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Introduction I

“Wick Rotation” . . . Analytically continuing a Lorentzian theory along
“imaginary time” towards a Euclidean theory - and vice versa.

Wightman functions ↔ Schwinger functions [OS 1973, OS2 1975]

Euclidean net of algebras → Haag-Kastler net in Minkowski
space-time [Schl 1999]

E ←→ Eθl ?

M ←→ Mθ
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Introduction II

Euclidean techniques are fundamental in constructive FT

QFT on noncommutative spaces with Euclidean metric has some
success available:

Scalar φ4-theory with additional terms proved renormalizable to all
orders [GW 2004, RGMT 2009].

SGW [φ] = Sφ4 [φ] +
∫

1
2

(
Ω
θ

)2
x2φ2 features a renormalization group

fixed point at Ω = 1→ 2D-model constructed [W 2011], possibility
of construction in 4D. [RDGM 2006]

At present no exact connection to noncommutative Lorentzian
theories is known

T. Ludwig (MPI MIS Leipzig) Wick Rot on NC Space May 21, 2011 3 / 25



Introduction II

Euclidean techniques are fundamental in constructive FT

QFT on noncommutative spaces with Euclidean metric has some
success available:

Scalar φ4-theory with additional terms proved renormalizable to all
orders [GW 2004, RGMT 2009].

SGW [φ] = Sφ4 [φ] +
∫

1
2

(
Ω
θ

)2
x2φ2 features a renormalization group

fixed point at Ω = 1→ 2D-model constructed [W 2011], possibility
of construction in 4D. [RDGM 2006]

At present no exact connection to noncommutative Lorentzian
theories is known

T. Ludwig (MPI MIS Leipzig) Wick Rot on NC Space May 21, 2011 3 / 25



Introduction II

Euclidean techniques are fundamental in constructive FT

QFT on noncommutative spaces with Euclidean metric has some
success available:

Scalar φ4-theory with additional terms proved renormalizable to all
orders [GW 2004, RGMT 2009].

SGW [φ] = Sφ4 [φ] +
∫

1
2

(
Ω
θ

)2
x2φ2 features a renormalization group

fixed point at Ω = 1→ 2D-model constructed [W 2011], possibility
of construction in 4D. [RDGM 2006]

At present no exact connection to noncommutative Lorentzian
theories is known

T. Ludwig (MPI MIS Leipzig) Wick Rot on NC Space May 21, 2011 3 / 25



Introduction II

Euclidean techniques are fundamental in constructive FT

QFT on noncommutative spaces with Euclidean metric has some
success available:

Scalar φ4-theory with additional terms proved renormalizable to all
orders [GW 2004, RGMT 2009].

SGW [φ] = Sφ4 [φ] +
∫

1
2

(
Ω
θ

)2
x2φ2 features a renormalization group

fixed point at Ω = 1→ 2D-model constructed [W 2011], possibility
of construction in 4D. [RDGM 2006]

At present no exact connection to noncommutative Lorentzian
theories is known

T. Ludwig (MPI MIS Leipzig) Wick Rot on NC Space May 21, 2011 3 / 25



Introduction II

Euclidean techniques are fundamental in constructive FT

QFT on noncommutative spaces with Euclidean metric has some
success available:

Scalar φ4-theory with additional terms proved renormalizable to all
orders [GW 2004, RGMT 2009].

SGW [φ] = Sφ4 [φ] +
∫

1
2

(
Ω
θ

)2
x2φ2 features a renormalization group

fixed point at Ω = 1→ 2D-model constructed [W 2011], possibility
of construction in 4D. [RDGM 2006]

At present no exact connection to noncommutative Lorentzian
theories is known

T. Ludwig (MPI MIS Leipzig) Wick Rot on NC Space May 21, 2011 3 / 25



Algebraic Approach: Spaces of Restricted Symmetry I

We start with a Euclidean net of von Neumann algebras E(O), O ⊂ R4

and the reduced Euclidean group: Eθ(4) = (O(2)× SO(2))nR4.

E(O) shall satisfy isotony, Eθ(4)-covariance, locality.
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Algebraic Approach: Spaces of Restricted Symmetry II

Moreover, E(O) shall fulfill the so-called time-zero condition:

Time-Zero Condition

E(O) =

( ⋃
K⊂Σe

{αEx ,RAEe (K ) : RK + x ⊂ O}

) ′′

Σe ⊥ R+e,

αEx ,R . . . automorphic Eθ(4)-action,

AEe (K ) ⊂
⋂
O⊃K

E(O).

T. Ludwig (MPI MIS Leipzig) Wick Rot on NC Space May 21, 2011 5 / 25



Algebraic Approach: Spaces of Restricted Symmetry II

Moreover, E(O) shall fulfill the so-called time-zero condition:

Time-Zero Condition

E(O) =

( ⋃
K⊂Σe

{αEx ,RAEe (K ) : RK + x ⊂ O}

) ′′

Σe ⊥ R+e,

αEx ,R . . . automorphic Eθ(4)-action,

AEe (K ) ⊂
⋂
O⊃K

E(O).

T. Ludwig (MPI MIS Leipzig) Wick Rot on NC Space May 21, 2011 5 / 25



Algebraic Approach: Spaces of Restricted Symmetry II

Moreover, E(O) shall fulfill the so-called time-zero condition:

Time-Zero Condition

E(O) =

( ⋃
K⊂Σe

{αEx ,RAEe (K ) : RK + x ⊂ O}

) ′′

Σe ⊥ R+e,

αEx ,R . . . automorphic Eθ(4)-action,

AEe (K ) ⊂
⋂
O⊃K

E(O).

T. Ludwig (MPI MIS Leipzig) Wick Rot on NC Space May 21, 2011 5 / 25



Schematic picture of the time-zero condition.
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Algebraic Approach: Spaces of Restricted Symmetry II

Time-Zero Condition

E(O) =

( ⋃
K⊂Σe

{αEx ,R(A) : RK + x ⊂ O, A ∈ AEe (K )}

) ′′

Σe ⊥ R+e,

αEx ,R . . . automorphic Eθ(4)-action,

AEe (K ) ⊂
⋂
O⊃K

E(O).
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Algebraic Approach: Spaces of Restricted Symmetry III

Last input: regular reflection-positive Euclidean functional σ.

Properties:

Eθ(4) 3 (x ,R) 7−→ σ(AαEx ,R(B)C ) continuous ∀ A,B,C ∈ E ,

σ ◦ αEx ,R = σ ∀ (x ,R) ∈ Eθ(4),

∃ e ∈ R4, |e | = 1 such that
σ(αre (A

∗)A) ≥ 0 ∀ A ∈ E+ := {E(O),O ⊂ R+e + Σe }.

re denotes the e-reflection, re : x 7→ x − 2(e, x)e.
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Algebraic Approach: Spaces of Restricted Symmetry IV

Via a construction similar to GNS we obtain the Hilbert space HM.

There, “spatial transformations” (x ,R):
[αEx ,R , αre ] = 0, directly −→ str.-cont. group Ue((0,x),R(0, α)) of

unitaries.

Let [A]σ be equivalence class w.r.t. the product 〈A,B〉 := σ(αre (A
∗)B).

Then define operators

V (t)[A]σ :=
[
α((t,0,0,0),1)(A)

]
σ
, for t ≥ 0

Ṽ (β)[A]σ :=
[
α(0,R(β,0))(A)

]
σ
, R(β, 0) := R(β)⊕ 1
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Algebraic Approach: Spaces of Restricted Symmetry V

Some remarkable works concern continuation of such representations.
Most notably: Fröhlich, Osterwalder & Seiler [FOS 1983], Fröhlich
[F 1980] ; Klein and Landau [KL 1981, KL2 1983]

Shown there: operators generalizing V (t) and Ṽ (β) are generated by
densely def. symm. operators which continue to self-adjoint operators on
HM.

Jorgensen and Ólafsson [JO 1999] gave a general treatment.
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Algebraic Approach: Spaces of Restricted Symmetry VI

In this way:
Imaginary time-translations V (t) and x0, x1-rotations Ṽ (β)
analytically−→ real time-translations eitH and x0, x1-boosts eiβL:

Define

U((t,x), Λ(β,α)) := e itHUe((0,x), Λ(0, α))e
iβL

→ It results a well-defined Pθ(4)-action, denote by αMg .

Pθ(4) := (O(1, 1)× SO(2))nR4.
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Algebraic Approach: Main Proposition

Proposition

The operators U(x , Λ(β,α)) form a unitary, weakly continuous
representation of the reduced Poincaré group Pθ(4) on HM.

The vacuum vector Ω := [1]σ is invariant under U(g) for all
g ∈ Pθ(4).
The joint spectrum of the generators H,P1,P2,P3 of the translations
lies in the closed lightwedge

Y := {p ∈ R4 : p0 ≥ |p1|}.
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Warped Convolution I

The so-called warped convolutions display a well-defined way of deforming
an algebraic theory [BS 2008]:

For a von Neumann algebra element A and a skew-symmetric matrix

θ :=

(
0 0
0 θ1

)
, θ1 :=

(
0 ϑ

−ϑ 0

)
, ϑ ∈ R

(commutative time)

it is defined as follows

AθΦ :=

∫∫
dxdy eixy αθx(A)U(y)Φ , Φ ∈ D (suitable)

U(y) := eiPy =
∫
dE (p) eipy
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Warped Convolution II

The symmetry group Eθ(4) = (O(2)× SO(2))nR4 was chosen such that

Rθ = θR for all R ∈ Eθ(4).

Thus, the (space-space) noncommutative deformation of E(O) defined by

Eθ(O) := {Aθ | A ∈ E(O)}

is also Eθ(4)-covariant.

Remark: Remains true in case of full rank noncommutativity Q for
(SO(2)× SO(2))nR4.

T. Ludwig (MPI MIS Leipzig) Wick Rot on NC Space May 21, 2011 14 / 25



Warped Convolution II

The symmetry group Eθ(4) = (O(2)× SO(2))nR4 was chosen such that

Rθ = θR for all R ∈ Eθ(4).

Thus, the (space-space) noncommutative deformation of E(O) defined by

Eθ(O) := {Aθ | A ∈ E(O)}

is also Eθ(4)-covariant.

Remark: Remains true in case of full rank noncommutativity Q for
(SO(2)× SO(2))nR4.

T. Ludwig (MPI MIS Leipzig) Wick Rot on NC Space May 21, 2011 14 / 25



Warped Convolution II

The symmetry group Eθ(4) = (O(2)× SO(2))nR4 was chosen such that

Rθ = θR for all R ∈ Eθ(4).

Thus, the (space-space) noncommutative deformation of E(O) defined by

Eθ(O) := {Aθ | A ∈ E(O)}

is also Eθ(4)-covariant.

Remark: Remains true in case of full rank noncommutativity Q for
(SO(2)× SO(2))nR4.

T. Ludwig (MPI MIS Leipzig) Wick Rot on NC Space May 21, 2011 14 / 25



Warped Convolution III

In order to apply our result to the deformed theory, we face changes in the
algebraic setting:

Arbitrary open subsets O of R4 are unstable w.r.t. the deformation:
i.e., ∃Aθ,Bθ ∈ Eθ(O) : AθBθ /∈ Eθ(O).
Not clear: do arbitrary nets keep the time-zero condition after
deformation?

At least two possibilities:

Take Eθ(O) to be the algebra generated by all warped elements of
E(O) → v.N. algebra by construction, but further properties are to be
investigated.

Instead, consider nets indexed by better suitable regions in R4.

For now, we follow the second option.
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investigated.

Instead, consider nets indexed by better suitable regions in R4.

For now, we follow the second option.
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Warped Convolution IV

Therefore, we define the cylindrical subsets

C := {O ( R4 | O2 bounded, O + x = O ∀ x ∈ 0× R2} ,

where O2 denotes the projection of O onto commutative R2 × 0,

as well as the time-zero stripes:

S := {K ( Σe | K1 bounded, K + x = K ∀ x ∈ 0× R2} .

→ For C ∈ C, Eθ(C ) is stable under warped convolutions.

Warning: Does not mean localization in C !
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Cylindrical Subsets
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Warped Convolution: (TZ)

What about the time-zero condition?

Lemma: Eθ(4) enough for C

1 ∀C ∈ C, ∀S ∈ S ∃g ∈ Eθ(4) :

gS ⊂ C

2 If g ∈ E (4) s.t. for S ∈ S we have gS ⊂ C for a C ∈ C

⇒ g ∈ Eθ(4)

Corollary

If E(C ) is E (4)-cov. and satisfies (TZ)⇒ Eθ(C ) is Eθ(4)-cov. and satisfies (TZ)θ
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Warped Convolution: (TZ)θ

Proof (Cor., sketched).

Indeed, contemplate such E(C ). From the lemma we have

{αgA0(S) | S ∈ S , g ∈ E (d), gS ⊂ C }

= {αgA0(S) | S ∈ S , g ∈ Eθ(d), gS ⊂ C }

Eθ(C ) is well-defined and Eθ(4)-covariant ⇒
Eθ(C ) =

(⋃
S∈S

{αgAθ(S) | S ∈ S , g ∈ Eθ(d) , gS ⊂ C }

) ′′
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Warped Convolution: Minkowskian Net

Locality properties of warped convolutions derived in [BLS 2010] remain
valid here. Combining our results leads to

Minkowskian Net

Mθ(C ) :=

(⋃
S⊂S

{
αMg (πσ(A)) | g ∈ Pθ(4), gS ⊂ C ,A ∈ AEθ(K )

}) ′′

defines a Haag-Kastler net with modified locality (wedge locality).

πσ . . . repr. of Eθ on HM.
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Wedge Locality

W1 := {x ∈ R4
∣∣ x1 > |x0|}

A ∈M(W1) , B ∈M(−W1)⇒ [Aθ,B−θ] = 0
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Summary

Input data: E (4)-covariant Euclidean net E(O) of v.N. algebras,
regular reflection-positive Euclidean functional σ and the (restrictive!)
time-zero condition

Deformation: Build the algebra Eθ(C (O)) in terms of warped
convolutions.

→ Eθ is Eθ(4)-cov. & well-def. on C.

Output: Obtain a noncommutative Pθ(4)-covariant Haag-Kastler net
Mθ(C (O)) (with commutative time) which is wedge-local.

T. Ludwig (MPI MIS Leipzig) Wick Rot on NC Space May 21, 2011 22 / 25



Summary

Input data: E (4)-covariant Euclidean net E(O) of v.N. algebras,
regular reflection-positive Euclidean functional σ and the (restrictive!)
time-zero condition

Deformation: Build the algebra Eθ(C (O)) in terms of warped
convolutions.→ Eθ is Eθ(4)-cov. & well-def. on C.

Output: Obtain a noncommutative Pθ(4)-covariant Haag-Kastler net
Mθ(C (O)) (with commutative time) which is wedge-local.

T. Ludwig (MPI MIS Leipzig) Wick Rot on NC Space May 21, 2011 22 / 25



Summary

Input data: E (4)-covariant Euclidean net E(O) of v.N. algebras,
regular reflection-positive Euclidean functional σ and the (restrictive!)
time-zero condition

Deformation: Build the algebra Eθ(C (O)) in terms of warped
convolutions.→ Eθ is Eθ(4)-cov. & well-def. on C.

Output: Obtain a noncommutative Pθ(4)-covariant Haag-Kastler net
Mθ(C (O)) (with commutative time) which is wedge-local.

T. Ludwig (MPI MIS Leipzig) Wick Rot on NC Space May 21, 2011 22 / 25



Summary

Input data: E (4)-covariant Euclidean net E(O) of v.N. algebras,
regular reflection-positive Euclidean functional σ and the (restrictive!)
time-zero condition

Deformation: Build the algebra Eθ(C (O)) in terms of warped
convolutions.

→ Eθ is Eθ(4)-cov. & well-def. on C.

Output: Obtain a noncommutative Pθ(4)-covariant Haag-Kastler net
Mθ(C (O)) (with commutative time) which is wedge-local.

T. Ludwig (MPI MIS Leipzig) Wick Rot on NC Space May 21, 2011 22 / 25



Summary

Input data: E (4)-covariant Euclidean net E(O) of v.N. algebras,
regular reflection-positive Euclidean functional σ and the (restrictive!)
time-zero condition

Deformation: Build the algebra Eθ(C (O)) in terms of warped
convolutions.→ Eθ is Eθ(4)-cov. & well-def. on C.

Output: Obtain a noncommutative Pθ(4)-covariant Haag-Kastler net
Mθ(C (O)) (with commutative time) which is wedge-local.

T. Ludwig (MPI MIS Leipzig) Wick Rot on NC Space May 21, 2011 22 / 25



Commuting Diagram

E ←→ Eθl ↓
M ←→ Mθ

Abstand

l . . . known Wick rotation
−→ . . . warped convolution←− . . . commutative limit, i.e. ϑ→ 0↓ . . . this talk
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Outlook

Remarks:

Generalization of the group continuation to space-time dimension
d = s + 2n has been done.

The lemma concerning (TZ)θ has up until now be generalized to
d ≤ 4.

Open tasks:

Drop or at least relax the time-zero condition

Obtain similar results for noncommutative time

“Covariantize” to have full symmetry group E (4) at hand.
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THANK YOU FOR YOUR ATTENTION !
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Unitary Representations and Osterwalder-Schrader Duality,
Preprint: http://arxiv.org/abs/math/9908031, 1999.

H. Grosse, R. Wulkenhaar.

Renormalization of φ4 theory on noncommutative R4 in the matrix base,
Comm.Math.Phys. 256; 305-374, 2004.

V. Rivasseau, M. Disertori, R. Gurau, J. Magnen.

Vanishing of Beta Function of Non Commutative φ4
4 Theory to all orders,

Phys.Lett. B649; 95-102, 2006.

D. Buchholz, S.J. Summers.
Warped Convolutions: A Novel Tool in the Construction of Quantum Field
Theories,
Preprint: http://arxiv.org/abs/0806.0349, 2008.

V. Rivasseau, R. Gurau, J. Magnen, A. Tanasa.
A Translation-invariant renormalizable non-commutative scalar model,
Comm.Math.Phys. 287; 275-290, 2009.

T. Ludwig (MPI MIS Leipzig) Wick Rot on NC Space May 21, 2011 25 / 25



D. Buchholz, G. Lechner, S.J. Summers.
Warped Convolutions, Rieffel Deformations and the Construction of Quantum Field
Theories,
Preprint: http://arxiv.org/abs/1005.2656, 2010.

Z. Wang,
Construction of 2-dimensional Grosse-Wulkenhaar Model,
Preprint: http://arxiv.org/abs/1104.3750v1, 2011.

T. Ludwig (MPI MIS Leipzig) Wick Rot on NC Space May 21, 2011 25 / 25


	Introduction
	The Algebraic Approach
	Warped Convolution

