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Abstract:

Here my results on the geometry of the exceptional Lie group E7 are summa-
rized and some of its applications to black holes in supergravity and quantum
information theory are mentioned.

In particular, starting from a symplectic construction due to Adams, I have
been able to compute a simple parametrization, the Iwasawa decomposition,
of the coset E7(7)

SU(8)
, which describes the scalar manifold of the N = 8, d = 4

supergravity. The explicit expression of the Lie algebra is used to study
the origin as scalar configuration of the large 1

8
-BPS extremal black hole

attractors. In such a framework it turns out that the U (1) symmetry spanning
such attractors is broken down to a discrete subgroup Z4. These results are
compared with the ones obtained in other known bases.

Recently an intriguing relation between quantum information theory and su-
pergravity has been discovered by Duff and Ferrara, linking entanglement
measures for qubits to black hole entropy, in certain cases involving the quar-
tic invariant of the 56-dimensional representation of the Lie group E7. Here I
recall the relatively straightforward manner in which three-qubits lead to E7,
or at least its Weyl group.
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Main idea

Study algebraic structures, in this case exceptional Lie groups,
acting as a symmetry of some physical system (in this case su-
pergravity, black holes and quantum information theory) with
the aim of getting information on the properties of these models
from their geometry.



General properties of the exceptional Lie group E7

• It is a simple exceptional Lie group of rank 7 and dimension
133.

• Dynkin diagram: (Here a system of 7 simple roots {αi} is
expressed in terms of a basis {ei} in R8)

c c c c c c
c

e1 − e2 e2 − e3 e3 − e4 e4 − e5 e5 − e6 e6 − e7

α1 α3 α4 α5 α6 α7

e0 − e1 − e2 − e3α2

⇓

• The Cartan subalgebra, the maximal Abelian subalgebra, has
dimension 7.

• The dimension of its fundamental representation is 56 and it
admits a symplectic structure.



Properties of E7(7)

• It is one of the four real forms of E7: it is the split form (i.e.

the maximally non compact form). The second subscript in

the name E7(7) indicates the difference between the number

of non compact (70) and of compact (63) generators.

• Its maximal compact subgroup is given by SU(8).

• By exploiting its symplectic structure, following [Adams,

“Lectures on exceptional Lie groups”, The University of Chicago Press,

Chicago and London (1996)], its fundamental representation can

be constructed as the

algebra sl(V )⊕ Λ4V 4 acting on Λ2V ⊕ Λ2V ∗

with V an 8-dimensional real vector space, e.g. R8,

V ∗ its dual and ∧ the wedge product.



The Iwasawa parametrization
[arXiv:1005.2231 with S. Cacciatori and A. Marrani]

It can be applied only to non compact forms of the group.

1) Choice of a suitable realization of the Lie algebra correspond-
ing to the group, in this case the fundamental representation
of E7: 133 matrices of dimension 56.

2) Determination of a suitable fibration for the group with the
maximal compact subgroup as a fiber K = SU(8)
=⇒ Since the Adams’ construction is based on the subgroup
SL(8), it is necessary to perform a Cayley rotation to switch
to a complex manifestly SU(8)-covariant basis.

3) A 7-dimensional non compact Cartan subalgebra (completely
outside of su(8)) is chosen as a pivot and the correspond-
ing system of positive roots is calculated. This is possible
because it is the split form.



4) Computation of a realization of a generic element g of the
group by using the above fibration to construct a well-defined
parametrization of the group

g = KAN

with K = SU(8) the fiber,
A=maximal Abelian subgroup generated by the Cartan sub-
algebra,
N=nilpotent subgroup generated by the eigenmatrices of the
adjoint action of the maximal Abelian subgroup on the sys-
tem of positive roots.

⇓

This immediately yields an expression for the coset of the

symmetric space
E7(7)

SU (8)
, which is particularly manageable

because it is expressed in terms of a nilpotent matrix.



5) It is possible to perform the calculation of

the vielbein: J = g−1dg;

the corresponding metric: ds2 = −1
2TrJ ⊗ J

(in components: gij = −1
2δlmJ

l
iJ
m
j);

and the Haar measure: dµ = det(J).

The range of the compact parameters can then be deter-

mined by calculating the volume and fixing the minimal range

which makes the Haar measure non singular.



Application to the 1
8-BPS black hole attractors in N = 8 d = 4

supergravity

Motivation: Recently, there has been a rapid development in the
study of N = 8 d = 4 supergravity:

• From the study of the group cohomology and the correspond-
ing Wess-Zumino consistency conditions, it is likely anomaly-
free with respect to its chiral SU(8) and continuous E7(7)
symmetries [Bossard, Hillmann, Nicolai, arXiv:1007.5472].

• As a consequence, it is conjectured to be ultraviolet finite
when doing perturbative quantum field theory computations
[Kallosh, arXiv:1009.1135], because of possible E7(7)-invariant
counterterms being ruled out by different arguments [see e.g.

Bern, Carrasco, Johansson, arXiv:0902.3765 for 4 loops computations,

Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger,

arXiv:1009.1643 for 7 loops].



The scalar sector of a non linear sigma model in supergravity

theories is described by the symmetric Einstein manifold G/K

with G the non compact group of global U-duality transforma-

tions, and K its maximal compact subgroup, describing the local

R symmetry (for a reference see e.g. [Ferrara, Marrani, arXiv:0808.3567]

or [Boya, arXiv:0811.0554]).

Start with the (bosonic) part of the Lagrangian for N = 8, d = 4

pure ungauged supergravity.

In this case G = E7(7) and K = SU(8).

=⇒ scalar manifold
G

K
=

E7(7)

SU(8)
.

There are no matter multiplets.



• The knowledge of an explicit polynomial expression for the

coset should allow a deeper understanding of the geometry

of the E7(7) symmetry and provide a method to study the

conjecture of the UV finiteness of the theory in a more ab-

stract way, while the previous computations have mainly been

done through an explicit calculation with different techniques

of the possible counterterms by hand at higher and higher

loops.

• It should also allow to analyze the orbits which do not pass

through the origin and cannot be studied at the perturbative

level of the Lie algebra, but need to be studied at the group

level, e.g. the non-BPS large orbit.



The origin of
E7(7)
SU(8) as 1

8-BPS attractor in the Iwasawa parametriza-

tion

Main feature of the Iwasawa decomposition: choice of a com-

pletely non-compact 7-dim. Cartan subalgebra of SL(8,R)

⇓

The maximal manifest covariance of the whole framework is

SL(7,R), breaking the maximal possible off-shell covariance

SL(8,R) according to the following embedding:

SU(7)× U(1)E (max
symm SU(8).



On the other hand:

Orbit of large 1
8-BPS black holes:

O1
8−BPS,large

=
E7(7)

E6(2)

with moduli space:

M1
8−BPS,large

=
E6(2)

SU (6)× SU (2)
.

The maximal compact symmetry exhibited by the central charge

is then SU (6)×SU (2), which is the maximal compact subgroup

of E6(2).

This corresponds to the embedding:

SU(2)× SU(6)× U(1)A (max
symm SU(8).



The subgroups U(1)E from the Iwasawa construction and U(1)A
from the black hole moduli space do not coincide.

=⇒ The U(1)A symmetry acting on the black hole attractors is

broken down to the discrete subgroup

Z4 = U(1)A ∩ U(1)E

and their dyonic nature is spoiled.

⇓

The Adams–Iwasawa parametrization is suitable to single out the

purely magnetic or purely electric component of the black hole

attractor.



Comparison with other known approaches

- Sezgin-van Nieuwenhuizen
[Sezgin, Van Nieuwenhuizen, Renormalizability Properties of Spontaneously

Broken N= 8 Supergravity, Nucl. Phys. B195, 325 (1982)]

It has a manifest covariance USp(8) (max
symm SU(8), corresponding

to the maximal compact subgroup of the N = 8, d = 5 U-duality
group E6(6): USp(8) = mcs

(
E6(6)

)
.

By recalling the explicit form of “large” non-BPS charge orbit
in N = 8, d = 4 supergravity OnBPS =

E7(7)
E6(6)

it is suitable for a

study of “large” dyonic non-BPS d = 4 extremal black holes.

- Cremmer-Julia /de Wit-Nicolai
[Cremmer, Julia, The SO(8) Supergravity, Nucl. Phys. B159, 141 (1979),

de Wit, Nicolai, N= 8Supergravity, Nucl. Phys. B208, 323 (1982)]

This parametrization exhibits a manifest covariance
SO(8) = mcs (SL (8,R)) (max

symm E7(7), suitable for a study of
1
8−BPS “large” dyonic extremal d = 4 black holes.



Application to the classification of black holes orbits
in 4 and 5-dimensional supergravity
based on arXiv:0902.3973, 1006.3101 with A. Marrani, S. Ferrara, B. Zumino

Black holes can be described in terms of an effective potential
VBH. It gives the Bekenstein-Hawking entropy when evaluated
at its critical points:

SBH
π

= VBH |∂φVBH=0 = VBH (φH (P) ,P) ,

where it can be expressed in terms of the invariant of the duality
group:

VBH |∂φVBH=0 = |I (P)|

Here φ ∈ G
K are the scalar fields,

P = {pΛ, qΛ} the black hole charges.



Central charges ZAB (in the asymptotical Minkowski space-time):

{
QAα , Q

B
β

}
= εαβZ

AB (φ∞,P)

where φ∞ denotes the set of values taken by the scalar fields

at radial infinity (r → ∞) within the considered static, spheri-

cally symmetric and asymptotically flat dyonic extremal BH back-

ground and A,B are indices relative to the R-symmetry.

Using the matrix describing the coset S (φ) =
√

2

 Ref −Imf

Reh −Imh


the central charges can be reexpressed as:

ZAB (φ,P) ≡ fΛ
ABqΛ − hAB|Λp

Λ

This is the relation between the scalar dependent “dressed

charges” Z and the “bare charges” p, q.



Application to 4-dimensional N = 8 supergravity

The invariant [Cremmer Julia]

I4,N=8 = 1
22

[
22Tr

((
ZACZ

BC
)2
)

−
(
Tr
(
ZACZ

BC
))2

+ 25Re (Pf (ZAB))
]

is defined as the unique combination of ZAB (φ,P) satisfying the
E7(7)-invariant condition:

∂φI4,N=8 (ZAB (φ,P)) = 0, ∀φ ∈
E7(7)

SU (8)

Orbits
It turns out that there are 5 charge orbits:
2 large: I4,N=8 6= 0
3 small: I4,N=8 = 0.
The attractor mechanism holds for the large orbits. It does not
hold for the small orbits.

A classification of the orbits of black strings in 5 dimensions is
performed along similar lines in [arXiv:1006.3101].



From three-qubits to the Weyl group of E7

[arXiv:1003.4255 with B. Van Geemen]

Motivation: Relation between quantum information theory and

supergravity discovered by Duff and Ferrara [Duff, Ferrara, quant-

ph/0609227, hep-th/0612036, arXiv:0704.0507], linking entanglement

measures for qubits to black hole entropy.

Recently, by using this analogy, the classification of black hole

orbits in the STU supergravity model in 3 dimensions has been

applied to the classification of entaglement classes of 4-qubits

[Borsten, Dahanayake, Duff, Marrani, Rubens, arXiv:1005.4915], which

correspond to nilpotent orbits of SL(2,C)4.



Qubits in quantum information theory

k-qubits: non-zero elements of the finite abelian group Lk = Zk
State space Hk: 2k-dimensional complex vector space of C-
valued maps Lk → C

The action of the qubits on this state space can be extended
to an action of the group generated by the generalized Pauli
matrices, denoted as
Heisenberg group Hk = µ4 × Lk × L∗k
with L∗k the dual of Lk, µ4 = {±i,±1} and group operation:

for s, t ∈ µ4, x, y ∈ Lk, x∗, y∗ ∈ L∗k
(s, x, x∗)(t, y, y∗) := (st(−1)y

∗(x), x+ y, x∗+ y∗).

E.g. for k = 1 it is generated by the Pauli matrices:

X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
, Y = i

(
0 −1
1 0

)



The Heisenberg group is non-abelian and has a quotient

Vk = Hk/C× which is in a natural way a symplectic vector space

of dimension 2k over the finite field F2 = Z2.

E : (Lk×L∗k)× (Lk×L∗k) → F2; E((x, x∗), (y, y∗)) = y∗(x)−x∗(y).

The normalizer Nk := {M ∈ GL(Hk) : MHkM
−1 = Hk } of Hk,

viewed as a subgroup of GL(Hk), is generated by transvections,

which can be explicitly given.

Observation: The quotient of Nk by the subgroup C× ·Hk, con-

sisting of scalar multiples of the identity and the Heisenberg

group, is the finite symplectic group Sp(2k, F2) (acting naturally

on Vk).



Qutrits and the appearance of E7

In the case three-qubits k = 3, there is a surjective homomor-

phism from the Weyl group W (E7) onto Sp(6, F2), with kernel

just ±I.

W (E7)/ < −I >∼= Sp(6, F2)(∼= N3)

This homomorphism can be seen in two ways:

1) Coxeter relations

2) a surjective homomorphism π : Q(E7) → V3, where Q(E7) is

the root lattice of E7. It is compatible with the scalar product

on Q(E7) and the symplectic form on V3.



Properties of the homomorphism π

• It maps the 63 pairs of roots ±α of E7 to the 26 − 1 = 63

non-zero elements of V3.

• The reflections in W (E7) defined by the roots of E7 corre-

spond to the transvections Sp(6, F2).

• Lie subgroups isomorphic to SL(2,C)7 in E7, corresponding

to entanglement of 7-qubits, can be determined by the choice

of seven perpendicular roots of E7. The homomorphism, in

turn, allows to identify such a choice with the choice of a

Lagrangian (i.e. maximally isotropic) subspace in V3.

=⇒ These embeddings can be studied through the Fano

plane by means of del Pezzo surfaces, allowing e.g. to count

them (there are 135), in view of their classification.



Conclusions and outlook

• I have constructed the Iwasawa decomposition for the coset
E7(7)
SU(8). It is particularly simple because of the nilpotency of

matrix involved, which allows us to explicitly study the 1
8-BPS

black hole attractors in N = 8 d = 4 supergravity .

• I have compared it to other known parametrizations for su-
pergravity, showing how different approaches are useful to
highlight different facets of the theory.
In the Adams–Iwasawa basis, due to the choice of a par-
ticular Cartan subalgebra, the U (1) symmetry spanning the
attractors is broken down to a discrete subgroup Z4: purely
electric and magnetic attractors are singled out.

• It provides an interesting arena, to discuss the the conjec-
ture of perturbative ultraviolet finiteness of N = 8, d = 4
supergravity.



• The Iwasawa parametrization can be applied for the analysis

other noncompact cosets relevant for supergravity. More-

over, the exponentiation of the nilpotent matrix on which it

is based could be performed explicitly, allowing the study of

such symmetric spaces not only at the perturbative level of

the Lie algebra, but also globally at the group level.

• I have reviewed some of the geometry behind the appearance

of the exceptional Lie group E7 starting from three-qubits in

quantum information theory, which should shed some light

on the relation with black holes.

• The methods used to show this link also provide a very natu-

ral interpretation for the emergence of the Fano plane when

one restricts the 56-dimensional representation of the com-

plex Lie group E7 to seven (commuting) copies of SL(2).


