I The geometry of the Higgs

Burić \& Madore

Outline

1. Yang-Mills potentials ... good
2. Higgs mechanism better
3. Noncommutative geometry best

Yang-Mills potentials

As example we choose the chiral $S U_{2}$ potential

$$
A=\rho+\gamma^{5} A_{1}
$$

and action

$$
S=\frac{1}{4} \int \operatorname{Tr} F F^{*}
$$

No mass term.

Higgs mechanism (almost)

Let ψ be a Dirac spinor with values in the fundamental representation of the chiral $S U_{2}$ symmetry group.

Let D be covariant with connection A.
The norm with an arbitrary hermitean h

$$
\bar{\psi} \psi=\psi^{*} h \psi
$$

The covariant derivative of h is given by

$$
D h=d h+[A, h]
$$

If this vanishes the connection is metric.

An example is the σ-model metric

$$
h=\gamma^{0}\left(\sigma+\gamma^{5} \pi\right), \quad \pi=-\frac{1}{4} i \pi_{a} \sigma^{a}, \quad \sigma^{2}=1-\frac{1}{4} \pi^{2}
$$

A solution to the condition $D h=0$ is given by

$$
A=j+\gamma^{5} j^{5}
$$

where

$$
j=[\pi, d \pi], \quad j^{5}=\sigma d \pi-\pi d \sigma
$$

are the pion vector and axial-vector currents.
Using these the action can be extended

$$
S=\frac{1}{4} \int \operatorname{Tr} F F^{*}+\frac{1}{2} m^{2} \operatorname{Tr}(A-j)^{2}
$$

to include a mass term for the chiral potential.
There is no Higgs (the pion) potential-energy term to break the symmetry

Schwinger, Zumino, Weinberg and others

Noncommutative geometry

One would introduce the chiral algebra

$$
\mathcal{A}=\mathcal{C}\left(\mathbb{R}^{4}\right) \otimes\left(M_{2} \oplus \gamma^{5} M_{2}\right)
$$

and study electromagnetism using \mathcal{A} instead of $\mathcal{C}\left(\mathbb{R}^{4}\right)$

There is now a potential-energy term and the current is replaced by the Connes-Dirac operator, a 1-form which transforms as a Yang-Mills potential does but is also in fact gauge-invariant.

II The Frame Formalism or
 How it Came
 That we Tergiversate no More and
 Love Noncommutativity

Burić \& Madore

Ingredients

The usual plus a frame

$$
\left[x^{\mu}, \theta^{\alpha}\right]=0,
$$

and thereto dual momenta

$$
\left[p_{\alpha}, x^{\mu}\right]=\hbar e_{\alpha}^{\mu} .
$$

with a quadratic consistency condition.
For the rotation coefficients one has

$$
C^{\alpha}{ }_{\beta \gamma}=F^{\alpha}{ }_{\beta \gamma}-4 i \epsilon p_{\delta} Q_{-}^{\alpha \delta}{ }_{\beta \beta \gamma} \quad F, Q \in \mathbb{R}
$$

It follows that

$$
e_{\alpha} C^{\alpha}{ }_{\beta \gamma}=0
$$

Phase space

There are in gereral in position space 4 inner derivations with momenta $-Z_{\alpha}\left(x^{\mu}\right)$ which are dual to the frame.

Phase space has also 4 extra generators, outer derivations which we make inner by adding 4 momenta p_{α}. This is quantum mechanics.

The 'covariant derivative'

$$
P_{\alpha}=p_{\alpha}+Z_{\alpha}\left(x^{\mu}\right)
$$

lies thus in the commutant of the algebra.
Write a point in phase space as $y^{i}=\left(x^{\lambda}, p_{\alpha}\right)$.
The Heisenberg commutation relations are

$$
\left[y^{i}, y^{j}\right]=J^{i j}
$$

with

$$
J^{i j}=\left(\begin{array}{cc}
0 & \delta_{\beta}^{\mu} \\
-\delta_{\alpha}^{\nu} & 0
\end{array}\right) .
$$

The diagonal elements consist of the six position commutators

$$
\left[x^{\mu}, x^{\nu}\right]=i k J^{\mu \nu} .
$$

as well as of the 'dual' momentum commutators

$$
\left[p_{\alpha}, p_{\beta}\right]=(i k)^{-1} L_{\alpha \beta}
$$

with

$$
L_{\alpha \beta}=K_{\alpha \beta}+F^{\gamma}{ }_{\alpha \beta} p_{\gamma}-2 i \epsilon Q^{\gamma \delta}{ }_{\alpha \beta} p_{\gamma} p_{\delta} .
$$

The general noncommutative phase space is given by

$$
J^{i j}=\left(\begin{array}{cc}
i \hbar J^{\mu \nu} & e_{\beta}^{\mu} \\
-e_{\alpha}^{\nu} & (i k)^{-1} L_{\alpha \beta}
\end{array}\right)
$$

The Leibniz rule can be written

$$
e_{\alpha} J^{\beta \gamma}+C^{[\beta}{ }_{\alpha \delta} J^{\delta \gamma]}=0 .
$$

or in terms of the inverse

$$
F_{\alpha \beta}=\left(J^{-1}\right)_{\alpha \beta} .
$$

either as

$$
e_{\alpha} F_{\beta \gamma}+F_{\alpha \delta} C^{\delta}{ }_{\beta \gamma}=0
$$

or as a 'cocycle condition'

$$
d F=0, \quad F=\frac{1}{2} F_{\alpha \beta} \theta^{\alpha} \theta^{\beta}
$$

The solution

$$
C^{\alpha}{ }_{\beta \gamma}=J^{\alpha \eta} e_{\eta} F_{\beta \gamma} .
$$

yields an explicit map

$$
J^{\alpha \eta} \rightarrow C^{\alpha}{ }_{\beta \gamma}
$$

from the algebra to the geometry

