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Motivation

Noncommutativity of coordinates was introduced to regularize divergences
in QFT.

Only a few theories defined on the Moyal space are renormalizable: these
include the Grosse-Wulkenhaar φ4 model and also some θ-expanded gauge
models. For the latter, renormalizability is checked in θ-linear order and at
one loop.

Definition of consistent quantized noncommutative field theories is a very
important issue which we have to address and hopefully solve.

Also, we should analyse potentially measurable characteristic effects of
noncommutativity and compare them with the experimental data.
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Moyal space

The Moyal space is most frequently used as a background
noncommutative space because it is flat. It can have both Minkowski and
Euclidean signature.

More importantly, Moyal space has a well defined representation of fields
by functions of commutative coordinates xµ , while the product of
functions is the noncommutative Moyal-Weyl ?-product:

? = exp ( i
2 θ

µν←−∂µ
−→
∂ν). Trace is equal to the usual integral.

Commutation relation [xµ ?, xν ] = iθµν =const obviously breaks Lorentz
symmetry; it preserves translations.

Moyal space representation gives a well defined calculational scheme for
field theory, for perturbative quantization for example.
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Gauge symmetries

Gauge symmetries on the Moyal space can be represented in various ways.
If we keep the Lie group-description, then noncommutativity restricts
possible groups to Un and their representations to the fundamental and
adjoint. The obstruction to renormalizability is typically the UV/IR mixing.

If we modify the original symmetry by allowing the gauge potential to take
values in the enveloping algebra, we get in some ways closer to the
Standard model symmetries, as it becomes possible to represent SUn

groups and tensor products og groups. Our model is defined in this setup.

Relation between noncommutative and commutative gauge symmetries in
the enveloping-algebra or θ-expanded approach is given through the
Seiberg-Witten expansion.
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SW map

We start with two gauge symmetries, the commutative one and its
adjoined noncommutative generalization. The SW expansion relates the
infinitesimal noncommutative symmetry transformations, which have
values in the enveloping algebra, with the corresponding commutative
ones. The expansion is in the symmetrized products of the group
generators and at the same time in parameter of noncommutativity θ.

SW map also relates matter and gauge fields ϕ̂, Âµ, F̂µν with ϕ, Aµ, Fµν .
In first order:

ϕ̂ = ϕ+
1

2
q θµνAµ∂νϕ+ . . .

Âρ = Aρ +
1

4
q θµν{Aµ, ∂νAρ + Fνρ}+ . . .

F̂ρσ = Fρσ −
1

2
q θµν{Fµρ,Fνσ}+

1

4
q θµν{Aµ, (∂ν + Dν)Fρσ}+ . . .
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SW map

The SW map given above is not unique. It was shown that a whole class
of solutions to the closure equations can be obtained by a shift of fields

A(n)
µ → A(n)

µ + A(n)
µ , ϕ(n) → ϕ(n) + Φ(n),

where A(n)
µ and Φ(n) are arbitrary gauge covariant expressions of given

dimension and given order in θ.

This means that, assuming that noncommutative fields are primary or
fundamental, we cannot say, beyond the zeroth approximation, which
commutative field is a physical one, the one which we observe and
measure in the experiments.

Perhaps all SW mappings are equivalent? If not, how to choose one?
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4-ψ divergence

The idea of the Vienna group in the 00’s was that the SW freedom could
be used to identify, among equivalent actions, the renormalizable one.
Because it gives additional counterterms which can be used for
renormalizability.

This worked for noncommutative U1. However, quantization of
noncommutative electrodynamics described by the action

S =

∫
¯̂
ψ ?

(
γµ(i∂µ − qÂµ)−m

)
? ψ̂ − 1

4
F̂µν ? F̂µν

gave divergent term θµνε
µνρσψ̄γρψ ψ̄γ5γσψ which could not be removed.

This term however vanishes identically for chiral electrodynamics: this was
our motive to reexamine the possibility of renormalization.
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Action

We start with the classical action for noncommutative chiral
electrodynamics

S =

∫
i ¯̂ϕ ? σ̄µ(∂µ + iqÂµ) ? ϕ̂− 1

4
F̂µν ? F̂µν

and expand it using the simplest SW expansion of the noncommutative
fields. In linear order, L = L0 + L1 + . . . we get

L0 = iϕ̄σ̄µ(Dµϕ)− 1

4
FµνF

µν

L1,A =
1

2
q θµν

(
FµρFνσF ρσ − 1

4
FµνFρσF ρσ

)
L1,ϕ =

i

16
q θµν∆αβγ

µνρ Fαβ ϕ̄ σ̄
ρ(Dγϕ) + h.c.

∆ is cyclic and completely antisymmetric, ∆αβγ
µνρ = −εαβγδεµνρδ.
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Some details

Next, we quantize perturbatively, by functional integration; we calculate
only divergent terms in the effective action and at one loop.

To keep the (commutative) gauge covariance explicit we use the
background field method.

To compute the functional integral usually one complexifies the gauge field
or introduces the Majorana spinors: we work with the Majorana spinor, ψ.
So we have

L0,ψ =
i

2
ψ̄γµ(∂µ − iqγ5Aµ)ψ, L1,ψ =

i

16
qθµν∆αβγ

µνρ Fαβψ̄γ
ρ(∂γ − iqγ5Aγ)ψ,

more complicated expressions do not look covariant.
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Background field method

First we need write the quadratic part of the action in the form

S (2) =

∫ (
Aκ Ψ̄

)
B

(
Aλ
Ψ

)
.

Then we adjust both fields to have the same propagator by multiplying by
constant matrix C

BC = �I + N1 + T1 + T2.

The one-loop effective action is obtained from the perturbation expansion

Γ(1) =
i

2
STr log

(
I + �−1N1 + �−1T1 + �−1T2

)
.
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Vertices

The interaction vertices in the previous formula are

N1 = q

(
0 −iψ̄γ5γ

λ/∂

−γ5γ
κψ iγ5/A/∂

)

T1 = −q

(
V κλ − 1

4θ
µν∆αβγ

µνρ δ
κ
α(∂βψ̄)γρ∂γ/∂

− i
4θ
µν∆αβγ

µνρ δ
λ
αγ

ρ(∂βψ)∂γ − 1
8θ
µν∆αβγ

µνρ Fαβγ
ρ∂γ/∂

)

T2 =
q2

8
θµν∆αβγ

µνρ

(
δκαδ

λ
β(∂γψ̄γ5γ

ρψ + ψ̄γ5γ
ρψ∂γ) iδκα(2∂βAγ + Fβγ)ψ̄γ5γ

ρ/∂

δλαγ5γ
ρψ(2Aγ∂β − Fβγ) iFαβAγγ5γ

ρ/∂

)
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Background field method

with V κλ = −∂σV σκ,τλ∂τ given by

V σκ,τλ =
1

2
(gστgκλ − gσλgτκ)θαβFαβ

− gκλ(θξσFξ
τ + θξτFξ

σ)− gστ (θξκFξ
λ + θξλFξ

κ)

+ gκτ (θξλFξ
σ + θξσFξ

λ) + gσλ(θξκFξ
τ + θξτFξ

κ)

− θκλFστ + θκτFσλ + θσλFκτ + θσκF τλ + θτλFσκ − θστFκλ.

The 3-vertices are contained in N1 and T1, the 4-vertices in T2.

We calculate divergences by dimensional regularization and at the end
rewrite them covariantly.
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Divergences

The divergent part of the one-loop effective action is:

Γ2 =
1

12

q2

(4π)2ε
θµνεµρστ (∂λF

ρλ)(∂νF
στ )

− 1

12

q2

(4π)2ε
θµνεµνρσ

(
i(Dρϕ̄)σ̄σ(D2ϕ) + h.c.

)
,

Γ3 = − q3

(4π)2ε
θµν

(
1

6
FµνFρσF

ρσ − 2

3
FµρFνσF

ρσ

)
− q3

(4π)2ε
θµν

(
5i

6
Fµρ ϕ̄σ̄

ρ(Dνϕ)− i
6
Fµρ ϕ̄σ̄ν(D

ρϕ)− 2i

3
Fµν ϕ̄σ̄

ρ(Dρϕ)

+
4

3
εµρστF

ρσ ϕ̄σ̄τ (Dνϕ) +
3

2
εµνρτF

ρσ ϕ̄σ̄τ (Dσϕ)

+
1

8
εµνρσF

ρσ ϕ̄σ̄τ (Dτϕ) + h.c.
)
.
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Divergences

Some of its parts can be immediately recognized as renormalizable, e.g.

Γ2 =
1

12

q2

(4π)2ε
θµνεµρστ (∂λF

ρλ)(∂νF
στ )

− 1

12

q2

(4π)2ε
θµνεµνρσ

(
i(Dρϕ̄)σ̄σ(D2ϕ) + h.c.

)
,

Γ3 = − q3

(4π)2ε
θµν

(
1

6
FµνFρσF

ρσ − 2

3
FµρFνσF

ρσ

)
− q3

(4π)2ε
θµν

(
5i

6
Fµρ ϕ̄σ̄

ρ(Dνϕ)− i
6
Fµρ ϕ̄σ̄ν(D

ρϕ)− 2i

3
Fµν ϕ̄σ̄

ρ(Dρϕ)

+
4

3
εµρστF

ρσ ϕ̄σ̄τ (Dνϕ) +
3

2
εµνρτF

ρσ ϕ̄σ̄τ (Dσϕ)

+
1

8
εµνρσF

ρσ ϕ̄σ̄τ (Dτϕ) + h.c.
)
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Divergences

because it is proportional to L1,A. But also it is easy to see that the term

Γ2 =
1

12

q2

(4π)2ε
θµνεµρστ (∂λF

ρλ)(∂νF
στ )

− 1

12

q2

(4π)2ε
θµνεµνρσ

(
i(Dρϕ̄)σ̄σ(D2ϕ) + h.c.

)
,

Γ3 = − q3

(4π)2ε
θµν

(
1

6
FµνFρσF

ρσ − 2

3
FµρFνσF

ρσ

)
− q3

(4π)2ε
θµν

(
5i

6
Fµρ ϕ̄σ̄

ρ(Dνϕ)− i
6
Fµρ ϕ̄σ̄ν(D

ρϕ)− 2i

3
Fµν ϕ̄σ̄

ρ(Dρϕ)

+
4

3
εµρστF

ρσ ϕ̄σ̄τ (Dνϕ) +
3

2
εµνρτF

ρσ ϕ̄σ̄τ (Dσϕ)

+
1

8
εµνρσF

ρσ ϕ̄σ̄τ (Dτϕ) + h.c.
)
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Counterterms

will appear in the Lagrangian if we shift the gauge potential Aρ by
θµνεµρστ∂νF

στ , which is an allowed SW field redefinition.

In general, the first-order redefinition

Aµ → Aµ + A(1)
µ , ϕ→ ϕ+ Φ(1)

induces in the action following additional terms:

∆S (1) =

∫
(DρF

ρµ)A(1)
µ − q

∫
ϕ̄σ̄µA(1)

µ ϕ+ (

∫
iϕ̄σ̄µ(DµΦ

(1)) + h.c.)

All divergences which we have obtained are of this type, and thus can be
removed by counterterms appearing from the SW field redefinitions.
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Redefinitions

More concretely, the shifts

Aρ → Aρ +
1

12

q2

(4π)2ε
θµν
(
εµρστ (DνF

στ )− εµνρτ (∂σFτσ)− 10εµνστ (∂ρF
τσ)
)
,

ϕ→ ϕ− i

12

q2

(4π)2ε
θµν
(
2σµνD

2 + 8iq Fµρσνρ − 5iq θµνFµν + 10q εµνρσF
ρσ
)
ϕ

transform the effective action to

Γ(1) = Scl +
4

3

q2

(4π)2ε
L1,A +

2q2

(4π)2ε
L1,ϕ .

The remaining divergence can be removed by multiplicative
renormalization; in principle, noncommutativity parameter gets
renormalized too.
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Renormalizable action

The conclusion is therefore, that the ‘good’ commutative action
corresponding to the θ-expansion of noncommutative chiral
electrodynamics is of the form

LNC = LC + κ1L1,A + κ2L1,ϕ

+κ3θ
µνεµ

ρστFρσ(D2Fντ ) + iκ4θ
µν
(
iϕ̄σ̄ρσµν(D

ρD2ϕ) + h.c.
)

+θµνϕ̄
(
κ5Fµν + κ6εµνρσF ρσ + κ7Fµ

ρσνρ

)
ϕ + h.c.

Running of all couplings has to be checked explicitly to prove
renormalizability.
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Effects

In the action which we obtained there is an interesting effect: not only the
vertices have changed but also the propagators. This means that the
dispersion relations are modified in the theory, that is we have an effective
change of geometry. On the other hand, this gives yet another possibility
for experimental tests.

However in fact, the more interesting dispersion relation for photons does
not change: the corresponding term turns out to be a 4-divergence. This
can be seen also from the modified equation of motion,

∂αFαβ − κ3θ
µν (2εµαβσηρν + εµρσβηαν − εµρσαηβν) ∂

α�F ρσ = 0

as the second term vanishes identically.

This Lorentz-violation effect could have been observed in the CMB
spectrum.
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Effects

But the dispersion relation for electrons changes: the equation of motion
for free particles is

(i σ̄ρ∂ρ + iκ4θ
µνεµνρσσ̄

σ∂ρ�)ϕ = 0

To see really the effect let us assume spatial noncommutativity, θ0i = 0
and denote kµ = (E , 0, 0, p) , (θ12)2 = θ2

⊥. We get two solutions

k2 = 0 , k2 =

√
1
κ2

4
(θ2
⊥ + θ2

‖) + θ4
‖ p4 − θ2

‖ p2

2(θ2
⊥ + θ2

‖)

One of the fermionic modes acquires mass which is for small
noncommutativity parameter very large and birefringent.

This could in principle be observed in the neutrino background radiation or
in some other astrophysical effect.
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Positive aspects

• We did not include in the discussion of renormalizability the chiral
anomaly: chiral electrodynamics has a nonvanishing anomaly so it can
be used just as a building block for a consistent theory, as in the
Standard model.

• Encouraging results on the inclusion of fermions into gauge models
were obtained before in 09 by the Madrid group: they found another
class of renormalizable models (GUT-inspired, anomaly safe
representations of the simple gauge groups).

• These models are in details different: renormalizability is on-shell but
it does not neccessitate SW redefinitions; triple-gauge boson
interactions are absent; counterterms do not violate parity.

• Can we include the Higgs?
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Hard questions

• What does renormalizability in linear order mean? What happens in
next orders, and with the UV/IR mixing?

• It would seem that this model shows that the SW in linear order is
not just a redefinition of quantum fields (as shown for Dirac fermions
by Grimstrup and Wulkenhaar), as it singles out one specific
Lagrangian as (potentially) renormalizable.

• It would be certainly helpful to do some calculations in the second
order to get an idea whether there is some systematics. Or perhaps to
show that the renormalizability breaks?

• What happens with the noncommutative gauge symmetry in the
quantized theory? In the expanded gauge theory NC symmetry relates
different orders in θ. Can the corresponding NC Ward identities be of
help to analyze relations between different orders, are they explored
fully?
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