

Field theory on curved NC spacetimes

Alexander Schenkel & Thorsten Ohl

(with contributions from Christoph F. Uhlemann)

Institute for Theoretical Physics and Astrophysics, University of Würzburg

Bayrischzell Workshop 2010

Noncommutativity and Physics: Spacetime Quantum Geometry

Bayrischzell, Germany, May 14-17, 2010

Motivation

QFT on curved spacetimes is important for physics

- QFT on curved spacetimes is important for physics
- \rightarrow cosmology (CMB fluctuations) and black holes (Hawking radiation)

- QFT on curved spacetimes is important for physics
- \rightarrow cosmology (CMB fluctuations) and black holes (Hawking radiation)
 - ▶ precise formulation via algebraic approach [Wald, some people here, ...]

- QFT on curved spacetimes is important for physics
- ightarrow cosmology (CMB fluctuations) and black holes (Hawking radiation)
 - ▶ precise formulation via algebraic approach [Wald, some people here, ...]
 - But why should we make all of this noncommutative?

- QFT on curved spacetimes is important for physics
- ightarrow cosmology (CMB fluctuations) and black holes (Hawking radiation)
 - ▶ precise formulation via algebraic approach [Wald, some people here, ...]
 - But why should we make all of this noncommutative?
 - NC geometry from quantum gravity!?!?

- QFT on curved spacetimes is important for physics
- ightarrow cosmology (CMB fluctuations) and black holes (Hawking radiation)
- ▶ precise formulation via algebraic approach [Wald, some people here, ...]
- But why should we make all of this noncommutative?
 - NC geometry from quantum gravity!?!?
 - → include some quantum gravity effects in QFTCS

- QFT on curved spacetimes is important for physics
- ightarrow cosmology (CMB fluctuations) and black holes (Hawking radiation)
- ▶ precise formulation via algebraic approach [Wald, some people here, ...]
- But why should we make all of this noncommutative?
 - NC geometry from quantum gravity!?!?
 - \rightarrow include some quantum gravity effects in QFTCS
 - NC geometry is natural generalization of classical geometry

- QFT on curved spacetimes is important for physics
- ightarrow cosmology (CMB fluctuations) and black holes (Hawking radiation)
- ▶ precise formulation via algebraic approach [Wald, some people here, ...]
- But why should we make all of this noncommutative?
 - NC geometry from quantum gravity!?!?
 - → include some quantum gravity effects in QFTCS
 - NC geometry is natural generalization of classical geometry
 - \rightarrow generalize standard methods of QFTCS as far as possible

- QFT on curved spacetimes is important for physics
- ightarrow cosmology (CMB fluctuations) and black holes (Hawking radiation)
- ▶ precise formulation via algebraic approach [Wald, some people here, ...]
- But why should we make all of this noncommutative?
 - NC geometry from quantum gravity!?!?
 - → include some quantum gravity effects in QFTCS
 - NC geometry is natural generalization of classical geometry
 - \rightarrow generalize standard methods of QFTCS as far as possible
 - NC in cosmology and black hole physics is of physical interest

- QFT on curved spacetimes is important for physics
- ightarrow cosmology (CMB fluctuations) and black holes (Hawking radiation)
 - ▶ precise formulation via algebraic approach [Wald, some people here, ...]
 - But why should we make all of this noncommutative?
 - NC geometry from quantum gravity!?!?
 - → include some quantum gravity effects in QFTCS
 - NC geometry is natural generalization of classical geometry
 - \rightarrow generalize standard methods of QFTCS as far as possible
 - NC in cosmology and black hole physics is of physical interest
 - \rightarrow provide formal background for phenomenology

- QFT on curved spacetimes is important for physics
- ightarrow cosmology (CMB fluctuations) and black holes (Hawking radiation)
 - ▶ precise formulation via algebraic approach [Wald, some people here, ...]
 - But why should we make all of this noncommutative?
 - NC geometry from quantum gravity!?!?
 - → include some quantum gravity effects in QFTCS
 - NC geometry is natural generalization of classical geometry
 - \rightarrow generalize standard methods of QFTCS as far as possible
 - NC in cosmology and black hole physics is of physical interest
 - \rightarrow provide formal background for phenomenology
 - ► ∃ NC gravity solutions [Schupp, Solodukhin; TO, AS; Aschieri, Castellani]

- QFT on curved spacetimes is important for physics
- ightarrow cosmology (CMB fluctuations) and black holes (Hawking radiation)
 - ▶ precise formulation via algebraic approach [Wald, some people here, ...]
 - But why should we make all of this noncommutative?
 - NC geometry from quantum gravity!?!?
 - → include some quantum gravity effects in QFTCS
 - NC geometry is natural generalization of classical geometry
 - \rightarrow generalize standard methods of QFTCS as far as possible
 - NC in cosmology and black hole physics is of physical interest
 - → provide formal background for phenomenology
 - ► ∃ NC gravity solutions [Schupp, Solodukhin; TO, AS; Aschieri, Castellani]
 - \rightarrow test their physical implications by using QFTCS

Scalar field theory on a class of curved NC spacetimes

Scalar field theory Kinematics

Simple example of a twist: [Moyal product/twist]

 $\star\text{-product} \quad h\star k = h e^{\frac{i\lambda}{2}\overleftarrow{\partial_{\mu}}\Theta^{\mu\nu}\overrightarrow{\partial_{\nu}}} k$

Scalar field theory Kinematics

Simple example of a twist: [Moyal product/twist]

 $\star \text{-product} \quad h \star k = h e^{\frac{i\lambda}{2}\overleftarrow{\partial_{\mu}}\Theta^{\mu\nu}\overrightarrow{\partial_{\nu}}} k \quad \longleftrightarrow \quad \text{twist} \quad \mathcal{F}^{-1} = e^{\frac{i\lambda}{2}\Theta^{\mu\nu}\vartheta_{\mu}\otimes_{\mathbb{C}}\vartheta_{\nu}}$

 $\star \text{-product} \quad h \star k = h \, e^{\frac{i\lambda}{2}\overleftarrow{\partial_{\mu}}\Theta^{\mu\nu}\overrightarrow{\partial_{\nu}}} k \quad \longleftrightarrow \quad \text{twist} \quad \mathcal{F}^{-1} = e^{\frac{i\lambda}{2}\Theta^{\mu\nu}\vartheta_{\mu}\otimes_{\mathbb{C}}\vartheta_{\nu}}$

- Our class of twists: $\mathfrak{F}^{-1} = \overline{f}^{\alpha} \otimes_{\mathbb{C}} \overline{f}_{\alpha} \in \mathrm{U}\mathrm{Vec}[[\lambda]] \otimes_{\mathbb{C}} \mathrm{U}\mathrm{Vec}[[\lambda]]$
 - normalization: $(\varepsilon \otimes_{\mathbb{C}} id) \mathfrak{F} = (id \otimes_{\mathbb{C}} \varepsilon) \mathfrak{F} = 1$
 - ► cocycle condition: $\mathfrak{F}_{12} (\Delta \otimes_{\mathbb{C}} \mathsf{id})(\mathfrak{F}) = \mathfrak{F}_{23} (\mathsf{id} \otimes_{\mathbb{C}} \Delta)(\mathfrak{F})$

UNIVERSITÄT

 $\star \text{-product} \quad h \star k = h \, e^{\frac{i\lambda}{2}\overleftarrow{\partial_{\mu}}\Theta^{\mu\nu}\overrightarrow{\partial_{\nu}}} k \quad \longleftrightarrow \quad \text{twist} \quad \mathcal{F}^{-1} = e^{\frac{i\lambda}{2}\Theta^{\mu\nu}\vartheta_{\mu}\otimes_{\mathbb{C}}\vartheta_{\nu}}$

- Our class of twists: $\mathfrak{F}^{-1} = \overline{f}^{\alpha} \otimes_{\mathbb{C}} \overline{f}_{\alpha} \in \mathrm{U}\mathrm{Vec}[[\lambda]] \otimes_{\mathbb{C}} \mathrm{U}\mathrm{Vec}[[\lambda]]$
 - normalization: $(\varepsilon \otimes_{\mathbb{C}} id) \mathfrak{F} = (id \otimes_{\mathbb{C}} \varepsilon) \mathfrak{F} = 1$
 - cocycle condition: $\mathfrak{F}_{12}(\Delta \otimes_{\mathbb{C}} \mathsf{id})(\mathfrak{F}) = \mathfrak{F}_{23}(\mathsf{id} \otimes_{\mathbb{C}} \Delta)(\mathfrak{F})$
 - ▶ reality: $\mathfrak{F}^{*\otimes *} = (S \otimes_{\mathbb{C}} S)(\mathfrak{F}_{21})$ (leads to hermitian *-products)

 $\star \text{-product} \quad h \star k = h \, e^{\frac{i\lambda}{2}\overleftarrow{\partial_{\mu}}\Theta^{\mu\nu}\overrightarrow{\partial_{\nu}}} k \quad \longleftrightarrow \quad \text{twist} \quad \mathcal{F}^{-1} = e^{\frac{i\lambda}{2}\Theta^{\mu\nu}\vartheta_{\mu}\otimes_{\mathbb{C}}\vartheta_{\nu}}$

- Our class of twists: $\mathfrak{F}^{-1} = \overline{f}^{\alpha} \otimes_{\mathbb{C}} \overline{f}_{\alpha} \in \mathrm{U}\mathrm{Vec}[[\lambda]] \otimes_{\mathbb{C}} \mathrm{U}\mathrm{Vec}[[\lambda]]$
 - normalization: $(\varepsilon \otimes_{\mathbb{C}} id) \mathfrak{F} = (id \otimes_{\mathbb{C}} \varepsilon) \mathfrak{F} = 1$
 - cocycle condition: $\mathfrak{F}_{12}(\Delta \otimes_{\mathbb{C}} \mathsf{id})(\mathfrak{F}) = \mathfrak{F}_{23}(\mathsf{id} \otimes_{\mathbb{C}} \Delta)(\mathfrak{F})$
 - ▶ reality: $\mathfrak{F}^{*\otimes *} = (S \otimes_{\mathbb{C}} S)(\mathfrak{F}_{21})$ (leads to hermitian *-products)
 - technical assumption: $S(\bar{f}^{\alpha}) \cdot \bar{f}_{\alpha} = 1$ (simplifies integration)

 $\star \text{-product} \quad h \star k = h \, e^{\frac{i\lambda}{2}\overleftarrow{\partial_{\mu}}\Theta^{\mu\nu}\overrightarrow{\partial_{\nu}}} k \quad \longleftrightarrow \quad \text{twist} \quad \mathcal{F}^{-1} = e^{\frac{i\lambda}{2}\Theta^{\mu\nu}\vartheta_{\mu}\otimes_{\mathbb{C}}\vartheta_{\nu}}$

- Our class of twists: $\mathfrak{F}^{-1} = \overline{f}^{\alpha} \otimes_{\mathbb{C}} \overline{f}_{\alpha} \in \mathrm{U}\mathrm{Vec}[[\lambda]] \otimes_{\mathbb{C}} \mathrm{U}\mathrm{Vec}[[\lambda]]$
 - normalization: $(\varepsilon \otimes_{\mathbb{C}} id) \mathfrak{F} = (id \otimes_{\mathbb{C}} \varepsilon) \mathfrak{F} = 1$
 - ► cocycle condition: $\mathfrak{F}_{12} (\Delta \otimes_{\mathbb{C}} id)(\mathfrak{F}) = \mathfrak{F}_{23} (id \otimes_{\mathbb{C}} \Delta)(\mathfrak{F})$
 - ▶ reality: $\mathcal{F}^{*\otimes *} = (S \otimes_{\mathbb{C}} S)(\mathcal{F}_{21})$ (leads to hermitian *-products)
 - technical assumption: $S(\bar{f}^{\alpha}) \cdot \bar{f}_{\alpha} = 1$ (simplifies integration)
 - **NB1:** includes abelian twists $\mathcal{F}^{-1} = exp(\frac{i\lambda}{2}\Theta^{ab}X_a \otimes_{\mathbb{C}} X_b)$ with $[X_a, X_b] = 0$

UNIVERSITÄT

 $\star \text{-product} \quad h \star k = h \, e^{\frac{i\lambda}{2}\overleftarrow{\partial_{\mu}}\Theta^{\mu\nu}\overrightarrow{\partial_{\nu}}} k \quad \longleftrightarrow \quad \text{twist} \quad \mathcal{F}^{-1} = e^{\frac{i\lambda}{2}\Theta^{\mu\nu}\vartheta_{\mu}\otimes_{\mathbb{C}}\vartheta_{\nu}}$

- Our class of twists: $\mathfrak{F}^{-1} = \overline{f}^{\alpha} \otimes_{\mathbb{C}} \overline{f}_{\alpha} \in \mathrm{U}\mathrm{Vec}[[\lambda]] \otimes_{\mathbb{C}} \mathrm{U}\mathrm{Vec}[[\lambda]]$
 - normalization: $(\varepsilon \otimes_{\mathbb{C}} id) \mathfrak{F} = (id \otimes_{\mathbb{C}} \varepsilon) \mathfrak{F} = 1$
 - ► cocycle condition: $\mathfrak{F}_{12} (\Delta \otimes_{\mathbb{C}} id)(\mathfrak{F}) = \mathfrak{F}_{23} (id \otimes_{\mathbb{C}} \Delta)(\mathfrak{F})$
 - ▶ reality: $\mathfrak{F}^{*\otimes *} = (S \otimes_{\mathbb{C}} S)(\mathfrak{F}_{21})$ (leads to hermitian *-products)
 - technical assumption: $S(\bar{f}^{\alpha}) \cdot \bar{f}_{\alpha} = 1$ (simplifies integration)

NB1: includes abelian twists $\mathcal{F}^{-1} = \exp(\frac{i\lambda}{2}\Theta^{\alpha b}X_{\alpha} \otimes_{\mathbb{C}} X_{b})$ with $[X_{\alpha}, X_{b}] = 0$

NB2: most studied NC gravity solutions are of this type

 $\star \text{-product} \quad h \star k = h \, e^{\frac{i\lambda}{2}\overleftarrow{\partial_{\mu}}\Theta^{\mu\nu}\overrightarrow{\partial_{\nu}}} k \quad \longleftrightarrow \quad \text{twist} \quad \mathcal{F}^{-1} = e^{\frac{i\lambda}{2}\Theta^{\mu\nu}\vartheta_{\mu}\otimes_{\mathbb{C}}\vartheta_{\nu}}$

- Our class of twists: $\mathfrak{F}^{-1} = \overline{f}^{\alpha} \otimes_{\mathbb{C}} \overline{f}_{\alpha} \in \mathrm{U}\mathrm{Vec}[[\lambda]] \otimes_{\mathbb{C}} \mathrm{U}\mathrm{Vec}[[\lambda]]$
 - normalization: $(\varepsilon \otimes_{\mathbb{C}} id) \mathfrak{F} = (id \otimes_{\mathbb{C}} \varepsilon) \mathfrak{F} = 1$
 - ► cocycle condition: $\mathfrak{F}_{12} (\Delta \otimes_{\mathbb{C}} id)(\mathfrak{F}) = \mathfrak{F}_{23} (id \otimes_{\mathbb{C}} \Delta)(\mathfrak{F})$
 - ▶ reality: $\mathfrak{F}^{*\otimes *} = (S \otimes_{\mathbb{C}} S)(\mathfrak{F}_{21})$ (leads to hermitian *-products)
 - technical assumption: $S(\bar{f}^{\alpha}) \cdot \bar{f}_{\alpha} = 1$ (simplifies integration)
 - **NB1:** includes abelian twists $\mathcal{F}^{-1} = \exp(\frac{i\lambda}{2}\Theta^{ab}X_a \otimes_{\mathbb{C}} X_b)$ with $[X_a, X_b] = 0$ **NB2:** most studied NC gravity solutions are of this type
- twist deformation quantization: [Wess group]
 - algebra of functions $(C^{\infty}(\mathcal{M})[[\lambda]], \star)$, where $h \star k := \overline{f}^{\alpha}(h) \cdot \overline{f}_{\alpha}(k)$

UNIVERSITÄT

 $\star \text{-product} \quad h \star k = h \, e^{\frac{i\lambda}{2}\overleftarrow{\partial_{\mu}}\Theta^{\mu\nu}\overrightarrow{\partial_{\nu}}} k \quad \longleftrightarrow \quad \text{twist} \quad \mathcal{F}^{-1} = e^{\frac{i\lambda}{2}\Theta^{\mu\nu}\vartheta_{\mu}\otimes_{\mathbb{C}}\vartheta_{\nu}}$

- Our class of twists: $\mathfrak{F}^{-1} = \overline{f}^{\alpha} \otimes_{\mathbb{C}} \overline{f}_{\alpha} \in \mathrm{U}\mathrm{Vec}[[\lambda]] \otimes_{\mathbb{C}} \mathrm{U}\mathrm{Vec}[[\lambda]]$
 - normalization: $(\varepsilon \otimes_{\mathbb{C}} id) \mathfrak{F} = (id \otimes_{\mathbb{C}} \varepsilon) \mathfrak{F} = 1$
 - ► cocycle condition: $\mathfrak{F}_{12} (\Delta \otimes_{\mathbb{C}} id)(\mathfrak{F}) = \mathfrak{F}_{23} (id \otimes_{\mathbb{C}} \Delta)(\mathfrak{F})$
 - ▶ reality: $\mathfrak{F}^{*\otimes *} = (S \otimes_{\mathbb{C}} S)(\mathfrak{F}_{21})$ (leads to hermitian *-products)
 - technical assumption: $S(\bar{f}^{\alpha}) \cdot \bar{f}_{\alpha} = 1$ (simplifies integration)

NB1: includes abelian twists $\mathcal{F}^{-1} = \exp(\frac{i\lambda}{2}\Theta^{\alpha b}X_{\alpha} \otimes_{\mathbb{C}} X_{b})$ with $[X_{\alpha}, X_{b}] = 0$ **NB2:** most studied NC gravity solutions are of this type

- twist deformation quantization: [Wess group]
 - algebra of functions $(C^{\infty}(\mathcal{M})[[\lambda]], \star)$, where $h \star k := \overline{f}^{\alpha}(h) \cdot \overline{f}_{\alpha}(k)$
 - exterior algebra $(\Omega^{\bullet}[[\lambda]], \wedge_{\star}, d)$, where $\omega \wedge_{\star} \omega' := \overline{f}^{\alpha}(\omega) \wedge \overline{f}_{\alpha}(\omega')$

 $\star \text{-product} \quad h \star k = h \, e^{\frac{i\lambda}{2}\overleftarrow{\partial_{\mu}}\Theta^{\mu\nu}\overrightarrow{\partial_{\nu}}} k \quad \longleftrightarrow \quad \text{twist} \quad \mathcal{F}^{-1} = e^{\frac{i\lambda}{2}\Theta^{\mu\nu}\vartheta_{\mu}\otimes_{\mathbb{C}}\vartheta_{\nu}}$

- Our class of twists: $\mathfrak{F}^{-1} = \overline{f}^{\alpha} \otimes_{\mathbb{C}} \overline{f}_{\alpha} \in \mathrm{U}\mathrm{Vec}[[\lambda]] \otimes_{\mathbb{C}} \mathrm{U}\mathrm{Vec}[[\lambda]]$
 - normalization: $(\varepsilon \otimes_{\mathbb{C}} id) \mathfrak{F} = (id \otimes_{\mathbb{C}} \varepsilon) \mathfrak{F} = 1$
 - ► cocycle condition: $\mathfrak{F}_{12} (\Delta \otimes_{\mathbb{C}} id)(\mathfrak{F}) = \mathfrak{F}_{23} (id \otimes_{\mathbb{C}} \Delta)(\mathfrak{F})$
 - ▶ reality: $\mathfrak{F}^{*\otimes *} = (S \otimes_{\mathbb{C}} S)(\mathfrak{F}_{21})$ (leads to hermitian *-products)
 - technical assumption: $S(\bar{f}^{\alpha}) \cdot \bar{f}_{\alpha} = 1$ (simplifies integration)

NB1: includes abelian twists $\mathcal{F}^{-1} = \exp(\frac{i\lambda}{2}\Theta^{ab}X_a \otimes_{\mathbb{C}} X_b)$ with $[X_a, X_b] = 0$ **NB2:** most studied NC gravity solutions are of this type

- twist deformation quantization: [Wess group]
 - algebra of functions $(C^{\infty}(\mathcal{M})[[\lambda]], \star)$, where $h \star k := \overline{f}^{\alpha}(h) \cdot \overline{f}_{\alpha}(k)$
 - exterior algebra $(\Omega^{\bullet}[[\lambda]], \wedge_{\star}, d)$, where $\omega \wedge_{\star} \omega' := \overline{f}^{\alpha}(\omega) \wedge \overline{f}_{\alpha}(\omega')$
 - pairing $\langle v, \omega \rangle_{\star} := \langle \overline{f}^{\alpha}(v), \overline{f}_{\alpha}(\omega) \rangle$ among vflds and 1forms

UNIVERSITÄT

$$S_{\Phi} = \int L_{\Phi} = -\frac{1}{2} \int \left(\langle \langle d\Phi, g_{\star}^{-1_{\star}} \rangle_{\star}, d\Phi \rangle_{\star} + M^{2} \Phi \star \Phi \right) \star \text{vol}_{\star}$$

UNIVERSITÄT WÜRZBURG

$$S_{\Phi} = \int L_{\Phi} = -\frac{1}{2} \int \left(\langle \langle d\Phi, g_{\star}^{-1_{\star}} \rangle_{\star}, d\Phi \rangle_{\star} + M^{2} \Phi \star \Phi \right) \star \text{vol}_{\star}$$

 \blacktriangleright use local basis: $\langle \vartheta_{\mu}, \widetilde{dx}^{\nu} \rangle_{\star} = \delta_{\mu}^{\nu}$

 $\rightarrow \ g_{\star}^{-1_{\star}} = \partial_{\mu}^{*} \otimes_{\star} g^{\mu\nu} \star \partial_{\nu} \ , \quad d\Phi = dx^{\mu} \, \partial_{\mu} \Phi =: \widetilde{dx}^{\mu} \star \partial_{\star \mu} \Phi$

$$L_{\Phi} = -\frac{1}{2} \left((\partial_{\star \mu} \Phi)^{*} \star g^{\mu \nu} \star \partial_{\star \nu} \Phi + M^{2} \Phi \star \Phi \right) \star \text{vol}_{\star}$$

UNIVERSITÄT WÜRZBURG

$$S_{\Phi} = \int L_{\Phi} = -\frac{1}{2} \int \left(\langle \langle d\Phi, g_{\star}^{-1_{\star}} \rangle_{\star}, d\Phi \rangle_{\star} + M^{2} \Phi \star \Phi \right) \star \text{vol}_{\star}$$

• use local basis: $\langle \vartheta_{\mu}, \widetilde{dx}^{\nu} \rangle_{\star} = \delta^{\nu}_{\mu}$

$$\rightarrow \quad g_{\star}^{-1_{\star}} = \partial_{\mu}^{*} \otimes_{\star} g^{\mu\nu} \star \partial_{\nu} \quad , \quad d\Phi = dx^{\mu} \partial_{\mu} \Phi =: \widetilde{dx}^{\mu} \star \partial_{\star \mu} \Phi$$

$$L_{\Phi} = -\frac{1}{2} \left((\partial_{\star \mu} \Phi)^{*} \star g^{\mu \nu} \star \partial_{\star \nu} \Phi + M^{2} \Phi \star \Phi \right) \star \text{vol}_{\star}$$

Equation of motion (basis independent):

$$\begin{aligned} & \mathsf{P}_{\star}[\Phi] \star \mathsf{vol}_{\star} := \\ & \frac{1}{2} \Big(\Box_{\star}[\Phi] \star \mathsf{vol}_{\star} + \mathsf{vol}_{\star} \star (\Box_{\star}[\Phi^*])^* - \mathsf{M}^2 \, \Phi \star \mathsf{vol}_{\star} - \mathsf{M}^2 \, \mathsf{vol}_{\star} \star \Phi \Big) = 0 \end{aligned}$$

UNIVERSITÄT

$$S_{\Phi} = \int L_{\Phi} = -\frac{1}{2} \int \left(\langle \langle d\Phi, g_{\star}^{-1_{\star}} \rangle_{\star}, d\Phi \rangle_{\star} + M^{2} \Phi \star \Phi \right) \star \text{vol}_{\star}$$

• use local basis: $\langle \vartheta_{\mu}, \widetilde{dx}^{\nu} \rangle_{\star} = \delta^{\nu}_{\mu}$

$$\rightarrow \quad g_{\star}^{-1_{\star}} = \partial_{\mu}^{*} \otimes_{\star} g^{\mu\nu} \star \partial_{\nu} \quad , \quad d\Phi = dx^{\mu} \partial_{\mu} \Phi =: \widetilde{dx}^{\mu} \star \partial_{\star \mu} \Phi$$

$$L_{\Phi} = -\frac{1}{2} \left((\partial_{\star \mu} \Phi)^{*} \star g^{\mu \nu} \star \partial_{\star \nu} \Phi + M^{2} \Phi \star \Phi \right) \star \text{vol}_{\star}$$

Equation of motion (basis independent):

$$\begin{aligned} & \mathsf{P}_{\star}[\Phi] \star \mathsf{vol}_{\star} := \\ & \frac{1}{2} \Big(\Box_{\star}[\Phi] \star \mathsf{vol}_{\star} + \mathsf{vol}_{\star} \star (\Box_{\star}[\Phi^*])^* - \mathsf{M}^2 \, \Phi \star \mathsf{vol}_{\star} - \mathsf{M}^2 \, \mathsf{vol}_{\star} \star \Phi \Big) = 0 \end{aligned}$$

NB: P_* is formally self adjoint w.r.t. SP $(\phi, \psi)_* = \int \phi^* \star \psi \star \text{vol}_*$, i.e.

$$[\phi, \mathbf{P}_{\star}[\psi])_{\star} = (\mathbf{P}_{\star}[\phi], \psi)_{\star}$$

► slice of de Sitter space: $ds^2 = -dt^2 + e^{2Ht} (dx^2 + dy^2 + dz^2)$

- ► slice of de Sitter space: $ds^2 = -dt^2 + e^{2Ht} (dx^2 + dy^2 + dz^2)$
- the following NC spacetimes solve NC Einstein equations [TO, AS]

- ► slice of de Sitter space: $ds^2 = -dt^2 + e^{2Ht} (dx^2 + dy^2 + dz^2)$
- the following NC spacetimes solve NC Einstein equations [TO, AS]

1.) $\mathcal{F}^{-1} = \exp\left(\frac{i\lambda}{2}(\partial_{t} \otimes_{\mathbb{C}} \partial_{\varphi} - \partial_{\varphi} \otimes_{\mathbb{C}} \partial_{t})\right) \Rightarrow [e^{i\varphi} , t] = \lambda e^{i\varphi}$

- ▶ slice of de Sitter space: $ds^2 = -dt^2 + e^{2Ht} (dx^2 + dy^2 + dz^2)$
- the following NC spacetimes solve NC Einstein equations [TO, AS]

1.)
$$\mathfrak{F}^{-1} = \exp\left(\frac{i\lambda}{2}(\mathfrak{d}_{t}\otimes_{\mathbb{C}}\mathfrak{d}_{\varphi} - \mathfrak{d}_{\varphi}\otimes_{\mathbb{C}}\mathfrak{d}_{t})\right) \Rightarrow [e^{i\varphi}; t] = \lambda e^{i\varphi}$$

$$-\left(\partial_t^2 + 3H\partial_t + M^2\right) \frac{1 + e^{i3\lambda H\partial_\phi}}{2} \Phi + e^{-2Ht} \triangle \frac{e^{-i\lambda H\partial_\phi} + e^{i4\lambda H\partial_\phi}}{2} \Phi = 0$$

- ► slice of de Sitter space: $ds^2 = -dt^2 + e^{2Ht} (dx^2 + dy^2 + dz^2)$
- the following NC spacetimes solve NC Einstein equations [TO, AS]

1.)
$$\mathfrak{F}^{-1} = \exp\left(\frac{i\lambda}{2}(\mathfrak{d}_{t}\otimes_{\mathbb{C}}\mathfrak{d}_{\varphi} - \mathfrak{d}_{\varphi}\otimes_{\mathbb{C}}\mathfrak{d}_{t})\right) \Rightarrow [e^{i\varphi}; t] = \lambda e^{i\varphi}$$

$$-\left(\partial_t^2 + 3H\partial_t + M^2\right) \frac{1 + e^{i3\lambda H\partial_\phi}}{2} \Phi + e^{-2Ht} \triangle \frac{e^{-i\lambda H\partial_\phi} + e^{i4\lambda H\partial_\phi}}{2} \Phi = 0$$

NB: depends only on $\lambda H \Rightarrow$ no deformation for $H \rightarrow 0$!

- ► slice of de Sitter space: $ds^2 = -dt^2 + e^{2Ht} (dx^2 + dy^2 + dz^2)$
- the following NC spacetimes solve NC Einstein equations [TO, AS]

1.)
$$\mathfrak{F}^{-1} = \exp\left(\frac{i\lambda}{2}(\mathfrak{d}_{t}\otimes_{\mathbb{C}}\mathfrak{d}_{\varphi} - \mathfrak{d}_{\varphi}\otimes_{\mathbb{C}}\mathfrak{d}_{t})\right) \Rightarrow [e^{i\varphi}, t] = \lambda e^{i\varphi}$$

$$-\left(\partial_t^2 + 3H\partial_t + M^2\right) \frac{1 + e^{i3\lambda H\partial_\phi}}{2} \Phi + e^{-2Ht} \triangle \frac{e^{-i\lambda H\partial_\phi} + e^{i4\lambda H\partial_\phi}}{2} \Phi = 0$$

 $\begin{array}{ll} \text{NB: depends only on } \lambda H \ \Rightarrow \text{ no deformation for } H \rightarrow 0 \ ! \\ \text{very rough estimate: } \lambda H \approx t_{pl} H_{today} \approx 10^{-60} \end{array}$

- ► slice of de Sitter space: $ds^2 = -dt^2 + e^{2Ht} (dx^2 + dy^2 + dz^2)$
- the following NC spacetimes solve NC Einstein equations [TO, AS]

1.)
$$\mathfrak{F}^{-1} = \exp\left(\frac{i\lambda}{2}(\mathfrak{d}_{t}\otimes_{\mathbb{C}}\mathfrak{d}_{\varphi} - \mathfrak{d}_{\varphi}\otimes_{\mathbb{C}}\mathfrak{d}_{t})\right) \Rightarrow [e^{i\varphi}, t] = \lambda e^{i\varphi}$$

$$-\left(\partial_{t}^{2}+3H\partial_{t}+M^{2}\right)\,\frac{1+e^{i3\lambda H\partial_{\phi}}}{2}\,\Phi+e^{-2Ht}\triangle\frac{e^{-i\lambda H\partial_{\phi}}+e^{i4\lambda H\partial_{\phi}}}{2}\,\Phi=0$$

NB: depends only on $\lambda H \Rightarrow$ no deformation for $H \rightarrow 0$! very rough estimate: $\lambda H \approx t_{pl} H_{today} \approx 10^{-60}$

2.)
$$\mathcal{F}^{-1} = \exp\left(\frac{i\lambda}{2}(x^{i}\partial_{i}\otimes_{\mathbb{C}}\partial_{\varphi} - \partial_{\varphi}\otimes_{\mathbb{C}}x^{i}\partial_{i})\right) \Rightarrow e^{i\varphi} \star r = e^{\lambda}r \star e^{i\varphi}$$
Scalar field theory Example 1: NC cosmology

- ► slice of de Sitter space: $ds^2 = -dt^2 + e^{2Ht} (dx^2 + dy^2 + dz^2)$
- the following NC spacetimes solve NC Einstein equations [TO, AS]

1.)
$$\mathcal{F}^{-1} = \exp\left(\frac{i\lambda}{2}(\partial_t \otimes_{\mathbb{C}} \partial_{\varphi} - \partial_{\varphi} \otimes_{\mathbb{C}} \partial_t)\right) \Rightarrow [e^{i\varphi} ; t] = \lambda e^{i\varphi}$$

$$-\left(\partial_{t}^{2}+3H\partial_{t}+M^{2}\right)\,\frac{1+e^{i3\lambda H\partial_{\phi}}}{2}\,\Phi+e^{-2Ht}\triangle\frac{e^{-i\lambda H\partial_{\phi}}+e^{i4\lambda H\partial_{\phi}}}{2}\,\Phi=0$$

 $\begin{array}{ll} \text{NB: depends only on } \lambda H \ \Rightarrow \text{ no deformation for } H \rightarrow 0 \ ! \\ \text{very rough estimate: } \lambda H \approx t_{\text{pl}} H_{\text{today}} \approx 10^{-60} \end{array}$

$$\textbf{2.)} \ \mathfrak{F}^{-1} = \textbf{exp}\left(\tfrac{i\lambda}{2} (x^i \vartheta_i \otimes_{\mathbb{C}} \vartheta_{\phi} - \vartheta_{\phi} \otimes_{\mathbb{C}} x^i \vartheta_i) \right) \ \Rightarrow \ e^{i\phi} \star r = e^{\lambda} \, r \star e^{i\phi}$$

$$-\left(\partial_t^2 + 3\frac{\dot{\alpha}}{\alpha}\partial_t + M^2\right) \, \frac{1 + e^{i3\lambda\partial_\phi}}{2} \, \Phi + \frac{1}{\alpha^2} \triangle \frac{e^{-i\lambda\partial_\phi} + e^{i4\lambda\partial_\phi}}{2} \, \Phi = 0$$

UNIVERSITÄT

Scalar field theory Example 1: NC cosmology

- ► slice of de Sitter space: $ds^2 = -dt^2 + e^{2Ht} (dx^2 + dy^2 + dz^2)$
- the following NC spacetimes solve NC Einstein equations [TO, AS]

1.)
$$\mathcal{F}^{-1} = \exp\left(\frac{i\lambda}{2}(\partial_t \otimes_{\mathbb{C}} \partial_{\varphi} - \partial_{\varphi} \otimes_{\mathbb{C}} \partial_t)\right) \Rightarrow [e^{i\varphi} ; t] = \lambda e^{i\varphi}$$

$$-\left(\partial_{t}^{2}+3H\partial_{t}+M^{2}\right)\,\frac{1+e^{i3\lambda H\partial_{\phi}}}{2}\,\Phi+e^{-2Ht}\triangle\frac{e^{-i\lambda H\partial_{\phi}}+e^{i4\lambda H\partial_{\phi}}}{2}\,\Phi=0$$

NB: depends only on $\lambda H \Rightarrow$ no deformation for $H \rightarrow 0$! very rough estimate: $\lambda H \approx t_{pl}H_{today} \approx 10^{-60}$

2.)
$$\mathcal{F}^{-1} = \exp\left(\frac{i\lambda}{2}(x^{i}\partial_{i}\otimes_{\mathbb{C}}\partial_{\phi} - \partial_{\phi}\otimes_{\mathbb{C}}x^{i}\partial_{i})\right) \Rightarrow e^{i\phi} \star r = e^{\lambda} r \star e^{i\phi}$$

$$-\left(\partial_t^2 + 3\frac{\dot{\alpha}}{\alpha}\partial_t + M^2\right) \frac{1 + e^{i3\lambda\partial_\phi}}{2} \Phi + \frac{1}{\alpha^2} \triangle \frac{e^{-i\lambda\partial_\phi} + e^{i4\lambda\partial_\phi}}{2} \Phi = 0$$

- spherical wave $\Phi=\varphi(t)\,\mathfrak{j}_l(k\,r)\,Y_{l\,\mathfrak{m}}(\theta,\phi)$ and for simplicity $a(t)\equiv 1$

$$\partial_t^2 \varphi(t) + \left(M^2 + k^2 \, \frac{e^{\lambda m} + e^{-4\lambda m}}{1 + e^{-3\lambda m}}\right) \varphi(t) = 0 \;, \quad E(k,m)^2 \geqq M^2 + k^2$$

UNIVERSITÄT WÜRZBURG

• Euclidean space \mathbb{R}^d with $ds^2 = \delta_{\mu\nu} dx^{\mu} dx^{\nu}$

- Euclidean space \mathbb{R}^d with $ds^2 = \delta_{\mu\nu} dx^{\mu} dx^{\nu}$
- use twist: $\mathfrak{F}^{-1} = \exp\left(\frac{i\lambda}{2}\Theta^{ab}_{can}X_a \otimes_{\mathbb{C}} X_b\right)$ with

 $X_{2n-1} = T_n^i \, \vartheta_i \;, \quad X_{2n} = x^0 \, T_n^i \, \vartheta_i \qquad \text{(parallel vector fields)}$

UNIVERSITÄT WÜRZBURG

- Euclidean space \mathbb{R}^d with $ds^2 = \delta_{\mu\nu} dx^\mu dx^\nu$
- use twist: $\mathfrak{F}^{-1} = exp\left(\frac{i\lambda}{2}\Theta_{can}^{\mathfrak{a}b}X_{\mathfrak{a}}\otimes_{\mathbb{C}}X_{b}\right)$ with

 $X_{2n-1} = T_n^i \, \vartheta_i \;, \quad X_{2n} = x^0 \, T_n^i \, \vartheta_i \qquad \text{(parallel vector fields)}$

 \Rightarrow *-products with h, k $\in C^{\infty}(\mathbb{R}^d)$:

UNIVERSITÄT

 $h \star k = h k$, $dx^0 \star h = dx^0 h$,

- Euclidean space \mathbb{R}^d with $ds^2 = \delta_{\mu\nu} dx^\mu dx^\nu$
- use twist: $\mathfrak{F}^{-1} = exp\left(\frac{i\lambda}{2}\Theta_{can}^{\mathfrak{a}b}X_{\mathfrak{a}}\otimes_{\mathbb{C}}X_{b}\right)$ with

 $X_{2n-1} = T_n^i \, \vartheta_i \;, \quad X_{2n} = x^0 \, T_n^i \, \vartheta_i \qquad \text{(parallel vector fields)}$

 \Rightarrow *-products with h, k $\in C^{\infty}(\mathbb{R}^d)$:

UNIVERSITÄT WÜRZBURG

$$h \star k = h k , \quad dx^{0} \star h = dx^{0} h ,$$

$$dx^{i} \star h = dx^{i} h - dx^{0} \frac{i\lambda}{2} T_{n}^{i} T_{n}^{j} \partial_{j} h \qquad \text{(exact!)}$$

- Euclidean space \mathbb{R}^d with $ds^2 = \delta_{\mu\nu} dx^\mu dx^\nu$
- use twist: $\mathfrak{F}^{-1} = \exp\left(\frac{i\lambda}{2}\Theta_{can}^{\mathfrak{a}\,\mathfrak{b}}X_{\mathfrak{a}}\otimes_{\mathbb{C}}X_{\mathfrak{b}}\right)$ with

 $X_{2n-1} = T_n^i \, \partial_i \,, \quad X_{2n} = x^0 \, T_n^i \, \partial_i$ (parallel vector fields)

 \Rightarrow *-products with h, k $\in C^{\infty}(\mathbb{R}^d)$:

UNIVERSITÄT WÜRZBURG

$$\begin{aligned} h \star k &= h k , \quad dx^0 \star h = dx^0 h , \\ dx^i \star h &= dx^i h - dx^0 \frac{i\lambda}{2} T_n^i T_n^j \partial_j h \qquad \text{(exact!)} \end{aligned}$$

 $\Rightarrow\,$ deformed action with $T_n^i=2\delta_n^i\colon$

$$S_{\Phi} = \int \left(\frac{\partial^{\mu} \Phi \partial_{\mu} \Phi}{2} + \frac{\lambda^2}{2} (\bigtriangleup \Phi)^2 + V[\Phi] \right) \text{ vol}$$

- Euclidean space \mathbb{R}^d with $ds^2=\delta_{\mu\nu}dx^\mu dx^\nu$
- use twist: $\mathfrak{F}^{-1} = exp\left(\frac{i\lambda}{2}\Theta_{can}^{\mathfrak{a}b}X_{\mathfrak{a}}\otimes_{\mathbb{C}}X_{b}\right)$ with

 $X_{2n-1} = T_n^i \, \partial_i \,, \quad X_{2n} = x^0 \, T_n^i \, \partial_i \qquad \text{(parallel vector fields)}$

 \Rightarrow *-products with h, k $\in C^{\infty}(\mathbb{R}^d)$:

UNIVERSITÄT WÜRZBURG

$$\begin{aligned} h \star k &= h k , \quad dx^0 \star h = dx^0 h , \\ dx^i \star h &= dx^i h - dx^0 \frac{i\lambda}{2} T_n^i T_n^j \partial_j h \qquad \text{(exact!)} \end{aligned}$$

 \Rightarrow deformed action with $T_n^i = 2\delta_n^i$:

$$S_{\Phi} = \int \left(\frac{\partial^{\mu} \Phi \partial_{\mu} \Phi}{2} + \frac{\lambda^2}{2} (\bigtriangleup \Phi)^2 + V[\Phi] \right) \text{ vol}$$

Hořava type FT from NC geometry! No UV/IR mixing! [AS,Uhlemann]

- Euclidean space \mathbb{R}^d with $ds^2 = \delta_{\mu\nu} dx^\mu dx^\nu$
- use twist: $\mathfrak{F}^{-1} = \exp\left(\frac{i\lambda}{2}\Theta_{can}^{\mathfrak{a}\,\mathfrak{b}}X_{\mathfrak{a}}\otimes_{\mathbb{C}}X_{\mathfrak{b}}\right)$ with

 $X_{2n-1} = T_n^i \, \partial_i \,, \quad X_{2n} = x^0 \, T_n^i \, \partial_i \qquad \text{(parallel vector fields)}$

 \Rightarrow *-products with h, k $\in C^{\infty}(\mathbb{R}^d)$:

UNIVERSITÄT WÜRZBURG

$$\begin{split} h \star k &= h k , \quad dx^0 \star h = dx^0 h , \\ dx^i \star h &= dx^i h - dx^0 \frac{i\lambda}{2} T_n^i T_n^j \partial_j h \qquad (\text{exact!}) \end{split}$$

 $\Rightarrow\,$ deformed action with $T_n^i=2\delta_n^i$:

$$S_{\Phi} = \int \left(\frac{\partial^{\mu} \Phi \partial_{\mu} \Phi}{2} + \frac{\lambda^2}{2} (\bigtriangleup \Phi)^2 + V[\Phi] \right) \text{ vol}$$

- Hořava type FT from NC geometry! No UV/IR mixing! [AS,Uhlemann]
- UV improvement of Φ^4 -theory in d = 4:

$$0 \sim \sqrt{\Lambda_{\rm UV}} + {\rm finite}$$
, $X = {\rm finite}$

Let's go back to curved NC spacetimes and talk about the quantization of scalar fields.

▶ let $P_{\star} = \sum \lambda^n P_{(n)}$ be a deformed Klein-Gordon operator (defined above)

- ▶ let $P_{\star} = \sum \lambda^n P_{(n)}$ be a deformed Klein-Gordon operator (defined above)
- $(\mathcal{M}, g_{\star}, \star)|_{\lambda \to 0}$ time-oriented, connected, globally hyperbolic

- let $P_{\star} = \sum \lambda^n P_{(n)}$ be a deformed Klein-Gordon operator (defined above)
- $(\mathcal{M}, g_{\star}, \star)|_{\lambda \to 0}$ time-oriented, connected, globally hyperbolic
- ▶ technical assumption: $P_{(n)} : C^{\infty}(\mathcal{M}) \to C^{\infty}_{0}(\mathcal{M})$ for all n > 0

- ▶ let $P_{\star} = \sum \lambda^n P_{(n)}$ be a deformed Klein-Gordon operator (defined above)
- $(\mathcal{M}, g_{\star}, \star)|_{\lambda \to 0}$ time-oriented, connected, globally hyperbolic
- ▶ technical assumption: $P_{(n)} : C^{\infty}(\mathcal{M}) \to C^{\infty}_{0}(\mathcal{M})$ for all n > 0
 - fulfilled for twists of compact support
 - or g_{\star} asymptotically (outside compact region) symmetric under ${\mathfrak F}$

- let $P_{\star} = \sum \lambda^n P_{(n)}$ be a deformed Klein-Gordon operator (defined above)
- $(\mathcal{M}, g_{\star}, \star)|_{\lambda \to 0}$ time-oriented, connected, globally hyperbolic
- ▶ technical assumption: $P_{(n)} : C^{\infty}(\mathcal{M}) \to C^{\infty}_{0}(\mathcal{M})$ for all n > 0
 - fulfilled for twists of compact support
 - or g_{\star} asymptotically (outside compact region) symmetric under ${\mathfrak F}$
- based on strong results for the commutative case we find: there exist unique Green's operators Δ_{*±} := ∑ λⁿΔ_{(n)±} satisfying

(i)
$$P_{\star} \circ \Delta_{\star\pm} = id_{C_0^{\infty}(\mathcal{M})[[\lambda]]}$$
,

(ii)
$$\Delta_{\star\pm} \circ \mathsf{P}_{\star}|_{C_0^{\infty}(\mathcal{M})[[\lambda]]} = \mathsf{id}_{C_0^{\infty}(\mathcal{M})[[\lambda]]}$$
,

 $\text{(iii)} \quad \text{supp}(\Delta_{(n)\pm}[\phi])\subseteq J_{\pm}(\text{supp}(\phi)) \text{ , } \quad \text{for all } n\in \mathbb{N}^0 \text{ and } \phi\in C_0^\infty(\mathcal{M}) \text{ , }$

where J_\pm is the causal future/past with respect to the metric $g_\star|_{\lambda\to 0}.$

- ▶ let $P_{\star} = \sum \lambda^n P_{(n)}$ be a deformed Klein-Gordon operator (defined above)
- $(\mathcal{M}, g_{\star}, \star)|_{\lambda \to 0}$ time-oriented, connected, globally hyperbolic
- ▶ technical assumption: $P_{(n)} : C^{\infty}(\mathcal{M}) \to C^{\infty}_{0}(\mathcal{M})$ for all n > 0
 - fulfilled for twists of compact support
 - or g_{\star} asymptotically (outside compact region) symmetric under \mathfrak{F}
- based on strong results for the commutative case we find: there exist unique Green's operators Δ_{*±} := ∑ λⁿΔ_{(n)±} satisfying

(i)
$$P_{\star} \circ \Delta_{\star\pm} = id_{C_0^{\infty}(\mathcal{M})[[\lambda]]}$$
,

(ii)
$$\Delta_{\star\pm} \circ \mathsf{P}_{\star}|_{C_0^{\infty}(\mathcal{M})[[\lambda]]} = \mathsf{id}_{C_0^{\infty}(\mathcal{M})[[\lambda]]}$$
,

 $\text{(iii)} \quad \text{supp}(\Delta_{(n)\pm}[\phi])\subseteq J_{\pm}(\text{supp}(\phi)) \ , \quad \text{for all } n\in \mathbb{N}^0 \ \text{and} \ \phi\in C_0^\infty(\mathcal{M}) \ ,$

where J_\pm is the causal future/past with respect to the metric $g_\star|_{\lambda\to 0}.$

NB: also possible for deformed normally hyperbolic operators P_{*}

Explicit formula for $\Delta_{\star\pm}$ in terms of $\Delta_{\pm} := \Delta_{(0)\pm}$:

$$\begin{split} \Delta_{\star\pm} &= \Delta_{\pm} \\ &-\lambda \, \Delta_{\pm} \circ \mathsf{P}_{(1)} \circ \Delta_{\pm} \\ &-\lambda^2 \left(\Delta_{\pm} \circ \mathsf{P}_{(2)} \circ \Delta_{\pm} - \Delta_{\pm} \circ \mathsf{P}_{(1)} \circ \Delta_{\pm} \circ \mathsf{P}_{(1)} \circ \Delta_{\pm} \right) \\ &+ \mathfrak{O}(\lambda^3) \quad \text{[higher orders follow the same structure]} \end{split}$$

Graphically:

$$= - - \lambda - (1 - \lambda^{2} \left(- (2 - - - (1 - 1))^{2} - \lambda^{3} \left(- (3 - - - (1 - 1))^{2} - - - (2 - (1 - 1))^{2} - - (1 - (1 - 1))^{2} + 0 \right) + 0 (\lambda^{4})$$

 \rightarrow perturbative approach to deformed Green's operators

$$\Delta_{\star} := \Delta_{\star +} - \Delta_{\star -} \qquad \Rightarrow \qquad \mathsf{P}_{\star} \circ \Delta_{\star} = \Delta_{\star} \circ \mathsf{P}_{\star} = \mathsf{0}$$

$$\Delta_{\star} := \Delta_{\star +} - \Delta_{\star -} \qquad \Rightarrow \qquad \mathsf{P}_{\star} \circ \Delta_{\star} = \Delta_{\star} \circ \mathsf{P}_{\star} = \mathsf{0}$$

space of "physical sources":

$$H:=\left\{\phi\in C_0^\infty(\mathcal{M})[[\lambda]]: (\Delta_{\star\pm}[\phi])^*=\Delta_{\star\pm}[\phi]\right\}$$

$$\Delta_{\star} := \Delta_{\star +} - \Delta_{\star -} \qquad \Rightarrow \qquad \mathsf{P}_{\star} \circ \Delta_{\star} = \Delta_{\star} \circ \mathsf{P}_{\star} = \mathbf{0}$$

space of "physical sources":

$$\mathsf{H} := \left\{ \phi \in C_0^{\infty}(\mathcal{M})[[\lambda]] : (\Delta_{\star \pm}[\phi])^* = \Delta_{\star \pm}[\phi] \right\}$$

NB: H is sufficiently large, since:

Let ψ be a real solution of the deformed wave equation, then there is a $\phi\in H$, such that $\psi=\Delta_\star[\phi].$

$$\Delta_{\star} := \Delta_{\star +} - \Delta_{\star -} \qquad \Rightarrow \qquad \mathsf{P}_{\star} \circ \Delta_{\star} = \Delta_{\star} \circ \mathsf{P}_{\star} = \mathbf{0}$$

space of "physical sources":

$$\mathsf{H} := \left\{ \phi \in C_0^{\infty}(\mathcal{M})[[\lambda]] : (\Delta_{\star \pm}[\phi])^* = \Delta_{\star \pm}[\phi] \right\}$$

NB: H is sufficiently large, since:

Let ψ be a real solution of the deformed wave equation, then there is a $\phi \in H$, such that $\psi = \Delta_{\star}[\phi]$.

 \Rightarrow H/Ker(Δ_{\star}) is isomorphic to the space of real solutions of P_{*}

$$\Delta_{\star} := \Delta_{\star +} - \Delta_{\star -} \qquad \Rightarrow \qquad \mathsf{P}_{\star} \circ \Delta_{\star} = \Delta_{\star} \circ \mathsf{P}_{\star} = \mathbf{0}$$

space of "physical sources":

$$\mathsf{H} := \left\{ \phi \in C_0^\infty(\mathcal{M})[[\lambda]] : (\Delta_{\star\pm}[\phi])^* = \Delta_{\star\pm}[\phi] \right\}$$

NB: H is sufficiently large, since:

Let ψ be a real solution of the deformed wave equation, then there is a $\phi\in H$, such that $\psi=\Delta_\star[\phi].$

 $\Rightarrow~H/\text{Ker}(\Delta_{\star})$ is isomorphic to the space of real solutions of P_{\star}

Proposition (TO, AS)

 (V_\star, ω_\star) with $V_\star := H/\textit{Ker}(\Delta_\star)$ and

$$\omega_{\star}([\phi], [\psi]) := (\phi, \Delta_{\star}[\psi])_{\star} = \int \phi^{*} \star \Delta_{\star}[\psi] \star \mathsf{vol}_{\star}$$

is a symplectic vector space.

▶ Let A be a unital *-algebra over $\mathbb{C}[[\lambda]]$ [math/0408217 (Waldmann), ...]

- ▶ Let A be a unital *-algebra over $\mathbb{C}[[\lambda]]$ [math/0408217 (Waldmann), ...]
- What are possible definitions of *-algebras of field observables?

- ▶ Let A be a unital *-algebra over $\mathbb{C}[[\lambda]]$ [math/0408217 (Waldmann), ...]
- What are possible definitions of *-algebras of field observables?
- 1.) *-algebra of Weyl-type $W: V_{\star} \to \mathcal{A}$, such that

$$\begin{split} & W(0)=1 \ , \\ & W(-\phi)=W(\phi)^* \ , \\ & W(\phi)\cdot W(\psi)=e^{-\mathrm{i}\omega_\star(\phi,\psi)/2} \ W(\phi+\psi) \ . \end{split}$$

- ▶ Let A be a unital *-algebra over $\mathbb{C}[[\lambda]]$ [math/0408217 (Waldmann), ...]
- What are possible definitions of *-algebras of field observables?
- 1.) *-algebra of Weyl-type $W:V_{\star}\rightarrow\mathcal{A},$ such that

$$\begin{split} & W(0)=1 \ , \\ & W(-\phi)=W(\phi)^* \ , \\ & W(\phi)\cdot W(\psi)=e^{-\mathrm{i}\omega_*(\phi,\psi)/2} \ W(\phi+\psi) \ . \end{split}$$

$$\begin{split} \Phi(\phi)^* &= \Phi(\phi) \;, \\ [\Phi(\phi), \Phi(\psi)] &= \mathfrak{i} \, \omega_\star(\phi, \psi) \, \mathbf{1} \;. \end{split}$$

- ▶ Let A be a unital *-algebra over $\mathbb{C}[[\lambda]]$ [math/0408217 (Waldmann), ...]
- What are possible definitions of *-algebras of field observables?
- 1.) *-algebra of Weyl-type $W:V_{\star}\rightarrow\mathcal{A},$ such that

$$\begin{split} & W(0)=1 \ , \\ & W(-\phi)=W(\phi)^* \ , \\ & W(\phi)\cdot W(\psi)=e^{-i\omega_*(\phi,\psi)/2} \ W(\phi+\psi) \ . \end{split}$$

$$\Phi(\phi)^* = \Phi(\phi) ,$$

$$[\Phi(\phi), \Phi(\psi)] = i \omega_*(\phi, \psi) \mathbf{1} .$$

What about the twisted *-algebra of field polynomials?

$$\Phi(\phi) \star \Phi(\psi) = \bar{\mathsf{f}}^{\alpha} \triangleright \Phi(\phi) \cdot \bar{\mathsf{f}}_{\alpha} \triangleright \Phi(\psi)$$

- ▶ Let A be a unital *-algebra over $\mathbb{C}[[\lambda]]$ [math/0408217 (Waldmann), ...]
- What are possible definitions of *-algebras of field observables?
- 1.) *-algebra of Weyl-type $\mathcal{W}: V_\star \to \mathcal{A},$ such that

$$\begin{split} & W(0)=1 \ , \\ & W(-\phi)=W(\phi)^* \ , \\ & W(\phi)\cdot W(\psi)=e^{-i\omega_*(\phi,\psi)/2} \ W(\phi+\psi) \ . \end{split}$$

$$\begin{split} \Phi(\phi)^* &= \Phi(\phi) ,\\ [\Phi(\phi), \Phi(\psi)] &= \mathfrak{i} \, \omega_\star(\phi, \psi) \, \mathfrak{1} \, . \end{split}$$

What about the twisted *-algebra of field polynomials?

$$\Phi(\phi) \star \Phi(\psi) = \bar{\mathsf{f}}^{\alpha} \triangleright \Phi(\phi) \cdot \bar{\mathsf{f}}_{\alpha} \triangleright \Phi(\psi)$$

Moyal-Minkowski space [Zahn, Aschieri, ...], Killing twists [AS, last year BZ]

- ▶ Let A be a unital *-algebra over $\mathbb{C}[[\lambda]]$ [math/0408217 (Waldmann), ...]
- What are possible definitions of *-algebras of field observables?
- 1.) *-algebra of Weyl-type $W:V_{\star}\rightarrow\mathcal{A},$ such that

$$\begin{split} & W(0)=1 \ , \\ & W(-\phi)=W(\phi)^* \ , \\ & W(\phi)\cdot W(\psi)=e^{-i\omega_*(\phi,\psi)/2} \ W(\phi+\psi) \ . \end{split}$$

$$\begin{split} \Phi(\phi)^* &= \Phi(\phi) \;, \\ [\Phi(\phi), \Phi(\psi)] &= \mathfrak{i} \, \omega_\star(\phi, \psi) \, \mathbf{1} \;. \end{split}$$

What about the twisted *-algebra of field polynomials?

$$\Phi(\phi)\star\Phi(\psi)=\bar{f}^{\alpha}\triangleright\Phi(\phi)\cdot\bar{f}_{\alpha}\triangleright\Phi(\psi)$$

Moyal-Minkowski space [Zahn, Aschieri, ...], Killing twists [AS, last year BZ]

? general case

- ▶ Let A be a unital *-algebra over $\mathbb{C}[[\lambda]]$ [math/0408217 (Waldmann), ...]
- What are possible definitions of *-algebras of field observables?
- 1.) *-algebra of Weyl-type $\mathcal{W}: V_\star \to \mathcal{A},$ such that

$$\begin{split} & W(0)=1 \ , \\ & W(-\phi)=W(\phi)^* \ , \\ & W(\phi)\cdot W(\psi)=e^{-i\omega_*(\phi,\psi)/2} \ W(\phi+\psi) \ . \end{split}$$

$$\Phi(\phi)^* = \Phi(\phi) ,$$

$$[\Phi(\phi), \Phi(\psi)] = i \omega_*(\phi, \psi) \mathbf{1} .$$

What about the twisted *-algebra of field polynomials?

$$\Phi(\phi) \star \Phi(\psi) = \bar{\mathsf{f}}^{\alpha} \triangleright \Phi(\phi) \cdot \bar{\mathsf{f}}_{\alpha} \triangleright \Phi(\psi)$$

- ✓ Moyal-Minkowski space [Zahn, Aschieri, ...], Killing twists [AS, last year BZ]
- ? general case

NB: twisting requires CCR-compatible \mathcal{F} [Poisson geometry: Aschieri, Lizzi, Vitale]

scalar field actions on curved NC spacetimes:

- scalar field actions on curved NC spacetimes:
 - formally self adjoint EOM operators P_{*}

- scalar field actions on curved NC spacetimes:
 - formally self adjoint EOM operators P_{*}
 - explicit models for NC cosmology (also BH and RS) [arXiv:1003.3190]

- scalar field actions on curved NC spacetimes:
 - formally self adjoint EOM operators P_{*}
 - explicit models for NC cosmology (also BH and RS) [arXiv:1003.3190]
 - UV improved (Hořava type) scalar QFT from NCG [arXiv:1002.4191]

- scalar field actions on curved NC spacetimes:
 - formally self adjoint EOM operators P_{*}
 - explicit models for NC cosmology (also BH and RS) [arXiv:1003.3190]
 - UV improved (Hořava type) scalar QFT from NCG [arXiv:1002.4191]
- ▶ NC Green's operators, solution space and quantization [arXiv:0912.2252]:

- scalar field actions on curved NC spacetimes:
 - formally self adjoint EOM operators P_{*}
 - explicit models for NC cosmology (also BH and RS) [arXiv:1003.3190]
 - UV improved (Hořava type) scalar QFT from NCG [arXiv:1002.4191]
- ▶ NC Green's operators, solution space and quantization [arXiv:0912.2252]:
 - existence, uniqueness and construction of the deformed Green's operators

- scalar field actions on curved NC spacetimes:
 - formally self adjoint EOM operators P_{*}
 - explicit models for NC cosmology (also BH and RS) [arXiv:1003.3190]
 - UV improved (Hořava type) scalar QFT from NCG [arXiv:1002.4191]
- ▶ NC Green's operators, solution space and quantization [arXiv:0912.2252]:
 - existence, uniqueness and construction of the deformed Green's operators
 - symplectic structure on the space of real solutions of P_{*}

- scalar field actions on curved NC spacetimes:
 - formally self adjoint EOM operators P_{*}
 - explicit models for NC cosmology (also BH and RS) [arXiv:1003.3190]
 - UV improved (Hořava type) scalar QFT from NCG [arXiv:1002.4191]
- ▶ NC Green's operators, solution space and quantization [arXiv:0912.2252]:
 - existence, uniqueness and construction of the deformed Green's operators
 - symplectic structure on the space of real solutions of P_{*}
 - quantization via *-algebras of field observables (no C*-algebras, yet)

- scalar field actions on curved NC spacetimes:
 - formally self adjoint EOM operators P_{*}
 - explicit models for NC cosmology (also BH and RS) [arXiv:1003.3190]
 - UV improved (Hořava type) scalar QFT from NCG [arXiv:1002.4191]
- ▶ NC Green's operators, solution space and quantization [arXiv:0912.2252]:
 - existence, uniqueness and construction of the deformed Green's operators
 - symplectic structure on the space of real solutions of P_{*}
 - quantization via *-algebras of field observables (no C*-algebras, yet)
- Outlook and future work:

- scalar field actions on curved NC spacetimes:
 - formally self adjoint EOM operators P_{*}
 - explicit models for NC cosmology (also BH and RS) [arXiv:1003.3190]
 - UV improved (Hořava type) scalar QFT from NCG [arXiv:1002.4191]
- ▶ NC Green's operators, solution space and quantization [arXiv:0912.2252]:
 - existence, uniqueness and construction of the deformed Green's operators
 - symplectic structure on the space of real solutions of P_{*}
 - quantization via *-algebras of field observables (no C*-algebras, yet)
- Outlook and future work:
 - generalization to tensor fields [Aschieri, AS]

- scalar field actions on curved NC spacetimes:
 - formally self adjoint EOM operators P_{*}
 - explicit models for NC cosmology (also BH and RS) [arXiv:1003.3190]
 - UV improved (Hořava type) scalar QFT from NCG [arXiv:1002.4191]
- ▶ NC Green's operators, solution space and quantization [arXiv:0912.2252]:
 - existence, uniqueness and construction of the deformed Green's operators
 - symplectic structure on the space of real solutions of P_{*}
 - quantization via *-algebras of field observables (no C*-algebras, yet)
- Outlook and future work:
 - generalization to tensor fields [Aschieri, AS]
 - states on deformed observable algebras \rightarrow cosmo, Hawking radiation, \ldots

- scalar field actions on curved NC spacetimes:
 - formally self adjoint EOM operators P_{*}
 - explicit models for NC cosmology (also BH and RS) [arXiv:1003.3190]
 - UV improved (Hořava type) scalar QFT from NCG [arXiv:1002.4191]
- ▶ NC Green's operators, solution space and quantization [arXiv:0912.2252]:
 - existence, uniqueness and construction of the deformed Green's operators
 - symplectic structure on the space of real solutions of P_{*}
 - quantization via *-algebras of field observables (no C*-algebras, yet)
- Outlook and future work:
 - generalization to tensor fields [Aschieri, AS]
 - states on deformed observable algebras ightarrow cosmo, Hawking radiation, ...
 - Can we always twist the *-algebra of field polynomials?

- scalar field actions on curved NC spacetimes:
 - formally self adjoint EOM operators P_{*}
 - explicit models for NC cosmology (also BH and RS) [arXiv:1003.3190]
 - UV improved (Hořava type) scalar QFT from NCG [arXiv:1002.4191]
- ▶ NC Green's operators, solution space and quantization [arXiv:0912.2252]:
 - existence, uniqueness and construction of the deformed Green's operators
 - symplectic structure on the space of real solutions of P_{*}
 - quantization via *-algebras of field observables (no C*-algebras, yet)
- Outlook and future work:
 - generalization to tensor fields [Aschieri, AS]
 - states on deformed observable algebras \rightarrow cosmo, Hawking radiation, \ldots
 - Can we always twist the *-algebra of field polynomials?
 - ► Can one include convergent deformations? \rightarrow hopefully C*-properties