal differential calculus of DFR spacetime (with D. Bahns, S. Doplicher and K. Fredemhagen)
(Dubois-Violette) Given unital algebra \mathcal{A}, take

$$
\Lambda(A)=\bigoplus_{n} \Lambda^{n}(A)=\bigoplus_{n} A^{n \otimes}
$$

with product and differential

$$
\begin{gathered}
\left(a_{1} \otimes \cdots a_{n}\right) \cdot\left(b_{1} \otimes \ldots \otimes b_{m}\right)=a_{1} \otimes \cdots \otimes a_{n-1} \otimes a_{n} b_{1} \otimes b_{2} \otimes \cdots \otimes b_{m}, \\
d a=a \otimes I-I \otimes a,
\end{gathered}
$$

(extended as a graded differential). Define $\Omega(A)$ as the d-stable subalgebra of $\Lambda^{n}(A)$, generated by A.
(Dubois-Violette) Given unital algebra \mathcal{A}, take

$$
\Lambda(A)=\bigoplus_{n} \Lambda^{n}(A)=\bigoplus_{n} A^{n \otimes}
$$

with product and differential

$$
\begin{gathered}
\left(a_{1} \otimes \cdots a_{n}\right) \cdot\left(b_{1} \otimes \ldots \otimes b_{m}\right)=a_{1} \otimes \cdots \otimes a_{n-1} \otimes a_{n} b_{1} \otimes b_{2} \otimes \cdots \otimes b_{m}, \\
d a=a \otimes I-I \otimes a
\end{gathered}
$$

(extended as a graded differential). Define $\Omega(A)$ as the d-stable subalgebra of $\Lambda^{n}(A)$, generated by A.

Want to apply this to $\mathcal{A}=M(\mathcal{E})=$ multiplier algebra of DFR quantum spacetime C^{*}-algebra.
(Dubois-Violette) Given unital algebra \mathcal{A}, take

$$
\Lambda(A)=\bigoplus_{n} \Lambda^{n}(A)=\bigoplus_{n} A^{n \otimes}
$$

with product and differential

$$
\begin{gathered}
\left(a_{1} \otimes \cdots a_{n}\right) \cdot\left(b_{1} \otimes \ldots \otimes b_{m}\right)=a_{1} \otimes \cdots \otimes a_{n-1} \otimes a_{n} b_{1} \otimes b_{2} \otimes \cdots \otimes b_{m}, \\
d a=a \otimes I-I \otimes a
\end{gathered}
$$

(extended as a graded differential). Define $\Omega(A)$ as the d-stable subalgebra of $\Lambda^{n}(A)$, generated by A.

Want to apply this to $\mathcal{A}=M(\mathcal{E})=$ multiplier algebra of DFR quantum spacetime C^{*}-algebra.

DFR model:

$$
\begin{gathered}
{\left[q^{\mu}, q^{\nu}\right]=i Q^{\mu \nu}} \\
{\left[q^{\mu}, Q^{\mu \nu}\right]=0} \\
Q^{\mu \nu} Q_{\mu \nu}=0 \\
Q^{\mu \nu}(* Q)_{\mu \nu}= \pm 4 l .
\end{gathered}
$$

Irreducibles are canonical quantum spacetimes.

The (unbounded) selfadjoint operators q^{μ} are uniquely affiliated to \mathcal{E}. If \otimes is understood as tensor product of $Z(M(\mathcal{E}))$ moduli,

$$
d q^{\mu}=q^{\mu} \otimes I-I \otimes q^{\mu}
$$

is a well defined as a selfadjoint operator, interpreted as separation of independent events. It "lives" in $\mathcal{E} \otimes \mathcal{E}$.

The (unbounded) selfadjoint operators q^{μ} are uniquely affiliated to \mathcal{E}. If \otimes is understood as tensor product of $Z(M(\mathcal{E}))$ moduli,

$$
d q^{\mu}=q^{\mu} \otimes I-I \otimes q^{\mu}
$$

is a well defined as a selfadjoint operator, interpreted as separation of independent events. It "lives" in $\mathcal{E} \otimes \mathcal{E}$.

$$
\begin{aligned}
d q^{\mu} d q^{\nu} & =\left(q^{\mu} \otimes I-I \otimes q^{\mu}\right)\left(q^{\nu} \otimes I-I \otimes q^{\nu}\right)= \\
& =q^{\mu} \otimes q^{\nu} \otimes I-q^{\mu} \otimes I \otimes q^{\nu}-I \otimes q^{\mu} q^{\nu} \otimes I+I \otimes q^{\mu} \otimes q^{\nu}
\end{aligned}
$$

"lives" in $\mathcal{E} \otimes \mathcal{E} \otimes \mathcal{E}$.

The (unbounded) selfadjoint operators q^{μ} are uniquely affiliated to \mathcal{E}. If \otimes is understood as tensor product of $Z(M(\mathcal{E}))$ moduli,

$$
d q^{\mu}=q^{\mu} \otimes I-I \otimes q^{\mu}
$$

is a well defined as a selfadjoint operator, interpreted as separation of independent events. It "lives" in $\mathcal{E} \otimes \mathcal{E}$.

$$
\begin{aligned}
d q^{\mu} d q^{\nu} & =\left(q^{\mu} \otimes I-I \otimes q^{\mu}\right)\left(q^{\nu} \otimes I-I \otimes q^{\nu}\right)= \\
& =q^{\mu} \otimes q^{\nu} \otimes I-q^{\mu} \otimes I \otimes q^{\nu}-I \otimes q^{\mu} q^{\nu} \otimes I+I \otimes q^{\mu} \otimes q^{\nu}
\end{aligned}
$$

"lives" in $\mathcal{E} \otimes \mathcal{E} \otimes \mathcal{E}$.
Can define the covariant volume operator: e.g.

$$
V=d q^{0} \wedge d q^{1} \wedge d q^{2} \wedge d q^{3}=\epsilon_{\mu \nu \rho \sigma} d q^{\mu} d q^{\nu} d q^{\rho} d q^{\sigma}
$$

(but also area operators $d q^{\mu} \wedge d q^{\nu}$, 3-volume operators,...).
In particular V "lives" in $\underbrace{\mathcal{E} \otimes \cdots \otimes \mathcal{E}}_{5 \text { factors }}$

Strength: use the abstract universal differential calculus to define them, but then can compute spectra as operators affiliated to C*-algebras.
V is a normal operator and has pure point spectrum

$$
\operatorname{spec}_{p p}(V)=S= \pm 2+\mathbb{Z} a_{+} a_{-}+i\left(\mathbb{Z} a_{+}+\mathbb{Z} a_{-}\right)
$$

where

$$
a_{ \pm}=\sqrt{5 \pm 2 \sqrt{5}}
$$

Then

$$
\operatorname{spec}(V)=\overline{\operatorname{spec}_{p p}(V)}= \pm 2+\mathbb{Z} \sqrt{5}+i \mathbb{R} .
$$

Note that $\operatorname{spec}(V)$ stays away from zero by a constant of order of λ_{p}^{4}.

References

1. Canonical κ-Minkowski [arXiv:1004.5091]

References

1. Canonical κ-Minkowski [arXiv:1004.5091]
2. Covariant κ-Minkowski + Twisted covariance [arXiv:0912.5451]

References

1. Canonical κ-Minkowski [arXiv:1004.5091]
2. Covariant κ-Minkowski + Twisted covariance [arXiv:0912.5451]
3. Review on DFR model + general comment on Tw.Cov [arXiv:1004.5261]

References

1. Canonical κ-Minkowski [arXiv:1004.5091]
2. Covariant κ-Minkowski + Twisted covariance [arXiv:0912.5451]
3. Review on DFR model + general comment on Tw.Cov [arXiv:1004.5261]
4. Volume operators [arXiv:1005.2130] (here also: parallel transport and generalised covariant derivatives).
