Heat Kernel Expansion and Induced Action for Matrix Models

Talk presented by Daniel N. Blaschke

Recipient of an APART -fellowship of the Austrian Academy of Sciences at the

Collaborators: H. Steinacker, M. Wohlgenannt

Outline

i.Introduction:

- YM matrix models
- IKKT Model
ii. Induced fermion action
- as NCGFT
- as generalized matrix model

Matrix models of Yang-Mills type

$$
S_{Y M}=-\operatorname{Tr}\left[X^{a}, X^{b}\right]\left[X^{c}, X^{d}\right] \eta_{a c} \eta_{b d}
$$

X^{a} Herm. matrices on \mathcal{H}, and $\eta_{a b}$ is D-dim. flat metric

$$
X^{a}=\left(X^{\mu}, \Phi^{i}\right), \mu=1, \ldots, 2 n, i=1, \ldots, D-2 n,
$$

so that $\Phi^{i}(X) \sim \phi^{i}(x)$ define embedding $\mathcal{M}^{2 n} \hookrightarrow \mathbf{R}^{D}$
$g_{\mu \nu}(x)=\partial_{\mu} x^{a} \partial_{\nu} x^{b} \eta_{a b}$ (in semi-classical limit)

Matrix models of Yang-Mills type

$$
S_{Y M}=-\operatorname{Tr}\left[X^{a}, X^{b}\right]\left[X^{c}, X^{d}\right] \eta_{a c} \eta_{b d}
$$

X^{a} Herm. matrices on \mathcal{H}, and $\eta_{a b}$ is D-dim. flat metric

$$
X^{a}=\left(X^{\mu}, \Phi^{i}\right), \mu=1, \ldots, 2 n, i=1, \ldots, D-2 n,
$$

so that $\Phi^{i}(X) \sim \phi^{i}(x)$ define embedding $\mathcal{M}^{2 n} \hookrightarrow \mathbf{R}^{D}$
$g_{\mu \nu}(x)=\partial_{\mu} x^{a} \partial_{\nu} x^{b} \eta_{a b}$ (in semi-classical limit)
$\mathcal{M}^{2 n}$ endowed with a Poisson structure
$-i\left[X^{\mu}, X^{\nu}\right] \sim\left\{x^{\mu}, x^{\nu}\right\}_{p b}=\theta^{\mu \nu}(x) \Rightarrow$ "effective" metric

$$
G^{\mu \nu}=e^{-\sigma} \theta^{\mu \rho} \theta^{\nu \sigma} g_{\rho \sigma}=-\left(\mathcal{J}^{2}\right)_{\rho}^{\mu} g^{\rho \nu}, \quad e^{-\sigma} \equiv \frac{\sqrt{\operatorname{det} \theta_{\mu \nu}^{-1}}}{\sqrt{\operatorname{det} G_{\rho \sigma}}}
$$

Matrix models of Yang-Mills type

$$
S_{Y M}=-\operatorname{Tr}\left[X^{a}, X^{b}\right]\left[X^{c}, X^{d}\right] \eta_{a c} \eta_{b d}
$$

X^{a} Herm. matrices on \mathcal{H}, and $\eta_{a b}$ is D-dim. flat metric

$$
X^{a}=\left(X^{\mu}, \Phi^{i}\right), \mu=1, \ldots, 2 n, i=1, \ldots, D-2 n,
$$

so that $\Phi^{i}(X) \sim \phi^{i}(x)$ define embedding $\mathcal{M}^{2 n} \hookrightarrow \mathbf{R}^{D}$ $g_{\mu \nu}(x)=\partial_{\mu} x^{a} \partial_{\nu} x^{b} \eta_{a b}$ (in semi-classical limit)
$\mathcal{M}^{2 n}$ endowed with a Poisson structure
$-i\left[X^{\mu}, X^{\nu}\right] \sim\left\{x^{\mu}, x^{\nu}\right\}_{p b}=\theta^{\mu \nu}(x) \Rightarrow$ "effective" metric

$$
\begin{gathered}
G^{\mu \nu}=e^{-\sigma} \theta^{\mu \rho} \theta^{\nu \sigma} g_{\rho \sigma}
\end{gathered}=-\left(\mathcal{J}^{2}\right)_{\rho}^{\mu} g^{\rho \nu}, \quad e^{-\sigma} \equiv \frac{\sqrt{\operatorname{det} \theta_{\mu \nu}^{-1}}}{\sqrt{\operatorname{det} G_{\rho \sigma}}}
$$

Matrix models and gravity

define projectors on the tangential/normal bundle of $\mathcal{M} \subset \mathbb{R}^{D}$ as

$$
\begin{aligned}
& \mathcal{P}_{T}^{a b}=g^{\mu \nu} \partial_{\mu} x^{a} \partial_{\nu} x^{b} \\
& \mathcal{P}_{N}^{a b}=\eta^{a b}-\mathcal{P}_{T}^{a b}
\end{aligned}
$$

Matrix models and gravity

define projectors on the tangential/normal bundle of $\mathcal{M} \subset \mathbb{R}^{D}$ as

$$
\begin{aligned}
& \mathcal{P}_{T}^{a b}=g^{\mu \nu} \partial_{\mu} x^{a} \partial_{\nu} x^{b}, \\
& \mathcal{P}_{N}^{a b}=\eta^{a b}-\mathcal{P}_{T}^{a b},
\end{aligned}
$$

Characteristic equation for $2 n=4$:

$$
\left(\mathcal{J}^{2}\right)^{\mu}{ }_{\nu}+\frac{(G g)}{2} \delta^{\mu}{ }_{\nu}+\left(\mathcal{J}^{-2}\right)^{\mu}{ }_{\nu}=0
$$

$2 n=4$: special class of geometries where $G_{\mu \nu}=g_{\mu \nu}$ i.e. $\Theta=\frac{1}{2} \theta_{\mu \nu}^{-1} d x^{\mu} \wedge d x^{\nu}, \quad \star \Theta= \pm i \Theta \quad \Rightarrow \mathcal{J}^{2}=-\mathbb{1}$

NCGFT coupled to gravity

- add $\mathrm{U}(\mathrm{N})$ valued gauge fields: $\quad X^{\mu}=\bar{X}^{\mu}+\mathcal{A}^{\mu}$

$$
\Rightarrow \quad\left[X^{\mu}, X^{\nu}\right] \sim i\left(1+\mathcal{A}^{\rho} \partial_{\rho}\right) \theta^{\mu \nu}+i \mathcal{F}^{\mu \nu}
$$

- Effective matrix model action then describes gauge fields in a gravitational background

NCGFT coupled to gravity

- add $\mathrm{U}(\mathrm{N})$ valued gauge fields: $\quad X^{\mu}=\bar{X}^{\mu}+\mathcal{A}^{\mu}$

$$
\Rightarrow \quad\left[X^{\mu}, X^{\nu}\right] \sim i\left(1+\mathcal{A}^{\rho} \partial_{\rho}\right) \theta^{\mu \nu}+i \mathcal{F}^{\mu \nu}
$$

- Effective matrix model action then describes gauge fields in a gravitational background
- However, the $U(1)$ and $S U(N)$ subsectors play very different roles: $U(1)$ purely gravitational non-commutative U(N) gauge field theory
describes $S U(N)$ fields coupled to gravity alternative interpretation of UV/IR mixing

Introducing the IKKT model

$$
\begin{gathered}
S_{\mathrm{IKKT}}=\operatorname{Tr}\left(\left[X^{a}, X^{b}\right]\left[X_{a}, X_{b}\right]+\bar{\Psi} \gamma_{a}\left[X^{a}, \Psi\right]\right) \\
\not D \Psi:=\gamma_{a}\left[X^{a}, \Psi\right], \quad\left\{\gamma_{a}, \gamma_{b}\right\}=2 \eta_{a b}
\end{gathered}
$$

IKKT matrix model is supersymmetric and expected to be renormalizable - cf. Nucl.Phys. B498 (1997) 467.
Majorana-Weyl spinor $\Psi=\mathcal{C} \bar{\Psi}^{T}$

Introducing the IKKT model

$$
\begin{aligned}
S_{\mathrm{IKKT}} & =\operatorname{Tr}\left(\left[X^{a}, X^{b}\right]\left[X_{a}, X_{b}\right]+\bar{\Psi} \gamma_{a}\left[X^{a}, \Psi\right]\right) \\
\not D \Psi & :=\gamma_{a}\left[X^{a}, \Psi\right], \quad\left\{\gamma_{a}, \gamma_{b}\right\}=2 \eta_{a b},
\end{aligned}
$$

IKKT matrix model is supersymmetric and expected to be renormalizable - cf. Nucl.Phys. B498 (1997) 467.
Majorana-Weyl spinor $\Psi=\mathcal{C} \bar{\Psi}^{T}, \quad$ is invariant under SUSY:

$$
\begin{aligned}
& \delta^{1} \Psi=\frac{i}{4}\left[X^{a}, X^{b}\right]\left[\gamma_{a}, \gamma_{b}\right] \epsilon, \quad \delta^{1} X^{a}=i \bar{\epsilon} \gamma^{a} \Psi \\
& \delta^{2} \Psi=\xi, \quad \delta^{2} X^{a}=0
\end{aligned}
$$

Introducing the IKKT model

$$
\begin{aligned}
S_{\mathrm{IKKT}} & =\operatorname{Tr}\left(\left[X^{a}, X^{b}\right]\left[X_{a}, X_{b}\right]+\bar{\Psi} \gamma_{a}\left[X^{a}, \Psi\right]\right) \\
\not D \Psi & :=\gamma_{a}\left[X^{a}, \Psi\right], \quad\left\{\gamma_{a}, \gamma_{b}\right\}=2 \eta_{a b}
\end{aligned}
$$

IKKT matrix model is supersymmetric and expected to be renormalizable - cf. Nucl.Phys. B498 (1997) 467.
Majorana-Weyl spinor $\Psi=\mathcal{C} \bar{\Psi}^{T}, \quad$ is invariant under SUSY:

$$
\begin{aligned}
& \delta^{1} \Psi=\frac{i}{4}\left[X^{a}, X^{b}\right]\left[\gamma_{a}, \gamma_{b}\right] \epsilon, \quad \delta^{1} X^{a}=i \bar{\epsilon} \gamma^{a} \Psi \\
& \delta^{2} \Psi=\xi, \quad \delta^{2} X^{a}=0
\end{aligned}
$$

Further symmetries:

$$
\begin{array}{llll}
X^{a} \rightarrow U^{-1} X^{a} U, & \Psi \rightarrow U^{-1} \Psi U, & & U \in U(\mathcal{H}), \\
X^{a} \rightarrow \Lambda(g)_{b}^{a} X^{b}, & \Psi_{\alpha} \rightarrow \tilde{\pi}(g)_{\alpha}^{\beta} \Psi_{\beta}, & & g \in \widetilde{S O}(D), \\
X^{a} \rightarrow X^{a}+c^{a} \mathbb{1}, & & c^{a} \in \mathbb{R}, \quad \text { rotations, inv. } \\
\text { translations }
\end{array}
$$

IKKT model as TOE?

$$
S_{\mathrm{IKKT}}=\operatorname{Tr}\left(\left[X^{a}, X^{b}\right]\left[X_{a}, X_{b}\right]+\bar{\Psi} \gamma_{a}\left[X^{a}, \Psi\right]\right)
$$

- Originially proposed as non-perturbative definition of type IIB string theory,
- Seems to provide a good candidate for quantum gravity and other fundamental interactions,

IKKT model as TOE?

$$
S_{\mathrm{IKKT}}=\operatorname{Tr}\left(\left[X^{a}, X^{b}\right]\left[X_{a}, X_{b}\right]+\bar{\Psi} \gamma_{a}\left[X^{a}, \Psi\right]\right)
$$

- Originially proposed as non-perturbative definition of type IIB string theory,
- Seems to provide a good candidate for quantum gravity and other fundamental interactions,
- Here, we consider general NC brane configurations and their effective gravity in the matrix model,
- assume soft breaking of SUSY below some scale \wedge and compute the effective action using a Heatkernel expansion.

The fermionic action

$$
\begin{aligned}
& S_{\Psi}=\operatorname{Tr} \Psi^{\dagger} \not D \Psi=\operatorname{Tr} \Psi^{\dagger} \gamma_{a}\left[X^{a}, \Psi\right] \\
& e^{-\Gamma[X]}=\int d \Psi d \Psi^{\dagger} e^{-S_{\Psi}}=(\text { const. }) \exp \left(\frac{1}{2} \operatorname{Tr} \log \left(\not D^{2}\right)\right) \\
& \quad \not D^{2} \Psi=\gamma_{a} \gamma_{b}\left[X^{a},\left[X^{b}, \Psi\right]\right]=\left(\not D_{0}^{2}+V\right) \Psi
\end{aligned}
$$

The fermionic action

$$
\begin{aligned}
& S_{\Psi}=\operatorname{Tr} \Psi^{\dagger} \not D \Psi=\operatorname{Tr} \Psi^{\dagger} \gamma_{a}\left[X^{a}, \Psi\right] \\
& e^{-\Gamma[X]}=\int d \Psi d \Psi^{\dagger} e^{-S_{\Psi}}=(\text { const. }) \exp \left(\frac{1}{2} \operatorname{Tr} \log \left(\not D^{2}\right)\right) \\
& \quad \not D^{2} \Psi=\gamma_{a} \gamma_{b}\left[X^{a},\left[X^{b}, \Psi\right]\right]=\left(\not D_{0}^{2}+V\right) \Psi
\end{aligned}
$$

- Consider fermions coupled to NC background
- Matrices $X^{\text {a }}$: perturbations around Moyal quantum plane introduce NC scale $\Lambda_{N C}^{4}=e^{-\sigma}$

$$
\begin{aligned}
{\left[\bar{X}^{\mu}, \bar{X}^{\nu}\right] } & =i \bar{\theta}^{\mu \nu} \quad \text { (blockdiagonal, constant) } \\
X^{\mu} & =\left(\bar{X}^{\mu}+\mathcal{A}^{\mu}, \phi^{i}\right)=\left(\bar{X}^{\mu}-\bar{\theta}^{\mu \nu} A_{\nu}, \Lambda_{N C}^{2} \varphi^{i}\right)
\end{aligned}
$$

Heatkernel expansion

$$
\not D_{0}^{2} \Psi:=\eta_{\mu \nu}\left[\bar{X}^{\mu},\left[\bar{X}^{\nu}, \Psi\right]\right]=-\Lambda_{N C}^{-4} \bar{G}^{\mu \nu} \partial_{\mu} \partial_{\nu} \Psi
$$

components of $\left[X^{a}, X^{b}\right]$:

$$
\begin{array}{rlr}
{\left[X^{\mu}, X^{\nu}\right]} & =i\left(\bar{\theta}^{\mu \nu}+\mathcal{F}^{\mu \nu}\right), & {\left[X^{\mu}, \phi^{i}\right]=i \bar{\theta}^{\mu \nu} D_{\nu} \phi^{i}} \\
\mathcal{F}^{\mu \nu} & =-\theta^{\mu \rho} \theta^{\nu \sigma}\left(\partial_{\rho} A_{\sigma}-\partial_{\sigma} A_{\rho}-i\left[A_{\rho}, A_{\sigma}\right]\right), \\
D_{\nu} \phi & =\partial_{\nu} \phi+i\left[A_{\nu}, \phi\right] &
\end{array}
$$

Heatkernel expansion

$$
\not D_{0}^{2} \Psi:=\eta_{\mu \nu}\left[\bar{X}^{\mu},\left[\bar{X}^{\nu}, \Psi\right]\right]=-\Lambda_{N C}^{-4} \bar{G}^{\mu \nu} \partial_{\mu} \partial_{\nu} \Psi
$$

components of $\left[X^{a}, X^{b}\right]$:

$$
\begin{array}{rlr}
{\left[X^{\mu}, X^{\nu}\right]} & =i\left(\bar{\theta}^{\mu \nu}+\mathcal{F}^{\mu \nu}\right), & {\left[X^{\mu}, \phi^{i}\right]=i \bar{\theta}^{\mu \nu} D_{\nu} \phi^{i}} \\
\mathcal{F}^{\mu \nu} & =-\theta^{\mu \rho} \theta^{\nu \sigma}\left(\partial_{\rho} A_{\sigma}-\partial_{\sigma} A_{\rho}-i\left[A_{\rho}, A_{\sigma}\right]\right), \\
D_{\nu} \phi & =\partial_{\nu} \phi+i\left[A_{\nu}, \phi\right] &
\end{array}
$$

Consider Duhamel expansion:

$$
\begin{aligned}
\frac{1}{2} \operatorname{Tr}\left(\log \not D^{2}-\log \not D_{0}^{2}\right) & \rightarrow-\frac{1}{2} \operatorname{Tr} \int_{0}^{\infty} \frac{d \alpha}{\alpha}\left(e^{-\alpha \not D^{2}}-e^{-\alpha \not D_{0}^{2}}\right) e^{-\frac{\Lambda_{N C}^{4}}{\alpha \Lambda^{2}}} \\
& =\Lambda^{4} \sum_{n \geq 0} \int d^{4} x \mathcal{O}\left(\frac{(p, A, \varphi)^{n}}{\left(\Lambda, \Lambda_{N C}\right)^{n}}\right)
\end{aligned}
$$

Small parameters of expansion

- In contrast to previous work, we consider a „semiclassical" low energy regime characterized by

$$
\epsilon(p):=p^{2} \Lambda^{2} / \Lambda_{N C}^{4} \ll 1
$$

- Can expand UV/IR mixing terms as

$$
e^{-p^{2} \Lambda_{N C}^{4} / \alpha} \approx \sum_{m \geq 0} a_{m} \epsilon(p)^{m}
$$

- Avoids pathological phenomena appearing e.g. when

$$
\Lambda \rightarrow \infty \text { and } \Lambda_{N C} \text { fixed }
$$

Small parameters of expansion

- In contrast to previous work, we consider a „semiclassical" low energy regime characterized by

$$
\epsilon(p):=p^{2} \Lambda^{2} / \Lambda_{N C}^{4} \ll 1
$$

- Can expand UV/IR mixing terms as

$$
e^{-p^{2} \Lambda_{N C}^{4} / \alpha} \approx \sum_{m \geq 0} a_{m} \epsilon(p)^{m}
$$

- Avoids pathological phenomena appearing e.g. when

$$
\Lambda \rightarrow \infty \text { and } \Lambda_{N C} \text { fixed }
$$

- Expansion in 3 small parameters:

$$
\Gamma \sim \Lambda^{4} \sum_{n, l, k \geq 0} \int d^{4} x \mathcal{O}\left(\epsilon(p)^{n}\left(\frac{p^{2}}{\Lambda_{N C}^{2}}\right)^{l}\left(\frac{p^{2}}{\Lambda^{2}}\right)^{k}\right)
$$

Specifying the Hilbert space

 inner product: $\left\langle\Psi_{1}, \Psi_{2}\right\rangle=\operatorname{Tr}_{\mathcal{H}} \Psi_{1}^{\dagger} \Psi_{2}=\Lambda_{N C}^{4} \int \frac{d^{4} x}{(2 \pi)^{2}} \sqrt{g} \Psi_{1}^{\dagger} \Psi_{2}$Weyl quantization map: $|p\rangle=e^{i p_{\mu} \bar{X}^{\mu}} \in \mathcal{A}$

$$
\begin{aligned}
\bar{P}_{\mu}|p\rangle & =i p_{\mu}|p\rangle, \quad \text { with } \bar{P}_{\mu}=-i \theta_{\mu \nu}^{-1}\left[\bar{X}^{\nu}, .\right] \\
\langle q \mid p\rangle & =\operatorname{Tr}(|p\rangle\langle q|)=\operatorname{Tr}_{\mathcal{H}}\left(e^{-i q_{\mu} \bar{X}^{\mu}} e^{i p_{\mu} \bar{X}^{\mu}}\right)=\left(2 \pi \Lambda_{N C}^{2}\right)^{2} \delta^{4}(p-q)
\end{aligned}
$$

Specifying the Hilbert space

inner product: $\left\langle\Psi_{1}, \Psi_{2}\right\rangle=\operatorname{Tr}_{\mathcal{H}} \Psi_{1}^{\dagger} \Psi_{2}=\Lambda_{N C}^{4} \int \frac{d^{4} x}{(2 \pi)^{2}} \sqrt{g} \Psi_{1}^{\dagger} \Psi_{2}$
Weyl quantization map: $|p\rangle=e^{i p_{\mu} \bar{X}^{\mu}} \in \mathcal{A}$

$$
\begin{aligned}
\bar{P}_{\mu}|p\rangle & =i p_{\mu}|p\rangle, \quad \text { with } \bar{P}_{\mu}=-i \theta_{\mu \nu}^{-1}\left[\bar{X}^{\nu}, .\right] \\
\langle q \mid p\rangle & =\operatorname{Tr}(|p\rangle\langle q|)=\operatorname{Tr}_{\mathcal{H}}\left(e^{-i q_{\mu} \bar{X}^{\mu}} e^{i p_{\mu} \bar{X}^{\mu}}\right)=\left(2 \pi \Lambda_{N C}^{2}\right)^{2} \delta^{4}(p-q) \\
|\Psi\rangle & =\int \frac{d^{4} p}{\left(2 \pi \Lambda_{N C}^{2}\right)^{2}}|p\rangle\langle p \mid \Psi\rangle=\int \frac{d^{4} p}{\left(2 \pi \Lambda_{N C}^{2}\right)^{2}} \psi(p) e^{i p_{\mu} \bar{X}^{\mu}}
\end{aligned}
$$

$$
\left[e^{i k \bar{X}}, e^{i l \bar{X}}\right]=-2 i \sin \left(\frac{k \bar{\theta} l}{2}\right) e^{i(k+l) \bar{X}}, \quad \not D_{0}^{2}|p\rangle=\Lambda_{N C}^{-4} \bar{G}^{\mu \nu} p_{\mu} p_{\nu}|p\rangle
$$

Effective NC gauge theory action

general matrix element: $\left\langle\Psi_{\beta}^{\prime}\right| V\left|\Psi_{\alpha}\right\rangle$

And can now compute terms of Duhamel expansion order by order:

$$
\begin{aligned}
\Gamma= & \frac{1}{2} \int_{0}^{\infty} d \alpha \operatorname{Tr}\left(V e^{-\alpha D_{0}^{2}}\right) e^{-\frac{\Lambda_{N C}^{4}}{\alpha \Lambda^{2}}} \\
& -\frac{1}{4} \int_{0}^{\infty} d \alpha \int_{0}^{\alpha} d t^{\prime} \operatorname{Tr}\left(V e^{-t^{\prime} D_{0}^{2}} V e^{-\left(\alpha-t^{\prime}\right) \not D_{0}^{2}}\right) e^{-\frac{\Lambda_{N C}^{4}}{\alpha \Lambda^{2}}}+\ldots
\end{aligned}
$$

Effective NC gauge theory action

general matrix element: $\left\langle\Psi_{\beta}^{\prime}\right| V\left|\Psi_{\alpha}\right\rangle$

And can now compute terms of Duhamel expansion order by order:

$$
\begin{aligned}
\Gamma= & \frac{1}{2} \int_{0}^{\infty} d \alpha \operatorname{Tr}\left(V e^{-\alpha \not D_{0}^{2}}\right) e^{-\frac{\Lambda_{N C}^{4}}{\alpha \Lambda^{2}}} \\
& -\frac{1}{4} \int_{0}^{\infty} d \alpha \int_{0}^{\alpha} d t^{\prime} \operatorname{Tr}\left(V e^{-t^{\prime} \not D_{0}^{2}} V e^{-\left(\alpha-t^{\prime}\right) \not D_{0}^{2}}\right) e^{-\frac{\Lambda_{N C}^{4}}{\alpha \Lambda^{2}}}+\ldots
\end{aligned}
$$

E.g. first order:

$$
\begin{aligned}
\Gamma^{1}= & \frac{\Lambda^{4} \operatorname{Tr} \mathbb{1}}{16 \Lambda_{N C}^{8}} \int \frac{d^{4} l}{\left(2 \pi \Lambda_{N C}^{2}\right)^{2}} \sqrt{g} l^{2}\left(\bar{G}^{\mu \nu} A_{\mu}(-l) A_{\nu}(l)+\varphi^{i}(-l) \varphi_{i}(l)\right) \\
& +\mathcal{O}\left(l^{4}\right)
\end{aligned}
$$

Gauge invar. of effective NCGFT

Together with $2^{\text {nd }}$ and $3^{\text {rd }}$ order contributions, that leads to order \wedge^{4} terms:

$$
\begin{aligned}
\Gamma_{\Lambda^{4}}(A, \varphi, p)= & \frac{\Lambda^{4} \operatorname{Tr} \mathbb{1}}{16 \Lambda_{N C}^{4}} \int \frac{d^{4} x}{(2 \pi)^{2}} \sqrt{g}\left(g^{\alpha \beta} D_{\alpha} \varphi^{i} D_{\beta} \varphi_{i}\right. \\
& -\frac{1}{2} \Lambda_{N C}^{4}\left(\bar{\theta}^{\mu \nu} F_{\nu \mu} \bar{\theta}^{\rho \sigma} F_{\sigma \rho}+\left(\bar{\theta}^{\sigma \sigma^{\prime}} F_{\sigma \sigma^{\prime}}\right)(F \bar{\theta} F \bar{\theta})\right) \\
& -2 \bar{\theta}^{\nu \mu} F_{\mu \alpha} g^{\alpha \beta} \partial_{\nu} \varphi^{i} \partial_{\beta} \varphi_{i}+\frac{1}{2}\left(\bar{\theta}^{\mu \nu} F_{\mu \nu}\right) g^{\alpha \beta} \partial_{\beta} \varphi^{i} \partial_{\alpha} \varphi_{i} \\
& + \text { h.o. })
\end{aligned}
$$

These terms are manifestly gauge invariant

Predictive power of vacuum

Free contribution:

$$
\Gamma[\bar{X}]=-\frac{1}{2} \operatorname{Tr} \int_{0}^{\infty} \frac{d \alpha}{\alpha} e^{-\alpha \not D_{0}^{2}-\frac{\Lambda_{N C}^{4}}{\alpha \Lambda^{2}}}=-\frac{\Lambda^{4} \operatorname{Tr} \mathbb{1}}{8} \int \frac{d^{4} x}{(2 \pi)^{2}} \sqrt{g}
$$

Along with general geometrical considerations, this suffices to predict loop computations!

Effective matrix model action consider $\Gamma_{L}[X]=\operatorname{Tr} \mathcal{L}\left(X^{a} / L\right), \quad L=\Lambda / \Lambda_{N C}^{2}$

- Commutators correspond to derivative operators for gauge fields
- Leading term of effective action can be written in terms of products of

$$
J_{b}^{a}:=i \Theta^{a c} g_{c b}=\left[X^{a}, X_{b}\right], \quad \operatorname{Tr} J \equiv J_{a}^{a}=0
$$

Effective matrix model action consider $\Gamma_{L}[X]=\operatorname{Tr} \mathcal{L}\left(X^{a} / L\right), \quad L=\Lambda / \Lambda_{N C}^{2}$

- Commutators correspond to derivative operators for gauge fields
- Leading term of effective action can be written in terms of products of

$$
J_{b}^{a}:=i \Theta^{a c} g_{c b}=\left[X^{a}, X_{b}\right], \quad \operatorname{Tr} J \equiv J_{a}^{a}=0
$$

- Recall semi-classical characteristic equation

$$
\begin{aligned}
& \left(J^{4}\right)_{b}^{a}-\frac{1}{2}\left(\operatorname{Tr} J^{2}\right)\left(J^{2}\right)_{b}^{a} \sim-\Lambda_{N C}^{-8}(x)\left(\mathcal{P}_{T}\right)_{b}^{a}, \\
& J^{5}-\frac{1}{2}\left(\operatorname{Tr} J^{2}\right) J^{3} \sim-\Lambda_{N C}^{-8}(x) J, \quad \operatorname{Tr} J^{2} \sim \Lambda_{N C}^{-4}(x)(G g), \\
& \mathcal{P}_{T}^{a b}:=g^{\mu \nu} \partial_{\mu} x^{a} \partial_{\nu} x^{b} \quad \text { Projector on tangential bundle }
\end{aligned}
$$

Generalized matrix model

Most general single-trace form of effective potential:

$$
\begin{aligned}
V(X) & =V\left(-\frac{L^{4}}{\operatorname{Tr} J^{2}}, \frac{-\operatorname{Tr} J^{4}+\frac{1}{2}\left(\operatorname{Tr} J^{2}\right)^{2}}{\left(\operatorname{Tr} J^{2}\right)^{2}}\right) \\
& \sim V\left(\frac{L^{4}}{\Lambda_{N C}^{-4}(x)(G g)}, \frac{4}{(G g)^{2}}\right)
\end{aligned}
$$

Generalized matrix model

Most general single-trace form of effective potential:

$$
\begin{aligned}
V(X) & =V\left(-\frac{L^{4}}{\operatorname{Tr} J^{2}}, \frac{-\operatorname{Tr} J^{4}+\frac{1}{2}\left(\operatorname{Tr} J^{2}\right)^{2}}{\left(\operatorname{Tr} J^{2}\right)^{2}}\right) \\
& \sim V\left(\frac{L^{4}}{\Lambda_{N C}^{-4}(x)(G g)}, \frac{4}{(G g)^{2}}\right)
\end{aligned}
$$

The exact form can be determined from the free contribution to the effective action introduced previously:
$\Gamma_{L}[X]=\operatorname{Tr} V(X)+$ h.o.,
$\operatorname{Tr} V(X)=-\frac{1}{4} \operatorname{Tr}\left(\frac{L^{4}}{\sqrt{-\operatorname{Tr} J^{4}+\frac{1}{2}\left(\operatorname{Tr} J^{2}\right)^{2}}}\right) \sim-\frac{1}{8} \int \frac{d^{4} x}{(2 \pi)^{2}} \Lambda^{4}(x) \sqrt{g}$

SO(D) invar. of generalized MM

Can now reproduce e.g. the gauge sector of the induced result displayed previously, by a semiclassical analysis with vanishing embedding fields:

$$
\begin{aligned}
\left.\frac{1}{\sqrt{\frac{1}{2}\left(\operatorname{Tr} J^{2}\right)^{2}-\operatorname{Tr} J^{4}}}\right|_{\partial \phi^{i}=0} \sim \frac{\Lambda_{N C}^{4}}{2}(1 & +\frac{1}{2} \bar{\theta}^{\mu \nu} F_{\mu \nu}+\frac{1}{4}(\bar{\theta} F)^{2} \\
& \left.+\frac{1}{4}(\bar{\theta} F)(F \bar{\theta} F \bar{\theta})+\mathcal{O}\left(F^{4}\right)\right)
\end{aligned}
$$

Effective action can be written as a generalized matrix model with manifest SO(D) symmetry.

Generalized MM \& curvature

Generalizing the effective matrix model action to include curvature terms porportional to \wedge^{2} :

$$
\begin{aligned}
\Gamma_{L}[X] & =-\frac{1}{4} \operatorname{Tr}\left(\frac{L^{4}}{\sqrt{-\operatorname{Tr} J^{4}+\frac{1}{2}\left(\operatorname{Tr} J^{2}\right)^{2}+\frac{1}{L^{2}} \mathcal{L}_{10, \text { curv }}[X]+\ldots}}\right) \\
& \sim-\int \frac{d^{4} x \sqrt{G}}{8(2 \pi)^{2}}\left(\Lambda^{4}(x)-\frac{1}{8} \Lambda^{2}(x) \Lambda_{N C}^{12}(x) \mathcal{L}_{10, \text { curv }}+\ldots\right)
\end{aligned}
$$

Generalized MM \& curvature

Generalizing the effective matrix model action to include curvature terms porportional to \wedge^{2} :

$$
\begin{aligned}
\Gamma_{L}[X] & =-\frac{1}{4} \operatorname{Tr}\left(\frac{L^{4}}{\sqrt{-\operatorname{Tr} J^{4}+\frac{1}{2}\left(\operatorname{Tr} J^{2}\right)^{2}+\frac{1}{L^{2}} \mathcal{L}_{10, \mathrm{curv}}[X]+\ldots}}\right) \\
& \sim-\int \frac{d^{4} x \sqrt{G}}{8(2 \pi)^{2}}\left(\Lambda^{4}(x)-\frac{1}{8} \Lambda^{2}(x) \Lambda_{N C}^{12}(x) \mathcal{L}_{10, \mathrm{curv}}+\ldots\right)
\end{aligned}
$$

$$
\text { example for } G_{\mu \nu}=g_{\mu \nu} \text { : }
$$

$\operatorname{Tr} \Lambda_{\mathrm{NC}}^{12}[X] \mathcal{L}_{10, \mathrm{c}} \sim \int \frac{d^{4} x}{(2 \pi)^{2}} \sqrt{g} \Lambda(x)^{2}\left(R+\left(\bar{\Lambda}_{\mathrm{NC}}^{4} e^{-\sigma} \theta^{\mu \rho} \theta^{\eta \alpha} R_{\mu \rho \eta \alpha}-4 R\right)\right.$

$$
\left.+c^{\prime} \partial^{\mu} \sigma \partial_{\mu} \sigma\right)
$$

Analogs of Seeley-de Witt coefficients corresponding to induced gravity.

Outlook: bosonic action

$$
S_{b}=-\operatorname{Tr}\left(\left[X^{a}, X^{b}\right]\left[X_{a}, X_{b}\right]\right)
$$

- Employ background field method: $X^{a} \rightarrow X^{a}+Y^{a}$
- Effective action in $X^{\text {a }}$: keep only parts quadratic in Y
- Need to fix gauge for Y and add ghosts

Outlook: bosonic action

$$
S_{b}=-\operatorname{Tr}\left(\left[X^{a}, X^{b}\right]\left[X_{a}, X_{b}\right]\right)
$$

- Employ background field method: $X^{a} \rightarrow X^{a}+Y^{a}$
- Effective action in $X^{\text {a }}$: keep only parts quadratic in Y
- Need to fix gauge for Y and add ghosts

$$
S_{g f}+S_{\text {ghost }}=-\operatorname{Tr}\left(\left[X^{a}, Y_{a}\right]\left[X^{b}, Y_{b}\right]-2 \bar{c}\left[X^{a},\left[X_{a}, c\right]\right]\right)
$$

\square leads to quadratic action:

$$
S_{\text {quad }}=2 \operatorname{Tr}\left(Y^{a}\left(\square \delta^{a b}+2 i\left[\Theta^{a b}, .\right]\right) Y_{b}+2 \bar{c} \square c\right)
$$

Conclusion

- Computed the effective fermion action, first from NC field theory, then from the matrix model point of view,
- SO(D) symmetry is preserved,
- Need to discuss the bosonic action (work in progress).

References

1.D. N. Blaschke, H. Steinacker and M. Wohlgenannt, Heat kernel expansion and induced action for the matrix model Dirac operator, JHEP 03 (2011) 002, [arXiv:1012.4344].
2.D. N. Blaschke and H. Steinacker, On the 1-loop effective action for matrix models, non-commutative branes and SUSY breaking, work in progress.
3. H. Steinacker, Emergent Geometry and Gravity from Matrix Models: An Introduction, Class.Quant. Grav. 27 (2010) 133001, [arXiv:1012.4344].

References

1.D. N. Blaschke, H. Steinacker and M. Wohlgenannt, Heat kernel expansion and induced action for the matrix model Dirac operator, JHEP 03 (2011) 002, [arXiv:1012.4344].
2.D. N. Blaschke and H. Steinacker, On the 1-loop effective action for matrix models, non-commutative branes and SUSY breaking, work in progress.
3. H. Steinacker, Emergent Geometry and Gravity from Matrix Models: An Introduction, Class.Quant. Grav. 27 (2010) 133001, [arXiv:1012.4344].

