# Wick Rotation on Degenerate Moyal Space 

Thomas Ludwig<br>Joint work with H. Grosse, G. Lechner and R. Verch

Bayrischzell Workshop 2011
May 21, 2011

## Introduction I

- "Wick Rotation" ... Analytically continuing a Lorentzian theory along "imaginary time" towards a Euclidean theory - and vice versa.


## Introduction I

- "Wick Rotation" ... Analytically continuing a Lorentzian theory along "imaginary time" towards a Euclidean theory - and vice versa.
- Wightman functions $\leftrightarrow$ Schwinger functions [OS 1973, OS2 1975]


## Introduction I

- "Wick Rotation" ... Analytically continuing a Lorentzian theory along "imaginary time" towards a Euclidean theory - and vice versa.
- Wightman functions $\leftrightarrow$ Schwinger functions [OS 1973, OS2 1975]
- Euclidean net of algebras $\rightarrow$ Haag-Kastler net in Minkowski space-time [Schl 1999]



## Introduction II

- Euclidean techniques are fundamental in constructive FT


## Introduction II

- Euclidean techniques are fundamental in constructive FT
- QFT on noncommutative spaces with Euclidean metric has some success available:


## Introduction II

- Euclidean techniques are fundamental in constructive FT
- QFT on noncommutative spaces with Euclidean metric has some success available:
- Scalar $\phi^{4}$-theory with additional terms proved renormalizable to all orders [GW 2004, RGMT 2009].


## Introduction II

- Euclidean techniques are fundamental in constructive FT
- QFT on noncommutative spaces with Euclidean metric has some success available:
- Scalar $\phi^{4}$-theory with additional terms proved renormalizable to all orders [GW 2004, RGMT 2009].
- $S_{G W}[\phi]=S_{\phi^{4}}[\phi]+\int \frac{1}{2}\left(\frac{\Omega}{\theta}\right)^{2} x^{2} \phi^{2}$ features a renormalization group fixed point at $\Omega=1 \rightarrow 2 D$-model constructed [W 2011], possibility of construction in 4D. [RDGM 2006]


## Introduction II

- Euclidean techniques are fundamental in constructive FT
- QFT on noncommutative spaces with Euclidean metric has some success available:
- Scalar $\phi^{4}$-theory with additional terms proved renormalizable to all orders [GW 2004, RGMT 2009].
- $S_{G W}[\phi]=S_{\phi^{4}}[\phi]+\int \frac{1}{2}\left(\frac{\Omega}{\theta}\right)^{2} x^{2} \phi^{2}$ features a renormalization group fixed point at $\Omega=1 \rightarrow 2 D$-model constructed [W 2011], possibility of construction in 4D. [RDGM 2006]
- At present no exact connection to noncommutative Lorentzian theories is known


## Algebraic Approach: Spaces of Restricted Symmetry I

We start with a Euclidean net of von Neumann algebras $\mathcal{E}(\mathcal{O}), \mathcal{O} \subset \mathbb{R}^{4}$

## Algebraic Approach: Spaces of Restricted Symmetry I

We start with a Euclidean net of von Neumann algebras $\mathcal{E}(\mathcal{O}), \mathcal{O} \subset \mathbb{R}^{4}$ and the reduced Euclidean group: $E_{\theta}(4)=(O(2) \times S O(2)) \ltimes \mathbb{R}^{4}$.

## Algebraic Approach: Spaces of Restricted Symmetry I

We start with a Euclidean net of von Neumann algebras $\mathcal{E}(\mathcal{O}), \mathcal{O} \subset \mathbb{R}^{4}$ and the reduced Euclidean group: $E_{\theta}(4)=(O(2) \times S O(2)) \ltimes \mathbb{R}^{4}$.
$\mathcal{E}(\mathcal{O})$ shall satisfy isotony, $E_{\theta}(4)$-covariance, locality.

## Algebraic Approach: Spaces of Restricted Symmetry I

We start with a Euclidean net of von Neumann algebras $\mathcal{E}(\mathcal{O}), \mathcal{O} \subset \mathbb{R}^{4}$ and the reduced Euclidean group: $E_{\theta}(4)=(O(2) \times S O(2)) \ltimes \mathbb{R}^{4}$.
$\mathcal{E}(\mathcal{O})$ shall satisfy isotony, $E_{\theta}(4)$-covariance, locality.

## Algebraic Approach: Spaces of Restricted Symmetry II

Moreover, $\mathcal{E}(\mathcal{O})$ shall fulfill the so-called time-zero condition:

## Algebraic Approach: Spaces of Restricted Symmetry II

Moreover, $\mathcal{E}(\mathcal{O})$ shall fulfill the so-called time-zero condition:

## Time-Zero Condition

$$
\mathcal{E}(\mathcal{O})=\left(\bigcup_{K \subset \Sigma_{e}}\left\{\alpha_{x, R}^{\mathcal{E}} \mathcal{A}_{e}^{\mathcal{E}}(K): R K+x \subset \mathcal{O}\right\}\right)^{\prime \prime}
$$

## Algebraic Approach: Spaces of Restricted Symmetry II

Moreover, $\mathcal{E}(\mathcal{O})$ shall fulfill the so-called time-zero condition:

## Time-Zero Condition

$$
\mathcal{E}(\mathcal{O})=\left(\bigcup_{K \subset \Sigma_{e}}\left\{\alpha_{x, R}^{\mathcal{E}} \mathcal{A}_{e}^{\mathcal{E}}(K): R K+x \subset \mathcal{O}\right\}\right)^{\prime \prime}
$$

$\Sigma_{e} \perp \mathbb{R}_{+} e$,
$\alpha_{x, R}^{\mathcal{E}} \ldots$ automorphic $E_{\theta}(4)$-action,
$\mathcal{A}_{e}^{\mathcal{E}}(K) \subset \bigcap_{\mathcal{O} \supset K} \mathcal{E}(\mathcal{O})$.


Schematic picture of the time-zero condition.

## Algebraic Approach: Spaces of Restricted Symmetry II

## Time-Zero Condition

$$
\mathcal{E}(\mathcal{O})=\left(\bigcup_{K \subset \Sigma_{e}}\left\{\alpha_{x, R}^{\mathcal{E}}(A): R K+x \subset \mathcal{O}, A \in \mathcal{A}_{e}^{\mathcal{E}}(K)\right\}\right)^{\prime \prime}
$$

$\Sigma_{e} \perp \mathbb{R}_{+} e$,
$\alpha_{x, R}^{\mathcal{E}} \ldots$ automorphic $E_{\theta}(4)$-action,
$\mathcal{A}_{e}^{\mathcal{E}}(K) \subset \bigcap_{\mathcal{O} \supset K} \mathcal{E}(\mathcal{O})$.

## Algebraic Approach: Spaces of Restricted Symmetry III

Last input: regular reflection-positive Euclidean functional $\sigma$.

## Algebraic Approach: Spaces of Restricted Symmetry III

Last input: regular reflection-positive Euclidean functional $\sigma$.

Properties:

## Algebraic Approach: Spaces of Restricted Symmetry III

Last input: regular reflection-positive Euclidean functional $\sigma$.

Properties:

- $E_{\theta}(4) \ni(x, R) \longmapsto \sigma\left(A \alpha_{x, R}^{\mathcal{E}}(B) C\right)$ continuous $\forall A, B, C \in \mathcal{E}$,


## Algebraic Approach: Spaces of Restricted Symmetry III

Last input: regular reflection-positive Euclidean functional $\sigma$.

Properties:

- $E_{\theta}(4) \ni(x, R) \longmapsto \sigma\left(A \alpha_{x, R}^{\mathcal{E}}(B) C\right)$ continuous $\forall A, B, C \in \mathcal{E}$,
- $\sigma \circ \alpha_{x, R}^{\mathcal{E}}=\sigma \quad \forall(x, R) \in E_{\theta}(4)$,


## Algebraic Approach: Spaces of Restricted Symmetry III

Last input: regular reflection-positive Euclidean functional $\sigma$.

Properties:

- $E_{\theta}(4) \ni(x, R) \longmapsto \sigma\left(A \alpha_{x, R}^{\mathcal{E}}(B) C\right)$ continuous $\forall A, B, C \in \mathcal{E}$,
- $\sigma \circ \alpha_{x, R}^{\mathcal{E}}=\sigma \quad \forall(x, R) \in E_{\theta}(4)$,
- $\exists e \in \mathbb{R}^{4},|e|=1$ such that

$$
\sigma\left(\alpha_{r_{e}}\left(A^{*}\right) A\right) \geq 0 \forall A \in \mathcal{E}^{+}:=\left\{\mathcal{E}(\mathcal{O}), \mathcal{O} \subset \mathbb{R}_{+} e+\Sigma_{e}\right\}
$$

## Algebraic Approach: Spaces of Restricted Symmetry III

Last input: regular reflection-positive Euclidean functional $\sigma$.

Properties:

- $E_{\theta}(4) \ni(x, R) \longmapsto \sigma\left(A \alpha_{x, R}^{\mathcal{E}}(B) C\right)$ continuous $\forall A, B, C \in \mathcal{E}$,
- $\sigma \circ \alpha_{x, R}^{\mathcal{E}}=\sigma \quad \forall(x, R) \in E_{\theta}(4)$,
- $\exists e \in \mathbb{R}^{4},|e|=1$ such that

$$
\sigma\left(\alpha_{r_{e}}\left(A^{*}\right) A\right) \geq 0 \forall A \in \mathcal{E}^{+}:=\left\{\mathcal{E}(\mathcal{O}), \mathcal{O} \subset \mathbb{R}_{+} e+\Sigma_{e}\right\} .
$$

$r_{e}$ denotes the e-reflection, $r_{e}: x \mapsto x-2(e, x) e$.

## Algebraic Approach: Spaces of Restricted Symmetry IV

Via a construction similar to GNS we obtain the Hilbert space $\mathcal{H}^{\mathcal{M}}$.

## Algebraic Approach: Spaces of Restricted Symmetry IV

Via a construction similar to GNS we obtain the Hilbert space $\mathcal{H}^{\mathcal{M}}$.
There, "spatial transformations" $(x, R)$ :
$\left[\alpha_{x, R}^{\mathcal{E}}, \alpha_{r_{e}}\right]=0$, directly $\longrightarrow$ str.-cont. group $U_{e}((0, x), R(0, \alpha))$ of unitaries.

## Algebraic Approach: Spaces of Restricted Symmetry IV

Via a construction similar to GNS we obtain the Hilbert space $\mathcal{H}^{\mathcal{M}}$.
There, "spatial transformations" $(x, R)$ :
$\left[\alpha_{x, R}^{\mathcal{E}}, \alpha_{r_{e}}\right]=0$, directly $\longrightarrow$ str.-cont. group $U_{e}((0, \mathbf{x}), R(0, \alpha))$ of unitaries.

Let $[A]_{\sigma}$ be equivalence class w.r.t. the product $\langle A, B\rangle:=\sigma\left(\alpha_{r_{e}}\left(A^{*}\right) B\right)$.
Then define operators

## Algebraic Approach: Spaces of Restricted Symmetry IV

Via a construction similar to GNS we obtain the Hilbert space $\mathcal{H}^{\mathcal{M}}$.
There, "spatial transformations" $(x, R)$ :
$\left[\alpha_{x, R}^{\mathcal{E}}, \alpha_{r_{e}}\right]=0$, directly $\longrightarrow$ str.-cont. group $U_{e}((0, \mathbf{x}), R(0, \alpha))$ of unitaries.

Let $[A]_{\sigma}$ be equivalence class w.r.t. the product $\langle A, B\rangle:=\sigma\left(\alpha_{r_{e}}\left(A^{*}\right) B\right)$. Then define operators

$$
\begin{aligned}
V(t)[A]_{\sigma} & :=\left[\alpha_{((t, 0,0,0), 1)}(A)\right]_{\sigma}, \text { for } t \geq 0 \\
\tilde{V}(\beta)[A]_{\sigma} & :=\left[\alpha_{(0, R(\beta, 0))}(A)\right]_{\sigma}, R(\beta, 0):=R(\beta) \oplus 1
\end{aligned}
$$

## Algebraic Approach: Spaces of Restricted Symmetry V

Some remarkable works concern continuation of such representations. Most notably: Fröhlich, Osterwalder \& Seiler [FOS 1983], Fröhlich [F 1980] ; Klein and Landau [KL 1981, KL2 1983]
Shown there: operators generalizing $V(t)$ and $\tilde{V}(\beta)$ are generated by densely def. symm. operators which continue to self-adjoint operators on $\mathcal{H}^{\mathcal{M}}$.

Jorgensen and Ólafsson [JO 1999] gave a general treatment.

## Algebraic Approach: Spaces of Restricted Symmetry VI

In this way:
Imaginary time-translations $V(t)$ and $x_{0}, x_{1}$-rotations $\tilde{V}(\beta)$
$\xrightarrow{\text { analytically }}$ real time-translations $\mathrm{e}^{i t H}$ and $x_{0}, x_{1}$-boosts $\mathrm{e}^{i \beta L}$ :

## Algebraic Approach: Spaces of Restricted Symmetry VI

In this way:
Imaginary time-translations $V(t)$ and $x_{0}, x_{1}$-rotations $\tilde{V}(\beta)$
$\xrightarrow{\text { analytically }}$ real time-translations $\mathrm{e}^{i t H}$ and $x_{0}, x_{1}$-boosts $\mathrm{e}^{i \beta L}$ : Define

$$
U((t, \mathbf{x}), \Lambda(\beta, \alpha)):=e^{i t H} U_{e}((0, \mathbf{x}), \Lambda(0, \alpha)) e^{i \beta L}
$$

## Algebraic Approach: Spaces of Restricted Symmetry VI

In this way:
Imaginary time-translations $V(t)$ and $x_{0}, x_{1}$-rotations $\tilde{V}(\beta)$
$\xrightarrow{\text { analytically }}$ real time-translations $\mathrm{e}^{i t H}$ and $x_{0}, x_{1}$-boosts $\mathrm{e}^{i \beta L}$ : Define

$$
U((t, \mathbf{x}), \Lambda(\beta, \alpha)):=e^{i t H} U_{e}((0, \mathbf{x}), \Lambda(0, \alpha)) e^{i \beta L}
$$

$\rightarrow$ It results a well-defined $\mathcal{P}_{\theta}(4)$-action, denote by $\alpha_{g}^{\mathcal{M}}$.
$\mathcal{P}_{\theta}(4):=(O(1,1) \times S O(2)) \ltimes \mathbb{R}^{4}$.

## Algebraic Approach: Main Proposition

## Proposition

- The operators $U(x, \Lambda(\beta, \alpha))$ form a unitary, weakly continuous representation of the reduced Poincaré group $\mathcal{P}_{\theta}(4)$ on $\mathcal{H}^{\mathcal{M}}$.


## Algebraic Approach: Main Proposition

## Proposition

- The operators $U(x, \Lambda(\beta, \alpha))$ form a unitary, weakly continuous representation of the reduced Poincaré group $\mathcal{P}_{\theta}(4)$ on $\mathcal{H}^{\mathcal{M}}$.
- The vacuum vector $\Omega:=[1]_{\sigma}$ is invariant under $U(g)$ for all $g \in \mathcal{P}_{\theta}(4)$.


## Algebraic Approach: Main Proposition

## Proposition

- The operators $U(x, \Lambda(\beta, \alpha))$ form a unitary, weakly continuous representation of the reduced Poincaré group $\mathcal{P}_{\theta}(4)$ on $\mathcal{H}^{\mathcal{M}}$.
- The vacuum vector $\Omega:=[1]_{\sigma}$ is invariant under $U(g)$ for all $g \in \mathcal{P}_{\theta}(4)$.
- The joint spectrum of the generators $H, P_{1}, P_{2}, P_{3}$ of the translations lies in the closed lightwedge

$$
Y:=\left\{p \in \mathbb{R}^{4}: p_{0} \geq\left|p_{1}\right|\right\} .
$$

## Warped Convolution I

The so-called warped convolutions display a well-defined way of deforming an algebraic theory [BS 2008]:

## Warped Convolution I

The so-called warped convolutions display a well-defined way of deforming an algebraic theory [BS 2008]:

For a von Neumann algebra element $A$ and a skew-symmetric matrix

$$
\theta:=\left(\begin{array}{ll}
0 & 0 \\
0 & \theta_{1}
\end{array}\right), \quad \theta_{1}:=\left(\begin{array}{cc}
0 & \vartheta \\
-\vartheta & 0
\end{array}\right), \quad \vartheta \in \mathbb{R}
$$

(commutative time)
it is defined as follows

## Warped Convolution I

The so-called warped convolutions display a well-defined way of deforming an algebraic theory [BS 2008]:

For a von Neumann algebra element $A$ and a skew-symmetric matrix

$$
\theta:=\left(\begin{array}{ll}
0 & 0 \\
0 & \theta_{1}
\end{array}\right), \quad \theta_{1}:=\left(\begin{array}{cc}
0 & \vartheta \\
-\vartheta & 0
\end{array}\right), \quad \vartheta \in \mathbb{R}
$$

(commutative time)
it is defined as follows

$$
A_{\theta} \Phi:=\iint \mathrm{d} x \mathrm{~d} y \mathrm{e}^{i x y} \alpha_{\theta x}(A) U(y) \Phi \quad, \quad \Phi \in \mathcal{D} \text { (suitable) }
$$

## Warped Convolution I

The so-called warped convolutions display a well-defined way of deforming an algebraic theory [BS 2008]:

For a von Neumann algebra element $A$ and a skew-symmetric matrix

$$
\theta:=\left(\begin{array}{ll}
0 & 0 \\
0 & \theta_{1}
\end{array}\right), \quad \theta_{1}:=\left(\begin{array}{cc}
0 & \vartheta \\
-\vartheta & 0
\end{array}\right), \quad \vartheta \in \mathbb{R}
$$

(commutative time)
it is defined as follows

$$
A_{\theta} \Phi:=\iint \mathrm{d} x \mathrm{~d} y \mathrm{e}^{i x y} \alpha_{\theta x}(A) \cup(y) \Phi \quad, \quad \Phi \in \mathcal{D} \text { (suitable) }
$$

$U(y):=\mathrm{e}^{i P y}=\int \mathrm{d} E(p) \mathrm{e}^{i p y}$

## Warped Convolution II

The symmetry group $E_{\theta}(4)=(O(2) \times S O(2)) \ltimes \mathbb{R}^{4}$ was chosen such that

$$
R \theta=\theta R \quad \text { for all } \quad R \in E_{\theta}(4) .
$$

## Warped Convolution II

The symmetry group $E_{\theta}(4)=(O(2) \times S O(2)) \ltimes \mathbb{R}^{4}$ was chosen such that

$$
R \theta=\theta R \quad \text { for all } \quad R \in E_{\theta}(4)
$$

Thus, the (space-space) noncommutative deformation of $\mathcal{E}(\mathcal{O})$ defined by

$$
\mathcal{E}_{\theta}(\mathcal{O}):=\left\{A_{\theta} \mid A \in \mathcal{E}(\mathcal{O})\right\}
$$

is also $E_{\theta}(4)$-covariant.

## Warped Convolution II

The symmetry group $E_{\theta}(4)=(O(2) \times S O(2)) \ltimes \mathbb{R}^{4}$ was chosen such that

$$
R \theta=\theta R \quad \text { for all } \quad R \in E_{\theta}(4)
$$

Thus, the (space-space) noncommutative deformation of $\mathcal{E}(\mathcal{O})$ defined by

$$
\mathcal{E}_{\theta}(\mathcal{O}):=\left\{A_{\theta} \mid A \in \mathcal{E}(\mathcal{O})\right\}
$$

is also $E_{\theta}(4)$-covariant.
Remark: Remains true in case of full rank noncommutativity $Q$ for $(S O(2) \times S O(2)) \ltimes \mathbb{R}^{4}$.

## Warped Convolution III

In order to apply our result to the deformed theory, we face changes in the algebraic setting:

## Warped Convolution III

In order to apply our result to the deformed theory, we face changes in the algebraic setting:

- Arbitrary open subsets $\mathcal{O}$ of $\mathbb{R}^{4}$ are unstable w.r.t. the deformation: i.e., $\exists A_{\theta}, B_{\theta} \in \mathcal{E}_{\theta}(\mathcal{O}): A_{\theta} B_{\theta} \notin \mathcal{E}_{\theta}(\mathcal{O})$.


## Warped Convolution III

In order to apply our result to the deformed theory, we face changes in the algebraic setting:

- Arbitrary open subsets $\mathcal{O}$ of $\mathbb{R}^{4}$ are unstable w.r.t. the deformation: i.e., $\exists A_{\theta}, B_{\theta} \in \mathcal{E}_{\theta}(\mathcal{O}): A_{\theta} B_{\theta} \notin \mathcal{E}_{\theta}(\mathcal{O})$.
- Not clear: do arbitrary nets keep the time-zero condition after deformation?


## Warped Convolution III

In order to apply our result to the deformed theory, we face changes in the algebraic setting:

- Arbitrary open subsets $\mathcal{O}$ of $\mathbb{R}^{4}$ are unstable w.r.t. the deformation: i.e., $\exists A_{\theta}, B_{\theta} \in \mathcal{E}_{\theta}(\mathcal{O}): A_{\theta} B_{\theta} \notin \mathcal{E}_{\theta}(\mathcal{O})$.
- Not clear: do arbitrary nets keep the time-zero condition after deformation?

At least two possibilities:

- Take $\mathcal{E}_{\theta}(\mathcal{O})$ to be the algebra generated by all warped elements of $\mathcal{E}(\mathcal{O})$


## Warped Convolution III

In order to apply our result to the deformed theory, we face changes in the algebraic setting:

- Arbitrary open subsets $\mathcal{O}$ of $\mathbb{R}^{4}$ are unstable w.r.t. the deformation: i.e., $\exists A_{\theta}, B_{\theta} \in \mathcal{E}_{\theta}(\mathcal{O}): A_{\theta} B_{\theta} \notin \mathcal{E}_{\theta}(\mathcal{O})$.
- Not clear: do arbitrary nets keep the time-zero condition after deformation?

At least two possibilities:

- Take $\mathcal{E}_{\theta}(\mathcal{O})$ to be the algebra generated by all warped elements of $\mathcal{E}(\mathcal{O}) \rightarrow$ v.N. algebra by construction, but further properties are to be investigated.


## Warped Convolution III

In order to apply our result to the deformed theory, we face changes in the algebraic setting:

- Arbitrary open subsets $\mathcal{O}$ of $\mathbb{R}^{4}$ are unstable w.r.t. the deformation: i.e., $\exists A_{\theta}, B_{\theta} \in \mathcal{E}_{\theta}(\mathcal{O}): A_{\theta} B_{\theta} \notin \mathcal{E}_{\theta}(\mathcal{O})$.
- Not clear: do arbitrary nets keep the time-zero condition after deformation?

At least two possibilities:

- Take $\mathcal{E}_{\theta}(\mathcal{O})$ to be the algebra generated by all warped elements of $\mathcal{E}(\mathcal{O}) \rightarrow$ v.N. algebra by construction, but further properties are to be investigated.
- Instead, consider nets indexed by better suitable regions in $\mathbb{R}^{4}$. For now, we follow the second option.


## Warped Convolution IV

Therefore, we define the cylindrical subsets

$$
\mathrm{C}:=\left\{\mathcal{O} \subsetneq \mathbb{R}^{4} \mid \mathcal{O}_{2} \text { bounded, } \mathcal{O}+x=\mathcal{O} \forall x \in 0 \times \mathbb{R}^{2}\right\}
$$

where $\mathcal{O}_{2}$ denotes the projection of $\mathcal{O}$ onto commutative $\mathbb{R}^{2} \times 0$,

## Warped Convolution IV

Therefore, we define the cylindrical subsets

$$
\mathrm{C}:=\left\{\mathcal{O} \subsetneq \mathbb{R}^{4} \mid \mathcal{O}_{2} \text { bounded, } \mathcal{O}+x=\mathcal{O} \forall x \in 0 \times \mathbb{R}^{2}\right\}
$$

where $\mathcal{O}_{2}$ denotes the projection of $\mathcal{O}$ onto commutative $\mathbb{R}^{2} \times 0$, as well as the time-zero stripes:

$$
\mathrm{S}:=\left\{K \subsetneq \Sigma_{e} \mid K_{1} \text { bounded, } K+x=K \forall x \in 0 \times \mathbb{R}^{2}\right\}
$$

## Warped Convolution IV

Therefore, we define the cylindrical subsets

$$
\mathrm{C}:=\left\{\mathcal{O} \subsetneq \mathbb{R}^{4} \mid \mathcal{O}_{2} \text { bounded, } \mathcal{O}+x=\mathcal{O} \forall x \in 0 \times \mathbb{R}^{2}\right\}
$$

where $\mathcal{O}_{2}$ denotes the projection of $\mathcal{O}$ onto commutative $\mathbb{R}^{2} \times 0$, as well as the time-zero stripes:

$$
\mathrm{S}:=\left\{K \subsetneq \Sigma_{e} \mid K_{1} \text { bounded, } K+x=K \forall x \in 0 \times \mathbb{R}^{2}\right\}
$$

$\rightarrow$ For $C \in \mathrm{C}, \mathcal{E}_{\theta}(C)$ is stable under warped convolutions.

## Warped Convolution IV

Therefore, we define the cylindrical subsets

$$
\mathrm{C}:=\left\{\mathcal{O} \subsetneq \mathbb{R}^{4} \mid \mathcal{O}_{2} \text { bounded, } \mathcal{O}+x=\mathcal{O} \forall x \in 0 \times \mathbb{R}^{2}\right\}
$$

where $\mathcal{O}_{2}$ denotes the projection of $\mathcal{O}$ onto commutative $\mathbb{R}^{2} \times 0$, as well as the time-zero stripes:

$$
\mathrm{S}:=\left\{K \subsetneq \Sigma_{e} \mid K_{1} \text { bounded, } K+x=K \forall x \in 0 \times \mathbb{R}^{2}\right\}
$$

$\rightarrow$ For $C \in \mathrm{C}, \mathcal{E}_{\theta}(C)$ is stable under warped convolutions.
Warning: Does not mean localization in $C$ !

## Cylindrical Subsets



## Warped Convolution: (TZ)

What about the time-zero condition?

## Warped Convolution: (TZ)

What about the time-zero condition?
Lemma: $E_{\theta}$ (4) enough for $C$
(1) $\forall C \in \mathrm{C}, \forall S \in \mathrm{~S} \exists g \in E_{\theta}(4)$ :

$$
g S \subset C
$$

(2) If $g \in E(4)$ s.t. for $S \in S$ we have $g S \subset C$ for a $C \in \mathrm{C}$

$$
\Rightarrow g \in E_{\theta}(4)
$$

## Warped Convolution: (TZ)

What about the time-zero condition?

## Lemma: $E_{\theta}$ (4) enough for C

(1) $\forall C \in \mathrm{C}, \forall S \in \mathrm{~S} \exists g \in E_{\theta}(4)$ :

$$
g S \subset C
$$

(2) If $g \in E(4)$ s.t. for $S \in S$ we have $g S \subset C$ for a $C \in \mathrm{C}$

$$
\Rightarrow g \in E_{\theta}(4)
$$

```
Corollary
If \(\mathcal{E}(C)\) is \(E(4)\)-cov. and satisfies (TZ)
\(\Rightarrow \mathcal{E}_{\theta}(C)\) is \(E_{\theta}(4)\)-cov. and satisfies \((T Z)_{\theta}\)
```


## Warped Convolution: $(\mathrm{TZ})_{\theta}$

## Proof (Cor., sketched).

Indeed, contemplate such $\mathcal{E}(C)$. From the lemma we have

$$
\begin{aligned}
& \left\{\alpha_{g} \mathcal{A}_{0}(S) \mid S \in S, g \in E(d), g S \subset C\right\} \\
= & \left\{\alpha_{g} \mathcal{A}_{0}(S) \mid S \in S, g \in E_{\theta}(d), g S \subset C\right\}
\end{aligned}
$$

$\mathcal{E}_{\theta}(C)$ is well-defined and $E_{\theta}(4)$-covariant $\Rightarrow$

$$
\mathcal{E}_{\theta}(C)=\left(\bigcup_{S \in S}\left\{\alpha_{g} \mathcal{A}_{\theta}(S) \mid S \in S, g \in E_{\theta}(d), g S \subset C\right\}\right)^{\prime \prime}
$$

## Warped Convolution: Minkowskian Net

Locality properties of warped convolutions derived in [BLS 2010] remain valid here. Combining our results leads to

## Warped Convolution: Minkowskian Net

Locality properties of warped convolutions derived in [BLS 2010] remain valid here. Combining our results leads to

## Minkowskian Net

$\mathcal{M}_{\theta}(C):=\left(\bigcup_{S \subset S}\left\{\alpha_{g}^{\mathcal{M}}\left(\pi_{\sigma}(A)\right) \mid g \in \mathcal{P}_{\theta}(4), g S \subset C, A \in \mathcal{A}_{\theta}^{\mathcal{E}}(K)\right\}\right)^{\prime \prime}$
defines a Haag-Kastler net with modified locality (wedge locality).
$\pi_{\sigma} \ldots$ repr. of $\mathcal{E}_{\theta}$ on $\mathcal{H}^{\mathcal{M}}$.

## Wedge Locality

$$
\mathcal{W}_{1}:=\left\{x \in \mathbb{R}^{4}\left|x_{1}>\left|x_{0}\right|\right\}\right.
$$



$$
\begin{array}{ll}
A \in \mathcal{M}\left(\mathcal{W}_{1}\right) & , \quad B \in \mathcal{M}\left(-\mathcal{W}_{1}\right) \\
\Rightarrow\left[A_{\theta}, B_{-\theta}\right] & =0
\end{array}
$$

## Summary

- Input data: $E(4)$-covariant Euclidean net $\mathcal{E}(\mathcal{O})$ of $\mathrm{v} . \mathrm{N}$. algebras, regular reflection-positive Euclidean functional $\sigma$ and the (restrictive!) time-zero condition


## Summary

- Input data: $E(4)$-covariant Euclidean net $\mathcal{E}(\mathcal{O})$ of $\mathrm{v} . \mathrm{N}$. algebras, regular reflection-positive Euclidean functional $\sigma$ and the (restrictive!) time-zero condition


## Summary

- Input data: $E(4)$-covariant Euclidean net $\mathcal{E}(\mathcal{O})$ of v.N. algebras, regular reflection-positive Euclidean functional $\sigma$ and the (restrictive!) time-zero condition


## Summary

- Input data: $E(4)$-covariant Euclidean net $\mathcal{E}(\mathcal{O})$ of v.N. algebras, regular reflection-positive Euclidean functional $\sigma$ and the (restrictive!) time-zero condition
- Deformation: Build the algebra $\mathcal{E}_{\theta}(C(\mathcal{O}))$ in terms of warped convolutions.


## Summary

- Input data: $E(4)$-covariant Euclidean net $\mathcal{E}(\mathcal{O})$ of v.N. algebras, regular reflection-positive Euclidean functional $\sigma$ and the (restrictive!) time-zero condition
- Deformation: Build the algebra $\mathcal{E}_{\theta}(C(\mathcal{O}))$ in terms of warped convolutions.
$\rightarrow \mathcal{E}_{\theta}$ is $E_{\theta}(4)$-cov. \& well-def. on C.


## Commuting Diagram

$$
\begin{array}{rll}
\mathcal{E} & \longleftrightarrow \mathcal{E}_{\theta} \\
I & & \downarrow \\
\mathcal{M} & \longleftrightarrow \mathcal{M}_{\theta}
\end{array}
$$



## Outlook

## Remarks:

- Generalization of the group continuation to space-time dimension $d=s+2 n$ has been done.


## Outlook

## Remarks:

- Generalization of the group continuation to space-time dimension $d=s+2 n$ has been done.
- The lemma concerning $(T Z)_{\theta}$ has up until now be generalized to $d \leq 4$.


## Outlook

## Remarks:

- Generalization of the group continuation to space-time dimension $d=s+2 n$ has been done.
- The lemma concerning $(T Z)_{\theta}$ has up until now be generalized to $d \leq 4$.


## Open tasks:

- Drop or at least relax the time-zero condition


## Outlook

## Remarks:

- Generalization of the group continuation to space-time dimension $d=s+2 n$ has been done.
- The lemma concerning $(T Z)_{\theta}$ has up until now be generalized to $d \leq 4$.


## Open tasks:

- Drop or at least relax the time-zero condition
- Obtain similar results for noncommutative time


## Outlook

## Remarks:

- Generalization of the group continuation to space-time dimension $d=s+2 n$ has been done.
- The lemma concerning $(T Z)_{\theta}$ has up until now be generalized to $d \leq 4$.


## Open tasks:

- Drop or at least relax the time-zero condition
- Obtain similar results for noncommutative time
- "Covariantize" to have full symmetry group $E(4)$ at hand.


## THANK YOU FOR YOUR ATTENTION!

固 K．Osterwalder，R．Schrader．
Axioms for Eucliden Green＇s Functions， Comm．Math．Phys．31；83－112， 1973.
圊 K．Osterwalder，R．Schrader．
Axioms for Eucliden Green＇s Functions II， Comm．Math．Phys．42；281， 1975.
T．Fröhlich．
Unbounded，Symmetric Semigroups on a Separable Hilbert Space Are Essentially Selfadjoint，
Adv．Appl．Math．1，237－256， 1980
A．Klein，Landau．
Construction Of A Unique Self－Adjoint Generator for a Symmetric Local Semigroup，
J．Funct．Anal．44；121， 1981.
睩 A．Klein，Landau．
From the Euclidean group to the Poincaré group via Osterwalder－Schrader positivity，
Comm．Math．Phys．87；469－484， 1983.
J．Fröhlich and K．Osterwalder and E．Seiler．
On Virtual representations of symmetric spaces and their analytic continuation

Annals Math. 118; 461-489, 1983.
D. Schlingemann.

From Euclidean Field Theory to Quantum Field Theory,
Rev. Math. Phys. 11; 1151-1178, 1999.
P. J. Jorgensen, G. Ólafsson.

Unitary Representations and Osterwalder-Schrader Duality, Preprint: http://arxiv.org/abs/math/9908031, 1999.
H. Grosse, R. Wulkenhaar.

Renormalization of $\phi^{4}$ theory on noncommutative $\mathbb{R}^{4}$ in the matrix base, Comm.Math.Phys. 256; 305-374, 2004.
(R. V. Rivasseau, M. Disertori, R. Gurau, J. Magnen.

Vanishing of Beta Function of Non Commutative $\phi_{4}^{4}$ Theory to all orders, Phys.Lett. B649; 95-102, 2006.
國 D. Buchholz, S.J. Summers.
Warped Convolutions: A Novel Tool in the Construction of Quantum Field Theories,
Preprint: http://arxiv.org/abs/0806.0349, 2008.
國 V. Rivasseau, R. Gurau, J. Magnen, A. Tanasa.
A Translation-invariant renormalizable non-commutative scalar model, Comm.Math.Phys. 287; 275-290, 2009.
D. Buchholz, G. Lechner, S.J. Summers.

Warped Convolutions, Rieffel Deformations and the Construction of Quantum Field Theories,
Preprint: http://arxiv.org/abs/1005.2656, 2010.
Z. Wang,

Construction of 2-dimensional Grosse-Wulkenhaar Model, Preprint: http://arxiv.org/abs/1104.3750v1, 2011.

