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Outline of Talk

Motivation

• Noncommutative geometry: Connes work on the standard
model. Quantization?

• Hamiltonian formulation of General Relativity / Ashtekar and
loop variables.

The Construction

• A spectral triple over a configuration space of connections.

• The construction encodes the kinematics of quantum gravity.

Semi-classical analysis

• Natural class of semi-classical states.

• Semi-classical limit: emergence of an infinite system of
coupled fermions in an ambient gravitational field.

• The coupling involves flux tubes.

• In the ’flat-space’ limit a free fermionic quantum field theory
emerge.

• General relativity from a Hamilton operator.
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Noncommutative Geometry

I A Spectral Triple is a collection (B,H,D):
a ∗-algebra B represented as operators in the Hilbert space H; a
self-adjoint, unbounded operator D, acting in H such that:

1. The resolvent of D, (1 + D2)−1, is compact.

2. The commutator [D, a] is bounded ∀a ∈ B.

I First example: Riemannian geometry

(B = C∞(M),H = L2(M,S),D =6D)

I 7 ”axioms”, Connes 2008: reconstruction theorem.

I This machinery does not require the algebra B to be
commutative. This opens the door to noncommutative geometry.

I Example from physics: the standard model coupled to gravity
[ Chamseddine, Connes, Dubois-Violette, Lizzi, Lott, Marcolli, ...]

B = C∞(M)⊗ BF BF = C⊕H⊕M3(C)
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Central point
Formulation of the classical standard model coupled to general
relativity as a single gravitational theory.

The standard model
emerges from a modification of space-time geometry:

C∞(M)→ C∞(M)⊗ BF

Question
Does quantum field theory also translate into the language of
noncommutative geometry?
-this would presumably involve quantum gravity.

Our goal
To construct a framework which combines noncommutative
geometry with elements of quantum gravity/quantum field theory.
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Ashtekar variables and holonomy loops

I Hamiltonian formulation of GR.

I Foliation of space-time: M = R× Σ

I Ashtekar variables (Ai
j ,E

i
j ) on Σ

- SU(2)-connection (∼ extrinsic curvature of Σ).
- orthonormal frame field (intrinsic geometry of Σ)

I Poisson brackets

{Ai
j(x),E k

l (y)} = δil δ
k
j δ(x − y)

I The Hamiltonian involves two constraints

H =

∫
Nεabc E i

aE j
bF c

ij + N iE j
bF c

ij

(Hamilton, spatial diffeomorphism)



From QGR to QFT
via NCG

Jesper Møller Grimstrup

Outline of Talk

Noncommutative
Geometry

Ashtekar variables and
holonomy loops

The Project

The construction

- - - - - - -

Kinematics of Quantum
Gravity

The choice of basepoint

The 3D Dirac operator

The Dirac Hamiltonian

Many particle states

Pure gravity

Spectral action
functional

Connes Distance
Formula

Discussion

Ashtekar variables and holonomy loops

I Hamiltonian formulation of GR.

I Foliation of space-time: M = R× Σ

I Ashtekar variables (Ai
j ,E

i
j ) on Σ

- SU(2)-connection (∼ extrinsic curvature of Σ).
- orthonormal frame field (intrinsic geometry of Σ)

I Poisson brackets

{Ai
j(x),E k

l (y)} = δil δ
k
j δ(x − y)

I The Hamiltonian involves two constraints

H =

∫
Nεabc E i

aE j
bF c

ij + N iE j
bF c

ij

(Hamilton, spatial diffeomorphism)



From QGR to QFT
via NCG

Jesper Møller Grimstrup

Outline of Talk

Noncommutative
Geometry

Ashtekar variables and
holonomy loops

The Project

The construction

- - - - - - -

Kinematics of Quantum
Gravity

The choice of basepoint

The 3D Dirac operator

The Dirac Hamiltonian

Many particle states

Pure gravity

Spectral action
functional

Connes Distance
Formula

Discussion

Ashtekar variables and holonomy loops

I Hamiltonian formulation of GR.

I Foliation of space-time: M = R× Σ

I Ashtekar variables (Ai
j ,E

i
j ) on Σ

- SU(2)-connection (∼ extrinsic curvature of Σ).
- orthonormal frame field (intrinsic geometry of Σ)

I Poisson brackets

{Ai
j(x),E k

l (y)} = δil δ
k
j δ(x − y)

I The Hamiltonian involves two constraints

H =

∫
Nεabc E i

aE j
bF c

ij + N iE j
bF c

ij

(Hamilton, spatial diffeomorphism)



From QGR to QFT
via NCG

Jesper Møller Grimstrup

Outline of Talk

Noncommutative
Geometry

Ashtekar variables and
holonomy loops

The Project

The construction

- - - - - - -

Kinematics of Quantum
Gravity

The choice of basepoint

The 3D Dirac operator

The Dirac Hamiltonian

Many particle states

Pure gravity

Spectral action
functional

Connes Distance
Formula

Discussion

Ashtekar variables and holonomy loops

I Hamiltonian formulation of GR.

I Foliation of space-time: M = R× Σ

I Ashtekar variables (Ai
j ,E

i
j ) on Σ

- SU(2)-connection (∼ extrinsic curvature of Σ).
- orthonormal frame field (intrinsic geometry of Σ)

I Poisson brackets

{Ai
j(x),E k

l (y)} = δil δ
k
j δ(x − y)

I The Hamiltonian involves two constraints

H =

∫
Nεabc E i

aE j
bF c

ij + N iE j
bF c

ij

(Hamilton, spatial diffeomorphism)



From QGR to QFT
via NCG

Jesper Møller Grimstrup

Outline of Talk

Noncommutative
Geometry

Ashtekar variables and
holonomy loops

The Project

The construction

- - - - - - -

Kinematics of Quantum
Gravity

The choice of basepoint

The 3D Dirac operator

The Dirac Hamiltonian

Many particle states

Pure gravity

Spectral action
functional

Connes Distance
Formula

Discussion

Ashtekar variables and holonomy loops

I Hamiltonian formulation of GR.

I Foliation of space-time: M = R× Σ

I Ashtekar variables (Ai
j ,E

i
j ) on Σ

- SU(2)-connection (∼ extrinsic curvature of Σ).
- orthonormal frame field (intrinsic geometry of Σ)
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j(x),E k
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k
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I Shift focus from connections to holonomy and flux variables

hL(A) = Hol(L,A)

L loop on Σ

F a
S (E ) =

∫
S

εijkE a
i dx jdxk

S surface in Σ.

I Poisson brackets

{F a
S (E ), hC (A)} = ±hC1 (A)σahC2 (A)

C2

S

C1

σa generator of su(2), C = C1C2 are curves in Σ.

I These are the variables used in Loop Quantum Gravity.
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Our Project

I Aim: To construct a spectral triple that involves an algebra
of holonomy loops, i.e. functions on a space A of
connections:

L : ∇ → Hol(∇, L) ∈ Mn(C)

I Such a spectral triple will be a geometrical construction over
the configuration space A (i.e. ’quantum’)

I It turns out that an algebra generated by holonomy loops is
naturally noncommutative. Thus, we are immediately within
the realm of noncommutative geometry.
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I Strategy: Use an infinite system {Γn} of nested graphs to
capture information about the space A of connections:

1. Restrict A to a finite graph Γ.

AΓ ' G n G = gauge group

and construct a spectral triple (B,D,H)Γ over AΓ at the
level of each finite graph (Haar measure, Dirac operator etc.)

2. Ensure compatibility with the maps between graphs

PΓnΓm : AΓn → AΓm ,

for all structures (Hilbert space, algebra, Dirac operator)

3. take the limit (projective, inductive) over graphs to obtain a
spectral triple over the space of connections A.
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I This program only works with a countable system of graphs
(in contrast to LQG).

I In [hep-th/0802.1783] and [hep-th/0802.1784] we worked
with a triangulation T and its barycentric subdivisions.

....

I Later we worked with a projective system of cubic lattices.

....

I Both systems of graphs (and many more) permit a spectral
triple construction.

- But the cubic lattices turn out to be natural (classical limit).
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The construction

A single cubic lattice

I Let Γ be a finite 3D finite cubic
lattice with oriented edges {εi}
and vertices {vi}.

I Assign to each edge εi a group
element gi ∈ G

∇ : εi → gi

where G is a compact Lie-group.

I Think of ∇(εi ) = gi as the parallel transport of a connection
∇ along the edge εi .

I The space of such maps is denoted AΓ. Notice:

AΓ ' G n

I Think of the space AΓ as a coarse-grained approximation of
the space A of smooth connections.
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I Algebra:

I Choose a basepoint v0 in Γ.

I A loop L is a finite sequence
of edges L = {εi1 , εi2 , . . . , εin}
which starts and ends in v0.

v0
I Noncommutative product between loops by gluing them at

the basepoint.
I Involution of L by reversal of direction L∗ = L−1.
I The algebra BΓ is the algebra generated by loops running in

Γ. A general element in BΓ is of the form

a =
∑
i

aiLi , ai ∈ C

I These elements have a natural norm

‖a‖ = sup
∇∈AΓ

‖
∑

ai∇(Li )‖G

where the norm on the rhs is the matrix norm in G .
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I Hilbert space: There is a natural Hilbert space

HΓ = L2(G n,Cl(T ∗G n)⊗Ml(C))

involving a matrix factor Ml(C) (l size of rep. of G ). L2 is
with respect to the Haar measure on G n. Cl(T ∗G n) is the
Clifford bundle over G n.

I The loop algebra BΓ is represented on HΓ by

fL · ψ(∇) = (1⊗∇(L)) · ψ(∇) , ψ ∈ HΓ

with a matrix multiplication on the matrix factor in the
Hilbert space and with

∇(L) = ∇(εi1 ) · ∇(εi2 ) · . . . · ∇(εin)

I Dirac operator: at the level of a single graph Γ we can just
pick any Dirac operator D on G n (restrictions on D show up
later)
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A family of lattices

I Consider an infinite system of nested, 3-dimensional lattices

Γ0 → Γ1 → Γ2 → . . .

with Γi a subdivision of Γi−1

...

On the level of the associated manifolds AΓi this gives rise to
a projective system

AΓ0

P10←− AΓ1

P21←− AΓ2

P32←− AΓ3

P43←− . . .
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I The projections involve:

1. products

P : G 2 → G ,

(g1, g2)→ g1 · g2

for edges which are subdivided
in two,

G G

G

P

because

Hol(∇, ε1) · Hol(∇, ε2) = Hol(∇, ε1 · ε2)

2. omission of variables for new edges.
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I Consider next a corresponding system of spectral triples

(B,H,D)Γ0 ↔ (B,H,D)Γ1 ↔ (B,H,D)Γ2 ↔ . . .

which are compatible with the maps between graphs.

I This requirement restricts the choice of D.

I At the level of a graph Γ, a compatible operator has the form

D =
∑
k

akDk

where the sum runs over different copies of G and where

Dk(ξ) =
∑
a

eak · deak
(ξ) ξ ∈ L2(G ,Cl(TG ))

where deak
are left-translated vectorfields on the k’th copy of

G and eak are elements in the Clifford algebra. The an’s are
free parameters related to the level of refinement (the sum
over copies of G is wrt a change of variables).
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The limit

I In the limit of repeated subdivisions, this gives us a
candidate for a spectral triple (inductive limits)

(B,H,D)Γi −→ (B,H,D)∞

I Result: For a compact Lie-group G the triple (B,H,D)∞ is
a semi-finite? spectral triple:

. D’s resolvent (1 + D2)−1 is compact (wrt. trace) and

. the commutator [D, b] is bounded

provided the sequence {ai} approaches ∞.

?semi-finite: everything works up to a symmetry group with
a trace (CAR algebra) [Carey, Phillips, Sukochev].
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What physical interpretation does this
spectral triple construction have?
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Space of connections

I The spectral triple is a geometrical construction over a space
A of connections.

I To see this take the limit of intermediate spaces AΓ

A := lim
Γ←−
AΓ (∼ G∞)

There is a natural map

χ : A → A , χ(∇)(εi ) = Hol(∇, εi )

where Hol(∇, εi ) is the holonomy of ∇ along εi (now in Σ).

I Result: χ is a dense embedding

A ↪→ A
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I Argument: given ∇1,∇2 ∈ A
they will differ in a point m ∈ Σ
and in a neighborhood U of m.
Choose a small edge εi in a graphs
Γi so that εi ∈ U. Thus

Hol(∇1, εi ) 6= Hol(∇2, εi )

m

U

εi

I This result mirrors a result in LQG based on piece-wise
analytic graphs.

I This result holds for many different systems of ordered
graphs. Fx triangulations with barycentric subdivisions.
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Kinematics of Quantum Gravity

I The spectral triple encodes the kinematics of quantum
gravity.

I To see this recall the Poisson bracket
between loop and flux variables:

{F a
S (E ), hC (A)} = ±hC1 (A)σahC2 (A)

C2

S

C1

I Given an edge εi in a graph Γ we find

[deai
,∇(εi )] = [deai

, gi ] = giσ
a

I The left-invariant vector field corresponds to a flux-operator
sitting at the right endpoint of the edge.

I The spectral triple quantizes the Poisson bracket btw flux
and loop variables:

I the holonomy loops generate the algebra.
I the flux operators are stored in the Dirac type operator.
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The choice of basepoint

I Notice: The choice of basepoint matters when one works
with the noncommutative algebra of holonomy loops - in
contrast to traced loops/Wilson loops (LQG).

I To see this let L be a loop based
in v0. To shift L to a loop L′

based in v1 we need a parallel
transport between v0 and v1

L′ = Up(v0, v1)LU∗p (v0, v1)

v0

v1

where p = {εi1 , εi2 , . . . , εin} is a path from v0 to vi and Up
the corresponding parallel transport along p

Up(v0, v1) = ∇(εi1 ) · ∇(εi2 ) · . . . · ∇(εin)

I Aim: to use this deficit to identify natural states which
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I Introduce the operators

Ũp = Ũi1 Ũi2 · . . . · Ũin

with

Ũi =
i

2

(
eai σ

a + ie1
i e

2
i e

3
i

)
∇(εi )

associated to the path p = {εi1 , εi2 , . . . , εin} .

I These operators are unitary and mutually orthogonal

〈Ũp|Ũp′〉 =

{
1 if p = p′

0 if p 6= p′

due to the elements of the Clifford algebra in Ũi .
I We find that

〈Ũi |L|Ũi 〉 = 〈Ũi |Tr(L)|Ũi 〉

which shows that these operators remove the dependency on
the basepoint.
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〈Ũp|Ũp′〉 =

{
1 if p = p′

0 if p 6= p′

due to the elements of the Clifford algebra in Ũi .
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I But the operator Ũi is not gauge in/co-variant. Instead we
should consider states which involves loops.

I Consider therefore the object

ξk(ψ) =
1

N

∑
i

Ũpiψ(vi )U−1
pi

where ψ(vi ) is an arbitrary 2x2 matrix associated to the
vertex vi , and where the sum runs over vertices in Γk\Γk−1

(the two paths need not coincide).

I In the following the matrices ψ(vi ) will becomes spinors.

I These states are gauge covariant objects and remove the
basepoint dependency.

I Why do the Ũi operators have their particular form? A
possible answer: since the commutator btw D and an edge is

[D,∇(εi )] = ane
a
i∇(εi )σ

a ∼ anŨi

Ũp is something like an n-form.
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Semi-Classical States

I Pick a point (A,E ) in phase-space (Ashtekar variables).

Coherent states φt,k(E ,A) in L2(AΓk
) are given by (t ∼ l2

P)

Φt,k
(E ,A) =

∏
i

φt,i(E ,A)

where φt,i(E ,A) are coherent states on the i ’th copy of G

satisfying [Hall 1994]:

lim
t→0
〈φ̄t,i(E ,A)|∇(εi )|φt,i(E ,A)〉 = Hol(εi ,A)

lim
t→0
〈φ̄t,i(E ,A)|tdeai

|φt,i(E ,A)〉 = i2−2kE a
n (vi+1)

I Consider now states

Ψt
k(ψ,E ,A) = ξk(ψ)Φt,k

(A,E)

I This is a natural sequence of states {Ψt
k} assigned to each

level of subdivision of lattices.
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The Dirac operator in 3 dimensions

I The expectation value of D on the states Ψt
k will only

involve terms of the form (due to Clifford elements)

〈Ũi1 Ũi2 . . . Ũinψ(vi )...|eain+1
deain+1

|Ũi1 Ũi2 . . . Ũin+1ψ(vi+1)...〉

→ points ”one step apart” are coupled.

I The expectation value of D on the states Ψt
k gives

lim
k→∞

lim
t→0
〈Ψt

k |tD|Ψt
k〉

=
1

2

∫
Σ

d3xψ∗(x) (σaEm
a ∇m +∇mσ

aEm
a )ψ(x)

provided we set an = 23n and write ∇(εi ) ' 1 + Ai and
∇i = ∂i + [Ai , ·].

I This is the expectation value of the spatial Dirac operator on
a 3d manifold Σ.

I Important: the gravitational variables emerges from our
loop/flux operators.
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The Dirac Hamiltonian

I To obtain the Dirac Hamiltonian we need the lapse and shift
fields.

I One way is to introduce the modified Dirac type operator

DM :=
∑

ake
i
kdeik

Mk

where Mk is an arbitrary two-by-two self-adjoint matrix
associated to the k’th edge.

I The expectation value of DM on the states Ψt
k gives the

principal part of the Dirac Hamiltonian in 3+1 dimensions:

lim
k→∞

lim
t→0
〈Ψt

k |tDM |Ψt
k〉

=

∫
Σ

d3xψ∗(x)

(
1

2
(NσaEm

a ∇m + N∇mσ
aEm

a ) + Nm∂m

)
ψ(x)

+ zero order terms.

I The lapse and shift fields come as Mi = N(x)12 + Na(x)σa.
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Comments

I This suggest that these semi-classical states should be
interpreted as one-fermion states in a given foliation and
given background gravitational fields. The expectation value
of DM is then the energy of this particle.

I The semi-classical analysis seems to single out cubic lattices
− the lattices play the role of a coordinate system.

I The semi-classical analysis determines the sequence {an} of
scaling parameters.

I The fermion ”emerge” from the matrix factor in H.

I Note: we call the double limit limk→∞ limt→0 for the
semi-classical limit.
Q: can we change the order of this double limit? (!)

I These computations are very sign-sensitive. This indicates
that we are missing some grading.
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Many particle states

I Consider states of the form:

Ψt
k(ψ1, . . . , ψn,E ,A) := ξk(ψ1) . . . ξk(ψn)Φt,k

(A,E)

(anti-symmetrized)

I When we compute the expectation value of the Dirac type
operator DM on these states we obtain, in the semi-classical
limit, a system of fermions coupled to the gravitational field,
with an additional ”interaction” (here, n = 2, M = 12)

cl + cont.−→
∫

Σ

dx

∫
Σ

dyTr
(
U(y , x) (6∇ψ∗2 (x))ψ1(x)U−1(y , x)ψ∗1 (y)ψ2(y)

)
+ ’symmetric terms’
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I In the limit where gravity is ”turned off”

6∇ →6∂ , Ui → 12

a free fermionic QFT emerge if we restrict the construction
to Weyl spinors.

I Thus, the spectral triple provides a link between canonical
quantum gravity and fermionic QFT.

I We have also found a set of states which works also for
4-spinors. In this case no flux-tubes emerge.

I Q: what interactions (local, non-local) emerge through
perturbation around this flat limit?

I Q: what about the symmetric sector? Bosons?
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Pure gravity

[work in progress]

I What about the pure gravity sector? The operator

HM =
∑
i

Mi [D
2, [D2, Li − L−1

i ]]

where Lk , k ∈ {1, 2, 3}, are loops in a plaquet in Γk\Γk−1,
will descent to the Hamilton

lim
k→∞

lim
t→0
〈Ψt

k(ψ1, . . . , ψn,E ,A)|HM |Ψt
k(ψ1, . . . , ψn,E ,A)〉

∼
∫

Σ

NE i
aE j

bF c
ij ε

ab
c + NaEm

a E n
b F b

mn

with Mi = N12 + iNaσa .

I Contact to general relativity in a semi-classical continuum
limit.

I The fermionic degrees of freedom cancel out.
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I Consider the operator

DM + HM

and its expectation value on the states Ψt
k(ψ1, . . . , ψn,E ,A)

I The semiclassical expectation value of DM + HM gives a
fermionic sector coupled to a pure gravity sector

lim
k→∞

lim
t→0
〈Ψt

k(ψ1, . . . , ψn,E ,A)|DM + HM |Ψt
k(ψ1, . . . , ψn,E ,A)〉

= ”n-fermion sector” + Hgravity

⇒ unified picture emerge.

I Q: Why the operator DM + HM?

I Q: does the constraint algebra close (semi-classically)?
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Spectral action functional

I The spectral action (trace of heat-kernel) resembles a
partition function

Tr exp(−s(D)2) ∼
∫
A

[d∇] exp
(
−s(D)2

)
δ∇(∇)

I This object is finite.

I It is not clear to us what role this object should play in our
approach.
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Connes Distance Formula

I Given a spectral triple (B,H,D) over a manifold M the
distance formula reads

d(ξx , ξy ) = sup
b∈B

{
|ξx(b)− ξy (b)|

∣∣|[D, b]| ≤ 1
}

where ξx , ξy are homomorphisms B → C. This can be
generalized to noncommutative spaces/algebras.

I Question: What about Connes distance formula for the
spectral triple (B,H,D) based on the algebra of loops? A
distance between field configurations? - Yes.

I If two configurations differ on a large scale, then the distance
between them will be ’large’ (difference weighted with small
a’s - large distance)

I If they differ only on short scales, then the distance will be
’small’ (difference weighted with large a’s - small distance).

I The spectral triple construction is a metric structure on a
configuration space of connections. This idea goes back to
Feynman, Singer ...
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Discussion

I A new approach to non-perturbative QFT/QGR using
(countable) inductive limits of algebras and Hilbert spaces.

I We have found a semi-finite spectral triple (B,H,D)∞ which
encodes the kinematics of quantum gravity.

- non-perturbative.
- background independent.

I Matter couplings emerge naturally - the Dirac Hamiltonian
and an infinite particle system is an output in the
semi-classical + continuum limit.

I An operator HM can be constructed which gives the pure
gravity Hamiltonian in the semi-classical limit - contact to
classical general relativity.
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Key questions:

• Can we take the continuum limit without the semi-classical
approximation? (Can we interchange the limits limk→∞ and
limt→0 ?)

• What interaction does the fermion interaction generate when
perturbed around the flat-space limit (free QFT)? - within
the realm of local QFT?

• Why do the states look the way they do? They resemble a
GNS construction around the states Φt,k

(E ,A).

• What principle determines the operator DM + HM?

• Why only Weyl spinors (additional structure required - real
structure?).

Outlook (wishful thinking):

• Apply Tomita-Takesaki theory.

• Contact to Connes work on the Standard Model: analyze the
algebra in the semi-classical limit.
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