Deformation of quantum field theories and curved backgrounds

Claudio Dappiaggi

Bayrischzell, 21st of May 2011 Dipartimento di Fisica Nucleare e Teorica

Università di Pavia

Deformation of quantum field theories and curved backgrounds

Outline of the Talk

Motivations

- Wedge regions in curved backgrounds
- Warped convolutions and curved backgrounds
- Conclusions
- Based on
 - C. D., Gandalf Lechner and Eric Morfa-Morales: Comm. Math. Phys. **305** (2011), 99 ArXiv:1006.3548 [math-ph].

Motivations

Motivations - Part I

Deformations of QFT have been thoroughly studied:

- as giving rise to quantum field theories on non-commutative spacetimes
- as a tool to construct new (interacting) models on commutative spacetimes

Yet, a closer look unveils that

- most of these models have been built on the Euclidean or on Minkowski space
- often a choice of a preferred coordinate system is employed
- sharp point-like localization is weakened to localization in wedge-shaped regions

Motivations - Part II

Hence a few natural questions

- what is the interplay between deformations such as warped convolutions and non-trivial geometries?
- o does any notion of covariance and locality survive?

To this avail,

- we want consider curved backgrounds where warped convolutions can be applied
- we look for a suitable notion of wedge-regions in this framework
- we want to work out explicit examples

Wedges in Minkowski

In Minkowski spacetime (\mathbb{R}^4, η), we call right wedge

$$W_R := \left\{ (x_0, x_1, x_2, x_3) \in \mathbb{R}^4, \ | \ x_1 > |x_0|
ight\}.$$

Let us notice that

- every other wedge W can be constructed from W_R acting with a suitable Poincaré-isometry
- Each $(W, \eta|_W)$ is a glob.-hyp. spacetime embedded in (\mathbb{R}^4, η)
- W_R possesses an edge defined as

$$E(W_R) := \{(0, 0, x_2, x_3) \in \mathbb{R}^4\}.$$

and W_R is bounded by two non-parallel characteristic 3D planes whose intersection is $E(W_R)$

More on wedges in Minkowski

Further properties include:

- Each wedge is the causal completion of the world line of a uniformly accelerated observer.
- Each wedge is the union of a family of double cones whose tips lie on two fixed lightrays.
- The Poincaré group acts transitively on the family of all possible wedges.
- The family of wedges in Minkowski is causally separating; for any two spacelike separated double cones O₁, O₂ ∈ ℝ⁴, there exists a wedge W such that O₁ ⊂ W ⊂ O'₂

The role of the edge

For a generalization to curved backgrounds we notice that

$$W_R \cup W_L = \mathbb{R}^4 \setminus \left(\overline{J^+(E(W_R))} \cup \overline{J^-(E(W_R))} \right),$$

where $W_L \doteq \left\{ (x_0, x_1, x_2, x_3) \in \mathbb{R}^4, \mid -x_1 > |x_0| \right\}$ is the left-wedge.

Notice:

- $\bullet\,$ the edge admits a covariant characterization as the plane spanned by the flow of two spacelike Killing fields of $\eta,$
- consequently also the above region has been covariantly characterized.

Strategy: Can we transfer this characterization to curved backgrounds?

Admissible spacetimes

We shall only consider manifolds (M, g) which

- are globally hyperbolic spacetimes
- 2 admit two complete, commuting and smooth Killing fields ξ_1, ξ_2 (why?)
- If is diffeomorphic to ℝ × I × E, I ⊆ ℝ while E is the 2D submanifold identified by the flow of ξ₁ and ξ₂ Frobenius' theorem (why?)

We call $\Xi(M, g)$ the set of all ordered pairs $\xi \doteq (\xi_1, \xi_2)$ with ξ_1, ξ_2 as above.

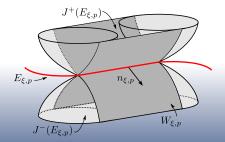
Edges in admissible spacetimes

Following Minkowski spacetime:

We call edge the submanifold of (M, g)

$$\mathsf{E}_{\xi, p} \doteq \left\{ arphi_{\xi, s}(p) \in \mathsf{M} \ : \ s = (s_1, s_2) \in \mathbb{R}^2, \ p \in \mathsf{M}
ight\},$$

where $\xi \in \Xi(M,g)$ and $\varphi_{\xi,s} = \varphi_{\xi_1,s_1} \circ \varphi_{\xi_2,s_2}$ is the flow of the Killing pair.



Properties of the edges

Since (M, g) is globally hyperbolic, M is isometric to $\mathbb{R} \times \Sigma$ and $\exists \mathcal{T} : \mathbb{R} \times \Sigma \to \mathbb{R}$ such that

$$g = -eta d\mathcal{T}^2 + h \quad eta \in C^\infty(\mathbb{R} imes \Sigma, (0, \infty)) ext{ and } h \in \mathit{Riem}(\Sigma)$$

Hence:

• at each $p \in M$ we can assign an oriented basis of T_pM

 $(\nabla \mathcal{T}(p), \xi_1(p), \xi_2(p), \mathbf{n}_{\xi,p}).$

Lemma:

The causal complement $E'_{\xi,\rho}$ of an edge $E_{\xi,\rho}$ is the disjoint union of two connected components, which are the causal complements of each other

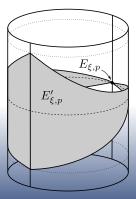
Deformation of quantum field theories and curved backgrounds

Wedge regions in curved backgrounds

The reason for $M \sim \mathbb{R} \times I \times E$

The above lemma would not hold without the assumption on the topology of M!

Suppose (M, g) is such that $M \equiv \mathbb{R} \times \mathbb{S}^1 \times \mathbb{R}^2$, where $\mathbb{R} \times \mathbb{S}^1$ is the Lorentz cylinder. Then an edge looks like:



Deformation of quantum field theories and curved backgrounds

Wedges in curved backgrounds

Definition [Wedge]:

A wedge is a subset of an admissible spacetime (M, g) which is a connected component of the causal complement of an edge. Hence, for given $\xi \in \Xi(M,g)$ and $p \in M$, we call $W_{\xi,p}$ the component of $E'_{\xi,p}$ which intersects the curve $\gamma(t) \doteq \exp_p(tn_{\xi,p}), t > 0$.

Each wedge $W = W_{\xi,p}$

- is causally complete, *i.e.* W'' = W, hence globally hyp.,
- has a casual complement $W' = W_{\xi',p}$ where $\xi' = (\xi_2, \xi_1)$,
- is invariant under the Killing flow generating its edge.

Families of wedges and their properties

Let us now introduce the family of all wedges

$$\mathcal{W} \doteq \{W_{\xi,p} : \xi \in \Xi(M,g), p \in M\}.$$

The set ${\mathcal W}$

- is invariant under the action of the isometry group of (M, g) and under taking causal complements
- is such that two elements $W_{\xi,\rho}$ and $W_{\tilde{\xi},\tilde{\rho}}$ form an inclusion $W_{\xi,\rho} \subset W_{\tilde{\xi},\tilde{\rho}}$ if and only if $\rho \in \overline{W_{\tilde{\xi},\tilde{\rho}}}$ and $\exists N \in GL(2,\mathbb{R})$ with det N > 0 such that $\tilde{\xi} = N\xi$.

Are there spacetimes which are admissible?

Examples of admissible spacetime

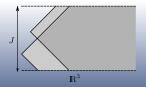
There are several interesting admissible spacetimes:

- every warped product of a globally hyperbolic manifold X ~ ℝ × I with a 2D Riemannian manifold E endowed with two complete spacelike commuting Killing fields
- Kasner spacetimes, *a.k.a.* Bianchi I models, that is $M \sim J \times \mathbb{R}^3$ with $J \subseteq \mathbb{R}$ and

$$ds^2 = dt^2 - e^{2f_1}dx^2 - e^{2f_2}dy^2 - e^{2f_3}dz^2$$
. $f_i = f_i(t)$

• as a particular case the FRW spacetime with flat spatial section

$$ds^{2} = dt^{2} - a^{2}(t)[dx^{2} + dy^{2} + dz^{2}] = a^{2}(\tau)[d\tau^{2} - dx^{2} - dy^{2} - dz^{2}].$$



Deformation of quantum field theories and curved backgrounds

Basic Ingredients

We consider a QFT in the framework of Haag-Kastler axioms:

- We take a C*-algebra \mathcal{F} . The elements are bounded functions of quantum fields on (M, g)
- A local structure exists: To each wedge W, we associate the C*-subalgebra $\mathcal{F}(W) \subset \mathcal{F}$
- \exists a strongly-continuous action α of ISO(M,g) on \mathcal{F}
- \exists a Bose/Fermi automorphism γ of $\mathcal F$ such that $\gamma^2 = 1$, $[\alpha, \gamma] = 0$,
- $\bullet~$ We assume that ${\cal F}$ is concretely realized on a separable Hilbert space ${\cal H}$
- ${\mathcal H}$ must carry a unitary rep. U of ISO(M,g) and V of γ

Warped Convolutions and curved backgrounds

First consequences

The triple of data $({\mathcal{F}(W)}_{W \in \mathcal{W}}, \alpha, \gamma)$ has the structural properties of a QFT

- Isotony) $\mathcal{F}(W) \subset \mathcal{F}(\widetilde{W})$ if $W \subset \widetilde{W}$
- Covariance) under action of ISO(M, g), that is $\alpha_h(\mathcal{F}(W)) = \mathcal{F}(hW)$ for all $h \in ISO(M, g)$ and for all $W \in W$
- *Twisted Locality*) If we introduce the unitary operator $Z \doteq \frac{1}{\sqrt{2}}(1 iV)$

$$[ZFZ^*,G]=0, \quad \forall F\in \mathcal{F}(W), \ G\in \mathcal{F}(W'), \ W\in \mathcal{W}.$$

Note that covariance implies that $\forall \xi \in \Xi$, \mathcal{F} carries an \mathbb{R}^2 -action τ_{ξ}

$$au_{\xi,s} \doteq lpha_{arphi_{\xi,s}} = \mathsf{ad}U_{\xi}(s), \quad s \in \mathbb{R}^2$$

Note that isotony implies

$$\tau_{N\xi,s}(\mathcal{F}(W_{\xi,p})) = \mathcal{F}(W_{\xi,p}), \quad N \in GL(2,\mathbb{R}), \ s \in \mathbb{R}^2$$

Warped Convolutions and curved backgrounds

Warped Convolutions

We have all the ingredients to define a deformed net $W o \mathcal{F}(W)_{\lambda}$.

To cope with the non trivial geometry we call $F \in \mathcal{F}$ ξ -smooth if

$$\mathbb{R}^2
i s \mapsto \tau_{\xi,s}(F) \in \mathcal{F},$$

is smooth in the norm-topology of \mathcal{F} .

We call deformed operator (warped convolution) of a ξ -smooth $F \in \mathcal{F}$

$$\mathcal{F}_{\xi,\lambda} \doteq rac{1}{4\pi^2} \lim_{\epsilon o 0} \int ds ds' e^{-iss'} \chi(\epsilon s, \epsilon s') U_{\xi}(\lambda Q s) \mathcal{F} U_{\xi}(s' - \lambda Q s),$$

- $\lambda \in \mathbb{R}$, while $s, s' \in \mathbb{R}^2$
- $\chi \in \mathit{C}^\infty_0(\mathbb{R}^2 imes \mathbb{R}^2)$ and $\chi(0,0) = 1$
- Q is the standard antisymmetric 2 \times 2 matrix.

Warped Convolutions and curved backgrounds

Properties of the warped convolution

Lemma:

If $\xi \in \Xi$ and if $F, G \in \mathcal{F}$ are ξ -smooth, then **1** $F_{\xi,\lambda}^* = (F^*)_{\xi,\lambda}$ **2** $F_{\xi,\lambda}G_{\xi,\lambda} = (F \times_{\xi,\lambda} G)_{\xi,\lambda}$ where $F \times_{\xi,\lambda} G \doteq \frac{1}{4\pi^2} \lim_{\epsilon \to 0} \int ds ds' e^{-iss'} \chi(\epsilon s, \epsilon s') \tau_{\xi,\lambda}Q_s(F) \tau_{\xi,s'}(G).$ **3** If $[\tau_{\xi,s}(F), G] = 0$ for all $s \in \mathbb{R}^2$, then $[F_{\xi,\lambda}, G_{\xi,-\lambda}] = 0$ **4** If a unitary $Y \in \mathcal{B}(\mathcal{H})$ commutes with $U_{\xi}(s), s \in \mathbb{R}^2$, then $YF_{\xi,\lambda}Y^{-1} = (YFY^{-1})_{\xi,\lambda}$ and the latter is ξ -smooth.

Note that the third property entails:

$$[Z\tau_{\xi,\lambda}(F)Z^*,G]=0\Longrightarrow [ZF_{\xi,\lambda}Z^*,G_{\xi,-\lambda}]=0.$$

The deformed net

Let us consider the following data

- the net based on wedges $W \mapsto \mathcal{F}(W)$,
- the equivalence classes [ξ] where $\xi \sim \xi'$, $\xi, \xi' \in \Xi$ iff $\exists h \in ISO(M, g)$ and $N \in GL(2, \mathbb{R})$ with $\xi' = Nh_*\xi$.
- the decomposition of \mathcal{W} as $\bigsqcup_{[\xi]} \mathcal{W}_{[\xi]}$

Fix a representative ξ for all $[\xi]$ and for $p \in M$

$$\mathcal{F}(W_{\xi,p})_{\lambda} \doteq \{F_{\xi,\lambda} : F \in \mathcal{F}(W_{\xi,p}), \xi \text{-smooth}\}^{\|\cdot\|},$$

$$\mathcal{F}(W_{\xi',p})_{\lambda} \doteq \left\{ F_{\xi',\lambda} \ : \ F \in \mathcal{F}(W'_{\xi,p}), \ \xi' ext{-smooth}
ight\}^{\|\cdot\|},$$

where $\|\cdot\|$ stands for norm closure in $\mathcal{B}(\mathcal{H})$.

Properties of the deformed net

Note that the def. above are extended to arbitrary wedges via

 $\mathcal{F}(hW_{\xi,p})_{\lambda} \doteq \alpha_h(\mathcal{F}(W_{\xi,p})_{\lambda}),$

where $\alpha_h(F_{\xi,\lambda}) = \alpha_h(F)_{h_*\xi,\lambda}$ for all $h \in ISO(M,g)$.

Theorem:

The map $\lambda \mapsto \mathcal{F}(W)_{\lambda}$ identifies a well-defined isotonous, twisted wedgelocal, *ISO*-covariant net of C^{*}-algebras on \mathcal{H} , that is $\forall W, \widetilde{W} \in \mathcal{W}$

$$2 \quad [ZF_{\lambda}, Z^*, G_{\lambda}] = 0 \text{ for } F_{\lambda} \in \mathcal{F}(W)_{\lambda} \text{ and } G_{\lambda} \in \mathcal{F}(W')_{\lambda}$$

3
$$\alpha_h(\mathcal{F}(W)_{\lambda}) = \mathcal{F}(hW)_{\lambda}$$
 for all $h \in ISO(M,g)$

$${f 0}$$
 if $\lambda={f 0}$ then ${\cal F}(W)_{{f 0}}={\cal F}(W).$

Conclusions

Outlook and Perspectives

We have

- identified a notion of wedges in a large class of curved spacetimes
- applied warped convolution deformation to QFT on these spacetimes
- proven that the deformed net preserves basic covariance and wedge-localization

We want to

- extend the construction to a larger class of manifolds
- extend the framework to non-Abelian isometries
- better understand the structure of the new models