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QFT on NC Spacetimes – “Conceptualities”

? The operational significance of NC spacetime in its relation to the
QFT on it is often not very clear.

? What replaces the locality concept which is central to QFT in
Minkowski spacetime on an NC spacetime?

? There are (more or less) good arguments for all of the various
models of NC spaces (spacetimes). Which is the most appropriate
(if any)? What conceptual and mathematical framework is needed
to stage a systematic discussion of this question?
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QFT on NC Spacetimes – “Conceptualities”

? What about general covariance? General relativity is one of the
main motivations for considering NC spacetime. In QFT on
classical spacetime, one can formulate general covariance for
QFTs. This requires to consider not just a few particular
spacetime models, but a whole class of spacetimes (abstractly
characterized — “model independent”).

? Actually, what is a QFT on an NC spacetime? What are its
characterizing properties (needed for a sound physical
interpretation)? Is there a model-independent framework —
model-independent both on the NC geometry side and on the
QFT side?
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Model-independent NC spacetimes

There is a model-independent approach to Riemannian NC geometry
— the spectral geometry approach developed by Alain Connes.

Some (many? all?) of the examples of NC spaces usually considered
(when they correspond to NC generalizations of Riemannian
geometries) fulfill the conditions of spectral geometry.

The strength of the spectral geometry approach is based on
• “Naturality” of the axioms
• Structural theorems, including “reconstruction”
of a Riemannian manifold with spin structure in the “classical case”

Rainer Verch 4 / 22



Axioms for LOSTs = LOrentzian Spectral Triples
unfinished business by Mario Paschke and RV

A LOST is a collection of objects as follows:
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Axioms for LOSTs = LOrentzian Spectral Triples
unfinished business by Mario Paschke and RV
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Axioms for LOSTs = LOrentzian Spectral Triples
unfinished business by Mario Paschke and RV

  

Rainer Verch 7 / 22



Tentative Results for LOSTs
unfinished business by Mario Paschke and RV
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QFT on a LOST

One can obtain a QFT on a LOST essentially by an abstract form of
2nd quantization.

To a LOST L = (A,H,D, β, γ, J) one can associate a CAR-∗-algebra
F(L) generated by symbols Φ(f ), f ∈ H∞ with the relations:
• f 7→ Φ(f ) is linear • Φ(f )∗ = Φ(Jf )
• Φ(Df ) = 0 • {Φ(f )∗,Φ(h)}+ = (f ,Rh)H

Here, R would in the classical case correspond to the difference
between the advanced and retarded fundamental solutions of the Dirac
operator:

R = Radv − Rret , DRadvf = f = DRretf

Existence and uniqueness of Radv and Rret is an extra assumption for a
LOST. It is viewed as an NC generalization of globally hyperbolic
spacetimes
→ globally hyperbolic spectral triples (GHYSTs).
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GHYST QFT

Existence and uniqueness of Radv and Rret is (still) difficult to
characterize in the LOST setting. (Is related to the question of
localizability in NC geometry, which is difficult.)

Guided by the classical case, it should be possible to define GHYSTs
in a covariant manner using an equivalence concept for LOSTs. Then,
if two GHYSTs

L U−→ L̃ are equivalent by a unitary U,

there should be a (C)∗ algebraic equivalence

F(L)
αU−→ F(L̃) , αU(Φ(f )) = Φ̃(Uf )

This is the starting point for a concept of covariant QFT over
Lorentzian spectral geometries.
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NC Spacetime QFT

What are the observables in F(L), and how are they related to
elements in A0?

One idea is to follow the action of a ∈ A0 on elements inH∞ through
the process of abstract 2nd quantization: We consider

wa : Φ(f ) 7→ Φ(aRf )

In a particular example, this corresponds (essentially) to the derivation
of an operation — a scattering morphism — on F(L).

As example, we take 3-dim Moyal-deformed Minkowski spacetime
where

θ = (ϑµν) =

 0 0 0
0 0 ϑ
0 −ϑ 0


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Dirac field on Moyal-Minkowski space /
commutative time case

A0 = S(R3)? with the Moyal-product

f ? h = (2π)−3
∫ ∫

f (x − θu)h(x + v)e−iu·v du dv

H = L2(R3,C2)

D is the usual (massless) Dirac-operator on 3-dim Minkowski
space
β = Γ0, γ = Γ0 · Γ1 · Γ2, J = charge conjugation
In this case, Radv and Rret exist uniquely, and coincide with the
“classical” objects
Let c(x0, x1, x2) = a(x0)b(x1, x2) with C∞0 (R) and b ∈ S(R2),
both real. Define the “non-commutative (time-dependent)
potential”

V (c)f = c ? f + f ? c , f ∈ H
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Dirac field scattering by NC potential /
commutative time case

Write the field equation

(D + λV (c))ϕ = 0

in Hamiltonian form.
With ϕt = ϕ(t, . ), the field eqn becomes

H(t)ϕt = (H0 + λHc(t))ϕt = 0
H0 = (Γ0)−1iΓk∂

k

Hc(t)ϕt = (Γ0)−1a(t)(b ? ϕt + ϕt ? b)

where b ? ϕt is the 2-dim Moyal product (w.r.t. (x1, x2)), i.e. the
NC product of the 2-dim Moyal plane
One can show ess. selfadjointness of the H(t) on a suitable
domain.
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Dirac field scattering by NC potential /
commutative time case

The solution of the eqn is given by a 2-parametric family of
unitaries:

ϕt = Uλ(t, t0)ϕt0

Note that a(t) and hence Hc(t) have compact time-support

=⇒ sλ = eit+H0Uλ(t+, t−)e−it−H0

is constant if t+,−t− > τ for some finite τ
sλ is the 1-particle scattering operator
Define for solutions χ of the free (potential = 0) Dirac eqn

Ψ(χ) = Φ(Rf ) , χ = Rf

sλ induces a Bogoliubov-transformation on the CAR-algebra
F(L) generated by the Ψ(χ),

αλ(Ψ(χ)) = Ψ(sλχ)
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Dirac field scattering by NC potential / commutative time case

Let (π0,H0,Ω0) be the GNS representation of the canonical
vacuum state (ground state for the canonical ground state on
F(L) w.r.t. the potential-free time evolution) and set
Ψ0(χ) = π0(Ψ(χ))

Theorem (M. Borris, R.V., CMP 293)
αλ is implementable in the vacuum representation π0, i.e. there is a
unitary Sλ onH0 so that

π0(αλ(Ψ(χ))) = SλΨ0(χ)S−1
λ

Moreover, it holds that

d
dλ

∣∣∣∣
λ=0

SλΨ0(χ)S−1
λ = iΨ0(R(c ? χ + χ ? c))
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Dirac field scattering by NC potential /
commutative time case

Hence, one can take

Xλ(c) = i(
d

dλ
Sλ)S−1

λ

as observables associated with elements c in the algebra of NC
“spacetime coordinates” A = S(R3)?.

This is very reminiscent of Bogoliubov’s formula.

The Xλ(c) are generators of transformations of quantum fields
associated with “probing” the quantum field by coupling it to a
non-commutative (scalar) potential.

(Actually, in order to respect gauge covariance, one should use
elements c in the differential algebra of A instead of elements of the
algebra itself.)
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Dirac field scattering by NC potential /
commutative time case

In Minkowski spacetime with A = S(R3):

[: Φ+
0 Φ0 : (c),Ψ0(χ)] = 4iΨ(Rcχ)

With the Rieffel-product

A θ? B =
1

(2π)n

∫ ∫
αθu(A)αv (B)eiu·v du dv

for operators A,B onH0,
αy = action of translations, one obtains

[X0(c),Ψ0(χ)] = Ψ0(R(c ? χ + χ ? c))

=
1
4

([: Φ+
0 Φ0 : (c) θ?, Ψ0(χ)] + [: Φ+

0 Φ0 : (c) ?θ, Ψ0(χ)])
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Dirac field on Moyal-Minkowski space /
NC time case

NC function algebra A0 = S(R4)? with the Moyal-product

f ? h = (2π)−4
∫ ∫

f (x − θu)h(x + v)e−iu·v du dv

now with

θ = ϑ


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


NC potential

Vξ(c)ϕ = ξ(c ? (ξϕ) ? c)

where ξ ≥ 0 is a C∞0 cut-off function
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Dirac field on Moyal-Minkowski space /
NC time case

Fix τ > 0 so that ξ is compactly supported in

Mτ = {(x0, x1, x2, x3) : |x0| < τ}

For λ > 0 small enough there exist advanced and retarded
fundamental solutions

R±λV

for the Dirac operator

D + λVξ(c) on Mτ

R±λV = R±(1 + λVξ(c)R±)−1 = R±

 ∞∑
j=0

(−1)j(λVξ(c)R±)j


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Dirac field on Moyal-Minkowski space /
NC time case

With the help ofR±λV one can define an isometric 1-particle scattering
operator

sλ = sλ(c, ξ, τ )

on the space of solutions χ of the free Dirac equation Dχ = 0 onMτ

  

V

identify

identify

propagate with
interacting
dynamics

propagate
datum with
free dynamics

propagate
with free 
dynamics
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Dirac field on Moyal-Minkowski space /
NC time case

Then sλ induces an endomorphism

αλ(Ψ(χ)) = Ψ(sλχ)

on the CAR-algebra of the quantized free Dirac field onMτ

On this CAR-algebra one obtains the derivation

δτ,ξ,c(A) =
d

dλ

∣∣∣∣
λ=0

αλ(A)

Upon taking away the cut-offs (τ →∞, ξ → 1) one obtains a
derivation

δc(Ψ(χ)) = Ψ(R(c ? χ ? c))

on the CAR-algebra of the free Dirac field on all of (Moyal-) Minkowski
spacetime.
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Dirac field on Moyal-Minkowski space /
NC time case / Summary

Expected: In the vacuum representation, δc(Ψ(χ)) is induced by a
symmetric operator

[X0(c),Ψ0(χ)] = Ψ0(R(c ? χ ? c))

Concluding:
Moyal-Minkowski spacetime can be seen as a model for a LOST
Certain combinations of Moyal-Rieffel products between QFT
operators can be interpreted operationally in terms of NC potential
scattering + Bogoliubov’s formula
This renders a correspondence

A(L)→ F(L) , c 7→ X0(c)

which may be seen as generalization of an “observable quantum
field” on an NC spacetime
Starting point for generalization of local algebras of observables
over NC spacetimes?
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