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Why? Motivation

I QFT on curved spacetimes is important for physics

→ cosmology (CMB fluctuations) and black holes (Hawking radiation)

I precise formulation via algebraic approach [Wald, some people here, . . . ]

I But why should we make all of this noncommutative?

I NC geometry from quantum gravity!?!?
→ include some quantum gravity effects in QFTCS

I NC geometry is natural generalization of classical geometry
→ generalize standard methods of QFTCS as far as possible

I NC in cosmology and black hole physics is of physical interest
→ provide formal background for phenomenology

I ∃ NC gravity solutions [Schupp, Solodukhin; TO, AS; Aschieri, Castellani]
→ test their physical implications by using QFTCS
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Scalar field theory

Scalar field theory on a class of
curved NC spacetimes
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Scalar field theory Kinematics

I Simple example of a twist: [Moyal product/twist]

?-product h ? k = he
iλ
2
←−
∂µΘ

µν−→∂ν k

! twist F−1 = e
iλ
2 Θ

µν∂µ⊗C∂ν

I Our class of twists: F−1 = f̄α ⊗C f̄α ∈ UVec[[λ]]⊗C UVec[[λ]]

I normalization: (ε⊗C id)F = (id⊗C ε)F = 1

I cocycle condition: F12 (∆⊗C id)(F) = F23 (id⊗C ∆)(F)

I reality: F∗⊗∗ = (S⊗C S)(F21) (leads to hermitian ?-products)

I technical assumption: S(f̄α) · f̄α = 1 (simplifies integration)

NB1: includes abelian twists F−1 = exp( iλ2 Θ
abXa ⊗C Xb) with [Xa,Xb] = 0

NB2: most studied NC gravity solutions are of this type

I twist deformation quantization: [Wess group]

I algebra of functions (C∞(M)[[λ]], ?), where h ? k := f̄α(h) · f̄α(k)

I exterior algebra (Ω•[[λ]], ∧?,d), where ω∧? ω
′ := f̄α(ω) ∧ f̄α(ω′)

I pairing 〈v,ω〉? := 〈f̄α(v), f̄α(ω)〉 among vflds and 1forms
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Scalar field theory Dynamics (real scalar field)

I Action (basis independent):

SΦ =

∫
LΦ = −

1
2

∫ (
〈〈dΦ,g−1?

? 〉?,dΦ〉? +M2Φ ?Φ
)

? vol?

I use local basis: 〈∂µ, d̃x
ν
〉? = δνµ

→ g−1?
? = ∂∗µ ⊗? g

µν ? ∂ν , dΦ = dxµ ∂µΦ =: d̃x
µ

? ∂?µΦ

LΦ = −
1
2
(
(∂?µΦ)∗ ? gµν ? ∂?νΦ+M2Φ ?Φ

)
? vol?

I Equation of motion (basis independent):

P?[Φ] ? vol? :=

1
2

(
�?[Φ] ? vol? + vol? ? (�?[Φ

∗])∗ −M2Φ ? vol? −M2 vol? ?Φ
)

= 0

NB: P? is formally self adjoint w.r.t. SP (ϕ,ψ)? =
∫
ϕ∗ ?ψ ? vol? , i.e.

(ϕ,P?[ψ])? = (P?[ϕ],ψ)?
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µν ? ∂ν , dΦ = dxµ ∂µΦ =: d̃x
µ

? ∂?µΦ

LΦ = −
1
2
(
(∂?µΦ)∗ ? gµν ? ∂?νΦ+M2Φ ?Φ

)
? vol?

I Equation of motion (basis independent):

P?[Φ] ? vol? :=

1
2

(
�?[Φ] ? vol? + vol? ? (�?[Φ

∗])∗ −M2Φ ? vol? −M2 vol? ?Φ
)

= 0

NB: P? is formally self adjoint w.r.t. SP (ϕ,ψ)? =
∫
ϕ∗ ?ψ ? vol? , i.e.

(ϕ,P?[ψ])? = (P?[ϕ],ψ)?
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Scalar field theory Example 1: NC cosmology

I slice of de Sitter space: ds2 = −dt2 + e2Ht (dx2 + dy2 + dz2)

I the following NC spacetimes solve NC Einstein equations [TO, AS]

1.) F−1 = exp
(
iλ
2 (∂t ⊗C ∂ϕ − ∂ϕ ⊗C ∂t)

)
⇒ [eiϕ ?, t] = λ eiϕ

−
(
∂2
t + 3H∂t +M2) 1 + ei3λH∂ϕ

2
Φ+ e−2Ht4e

−iλH∂ϕ + ei4λH∂ϕ

2
Φ = 0

NB: depends only on λH ⇒ no deformation for H→ 0 !
very rough estimate: λH ≈ tplHtoday ≈ 10−60

2.) F−1 = exp
(
iλ
2 (xi∂i ⊗C ∂ϕ − ∂ϕ ⊗C xi∂i)

)
⇒ eiϕ ? r = eλ r ? eiϕ

−

(
∂2
t + 3

ȧ

a
∂t +M2

)
1 + ei3λ∂ϕ

2
Φ+

1
a24

e−iλ∂ϕ + ei4λ∂ϕ

2
Φ = 0

I spherical wave Φ = φ(t) jl(k r) Ylm(θ,ϕ) and for simplicity a(t) ≡ 1

∂2
tφ(t) +

(
M2 + k2 e

λm + e−4λm

1 + e−3λm

)
φ(t) = 0 , E(k,m)2 =M2 + k2
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Scalar field theory Example 2: Nonstandard NC Euclidean QFT

I Euclidean space Rd with ds2 = δµνdx
µdxν

I use twist: F−1 = exp
(
iλ
2 Θ

ab
can Xa ⊗C Xb

)
with

X2n−1 = T in ∂i , X2n = x0 T in ∂i (parallel vector fields)

⇒ ?-products with h,k ∈ C∞(Rd):

h ? k = hk , dx0 ? h = dx0 h ,

dxi ? h = dxi h− dx0 iλ

2
T inT

j
n∂jh (exact!)

⇒ deformed action with T in = 2δin:

SΦ =

∫ (
∂µΦ∂µΦ

2
+
λ2

2
(4Φ)2 + V[Φ]

)
vol

I Hořava type FT from NC geometry! No UV/IR mixing! [AS,Uhlemann]

I UV improvement of Φ4-theory in d = 4:

∼
√
ΛUV + finite , = finite
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NC QFTCS

Let’s go back to curved NC spacetimes and
talk about the quantization of scalar fields.
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NC QFTCS Deformed Green’s operators

I let P? =
∑
λnP(n) be a deformed Klein-Gordon operator (defined above)

I (M,g?, ?)
∣∣
λ→0 time-oriented, connected, globally hyperbolic

I technical assumption: P(n) : C∞(M)→ C∞0 (M) for all n > 0
I fulfilled for twists of compact support
I or g? asymptotically (outside compact region) symmetric under F

I based on strong results for the commutative case we find:
there exist unique Green’s operators ∆?± :=

∑
λn∆(n)± satisfying

(i) P? ◦ ∆?± = idC∞0 (M)[[λ]] ,

(ii) ∆?± ◦ P?

∣∣
C∞0 (M)[[λ]]

= idC∞0 (M)[[λ]] ,

(iii) supp(∆(n)±[ϕ]) ⊆ J±(supp(ϕ)) , for all n ∈N0 and ϕ ∈ C∞0 (M) ,

where J± is the causal future/past with respect to the metric g?|λ→0.

NB: also possible for deformed normally hyperbolic operators P?
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NC QFTCS Deformed Green’s operators

Explicit formula for ∆?± in terms of ∆± := ∆(0)±:

∆?± = ∆±

− λ ∆± ◦ P(1) ◦ ∆±
− λ2 (∆± ◦ P(2) ◦ ∆± − ∆± ◦ P(1) ◦ ∆± ◦ P(1) ◦ ∆±

)
+ O(λ3) [higher orders follow the same structure]

Graphically:

= − λ 1 − λ2

(
2 − 1 1

)

− λ3

(
3 − 1 2 − 2 1 + 1 1 1

)
+ O(λ4)

→ perturbative approach to deformed Green’s operators
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NC QFTCS Deformed symplectic vector space

I fundamental solution:

∆? := ∆?+ − ∆?− ⇒ P? ◦ ∆? = ∆? ◦ P? = 0

I space of “physical sources”:

H :=
{
ϕ ∈ C∞0 (M)[[λ]] : (∆?±[ϕ])∗ = ∆?±[ϕ]

}
NB: H is sufficiently large, since:

Let ψ be a real solution of the deformed wave equation, then there is a
ϕ ∈ H, such that ψ = ∆?[ϕ].

⇒ H/Ker(∆?) is isomorphic to the space of real solutions of P?

Proposition (TO, AS)
(V?,ω?) with V? := H/Ker(∆?) and

ω?([ϕ], [ψ]) := (ϕ,∆?[ψ])? =

∫
ϕ∗ ? ∆?[ψ] ? vol?

is a symplectic vector space.
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NC QFTCS ∗-algebras of field observables

I Let A be a unital ∗-algebra over C[[λ]] [math/0408217 (Waldmann), . . . ]

I What are possible definitions of ∗-algebras of field observables?

1.) ∗-algebra of Weyl-type W : V? → A, such that

W(0) = 1 ,
W(−ϕ) = W(ϕ)∗ ,

W(ϕ) ·W(ψ) = e−iω?(ϕ,ψ)/2 W(ϕ+ψ) .

2.) ∗-algebra of field polynomials Φ : V? → A (linear), such that

Φ(ϕ)∗ = Φ(ϕ) ,
[Φ(ϕ),Φ(ψ)] = iω?(ϕ,ψ) 1 .

I What about the twisted ∗-algebra of field polynomials?

Φ(ϕ) ?Φ(ψ) = f̄α .Φ(ϕ) · f̄α .Φ(ψ)

� Moyal-Minkowski space [Zahn, Aschieri, . . . ], Killing twists [AS, last year BZ]

? general case

NB: twisting requires CCR-compatible F [Poisson geometry: Aschieri, Lizzi, Vitale]
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Summary and outlook

I scalar field actions on curved NC spacetimes:

I formally self adjoint EOM operators P?

I explicit models for NC cosmology (also BH and RS) [arXiv:1003.3190]

I UV improved (Hořava type) scalar QFT from NCG [arXiv:1002.4191]

I NC Green’s operators, solution space and quantization [arXiv:0912.2252]:

I existence, uniqueness and construction of the deformed Green’s operators

I symplectic structure on the space of real solutions of P?

I quantization via ∗-algebras of field observables (no C∗-algebras, yet)

I Outlook and future work:

I generalization to tensor fields [Aschieri, AS]

I states on deformed observable algebras→ cosmo, Hawking radiation, . . .

I Can we always twist the ∗-algebra of field polynomials?

I Can one include convergent deformations? → hopefully C∗-properties
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